
SOFTWARE ARCHITECTURE

11. DISTRIBUTED FILE SYSTEM

Tatsuya Hagino

hagino@sfc.keio.ac.jp

1

https://vu5.sfc.keio.ac.jp/slide/

lecture URL

File Sharing

2

• Online Storage
• Use Web site for upload and download files.

• Use special client software.

• Dropbox, Google drive, Sky drive, iCloud, etc.

• File Sharing Application
• Use FTP for upload and download files.

• Use P2P file sharing software.

• Used in a groupware.

• Some does version management .

• File Sharing by OS
• Share remote files like local files.

• Access transparency

Internet Cloud

Online Storage
• Place files in Internet Cloud.

• Use Web interface to manipulate (upload, download, rename, delete,
share with others, etc.)

• Special software may be used to automatically synchronize with local
folders.

• Use accounts or URL to share files with others.

3

Online

Storage

Upload
Download

mail URL

File

to share

local

folder

Automatic Synchronization
• Special software for synchronization

• Each online storage has own synchronization software.

• When local files are changed, they are automatically uploaded.

• When online storage files are changed, they are automatically downloaded.

• Mechanism
• Periodically compare the local folder and the online storage.

• Update when there are changes.

• If not connected to Internet, no update.

• Update when connected.

4

Internet Cloud

online

storage

synchronize

Merging Modifications
• When a file is shared by multiple people:

• Multiple people may change the same file.

• When different lines are changed:
• merge changed

• can be done automatically

• When the same line is changed:
• if the change is the same, no problem.

• if it is different, conflict needs to be sorted manually.

5

online

storage

line 3 changed line 8 changed

merge

line 3 and 8

are changed

receive

line 8 change

receive

line 3 change

online

storage

line 5 changed line 5 changed

conflict

Version Control System
• Manage file changes.

• Revision control.

• Can revert the change.

• Can create branches.

• Necessary for large scale software development.

• Version control system

• RCS (Revision Control System)

• CVS (Concurrent Versions System)

• Subversion (svn)

• git

6

version 1 version 1.1 version 1.2

revert the change

version 2

version 1.3

version 2.1

branch

version 3

merge

repository

check

out check

in

local

copy

edit

File Sharing Application

• Use file transfer program

• Get files from a server, edit them and put them back to the server.

• File transfer protocol

• FTP (File Transfer Protocol)

• remote file manipulation

• HTTP (Hyper Text Transfer Protocol)

• Web page protocol

• remote file manipulation with WebDAV extension

7

file server

upload

download

remote manipulation
create a folder

delete a file

rename a file

FTP
• File Transfer Protocol

• One of the oldest protocols

• TCP port 20 and 21

• Client server model

• Use two connections
• Control connection: commands

• Data connection: data transfer

8

client

server server
data connection

control control

file system

FTP client
FTP server

BFTP (Background FTP)

port 20

for data transfer

port 21

for control

Data Transfer Function

9

• Data type
• ASCII

• <CR><LF> for end of line

• IMAGE or BINARY
• records are padded with 0

• File format
• none print

• Telnet format control
• <CR>, <LF>, <NL>, <FF>

• carriage control
• the first letter controls:

• blank normal line

• 0 double space line

• 1 new page

• + overwrite the same line

• File structure
• Byte structure

• No internal structure

• Each file is a sequence of
bytes.

• Record structure
• Each file consists of a set of

records.

• Page structure
• Random access file

FTP Transfer Mode

10

• Stream mode
• TCP stream as data

• 0xff is used for ESC letter

• Block mode

• Compress mode

0xff 0x01 End Of Record

0xff 0x02 End Of File

0xff 0x03 EOR and EOF

0xff 0xff 0xff itself

identifier

（8 bit）
byte count

（16 bit）
data block

identifier meaning

0x80 End Of Record

0x40 End Of File

0x20 Error might be in data

0x10 Restart marker

data 1 data 2 data NN0

N１１

N１ 0 data to copy

‥‥

N copy of data

N copy of blank

FTP Control Command (1)

11

• Access • Transfer parameter

command meaning

USER user name

PASS password

ACCT account information

CWD change working directory

CDUP change to parent directory

SMNT mount

REIN reinitialize

LOGOUT logout

command meaning

PORT data connection host

port

PASV passive listener port

TYPE data type

• ASCII

• BINARY

STRU file structure

• F (byte structure)

• R (record structure)

• P (page structure)

MODE transfer mode

• S (stream mode)

• B (block mode)

• C (compress mode)

FTP Control Command (2)

12

• Service

command meaning

RETR Get or retrieve a file

STOR Put or store a file

STOU STOR with unique name

APPE append

ALLO allocate a new file

REST skip to the restart marker

RNFR rename from

RNTO rename to

ABOR abort transfer

command meaning

DELE delete a file

RMD delete a directory

MKD make a directory

PWD show current working

directory

LIST list files in the current

working directory

NLST LIST with options

SITE execute command

SYST get system name

STAT get current status

HELP show FTP commands

NOOP no operation

FTP Reply
• Format

• 3 letter code + text

• The first letter
• 1yz positive preliminary reply

• 2yz positive completion reply

• 3yz positive intermediate reply

• 4yz transient negative completion reply

• 5yz permanent negative completion reply

• 6yz protected reply

• The second letter
• x0z syntax

• x1z information

• x2z connection

• x3z authentication and accounting

• x5z file system

13

client server

reply: xyz + text

request: command

FTP Session Example
• Client opens TCP control connection (port 21)

• Login with USER and PASS

• Specify file by RETR

• Specify data connection port by PORT

• Server connects to the data connection port.

• Transfer data from server to client.

• QUIT

14

client

server

control

connection

21

USER

PASS

RETR file

PORT 20

20

data

connection

FTP Passive Mode Example
• Client open TCP control connection (port

20)

• Login with USER and PASS

• Specify file with RETR

• Specify data connection port by PASV

• Server waits at the data connection port

• Client connects the data connection port

• Transfer data from server to client

• QUIT

15

client

server

control

connection

21

USER

PASS

RETR file

PASV 20

20

data

connection

FTP

• Security issue:

• PASS send the password as plain text

• Should be careful to use on Internet

• Anonymous FTP

• USER anonymous or ftp

• PASS for mail address (no authentication)

• Used for distributing free software

• HTTP is known as an improved version of Anonymous FTP.

• Web browser is often capable of an anonymous FTP client.

16

File Sharing by OS

17

• UNIX
• NFS

• Network File System

• Sun Microsystems (now Oracle) developed

• AFS

• Andrew File System

• CMU developed

• Windows
• SMB protocol (its extension CIFS)

• Server Message Block, Common Internet File System

• IBM designed for NetBIOS

• Microsoft extended as CIFS

• Mac OS
• AFP

• Apple Filing Protocol

• One of AppleTalk protocol

• `AFP over TCP' for TCP/IP

NFS (Network File System)
• Distributed file sharing protocol for UNIX

• Sun Microsystems developed

• Competed once with RFS (Remote File Sharing) developed by AT&T, but NFS won.

• Mount a remote file server tree like a local disk.
• Sever exports file system sub trees

• Originally UDP protocol, now available for TCP
• port 2049

18

/

usr home

hagino ns

/

usr home

hagino ns

server
client

remote mount

NFS Transparency
• Access transparency

• Any distributed file system
needs to have access
transparency.

• Location transparency
• Name space is local

• Can be mounted anywhere

• Failure transparency
• Stateless

• Can retry failed operations

• Performance transparency
• Use cache for improving

performance

• No replication
transparency
• NFS server cannot be

replicated.

• No concurrent
transparency
• Remote files cannot be

locked.

• No scale transparency
• NFS for one organization.

• Users need to be managed.

• Use NIS (YP) for user
management.

19

NFS Implementation (1)

• VFS (Virtual File System) layer switches local and remote

file systems.

20

VFS

UFS

NFS

network

NFS Implementation (2)

• Use Sun RPC

• Use XDR (External Data Representation) to represent network data.

21

NFS client

Sun RPC

XDR

NFS server

Sun RPC

XDR

NFS Protocol Interface

22

• lookup(dirfh, name)

→ fh, attr

• create(dirfh, name, attr)

→ newfh, attr

• remove(dirfh, name)

→ status

• getattr(fh)

→ attr

• setattr(fh, attr)

→ attr

• read(fh, offset, count)

→ attr,data

• write(fh, offset, count, data)

→ attr

• rename(dirfh, name, todirfh,

toname)

→ status

• link(newdirfh, newname, dirfh,

name)

→ status

• symlink(newdrfh, newname,

string)

→ status

• readlink(fh)

→ string

• mkdir(dirfh, name, attr)

→ newfh, attr

• readdir(dirfh, cookie, count)

→ entries

• rmdir(dirfh, name)

→ status

• statfs(fh)

→ fsstatus

VFS
• Virtual File System

• For local file system, an i-node number is used to identify a file.
• i-node = index node

• NFS uses a file handle for identification of each file.
• file system identifier

• i-node number of the file

• i-node generation number

• File handle is opaque (not transparent)
• Client should not look inside the file handle.

• Capability token for accessing the file.

23

file system

identifier
i-node number i-node generation number

NFS Cache

• NFS client caches file blocks.

• Need to check consistency of cached blocks.

• Server does not notify clients about change. (stateless server)

• For ordinary files, cache TTL is 3 seconds.

• For directories, cache TTL is 30 seconds.

24

cache

client server

consistency check

file

Stateless vs Statefull

• NFS server does not mange NFS client state

• High failure transparency

• Use cache for performance

• Cannot lock files on NFS

• UNIX file semantics may not be applied to remote files.

• Statefull

• After failure recovery, server needs to know all the client state.

• May support locking files.

• Sever can be replicated.

• RFS tried to keep UNIX file semantics for remote files.

25

AFS (Andrew File System)

• Developed by CMU (Carnegie Mellon University)

• Share files amount 5000 workstations on campus

• Features

• Cache whole files

• Use kerberos for authentication

• Can set ACL (Access Control List) to directories

• Can share files among different organizations.

• Keio used to share files with CMU using AFS.

26

AFS
1. Client opens a file.

2. Create a replication of the file in the
local cache.

• If the cache is up-to-date, no need to
replicate.

• Server needs to manage replication.

3. Modify the file in the cache locally.

4. Client closes the use of the file.

5. Write back the modification.
• Keep the replicated file.

• The entire file is overwritten by the last
write.

27

cache

client server

create replication

when open

file

program

write back modification

when close

NFS vs AFS

28

NFS AFS

Features

• Stateless

• High failure transparency

• Can be used on various

platforms (windows, mac, ...)

• Server can mange replication.

• Can share files beyond one

organization.

• Kerberos authentication

• Can set ACL to directories.

• Coda for mobile environment

Issues

• No replication

• Limited in one organization

• User authentication is left to

OS.

• No ACL

• ACL is complicated.

• Less failure transparency

• Performance problem for

replication

Summary

• File sharing using online storage

• Web interface

• Dropbox, Google Drive, Sky Drive, iCloud, etc.

• Automatic synchronization software

• File sharing by file transfer program

• FTP

• File sharing by OS

• Distributed file system

• NFS

• AFS

29

