
SOFTWARE ARCHITECTURE

8. NETWORK SYSTEM

Tatsuya Hagino

hagino@sfc.keio.ac.jp

1

https://vu5.sfc.keio.ac.jp/slide/

lecture URL

Software

• Fundamental software

• Operating System

• Standalone software

• shell

• compiler

• interpreter

• Network software

• WEB

• electric mail

• chat / instant message

• IP telephone / VOIP

2

Distributed Systems

• Multiple autonomous computers cooperate to solve some
problem by communicating each other through a
computer network.
• ``Distributed Systems, 5th edition'' by George Coulouris, Jean

Dollimore, Tim Kindberg from Pearson Education

3

Network

PC

WS

WS

PC

Example of Distributed Systems
• Network applications

• electric mail

• electric news

• World Wide Web

• Business systems
• airplane ticket reservation

system

• ＡＴＭ (Automatic Teller
Machine) at banks

• warehouse management
system

• PC connected to LAN
• file sharing

• printer sharing

• remote access

• Teleconference systems
• e-learning

• H.323 teleconference

• CSCW (Computer Supported
Cooperative Work)

4

Distributed Systems

• Resource sharing
• What resource is shared.

• Who owns resource.

• Openness
• Is everyone can join?

• Close systems can never
become large.

• Parallel processing
• Multiple things happen at

the same time.

• Have to support parallel
processing.

• Fault tolerance
• Cannot assume all the

machines work perfectly.

• Need to cope with failure.

• Transparency
• As if it were not distributed.

• access transparency

• location transparency

• concurrent transparency

• replication transparency

• failure transparency

• relocation transparency

• performance transparency

• scale transparency

5

Access Transparency

• Access local and remote resources in the same way.

• No special access method for remote resources.

6

local

resource

remote

resource

application

local remote hostnetwork

access

Location Transparency
• Access resources without knowing their location.

• No need to specify the location to access.

• Resources can be accessed with their names and no
location information is included.

7

local

resource

application

local

remote

resource

host B

access without

specifying host location

remote

resource

host A

Network

Concurrent Transparency

• Multiple access and manipulation at the same time.

• No need to wait others to finish but use together.

8

application

local B

remote

resource

remote hostapplication

local A

network

access the same resource

at the same time

Replication Transparency

• Resource may be replicated among multiple locations.

• From user's point of view, there is only a single resource.

9

application

local

replicated

resource

host B

access resource

without knowing its replication

resource

host A

network

replicate

Failure Transparency

• Hide failure from users

• Recover from failure automatically.

10

application

local

access and process

even when

hardware or software

failure happens

resource

remote host
network

Relocation Transparency

• Resources can be moved to other location without

affecting users or applications.

11

application

local

resource

host B

No need to change applications

when resources are relocated

resource

host A

network

relocate

Performance Transparency

• System can be reconfigured in order to increase its

performance.

12

database

host

application

host A

application

database

host B

file
file

host C

performance

improvement

Scale Transparency

• System can be scaled up without changing its application

structure.

13

database

host

application

file

small to large scale

database

host

application

file

Communication in Distributed Systems

• Distributed systems need communication among

distributed machines.

• Communication Model

• Client Server Model

• RPC

• Function Shipping

• Group Multicast

• P2P

14

Client Server Model
• Server

• provide service

• manage resources

• Client
• request service

• Flow of process
• A client send a request to a server,

• The server process the request, and

• The server replies to the client.

15

client server

request

reply

Client Server Model

• Merits

• Easy to manage resources.

• Shared resources may be updated correctly using locking in the server.

• Problems

• Server centric

• If server fails, everything stops.

• Server has a big load of processing.

16

server
client

client

resource

client

client

client

resource

resource

RPC (Remote Procedure Call)
• Special case of client server model

• In general, service request and reply does not need to match.

• Usually, a client sends a request and it waits for the reply.

• The server waits a request and usually replies after the request is processed.

• It is as if a client calls a procedure in the server.

• RPC (Remote Procedure Call)
• Remote procedure call compared with normal local procedure call.

• For a client, it looks like an ordinary procedure call inside the same machine.

• The difference is just the procedure is in remote host or local.

• The underlying protocol can be optimized for RPC use.
• The reply can be used to notify the acceptance of the request.

17

client serverRPC

request

reply

RPC vs Local Procedure (1)

• Pointers cannot be send to remote procedures.

• Pointers are often used to pass large regions to local procedures

(call-by-reference).

• In RPC, clients and serves are not sharing the same memory

space. Pointers cannot be referenced in servers.

• RPC needs to use call-by-value.

18

client server

region A

call local(A) procedure local(X)

region A?

procedure remote(X)call remote(A)

RPC vs Local Procedure (2)

• Need to handle failure

• Resend a request message?

• The request message might not reach to the server.

• Delete duplicate request messages?

• If request messages are resent, the server may receive duplicate

request messages and may need to delete them.

• Resend a reply message?

• The replay may not reach to the client.

• The server needs to keep the reply in order for resend.

19

client serverRPC

resend reply?

？

？

resend request? duplicate request?
？

RPC Semantics
• Maybe Call

• No resend of request messages.
• No duplicate messages -> no need for deletion.

• No resend of reply messages.

• At-Least-Once Call
• Resend request messages.

• No duplicate message deletion.

• A client keeps sending the request message until it receives its reply.

• The server processes the request at least once.

• Good for a no side effect idempotent processing.

• At-Most-Once Call
• Resend request messages.

• The server checks the duplication of messages.

• The server process the request at most once.

• Good for a transaction processing.

20

RPC Implementation
• The underlying layer of RPC can be implemented for any RPC.

• Create a request message.

• Analyze a request message and calls the appropriate procedure.

• Create a reply message.

• Request and reply messages only depend on the interface (i.e. arguments and
reply data type).

• Interface Definition Language
• Specify RPC input output parameters

• Generate stub automatically
• Create messages

• Analyze messages and invoke appropriate procedures.

21

client server

client stub server stub

remote procedure call

message message

dispatch

local procedure call

procedure

RPC Interface Definition
• SunRPC interface definition

22

struct intpair { int a; int b; };

program ADD {

version ADDVARS {

int PRINT(string) = 1; /* procedure number = 1 */

int ADD(intpair) = 2; /* procedure number = 2 */

} = 5; /* version number = 5 */

} = 0x20000099; /* program number = 0x20000099 */

add.x

rpcgen -C add.x

...

int *print_5(char **argp, CLIENT *clnt)

{

static int clnt_res;

memset((char *)&clnt_res, 0, sizeof (clnt_res));

if (clnt_call(clnt, PRINT,

(xdrproc_t) xdr_wrapstring, (caddr_t) argp,

(xdrproc_t) xdr_int, (caddr_t) &clnt_res,

TIMEOUT) != RPC_SUCCESS) {

return (NULL);

}

return (&clnt_res);

}

add_clnt.c
...

add_5(struct svc_req *rqstp, SVCXPRT *transp)

{

union {

char *print_5_arg;

intpair add_5_arg;

} argument;

char *result;

．．．
switch (rqstp->rq_proc) {

case PRINT:

xdr_argument = (xdrproc_t) xdr_wrapstring;

xdr_result = (xdrproc_t) xdr_int;

local = (char *(*)(char *, struct svc_req

*)) print_5_svc;

break;

add_ｓｖｃ.c

RPC

• Merits

• Programs can use remote procedures in the same way as local

procedures.

• Stubs are generated automatically from interface definition.

• Problems

• Need to handle failure.

• Need to define interface beforehand.

• Cannot call remote procedures which are not defined.

• Procedures are called one by one.

• Cannot be combined.

23

Function Shipping
• Send a set of instructions (or a program) rather than request.

• Not limited to specific procedures.

• Multiple processes may be packed as one program.

• Sever is an interpreter of the instructions.

• Example
• PostScript printer

• NeWS window system (Display PostScript)

24

client server

shipping execute

function

PostScript

• Page description language
• Drawing instructions

• Stack oriented programming language

• Use reverse Polish notation.

25

%!

% macro (draw rectangle) ; usage: left top width height RRECT

/RRECT { newpath 4 copy pop pop moveto dup 0 exch rlineto exch 0 rlineto

neg 0 exch rlineto closepath pop pop } def

100 100 100 150 RRECT

.5 setgray

fill

100 300 moveto

/Helvetica findfont

12 scalefont

setfont

.5 0 .5 0 setcmykcolor

(test string) show

showpage

Asymmetricity of Client Server Model

• Server needs to handle resource management.

• Easy to implement.

• Server becomes bottle neck.

• Server needs to be protected from hackers.

• no. of servers <<< no. of clients

• Sever is usually huge.

• Client has mobility.

• Cannot process anything without connecting to server.

26

Group Multicast

• Communicate with multiple machines at the same time.

27

multicast group

• Find resource location
• Multicast a request and one server with the resource replies.

• Update replicated resources at once.
• Multicast update request to multiple servers at once.

• Fault tolerance
• A group is acting as a server.

• Still works even if one server fails.

P2P (Peer to Peer)

• Not asymmetric like client server model.

• Clients communicate each other.

• Client as well as server

• Fault tolerance

• Anonymity

• Napster, WinMX, Winny

• Share MP3 music data

• Gnutella

• File sharing

28

client

files

client

files

client

files

client

files

Summary

• Distributed Systems

• Transparency
• access transparency

• location transparency

• concurrent transparency

• replication transparency

• failure transparency

• relocation transparency

• performance
transparency

• scale transparency

• Communication Model
• Client Server Model

• RPC

• Function Shipping

• Group Multicast

• P2P

29

