SOFTWARE ARCHITECTURE
2. FILE SYSTEM

Tatsuya Hagino
hagino@sfc.keio.ac.jp

lecture URL

https://vu5.sfc.kelo.ac.|p/slide/

Operating System Structure

Application

Operating System

!

System call processing

pd

[File System

~N

1

Process Management

Network Management]

[Memory Management]

\

\

[Scheduler

[Bootstrap

]

Device Management

v

Hardware

What is a File?

A unit to store information in an external storage

- sometimes called dataset /\
External Storage
Characteristics of a file (SSD, HDD, USB)

- Information in a file is non-volatile.
- Its content does not disappear when power is off. File
- Information in a file is persistent.
« It exists forever.
- You can start with what you have left.

File

File System
- Manage files on an external storage

- Windows — NTFS
- MacOS — HFS or APPLE FS
- Unix »> UFS

File related conventions:
- file name

- file structure

- file type

- file access method

. S
File Naming Convention

g‘[file name |
Each file has a name.

- File name

Letters used for file name

- case insensitive: lower and upper letters are not distinguished.
- case sensitive: lower and upper letters are distinguished.

- Encoding of non alphabet characters (e.g. kanji file name)

file name
- Length of file name (x |
- MS-DOS limits 8+3 characters. document.docx
- UNIX limits 255 characters. \ |

File extension file extension

- It may express its file type:
- Windows: use it to find associated program.
- Mac: uses to hold file type internally.
- UNIX: depends on applications
+ Compilers may use it to select programming language.

File Structure
- Sequence of bytes @ - Sequence of records

- No structure in a file - Consist of fixed length

- User can create arbitrary records.
fields. - For a punch card, each record

- Atext file uses LF or CR to consists of 80 characters. (i.e.
separate lines. one record = one line)

. May not be efficient when . Efficiently read and write
reading or writing. records.

line 1| char char char LF record 1 char char char char char char

record 2 char char char char char char

line 2| char char char char char LF

record 3 char char char char char char

line 3| char char char char LF

line 4 | char char LF record 4 char char char char char char

5
File Type

- Regular File:
- text file or binary file

- Directory:
- Folder
- Manage a set of files

- Character Special File:
- Input/output device
- Serial devices like terminal, printer, network, etc.

- Block Special File:
- Devices with block access (i.e. read/write blocks)
- HDD, SSD, etc.
- File system can be created on it.

File Access Method
- Sequential access @ - Random access

- Read/write a file one byte - Read/write a file randomly
by one byte sequentially. In any order.
- Cannot skip or change the - In UNIX, the next position
order of reading/writing. can be specified using
- May rewind it and start from seek system call.

the beginning again.

one by one
from beginning in any
to end order

3
Hierarchical File System =

Implemented by allowing a directory to / \ child
have other directories inside. directory

- Implementation of a directory:
- Each directory consists of a list of entries.

- Each entry consists of a file name and a
pointer to a file.

- Afile can be pointed from more than one

directory.
- File sharing (hard link) File
R SpeCIfylng a flle directory i file information i
- Use path name adocx | 717, | Size o
. . . bb.c I owner block |
- Concatenate file names with separation satex | |access | 4 ;
characters 7 | blocks |7 5

- UNIX and Mac — /
- Windows — \ or ¥
- Old Mac OS — :

. S
Path Name

- Absolute path name

- Starting from the root directory, sub directory names are listed with /

separators. /home/hagino/sal8/02.pptx

- Relative path name

- Starting from the current working directory sal8/02.pptx
e - root directory
/ / \‘,
sbin var home
bin sbin local 'jjif/;% haglno } passwd
/ current working directory AN
grep
bin sal8 '

Ol.pptx | 02.pptx E

File Read/Write Mechanism

- UNIX as an example
- Directly use system calls to read/write a file
- Use standard input/output libraries

[Application
[Standard Inpu‘tlllOutput Library :
ressssrssnsssn s s ‘l, :
. 0S File System related System Call |
v
Buffer Management
v o
[Device Driver HDD

File System related System Calls

read data from the file

_ [read }l:-:> data
file name ;

(path name)%
[open }
% write data to the file
start access File :

Descriptor ':‘>[write k‘j data

/ \}] changg': the position of
[1 next read/write
close :

position

other operations

attributes

File Descriptor

- A small number returned by open system call
- specifies an opened file
- used by read/write
- remembers a position of read/write

- Managed by each process
- The meaning of file descriptors is local to each process.

- Even in a single process, if the same file is opened more than once,
different file descriptors are assigned.

- Special file descriptors:
- standard input — O
- standard output — 1
- standard error output — 2

Example program of reading a file using system calls

#include <fcntl.h>

int main (argc, char *argv][])
{

int £d, n;

char buf[512];

fd = open(argv[l], O RDONLY) ;

while ((n = read(fd, buf, 512)) > 0) {
write(1l, buf, n);

}

close (£d) ;

Standard Input/Output Library

- System call
- Not easy to use
- e.g. There is no system call to read one line.
- Inefficient for small usage
- System call needs to go though OS protection boundary (user mode to supervise mode).
« Costs much more than calling a library.

- Standard input/output library
- Useful interface
- read one line
- read one character
- Optimize system call access
- Use buffer

[Application J

@ fopen, fclose, fgetc, fputc, fgets, fputs

[Standard input/output library]@ buffer
@ open, close, read, write

[System call]

How to Use Standard Input/Output Libraries

read one character

fgetc EI> one character

file name PR
(path name) % 're.ad one line

[fopen gets }EI> one line

Start access FILE s _
convett string to value

structure Q
/ [fscanf 1IZI> value
end access
[fclose 1

[fputc 1 write one character

[fprintf }[fouts } """ %

convert value to stringﬁ

one character

write one line
value one line

Example program of reading a file using standard
Input/output libraries

#include <stdio.h>

int main (argc, char *argv][])
{

FILE fp;

int ch;

fp = fopen(argv([1l], "r");
while ((ch = fgetc(fp)) >= 0) {
fputc(ch, stdout)

}
fclose (£fp) ;

Implementation of Standard Input/Output Library

fopen
FILE *fopen(char *path, char *mode) {
FILE *fp;
fp = (FILE *)malloc(sizeof(struct FILE)) ; . .
p =) ((" Application
fp->fd = open(path, ...);
fp->si = 0;
p->size =0 FILE structure
fp->counter = 0; presssnessnansnnnnn e g a st .
return fp; A 5
) :
2 buf <€— counter
Size next
FILE structure holds read/write
struct FILE { : v tercr;ptoral position
int £d; ata
char buf[BUFSIZE] ; : :
int Size; E...-......-"....-"... AEmEEEEEEEEEEEEEEEEsEEEsEEEEEEEEEEEEEd
int counter; SyStem call
};
& : OS
ypedef struct FILE FILE;

Implementation of fgetc

fgetc
int fgetc (FILE *fp) ({
if (fp->counter >= fp->size) {
fp->size = read(fp->fd, fp->buf, BUFSIZE) ;
if (fp->size <= 0) return -1;

fp->counter = 0;

}
return fp->buf[fp->counter++];

} assume
BUFSIZE =512
4 I
(1) checks buf _ (2) read 512 bytes
fgetc 'f@@ buf | «—— _ 0S —

< (3) fill buf with N
(4) returns one 512 bytes file
character —

Implementation of System Call

e

>
Process Management Structure
0 1 2 3 4
File DescriptorTable | , | , | ; | « | = | seessssscsssssscsssssssmssannnnnnan,
/ \ / \
\ /

File
Descriptor

inode

block
numbers

File
Descriptor

inode

block
numbers

\

\

/ \
\ / File Descriptor

File
Descriptor

» For each opened file
 Holds read/write position

\

inode (index node)

» For each file

* Manages file information
s owner
* size
* file blocks

Implementation of open

- Returns a file descriptor for a given file
- Calls namei to find its inode.
- Finds an empty file descriptor slot and sets a new file structure.

int open(char *path, int flags, ...) {

struct inode *ip;

int £d; file structure

struct file *fp; struct file {

ip = namei (path) ; struct inode *inode;

if (ip) { long offset;
fp = create a new file structure; int refcount;
fp->inode = ip; };

fp->offset = 0;

fp->refcount = 1;

fd = unused file descriptor of proc;
proc->file[fd] = fp;

return fd;

}

else return -1;

namei

- Following the path, checks each directory to fined the
named file.

struct inode *namei (char *path) {
struct inode *dp;

if (*path == ’/’) {
dp = proc->root directory;
path++;

} else dp = proc->current working directory;
while (*path) {

name = select next name from path;

dp = lookup(dp, name);
}

return dp;

Implementation of File

- Each file consists of a list of blocks on a disk (or a block device).

- UNIX uses inode (index node) to manage block numbers

- FAT file system uses FAT to manage _
Filesystem on

inode structure a block device
struct inode {

short mode; inode inod
int uid < owner ”10 €
int gid; data
long size; ¢ size data block
block
data

int atime; w
int mtime; < modification time

int ctime;

int direct[12]; < direct reference block numbers (12 blocks)
int indirect[3] ;< |
) [indirect block numbers (3 blocks)

Direct and Indirect Blocks

- Each inode points 12 direct blocks.
- When one block is 512 bytes, it can hold a file less than 512 x 12=6KB.

- An indirect block contains a list of blocks.

. data
inode data indirect blocl/
infomation / ; -
, ata
3::23; : indirect bloc/ T data
T data
! data
data indirect bloc
o data
— — 7’ indirect block
irec]
indirect 1 — >]
indirect 2 -
indirect 3 \\ \ data

Calculation of Block Number

- From file position to calculate corresponding block number

- Afile descriptor holds a position of read/write and the next read/write
access the corresponding block.

int balloc(struct inode *ip, long offset) {
struct buf *bp;

file file descriptor
—

int i; ~
blk = (offset + BLKSIZE - 1) / BLKSIZE; —
if (blk < 12) return ip->direct[blk];

blk -= 12;

blocks = BLKSIZE/sizeof (int) ;
for (i = 0; i < 3; i++) {
if (blk < blocks) break;
blk -= blocks;

blocks *= BLKSIZE/sizeof (int) ; position
}
bp = getblock (ip->indirect[i])
while (i-- > 0) { % read
blocks /= BLKSIZE/sizeof (int) ; .
write

bp = getblock (bp->buf [blk/blocks]) ;
blk %= blocks;

}
return bp->buf[blk];

Buffering

- Disk blocks are cached in OS memory.

- Read:
- First time: reads data from the disk and put it in the cache.
- Second time: do not access disk but use data in the cache.
- Write:
- Do not write data to the disk immediately.
- Write them out all later.

Hash table

for buffers /\ buf structure
< > struct buf {

~

struct buf *next, *prev;

struct buf *queue next, *queue prev;

N
\

struct inode *inode;

int dirty;
int blkno;
char buf[BLKSIZE] ;
};
struct buf buffers[HASH];

N

recently
used

Disk Format

- A new disk needs to be formatted.

File system on a disk

disk information

N

Superblock

inode information

N

inode

Unused blocks are managed by a list
or a bitmap.

list of unused blocks <

data blocks

N

actual data blocks

Summary

- File System
- UNIX file system as an example.

- System call vs Standard Input/Output Library
- Implementation of the library
- File Descriptor

- Implementation of File System
- Inode
- Direct and indirect blocks

