
SOFTWARE ARCHITECTURE
3. SHELL
Tatsuya Hagino
hagino@sfc.keio.ac.jp

1

https://vu5.sfc.keio.ac.jp/slide/
lecture URL

Software Layer
2

Hardware

Operating System

MIddleware

Library

Application Shell

Shell

Functions of Shell
• Start programs
• Control running programs

• background
• foreground

• Input/output redirection for programs
• pipe

• Set environment variables and shell
variables

• Expanding wild cards for command line
• History of commands
• Alias for commands
• File name completion

• Repeat and conditional execution
• Shell script

3

Starting and Controlling
Programs

Setting up execution
environment

Useful functions

Running scripts

Shells
• Windows

• Command Prompt
• PowerShell
• Explorer

• Mac
• Finder
• Launcher

• UNIX
• sh

• Bourne Shell
• Korn Shell
• Z Shell

• csh
• C Shell
• TENEX C Shell

4

OS
Kernel

Shell

User

App

App

App

Shell between OS and user

ＵＮＩＸ Shell Commands

• Very few built-in commands
• set, alias, cd, setenv, etc.

• Most of commands are ordinary programs.
• ls is a program to list files in a directory.
• cat is a program to output contents of files.

5

• Shell communicates your instruction to OS

Shell OS

Shell Command Processing

1. Write a prompt.
2. Read one line from a terminal.
3. Separate the line into a command and its arguments

separated by spaces.
4. Execute the command with the arguments.
5. Back to the next input.

6

shell() {
char buf[512], char *argv[512];
for (;;) {
printf("% ");
if (!fgets(buf, sizeof(buf), stdin)) break;
parse(buf, argv);
execute(argv[0], argv);

}
}

1

2

3

4

Execute a Program
• Create a child process and execute a program.

7

• Shell is the parent process and waits for the child process to finish.

execute(char *cmd, char *argv[]) {
int pid, status;
pid = fork();
if (pid == 0) {
execve(cmd, argv, NULL);
fprintf(stderr, "command %s not found¥n", cmd);
exit(1);

}
while (wait(&status) != pid);

}

Process
• Running state of a program

• Multiple processes may run the same program.

• Each process consists of:
• program
• CPU state (registers, PC, SP)
• data
• memory space
• file descriptors
• other process related states

8

memory space

CPU state
file descriptors

etc.

program code

data

stack

Heap

Process related System calls
• fork

• Create a child process.
• Exact copy of the parent

• exec
• Specify a program to execute.
• Current program is destroyed and

replaced with the new one.
• wait

• Wait until a child process terminates.
• exit

• Terminate the current program.

• other system calls
• signal

• Specify a handler for each interrupt.
• kill

• Send an interrupt.

9

parent
process

running abc

child
process

running abc

fork

child
process

running xyzexec

wait

destroyed

exit

parent-child relation in processes

fork and exec
• fork

• Inherit all from the parent.
• memory space

• program
• data
• stack

• file descriptors
• environment variables

• Memory spaces are not
shared, but copied.
• copy-on-write
• If either one changes, it is

actually copied.

• exec
• Independence from the parent

• Destroy the current content of
the memory.

• Replace it with the new program
image.

• Start the new program from
its entry point.
• main

• What inherits.
• file descriptors
• arguments to exec

• including environment variables

• The program image is not
loaded into the memory
immediately.
• demand paging
• loaded when necessary

10

How fork works
1. Create a new process and make it a child.
2. Copy CPU state.

• registers, PC, SP, etc.
3. Copy memory contents.

• use copy-on-write sharing
4. Copy file descriptors.
5. Make the new process ready-to-run (or runnable).
6. Return to where fork is called.

11

parent
process

parent
process

child
process

CPU CPU

file descriptors file descriptors

parent
process

child
process

CPU

file descriptors

CPU

file descriptors

parent
process

CPU

file descriptors

child
process

CPU

file descriptors

How exec works
1. Allocate a temporary memory space.
2. Copy the command arguments and the environment variables to the temporary

memory space.
3. Release all the memory of the current process and create an empty memory

space.
4. Set up demand paging of the given program on the new memory space.
5. Copy the command arguments and the environment variables from the

temporary memory space to the stack in the new memory space.
6. Release the temporary memory space.
7. Set CPU PC to the entry point.

12

process

CPU

file descriptors

command
arguments

environment
variables

file descriptors

command
arguments

environment
variables

program

file descriptors

program

HDD・SSD

command
arguments

environment
variables

program

file descriptors

CPUentry
point

PC

Command PATH
• The first argument of execve is the path name of the command.

• execve("ls", ...) does not work.
• execve("/bin/ls", ...) does work.

• Writing full path name is tedious.

• Use an environment variable ‘PATH’ which contains a list of directories where commands are.

/bin:/usr/bin:/sbin:/usr/sbin:/usr/local/bin

• Try each directory to find the command.

13

execute(char *cmd, char *argv[]) {
int pid, status;
pid = fork();
if (pid == 0) {

execve("/bin/" + cmd, args, NULL);
execve("/usr/bin/" + cmd, args, NULL);
execve("/sbin/" + cmd, args, NULL);
execve("/usr/sbin/" + cmd, args, NULL);
execve("/usr/local/bin/" + cmd, args, NULL);
fprintf(stderr, "command %s not found¥n", cmd);
exit(1);

}
while (wait(&status) != pid);

}

After a successful execve
the rest will not be executed.

Background and Foreground
• Foreground process

• Usual execution of a program
• Execute one by one.

• Background process
• Put ‘& ’ at the end of command.
• Execute the next command without waiting termination of the current

one.
• Multiple commands can be executed as background.

14

Shell

Foreground
process

Background
process

Background
process

Background
process

Compiler ServerEditor

Implementation of Background
• Shell waits termination of child process with ‘wait’ system call.
• For background processes, shell does not wait for the

termination.

15

execute(char *cmd, char *argv[], int foreground) {
int pid, status;
pid = fork();
if (pid == 0) {
execve(cmd, argv, NULL);
fprintf(stderr, "command %s not found¥n", cmd);
exit(1);

}
if (foreground) {
while (wait(&status) != pid);

}
}

Job Control
• A job may consists of more than one process.

• Connect commands with pipe.
• A command may fork to create children.

• A job is a group of processes.
• Foreground and background are controlled for jobs (not for each process).

• UNIX uses process group.
• Each process belongs to a process group.
• Child processes belong to the same process group.
• Shell creates a new process group for each command.

16

process

process

process group

process

process

process group

process process

process group

child
child

Job Control for a Terminal
• Each terminal holds one process group.

• can be set by ioctl with TIOCSPGRP parameter.

• Foreground
• terminal process group = process process group
• Terminal switches process group.

• Input from terminal
• Sent to foreground processes.
• Background processes stop when they try input from terminal.

• Output to terminal
• Foreground and background processes can output.
• Possible to prohibit background processes to output.

17

shell

foreground
process

background
process

background
process

terminal

group 123 group 234 group 345

group 123

input/output
output

output

Redirection
• Redirect standard input/output/error to files.
% cat /etc/passwd > /tmp/aaa
% wc < /etc/passwd

• Pipe can combine two commands.
• Output of one command is connected to input of the other.
% grep abc /etc/passwd | wc

18

cat

terminal file

redirect standard output

grep pipe

connect commands using pipe

output
wc

input

terminal terminal

Implementation of Redirection
• File descriptors are inherited by execve.
• Set file descriptors before execve.

19

• dup2 copies file descriptors.
• If changed before fork, shell's file descriptors are also changed.
• fork and exec need to be separated.

execute(char *cmd, char *argv[]) {
int pid, status;
pid = fork();
if (pid == 0) {
fd = open("/etc/passwd", O_RDONLY);
dup2(fd, 0);
close(fd);
execve(cmd, argv, NULL);
...

}
while (wait(&status) != pid);

}

Shell variables and Environment varaibles
• Shell variables

• Used by shell
• Change shell behavior
• Often used in shell scripts.

• Environment variables
• Inherited to commands

• User name
• Home directory
• PATH

20

shell

command
（process）

environment
variables

environment
variables

fork copies

shell
variables

Wild Card
• Wide card‘*.c’ can be used to specify multiple files.
• ‘*.c’ is expanded by shell
% ls *.c
% cat a???.b?

21

DIR *dp;
struct dirent *de;
dp = opendir(dir);
while (de = readdir(dp)) {
if (match(name, de->d_name)) {
strcpy(argv[argc++], de->d_name);

}
}
closedir(dp);

int match(char *pattern, char *p) {
char ch;
while (ch = *pattern++) {
if (ch == ’*’) {
while (*p) {
if (match(pattern, p)) return 1;
p++;

}
return (*pattern == 0);

}
else if (ch == ’?’) {
if (*p++ == 0) return 0;

}
else if (*p++ != ch) return 0;

}
return (*p == 0);

}

• matching of ‘*’ and ‘?’

Shell Script

• Create a new command combining some commands:
• Create a text file with commands.
• Mark it as executable using chmod.
• OS execute a shell if the given file is not binary.
• Conditional braches and repetitions are allowed.
• Shell can be specified in the first line.

22

echo Hello
date
ls

test

#!/bin/csh -f
echo Hello
date
ls

test

chmod a+x test

a new command ‘ test’

Mark it as executable

Summary
• Functions of shell

• Execute commands
• Job control
• Redirection
• Environment variables
• Wide card
• Shell script

• Other functions
• Command alias
• File name completion
• Command history

23

	Software Architecture�3. Shell
	Software Layer
	Functions of Shell
	Shells
	ＵＮＩＸ Shell Commands
	Shell Command Processing
	Execute a Program
	Process
	Process related System calls
	fork and exec
	How fork works
	How exec works
	Command PATH
	Background and Foreground
	Implementation of Background
	Job Control
	Job Control for a Terminal
	Redirection
	Implementation of Redirection
	Shell variables and Environment varaibles
	Wild Card
	Shell Script
	Summary

