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Operating System Structure
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What is a File?
• A unit to store information in an external storage

• sometimes called dataset

• Characteristics of a file
• Information in a file is non-volatile.

• Its content does not disappear when power is off.

• Information in a file is persistent.
• It exists forever.

• You can start with what you have left.

• File System
• Manage files on an external storage

• Windows → NTFS

• MacOS → HFS or APPLE FS

• Unix → UFS

• File related conventions:
• file name

• file structure

• file type

• file access method
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File Naming Convention
• Each file has a name.

• File name

• Letters used for file name
• case insensitive: lower and upper letters are not distinguished.

• case sensitive: lower and upper letters are distinguished.

• Encoding of non alphabet characters (e.g. kanji file name)

• Length of file name
• MS-DOS limits 8+3 characters.

• UNIX limits 255 characters.

• File extension
• It may express its file type:

• Windows: use it to find associated program.

• Mac: uses to hold file type internally.

• UNIX: depends on applications
• Compilers may use it to select programming language.
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File Structure

• Sequence of bytes
• No structure in a file

• User can create arbitrary 
fields.

• A text file uses LF or CR to 
separate lines.

• May not be efficient when 
reading or writing.

• Sequence of records
• Consist of fixed length 

records.

• For a punch card, each record 
consists of 80 characters. (i.e. 
one record = one line)

• Efficiently read and write 
records.
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File Type

• Regular File:

• text file or binary file

• Directory:

• Folder

• Manage a set of files

• Character Special File:

• Input/output device

• Serial devices like terminal, printer, network, etc.

• Block Special File:

• Devices with block access (i.e. read/write blocks)

• HDD, SSD, etc.

• File system can be created on it.
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File Access Method

• Sequential access
• Read/write a file one byte 

by one byte sequentially.

• Cannot skip or change the 
order of reading/writing.

• May rewind it and start from 
the beginning again.

• Random access
• Read/write a file randomly 

in any order.

• In UNIX, the next position 
can be specified using 
seek system call.
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Hierarchical File System
• Implemented by allowing a directory to 

have other directories inside.

• Implementation of a directory:
• Each directory consists of a list of entries.

• Each entry consists of a file name and a 
pointer to a file.
• A file can be pointed from more than one 

directory.

• File sharing (hard link)

• Specifying a file
• Use path name

• Concatenate file names with separation 
characters
• ＵＮＩＸ and Mac → /

• Windows → ∖ or ¥

• Old Mac OS → :
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Path Name
• Absolute path name

• Starting from the root directory, sub directory names are listed with / 
separators.

• Relative path name
• Starting from the current working directory
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File Read/Write Mechanism

• UNIX as an example

• Directly use system calls to read/write a file

• Use standard input/output libraries

10

Application

Standard Input/Output Library

File System related System Call

Buffer Management

Device Driver Hardware HDD

SSD

OS



File System related System Calls
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File Descriptor

• A small number returned by open system call
• specifies an opened file

• used by read/write

• remembers a position of read/write

• Managed by each process
• The meaning of file descriptors is local to each process.

• Even in a single process, if the same file is opened more than once, 
different file descriptors are assigned.

• Special file descriptors:
• standard input → 0

• standard output → 1

• standard error output → 2
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Example program of reading a file using system calls
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#include <fcntl.h>

int main(argc, char *argv[])

{

int fd, n;

char buf[512];

fd = open(argv[1], O_RDONLY);

while ((n = read(fd, buf, 512)) > 0) {

write(1, buf, n);

}

close(fd);

}



Standard Input/Output Library
• System call

• Not easy to use
• e.g. There is no system call to read one line.

• Inefficient for small usage
• System call needs to go though OS protection boundary (user mode to supervise mode).

• Costs much more than calling a library.

• Standard input/output library
• Useful interface

• read one line

• read one character

• Optimize system call access
• Use buffer
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How to Use Standard Input/Output Libraries
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Example program of reading a file using standard 

input/output libraries
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#include <stdio.h>

int main(argc, char *argv[])

{

FILE fp;

int ch;

fp = fopen(argv[1], "r");

while ((ch = fgetc(fp)) >= 0) {

fputc(ch, stdout);

}

fclose(fp);

}



Implementation of Standard Input/Output Library
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struct FILE {

int fd;

char buf[BUFSIZE];

int size;

int counter;

};

typedef struct FILE FILE;

FILE structure

FILE *fopen(char *path, char *mode) {

FILE *fp;

fp = (FILE *)malloc(sizeof(struct FILE));

fp->fd = open(path, ...);

fp->size = 0;

fp->counter = 0;

return fp;

}

fopen

counterbuf

holds 

temporal

data

next

read/write

position

size

System call

Application

FILE structure

OS



Implementation of fgetc
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int fgetc(FILE *fp) {

if (fp->counter >= fp->size) {

fp->size = read(fp->fd, fp->buf, BUFSIZE);

if (fp->size <= 0) return -1;

fp->counter = 0;

}

return fp->buf[fp->counter++];

}

fgetc

fgetc buf

(1) checks buf

OS

file

(2) read 512 bytes

assume

BUFSIZE = 512

(3) fill buf with

512 bytes(4) returns one

character

If there is data in buf,

no read



Implementation of System Call
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Implementation of open

• Returns a file descriptor for a given file

• Calls namei to find its inode.

• Finds an empty file descriptor slot and sets a new file structure.
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int open(char *path, int flags, ...) {

struct inode *ip;

int fd;

struct file *fp;

ip = namei(path);

if (ip) {

fp = create a new file structure;

fp->inode = ip;

fp->offset = 0;

fp->refcount = 1;

fd = unused file descriptor of proc;

proc->file[fd] = fp;

return fd;

}

else return -1;

}

struct file {

struct inode *inode;

long offset;

int refcount;

};

file structure



namei

• Following the path, checks each directory to fined the 

named file.
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struct inode *namei(char *path) {

struct inode *dp;

if (*path == ’/’) {

dp = proc->root_directory;

path++;

} else dp = proc->current_working_directory;

while (*path) {

name = select next name from path;

dp = lookup(dp, name);

}

return dp;

}



Implementation of File
• Each file consists of a list of blocks on a disk (or a block device).

• UNIX uses inode (index node) to manage block numbers
• FAT file system uses FAT to manage

22

struct inode {

short mode;

int uid

int gid;

long size;

...

int atime;

int mtime;

int ctime;

...

int direct[12];

int indirect[3];

};

inode structure
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modification time

direct reference block numbers （12 blocks）

indirect block numbers （3 blocks）

inode
inode

data

block
data

block

data

block

Filesystem on

a block device



Direct and Indirect Blocks

• Each inode points 12 direct blocks.

• When one block is 512 bytes, it can hold a file less than 512×12=6KB.

• An indirect block contains a list of blocks.
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Calculation of Block Number
• From file position to calculate corresponding block number

• A file descriptor holds a position of read/write and the next read/write 
access the corresponding block.
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int balloc(struct inode *ip, long offset) {

struct buf *bp;

int i;

blk = (offset + BLKSIZE - 1) / BLKSIZE;

if (blk < 12) return ip->direct[blk];

blk -= 12;

blocks = BLKSIZE/sizeof(int);

for (i = 0; i < 3; i++) {

if (blk < blocks) break;

blk -= blocks;

blocks *= BLKSIZE/sizeof(int);

}

bp = getblock(ip->indirect[i])

while (i-- > 0) {

blocks /= BLKSIZE/sizeof(int);

bp = getblock(bp->buf[blk/blocks]);

blk %= blocks;

}

return bp->buf[blk];

}

file descriptorfile

position

read

write



Buffering
• Disk blocks are cached in OS memory.

• Read:
• First time: reads data from the disk and put it in the cache.

• Second time: do not access disk but use data in the cache.

• Write:
• Do not write data to the disk immediately.

• Write them out all later.
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Hash table

for buffers

buffer buffer

buffer

recently

used

buffer buffer

struct buf {

struct buf *next, *prev;

struct buf *queue_next, *queue_prev;

struct inode *inode;

int dirty;

int blkno;

char buf[BLKSIZE];

};

struct buf buffers[HASH];

buf structure



Disk Format

• A new disk needs to be formatted.

26

Superblock

File system on a disk
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Summary

• File System

• UNIX file system as an example.

• System call vs Standard Input/Output Library

• Implementation of the library

• File Descriptor

• Implementation of File System

• inode

• Direct and indirect blocks
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