ソフトウェアアーキテクチャ

環境情報学部 萩野 達也

スライドURL

https://vu5.sfc.keio.ac.jp/slide/

授業予定

- 1. オペレーティングシス テム
- 2. ファイルシステム
- 3. シェルの働き
- 4. 文書清書システム
- 5. C言語コンパイラ
- 6. LISP処理系
- 7. Java仮想機械

- 8. ネットワークシステム
- 9. 名前解決
- 10. 遠隔利用と電子メール
- 11. 分散ファイルシステム
- 12. World Wide Web
- 13. Windowシステム
- 14. データベース管理シス テム

ソフトウェアの階層

アプリケーション

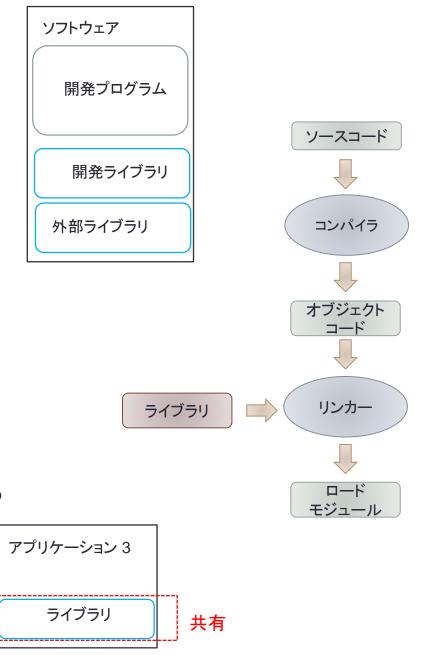
ライブラリ

ミドルウェア

オペレーティングシステム

BIOS

デバイス ドライバ


ハードウェア

アプリケーション

- ・アプリケーション = 応用
 - ・ユーザプログラム
 - ユーザが作るプログラムはほとんどアプリケーションプログラム。
- ・アプリケーションの分類:
 - ・システムアプリケーション
 - ・バックアップ
 - ・メンテナンス
 - 言語処理系
 - ・コンパイラ
 - ・インタープリタ
 - 文書, 画像, 動画処理
 - ・エディタ
 - ・ネットワークアプリケーション
 - ・メールソフト
 - Webブラウザ
 - 科学技術アプリケーション
 - 数值解析
 - ・シミュレーション

ライブラリ

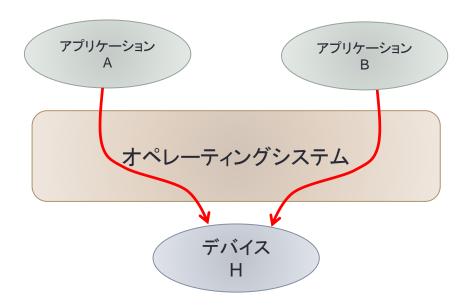
- ・ライブラリ
 - 関数や手続きの集まり
 - 単体では動作しない
 - 別のソフトウェアに組み込まれる
- ライブラリの例
 - ファイル操作ライブラリ
 - 数学ライブラリ
 - 統計ライブラリ
 - ・ 文字列処理ライブラリ
- スタティック vs ダイナミック ライブラリ
 - ・ スタティック(静的):コンパイル時に結合
 - ダイナミック(動的):実行時に連結
- 共有ライブラリ
 - 異なるプログラム間でライブラリを共有する

アプリケーション 1 ライブラリ

アプリケーション 2 ライブラリ ソフトウェアアーキテクチャ 第1回 オペレーティングシステム

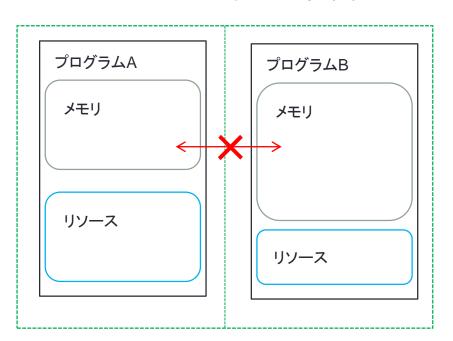
環境情報学部 萩野 達也

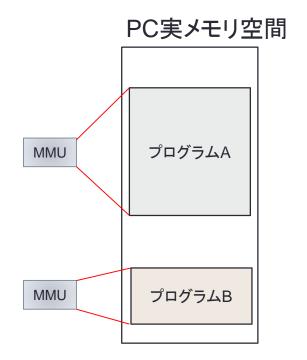
オペレーティングシステム


- OSと呼ばれることが多い
 - 基本ソフトウェア
 - ほぼすべてのPCで必要
 - コンピュータで動作するすべてのプログラムを制御する
 - コンピュータの資源を管理する
 - 動作するプログラムに様々な機能を提供する
- 良く知られるOS
 - Windows: 95, 98, Me, NT, XP, Vista, 7, 8, 8.1, 10, 11
 - Mac OS: 9, X, 11, 12, 13, 14
 - UNIX: Linux, FreeBSD, NetBSD, OpenBSD, Solaris
- その他のOS
 - 携帯電話: iOS, Android, Windows phone
 - 実時間システム: iTron, VxWorks

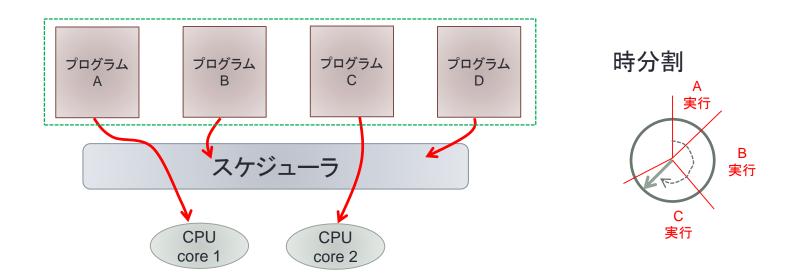
オペレーティングシステムの役割

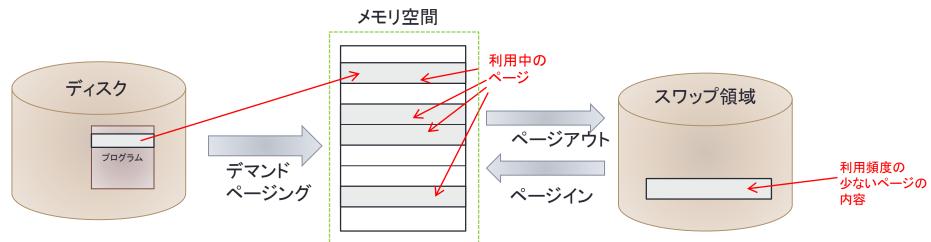
- デバイス制御の調停
- ・プログラム実行環境の分離
- ・マルチプログラミング
- ・メモリ管理
- ファイルシステム
- ・ネットワークシステム
- プログラム間の通信


デバイス制御の調停


- ・2つのアプリケーションが同時に同じデバイスを利用してはいけない
 - デバイス=コンピュータに接続しているハードウェア
 - キーボードは1つ, マウスも1つ, プリンタも1台, など
- OSによる調停
 - アプリケーションは直接デバイスを利用しない
 - OSを介してデバイスを利用する

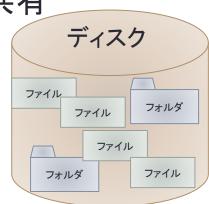
プログラム実行環境の分離


- プログラムは独立して動作している。
 - 他のプログラムの動作には影響されない。
- それぞれのプログラムは、別々のメモリ空間を使う。
- それぞれのプログラムのメモリ空間は保護されている。
 - ・他のプログラムから参照や変更ができない.

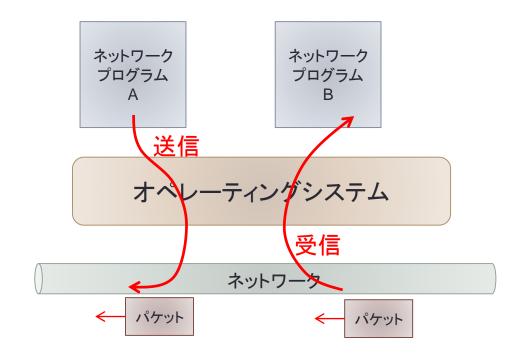

マルチプログラミング

- 複数のプログラムを同時に実行することができる.
- ・同時に実行することができるプログラムの数は、CPUのcore数に制限されない.
- それぞれのプログラムにCPUが割り当てられる。
 - ・スケジューリング
 - 優先制御

メモリ管理


- プログラムが必要とするメモリを管理
 - メモリはページ単位(例:1ページ=4KB)に分けられている。
- 不要なメモリを回収し、必要とするプログラムに割り当てる。
- ・ 仮想記憶の提供
 - ページアウト=利用頻度の少ないメモリ(ページ)は外部記憶(スワップ領域)に追い出し、空きメモリを増やす。
 - ページイン=必要となった時に、データをメモリ内に読み込みなおす。
 - 実際のメモリの量をプログラムは気にする必要はない。
 - 仮想記憶ではメモリ管理はOSにお任せ
 - ・ 小型ゲーム機なのでは、プログラムオーバーレイを使い、自分でメモリを管理する.
- デマンドページング
 - プログラムやデータは必要となって初めてメモリ内に読み込まれる。
 - プログラム実行開始時はメモリ内は空の状態。

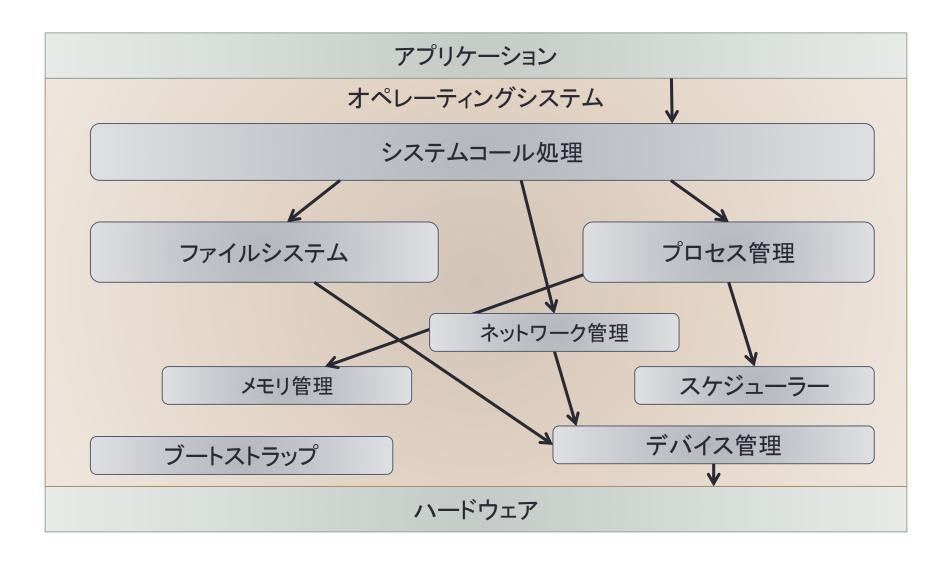
ファイルシステム


ディスクなどを複数のアプリケーションで共有

- ディスク上にファイルシステムを構成
- 効率が良いようにバッファリング
- ファイルシステムの種類
 - FAT (Fast Allocation Table)
 - NTFS (NT File System)
 - HFS (Hierarchical File System)
 - UFS (UNIX File System)
 - LFS (Log File System)

ネットワークシステム

- ネットワークパケットの処理
 - ・ 送信(プログラムからネットワーク)
 - ・受信(ネットワークからプログラムへ)
- TCP/IP 制御
 - ・フラグメンテーション
 - 再送
 - ・順序に並び替え
 - ウインドウ制御


プログラム間の通信の提供

- プログラム間のデータの受け渡しの仲介
 - ・パイプ
 - 共有メモリ
 - ・セマフォ
 - ・ロック

オペレーティングシステムの構成要素

まとめ

- オペレーティングシステム
 - ・デバイス制御の調停
 - ・プログラム実行環境の分離
 - ・マルチプログラミング
 - ・メモリ管理
 - ファイルシステムの提供
 - ネットワークシステムの提供
 - ・プログラム間の通信の提供