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ベイジアンネット構築ソフトウェア「ベイジアンネット構築ソフトウェア「BayoNetBayoNet」」
復習

期末レポート期末レポート

どちらかのテーマを選択してレポートにまとめてください。

【テーマ１】 自分の関心のある分野に対して、ベイジアンネットワークま
たは隠れマルコフモデルを適用し、解説してください。

【テーマ２】 先行研究のサーベイを行い、それらの研究について解説し
てください（Webで「Bayesian Network」で検索すると、たくさん論文
が見つかります。必ずURLや文献名を記述してください）。

レポートシステムで提出
レポートシステムの準備が整い次第、メールでお知らせします。

提出期限：１月２８日（金）

本文：A4用紙で５枚以内

doc または pdf 形式： ファイル容量3 MBまで

必ず参考文献を明記すること

復習
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第１１回 隠れマルコフモデル①

いば たかし

隠れマルコフモデルとは？
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隠れマルコフモデル隠れマルコフモデル

確率的な状態遷移と確率的な記号出力を備えたマ
ルコフモデル（入力に対して状態を変えていくオー
トマトンと捉えてよい）

外部から観測できるのは記号出力の系列だけであ
り、内部の状態遷移は直接観測できないところか
ら「隠れ（hidden）」マルコフモデルと呼ばれる。

隠れマルコフモデルは状態が確率的に遷移するの
で、同じ入力があっても、状態がAになる時もあるし、
Bになる時もある。

この確率を変えることで、学習させることができる。

隠れマルコフモデルの登場によって・・・隠れマルコフモデルの登場によって・・・

隠れマルコフモデルは、（観測可能な）言語データ
から言語現象の背後にある（隠れた）構造を推定
する場合に有効なモデルである。

研究者が頭を悩ませなくても、最初にうまく設計し
ておけば良いということ

データはとにかく用意すればいい。結果と比較する手間
も必要ない。

隠れマルコフモデルの設計をうまくやっておけば、使うう
ちに良くなってくる（学習）。

それをうまく商品にしたのが、ViaVoice。
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隠れマルコフモデルの応用事例隠れマルコフモデルの応用事例

隠れマルコフモデルは、音声認識のための音響モ
デルとして標準的に用いられている。

1970年代にIBMの音声グループが音声認識に隠れマル
コフモデルを適用し大きな成功を収めたことに端を発して
いる

1997年夏に登場した「Voice Type」や「Via Voice」など
で、機械の音声認識率が飛躍的に増大したことで、隠れ
マルコフモデルは有名になった。

自然言語処理においても、確率的形態素解析を初
めとするさまざまなところに適用されている。

ゲノム解析、認識

隠れマルコフモデルの例①
英語の品詞判別
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自然言語の確率・統計的性質自然言語の確率・統計的性質

単語の出現頻度分布

英語の品詞判別の例英語の品詞判別の例

英文”Time flies like an arrow”の解釈
「光陰矢のごとし」

「時蝿は矢を好む」

このようなことが起こるのは、各単語が複数の品詞およ
び意味を持っているため

文を解析する場合には、正しい品詞としてどれを選ぶか
という処理が重要になる

品詞（名詞・動詞など）を内部状態と捉え、単語を
外部から観測できる記号出力と考えると、言語の
生成過程は隠れマルコフモデルで近似できる！



7

単語／品詞の隠れマルコフモデル単語／品詞の隠れマルコフモデル

矢印は状態遷移

各状態遷移にはそ
の遷移をたどる確
率が記されている

状態内の数字は、
その状態が初期
状態である確率

状態の横に書かれ
ているのが、その状
態から出力される
単語と出力確率

•品詞：状態
•単語：出力記号

like

確率確率

Pi（名詞）

名詞が初期状態である確率

P0（time｜名詞）

名詞の状態から“time”が出力される確率

Pt（動詞｜名詞）など

名詞の状態から動詞の状態への遷移確率
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単語／品詞の隠れマルコフモデル単語／品詞の隠れマルコフモデル

矢印は状態遷移

各状態遷移にはそ
の遷移をたどる確
率が記されている

状態内の数字は、
その状態が初期
状態である確率

状態の横に書かれ
ているのが、その状
態から出力される
単語と出力確率

•品詞：状態
•単語：出力記号

like

「光陰矢のごとし」が得られる確率「光陰矢のごとし」が得られる確率

「光陰矢のごとし」
「time／名詞, flies／動詞, like／前置詞, an／冠
詞, arrow／名詞」が得られる確率P1

P1 ＝ Pi（名詞） P0（time｜名詞）
Pt（動詞｜名詞） P0（flies｜動詞）
Pt（前置詞｜動詞） P0（like｜前置詞）
Pt（冠詞｜前置詞） P0（an｜冠詞）
Pt（名詞｜冠詞） P0（arrow｜名詞）

＝

＝
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「時蝿は矢を好む」が得られる確率「時蝿は矢を好む」が得られる確率

「時蝿は矢を好む」
「time／名詞, flies／名詞, like／動詞, an／冠詞, 
arrow／名詞」が得られる確率P2

P2 ＝

＝

＝

単語／品詞の隠れマルコフモデル単語／品詞の隠れマルコフモデル

矢印は状態遷移

各状態遷移にはそ
の遷移をたどる確
率が記されている

状態内の数字は、
その状態が初期
状態である確率

状態の横に書かれ
ているのが、その状
態から出力される
単語と出力確率

•品詞：状態
•単語：出力記号

like
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「光陰矢のごとし」が得られる確率「光陰矢のごとし」が得られる確率

「光陰矢のごとし」
「time／名詞, flies／動詞, like／前置詞, an／冠
詞, arrow／名詞」が得られる確率P1

P1 ＝ Pi（名詞） P0（time｜名詞）
Pt（動詞｜名詞） P0（flies｜動詞）
Pt（前置詞｜動詞） P0（like｜前置詞）
Pt（冠詞｜前置詞） P0（an｜冠詞）
Pt（名詞｜冠詞） P0（arrow｜名詞）

＝0.6× 0.6× 0.4× 0.2× 0.2×1.0
× 0.3× 1.0× 0.7× 0.3

＝0.0003628

単語／品詞の隠れマルコフモデル単語／品詞の隠れマルコフモデル

矢印は状態遷移

各状態遷移にはそ
の遷移をたどる確
率が記されている

状態内の数字は、
その状態が初期
状態である確率

状態の横に書かれ
ているのが、その状
態から出力される
単語と出力確率

•品詞：状態
•単語：出力記号

like
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「時蝿は矢を好む」が得られる確率「時蝿は矢を好む」が得られる確率

「時蝿は矢を好む」
「time／名詞, flies／名詞, like／動詞, an／冠詞, 
arrow／名詞」が得られる確率P2

P2 ＝ Pi（名詞） P0（time｜名詞）
Pt（名詞｜名詞） P0（flies｜名詞）
Pt（動詞｜名詞） P0（like｜動詞）
Pt（冠詞｜動詞） P0（an｜冠詞）
Pt（名詞｜冠詞） P0（arrow｜名詞）

＝0.6× 0.6× 0.3× 0.1× 0.4×0.7
× 0.2× 1.0× 0.7× 0.3

＝0.0001270

このモデルからわかることこのモデルからわかること

さきほどの隠れマルコフモデルからは、全部
で６個の状態遷移系列（単語／品詞系列）
が生成される

文“Time flies like an arrow”の生成確率は、

これら６個の系列の確率の和として求めるこ
とができる。

また、これらの系列の中で最も高い確率を
与えるものが、この文に対する最適な品詞
付けであると解釈することができる。
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隠れマルコフモデル
の形式と特徴

マルコフモデルマルコフモデル

ある記号の出現確率が直前の記号のみに依存すると仮定
する確率モデルを「マルコフモデル」という。

確率変数の系列 X1, X2, ・・・を考え、これらの確率変数の
とりうる値の集合をQ={q1, ・・・, qn} とする。
確率変数Xnの実現値xn (xn ∈Q）を時系列nにおける「状
態」と呼び、Xn=xnで表す
このような系列{Xn}は確率過程（stochastic process）と呼
ばれる。
確率過程を特徴付けるためには、一般に次の２つを知る必
要がある。

① P(X1=q1)：各状態qiの初期状態確率
② P(Xn=xn｜X1=x1,・・・,Xn-1=xn-1)：過去の状態系列に対

する次の状態の条件付き確率



13

隠れマルコフモデル隠れマルコフモデル

マルコフ過程の各状態において、確率的な記号の出
力を考えたモデル
５項組M=(Q,Σ,A,B,π)により定義される。

① Q={q1,・・・,qN}：状態の有限集合
② Σ={o1,・・・,oM}：出力記号の有限集合
③ A={aij}：状態遷移確率分布

（aijは、状態qiから状態qjへの遷移確率であり、Σj aij=1を
満たす）

④ B={bi(ot)}：記号出力確率分布
（bi(ot)は、状態qiで記号otを出力する確率であり、Σt
bi(ot)=1を満たす）

⑤ π={πi}：初期状態確率分布
（πiは、状態qiが初期状態である確率P(X1=qi）である。

二重の確率モデル二重の確率モデル

隠れマルコフモデルは、状態間の遷移が確率的で
あり、また各状態における出力もある確率分布に
従って現れるという点で、２重に確率的なモデルで
ある。

隠れマルコフモデルは、一方で、確率モデルとして
はベイジアンネットワークの特殊形といえる。

他方では有限オートマトンの状態遷移が確率的に
起こるとした拡張版と考えることもできる。
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隠れマルコフモデルの例②
日本語の品詞判別

かなかな漢字変換漢字変換

ひらがな表記された文字列を漢字かな混じ
り表記に変換する

「へんなじがでる」をかな漢字変換すると・・・
へんな/形容詞 じが/名詞 でる/動詞

→ 変な自我出る, 変な自画出る ,..
へんな/形容詞 じ/名詞 が/助詞 でる/動詞

→ 変な字が出る, 変な痔が出る, ...
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かなかな漢字変換漢字変換

かな漢字変換プログラムの仕事
(1)ひらがなで表記された入力文を単語に分割す

ること

(2)それぞれの単語の可能な漢字表記（同音異

義語）の中で最も妥当なものを選ぶということ

失敗例

(1)に失敗すると「変な自我出る」になり

(2)に失敗すると「変な痔が出る」になる。

かなかな漢字変換漢字変換

かな漢字変換で正解を得る鍵は、

複数の解釈の可能性の中から日本語として
最も妥当な解釈を選択するための判断基準、

すなわち、日本語の「文法」をコンピュータ上
で表現する方法にある。
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日本語の「文法」を表現した隠れマルコフモデル日本語の「文法」を表現した隠れマルコフモデル

•ノードは内部状態（品詞）
•リンクは状態遷移およびその確率
•ノードに付属するテーブルは、状態
別の記号(単語)の出現確率

かなかな漢字変換漢字変換

標準的な日本語では、名詞の直後には動詞より助
詞が接続する可能性が高い。隠れマルコフモデル
では、このような単語の接続の自然性を状態遷移
確率の大小で表現する。

「へんなじがでる」のかな漢字変換において、「変な自我
出る」を不自然と感じる主な原因は、「自我」という名詞の
直後に「出る」という動詞が接続し、助詞が省略されてい
るせいである。

「じ」の変換候補としては「痔」より「字」の方が可能
性が高いことは、名詞という内部状態における出
現確率の大小で表現する。
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単語／品詞の隠れマルコフモデル単語／品詞の隠れマルコフモデル

矢印は状態遷移

各状態遷移にはそ
の遷移をたどる確
率が記されている

状態内の数字は、
その状態が初期
状態である確率

状態の横に書かれ
ているのが、その状
態から出力される
単語と出力確率

•品詞：状態
•単語：出力記号

「光陰矢のごとし」が得られる確率「光陰矢のごとし」が得られる確率

「光陰矢のごとし」
「time／名詞, flies／動詞, like／前置詞, an／冠
詞, arrow／名詞」が得られる確率P1

P1 ＝ Pi（名詞） P0（time｜名詞）
Pt（動詞｜名詞） P0（flies｜動詞）
Pt（前置詞｜動詞） P0（like｜前置詞）
Pt（冠詞｜前置詞） P0（an｜冠詞）
Pt（名詞｜冠詞） P0（arrow｜名詞）

＝

＝
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「時蝿は矢を好む」が得られる確率「時蝿は矢を好む」が得られる確率

「時蝿は矢を好む」
「time／名詞, flies／名詞, like／動詞, an／冠詞, 
arrow／名詞」が得られる確率P1

P1 ＝

＝

＝

日本語の「文法」を表現した隠れマルコフモデル日本語の「文法」を表現した隠れマルコフモデル

•ノードは内部状態（品詞）
•リンクは状態遷移およびその確率
•ノードに付属するテーブルは、状態
別の記号(単語)の出現確率



20

「光陰矢のごとし」が得られる確率「光陰矢のごとし」が得られる確率

「光陰矢のごとし」
「time／名詞, flies／動詞, like／前置詞, an／冠
詞, arrow／名詞」が得られる確率P1

P1 ＝ Pi（名詞） P0（time｜名詞）
Pt（動詞｜名詞） P0（flies｜動詞）
Pt（前置詞｜動詞） P0（like｜前置詞）
Pt（冠詞｜前置詞） P0（an｜冠詞）
Pt（名詞｜冠詞） P0（arrow｜名詞）

＝0.6× 0.6× 0.4× 0.2× 0.2×1.0
× 0.3× 1.0× 0.7× 0.3

＝0.0003628

「時蝿は矢を好む」が得られる確率「時蝿は矢を好む」が得られる確率

「時蝿は矢を好む」
「time／名詞, flies／名詞, like／動詞, an／冠詞, 
arrow／名詞」が得られる確率P2

P2 ＝ Pi（名詞） P0（time｜名詞）
Pt（名詞｜名詞） P0（flies｜名詞）
Pt（動詞｜名詞） P0（like｜動詞）
Pt（冠詞｜動詞） P0（an｜冠詞）
Pt（名詞｜冠詞） P0（arrow｜名詞）

＝0.6× 0.6× 0.3× 0.1× 0.4×0.7
× 0.2× 1.0× 0.7× 0.3

＝0.0001270


