Development Tools of Simulation Models
with MDA

Nozomu Aoyama, !

Rintaro Takeda !
Takashi Iha 2
Hajime Ohiwa, 3

!Graduate School of Media and Governance, Keio University
5322 Endo, Fujisawa 252-8520, Japan
{bam, rintaro}@crew.sfc.keio.ac.jp
2Faculty of Policy Management, Keio University
5322 Endo, Fujisawa 252-8520, Japan
iba@sfc.keio.ac.jp
®Faculty of Environmental Information, Keio University
5322 Endo, Fujisawa 252-8520, Japan
ohiwa@sfc.keio.ac. jp

Abstract. In this paper, we propose Component Builder, which is a
tool to develop simulation models and to share them with diagrams.
00 If a modeler has few experiences of programming, it is difficult to
make a simulation model or to share it. It is because existing tools only
support the modelers to make simulation models with programming.
For solving the problem, Component Builder supports simulation devel-
opment not with programming but with diagram. This tool generates
executable program codes from a structure of models with diagrams.
This tool enables the modeler to develop simulation without knowledge
of programming.

00O Moreover, we propose the development methodology with diagrams
independent of any programming language or software implementation.
Existing tools depend on a specific programming language. [t prevents
a modeler who has knowledge of another programming language from
developing simulation models. For solving the problem, we propose to
apply a paradigm of software engineering to developing simulation mod-
els. The paradigm ”MDA” (Model Driven Architecture) is to turn models
with ”UML” (Unified Modeling Language) into executable program code.
Applying the paradigm, we can keep our mind on modeling without con-
sidering any programming language or software implementation.

00 Thus we implemented the develop environment for drawing dia-
grams and generating program codes from them. Some modeler tried
developing simulation models with these tools. As a result, they could
develop them without programming.

1 Introduction

Many researchers and we almost agree that the agent-based model (multi-agent
model) is suitable for studying complex systems, however in the current state,



there is a problem that needs to be resolved. The problem is the difficulty to
develop simulation models and to share them. To study complex systems, we
need not only to develop them but also to understand studies of other researchers.
For solving the problem, we need a tool for developing and sharing simulation
models.

In the current state in the study of simulation models, existing tools are
not useful enough for using simulation models, because these tools only support
modelers to make simulation models with programming. With these tools, the
modelers have to program with specific programming language. Therefore, it
i1s impossible for a modeler who has no knowledge of the language to make
simulations or to understand them.

In this paper, we will propose a development tools for simulation models
with diagrams to solve the problem. Using diagrams independent of any specific
languages or software implementation, a modeler can make simulation models
and share them without the knowledge of programming. In the second section
of this paper, we will describe the background of simulation tools and software
engineering. In the third, we will describe how to develop simulation models with
MDA. In the forth, we will describe proposed tools.

2 Background

2.1 Existing Tools for Simulation Development

In the last some years, several languages, frameworks and tools for agent-based
simulations have been proposed. For example, “Swarm Simulation System”,
which seems to be the most famous and to be used, provides the class li-
brary for the simulation of complex adaptive systems [Minar et al., 1996]. As
well as Swarm, “RePast” provides the class library to make the agent-based
model [Collier, 2003]. “Ascape” also provides the framework | and it is said that
the amount of the code description can be less than that of Swarm or RePast
[Parker, 2001].

However, it is difficult to make a simulation model or to share it with these
tools, because these tools only support the modelers with programming. Though
they are useful for the reduction of programming with general libraries and
frameworks, still a modeler can not make it without knowledge of programming
language which the tool depends on. Because they can neither understand basic
literal nor control structure of program.

2.2 MDA: A New Paradigm of Software Development

In the field of software engineering, there is a trend toward considering the design
models as the development artifacts that contribute directly to software devel-
opment. “MDA” (Model Driven Architecture) and “Executable UML(Unified
Modeling Language)” are proposed for the Model Driven Development

[Frankel, 2003, Mellor and Balcer, 2002 Kleppe et al., 2003]. The point is “using



Languages for Examples of Supporting Systems for

software Development Languages Agent-Based Simulation
. Our Solution
Modeling language UML } (Component Builder)
Programning language Java, Ct+, - Swarm
. Visual Basic, - RePast
(3rd generation ) C, Pascal,... } - Ascape

=
Level of Abstraction ‘g.

Machine Language

Fig. 1. Level of Abstraction, Language, and Supporting Systems

9
=

modeling languages as programming languages rather than merely as design
languages.” [Frankel, 2003]. As a result, “It makes it possible to raise the level
of abstraction for software development” [Frankel, 2003] (Figure 1). History tells
that the productivity and quality are improved in consequence of raising the
level of abstraction.

We can use more high-level language for development with MDA | instead of
writing in lower-level languages. It means that modelers describe models rather
than program codes. Therefore, the modelers can keep their modeling in mind
without considering the software implementation, because program codes will
be extra translations of the design model.

MDA defines the model with height level of abstraction that i1s independent
of any implementation technology. Then, we don’t care which implementation
technology should be used. It means that it is not important whether we can
use a specific programming language.

A generator is necessary in order to generate program codes from models
dependent on an implementation technology. The generator interprets the model
described with diagram and generates executable program codes from it.

In this paper, we will propose a new paradigm and development tools adopt-

ing MDA.

3 Development of Simulation Model with MDA

3.1 A Language for Describing Model

To apply MDA | we have to describe a very detailed model to generate an exe-
cutable program. For example, we have to define what elements have to be, what
feature they have, and which algorithm or data structure they use. Though we
use diagram to describe, this is not different from programming by hands in the
necessary knowledge (Figure 2).



A, B and C are all Objects. A [¢]
A and C have operations that manage _—
their memories and goods.

A has a reference to B. B has a \ /
reference to C.

B has both references to A and to C. B

Fig. 2. An Example of Describing Model Without Model Framework

There are two agents and one «— »
relation between A and B.

A B

Fig. 3. An Example of Describing model with Model Framework

Information
Entity «| Relation i Channel
= b T LT
Goods [ Agent —| Behavior
Space World Clock

Fig. 4. Major Classes of Boxed Economy Foundation Model (BEFM)

For solving the problem, we describe a model based on a model framework,
“Boxed Economy Foundation Model” (BEFM). BEFM can be a frame of refer-
ence for recognizing the target world (Figure 4). Using the model framework, the
modeler can focus on the part of the target world [Tba et al., 2002,Iba et al., 2002].

Using the model framework as language, we can keep our mind on simulation
modeling (Figure 3). This makes it possible for modelers who have no skills of
programming to develop or to understand a simulation model.

3.2 Elements Necessary in a Simulation Model

For generating codes, the generator needs a complete definition of the subject
matter under study. We define specifications of a simulation model so that we can
describe it completely. In other words, we define what a generator can generate
automatically and what a modeler has to think of.



<<agent type>> <<behavior type>>

[l BakerAgent < [ SalesBehavior
Krelation type>>
ociatio
[H FavoriteShopRelation
<<agent type>> <<behavior type>>
[ CustomerAgent [ ShoppingBehavior

Fig.5. An Example of Type Structure with Class Diagram

ﬂy s

| ChannelEvent/greetingAction

Guard Condition
Waiting For Customer's Ask
]

d

11

ion Y

Waiting For Order

ChannelEvent[isOrderInformation]
/receivingOrderAction, demandingPaymentAction

Waiting For Payment

Fig. 6. An Example of Behavior’s Statemachine with Statechart Diagram

In the general software development, three models - the class model, the
statemachines for classes, and the state’s procedures - form a complete definition
of the subject matter under study [Mellor and Balcer, 2002]. These models can
match to elements in BEFM. When following models are defined, we can generate
executable program codes.

Type Structure This is a class model in a simulation model. It represents
defined types in the model. In BEFM it is a structure of Agent, Relation, Be-
havior, Goods, and Information. We define it by drawing Class Diagram in UML
[Object Management Group, 2000] .(Figure 5)

Behavior’s Statemachine This is a statemachine of a class in a simulation
model. It represents rules of agent’s Behaviors. We define it by drawing State-
chart Diagram in UML [Object Management Group, 2000] .(Figure 6)



A Givirg Break Action \

Get Information: | BoxTownMoce INFORMATIONTYPE Orderlnformation
||

Program Block

Fig.7. An Example of Action

Development Process Artifacts

-IComponent Bui \derl

Conceptual Modeling —_— %

Conceptual Model
(UML)

— L
Design Model
(umL)
code
generation

Simulation Design

—
1
Executable Program Code

—[ &

Simulation Results

Iteration

Fig. 8. Development Process with Component Builder

Action This is a state’s procedure in a simulation model. It represents a detailed
process in a behavior. We define it by drawing a hierarchy of operations in BEFM
(Figure 7).

4 Simulation Development Tools: Component Builder

In order to support developing simulations with MDA, we would like to propose
“Component Builder(CB)”. CB consists of six tools. Especially, four tools of
them are to generate program codes just by drawing a diagram and by setting
parameters with a graphical user interface.

4.1 Modeling Process Supported by Component Builder

We proposed a simulation development process from conceptual modeling to
verification [Iba et al.; 2004]. CB supports “Conceptual Modeling Phase” and
“Simulation Design Phase” in the process (Figure 8).

CB provides functions to draw diagrams in Conceptual Modeling Phase. We
can make a conceptual model with three tools (Figure 9).



—— L :
. =
Extracting Describing Describing
Types from target Agents’ Activities Agents’ Interaction
with Class Diagram with Activity Diagram with Sequence Diagram
Fig. 9. Conceptual Modeling Phase
PP p— e - —r———
P ’
Designing Designing Designing Making
The Types Statechart of Behavior Action of Behavior the initial settings
with Class Diagram with Statechart Diagram

Fig. 10. Simulation Design Phase

Connection

ClassA = ClassB

Fig.11. An Example of Node and Connection

In Simulation Design Phase, CB provides functions to draw diagrams, to
generate program codes from them, and to make initial settings of a simulation.
We can make a design model with four tools (Figure 10).

4.2 Required Functions of Component Builder

The four tools of CB have following functions in order to support modeling. One
of the functions is to draw Node and Connection. Node is the object consisting
of two elements that are size and location. Node is used as Class or State.



Actual Model Structure

Structure View

7
Structure of Agents and Relations

same elements

Fig.12. An Example of Diagrams to Describe Several Different Views

Connection is the line drawn between source Node and target one. Connection
is used as Association, Generalization and Transition (Figure 11).

— Functions about Node (used as Class, State, Activity, etc.)
e create new Node
e delete Node
e move Node
e resize Node
— Functions about Connection (used as Association, Generalization, Transi-
tion, etc.)
e create new Connection
e delete Connection
e change source or target of Connection
o change line form of Connection
— Undo

e undo and redo as memory area permits

In Conceptual Modeling Phase and Simulation Design Phase, there is a de-
mand to draw diagrams in order to describe several different views. The diagrams
can refer to common elements (Figure 12). Class Diagram Editor has the func-
tions fulfilling the demand.

CB has the functions to generate the following program codes.



Component Builder

(Use Framework)

A 2

Drawing
Diagram

GEF

Code
. Resource
Generation Management
(JDT)

Fig. 13. Architectures of Component Builder

— The program codes that define Types is generated by Class Diagram (at one
program file for each model)

— The program codes that define state transitions of Behavior is generated by

Statechart Diagram (at one program file for each Behavior)

The program codes that define Actions of Behavior i1s generated by Action

description of Statechart Diagram (at one program file for each Behavior)

— The program codes that define initial settings of World (at one program file
for each World)

For the purpose of smooth simulation development, the functions of creating
file easily, deleting and moving are important. Moreover, the following functions
are needed to support model sharing and collaborative development.

— Sharing models over the networks
— Importation and Exportation of model

CB is considered to use CVS (Concurrent Versioning System) which enables
us to share model over the networks.
CB has the function to make documents with diagrams.

— Printing diagram
— Exportation of picture files from diagrams

4.3 Architectures of Component Builder

For implementing the required functions efficiently, Figure 13 shows an architec-
ture we designed.

Eclipse is an open platform for tool integration built by an open community of
tool providers [Eclipse Project, 2004]. Tt provides many functions to implement
editors on 1t. Using Eclipse, we don’t have to implement following functions.



DiagramEditor

|

ClassDiagramEditor ‘

and More

StatechartDiagramEditor SequenceDiagramEditor

Fig. 14. Diagram Editor Framework

— File Management
— Importation and Exportation of models

— Sharing models with CVS

Diagram Editing We also use the framework “Graphical Editor Framework
(GEF)” for implementation of CB. GEF allows developers to take an existing ap-
plication model and easily create a rich graphical editor [Eclipse Project, 2004].
GEF enables the graphical editor to manipulate Nodes and Connections. We only
define concrete Node and Connection. Therefore, we don’t have to implement
basic functions like printing or undoing/redoing.

UML editors have some common parts among the tools. They have the mech-
anism common to create or to delete elements. Even if drawing elements like
Class, State and Activity, differ from diagrams. We make a framework to ab-
stract the mechanism, “Diagram Editor Framework” (Figure 14). Each UML
editor 1s based on the framework. Therefore, we can implement multiple editors
efficiently.

Code Generation CB generates understandable program codes. The program
codes must be understandable to debug a simulation model. CB uses two follow-
ing frameworks in order to generate program codes on Eclipse Platform. These
frameworks make it easy to edit Java program codes.

— JDT(Java Developer Tool) [Eclipse Project, 2004]
— JET(Java Emitter Templates) [Eclipse Project, 2004]

Using JDT, we can treat java programs as a syntax tree, format program
codes, and use a template of program comment. CB uses it for generating pro-
gram codes to represent state-transitions of Behavior, actions of Behavior and
initial settings of World. The reason for using JDT is that we can edit programs
more freely than JET, and it is suitable for generating complex program codes.

JET is a generic template engine that can be used to generate SQL, XML,
Java source code and other output from templates like JSP [Sun, 2004]. CB uses
it for generating program codes to represent type definitions with Class Diagram.
The reason for using JET is that we can edit programs more easily than JDT,
and 1t 1s suitable for generating fixed program codes.

10



Y

§ J — -
size and location
{ N\ ~

name, other properties, &

and mode| structure

Y

| J

Fig. 15. A Mechanism of Saving

Save We need to save two following information with CB.

— coordinates information (location and size)
— model information (model features and model structures)

Model information is saved to files corresponding to each diagram, and model
information is saved to one file for each model on CB (Figure 15). It is because
we often make each diagram refer to same element.

We accept XML as file format for two reasons. First, It makes easy to use
CVS. Second, we can convert the models into documents using technologies like

XSLT.

Export Picture File CB exports diagrams to picture file. The file is formatted
with SVG [W3C, 2004] that is based on XML. This format makes it possible not
only to convert it into EPS or JPEG but also to edit the XML file with other
applications.

4.4 Each Tool of Component Builder

In this section, we describe the three tools of CB that are important parts
especially in MDA.

Model Designer Model Designer is a modeling tool to define types in a sim-
ulation model with Class Diagram (Figure 16). With this tool, a modeler can
draw diagrams and generate program codes represented by the type structure.

Behavior Designer Behavior Designer is a modeling tool to define state ma-
chines of Behaviors with Statechart Diagram (Figure 17). With this tool, a mod-
eler can draw diagrams and generate program codes to represent rules of the
Behavior.

11



Pallet Canvas Outline

Fig. 16. Model Designer

Pallet Canvas Outline

Fig. 17. Behavior Designer

Action Designer Action Designer is a modeling tool to describe details of
actions defined in Behaviors (Figure 18). With this tool, a modeler can draw
diagram and generate program codes of action procedures.

An action is a set of some procedures. As a model becomes larger, they
become more complicated. We propose drawing diagram of actions with hier-
archical structure to understand them. Action Designer supports to describe

procedures hierarchically.

12



Pallet

‘-_I
Fig. 18. Action Designer
Table 1. Examples of Action Parts
The Name of Action Parts The Explanation of Action Parts
send information send a information to relative agent(s)
add relation add a relation to the agent which have the action
extract agents with random extract some agents from collection of agents randomly

In an action, we have to describe procedures to edit elements defined with
BEFM. When we develop some simulation models, there are many duplicated
procedures in them. We call the procedures “Action Parts”. Action Designer
supports to use Action Parts appeared frequently. Table 1 is examples of provided
Action Parts.

5 Evaluation

Now we would like to evaluate the proposed tools. The example is evolution-
ary simulation of strategy in the Iterated Prisoners’ Dilemma. “The Prisoner’s
Dilemma” 1s an elegant embodiment of the problem of achieving mutual coop-
eration, and therefore provides the basis for the analysis [Axelrod, 1997].

The Iterated Prisoner’s Dilemma model consists of 6899 lines of program.
We can show that 23 UML Diagrams and 2 World settings generate 6184 lines
on the proposed tools (Table 2). It follows from this that we can design model
and simulation with little programming by using the proposed tools.

13



Table 2. Difference of Artifacts

Without CB

With CB

World

2318 lines program

2 settings

Type definition

245 lines program

7 diagrams

Behavior and Action

3621 lines program

28 diagrams

Information 715 lines program |715 lines program
715lines program, 28
Total 6899 lines program |diagrams, and 2set-

tings

There 18 no need to program in order to design model and simulation, if
the model includes not complex Information but simple Information such as
string or number. Modelers have to program the structure of Information, only
if their models include complex Information. This case is the subject of future
investigation.

6 Conclusion

In this paper, we proposed the paradigm and tools for development of agent-
based social simulations. The tools are open to the public on http://www.boxed-
economy.org/. Creating the foundation for the social simulations study is an
oversized project for our members to complete. We would like to realize it by
collaborating with many researchers in various fields. Please contact us, if you
are interested in our challenge.

7 Acknowledgements

This research was supported by Boxed Economy Project. We wish to thank
Yoshihide Chubachi, Yoshiaki Matsuzawa and Ryunosuke Tsuya for their en-
couragement and guidance throughout this research. However, any mistakes that
remain are our own.

References

[Axelrod, 1997] R. M. Axelrod (1997). The Complexity of Cooperation: Agent-Based
Models of Competition and Collaboration (Princeton University Press).

[Boxed Economy Project, 2003] Boxed Economy Project. Designers Guide to Social
Simulations. Fujita Institute of Future Management Research 2 edn. (2003). in
Japanese.

[Collier, 2003] N. Collier (2003). Repast: An extensible framework for agent simulation.
The University of Chicago’s Social Science Research
, http:/ /repast.sourceforge.net/.

14



[Frankel, 2003] D. S. Frankel (2003). Model Driven Architecture: Applying MDA to
Enterprise Computing (Wiley Publishing).

[Iba et al., 2002] T. Iba, Y. Chubachi, Y. Takabe, K. Kaiho, and Y. Takefuji (2002).
Boxed Economy Foundation Model in The AAAI-02 Workshop on Multi- Agent
Modeling and Simulation of Economic Systems pp. 78-83.

[Tba et al., 2002] T. Iba, Y. Takabe, Y. Chubachi, J. Tanaka, K. Kamihashi, R. Tsuya,
S. Kitano, M. Hirokane, and Y. Matsuzawa (2002). Boxed Economy Foundation
Model: Toward Simulation Platform for Agent-Based Economic Simulations in
Eaxploring New Frontiers on Artificial Intelligence pp. 227236 (Springer-Verlag).

[Iba et al., 2002] T. Iba, Y. Chubachi, Y. Matsuzawa, K. Asaka, and K. Kaiho (2002).
Resolving the Existing Problems by Boxed Economy Simulation Platform in Agent-
based Approaches in Economic and Social Complex Systems pp. 5968 (I0S Press).

[Iba et al., 2004] T.Iba, Y. Matsuzawa, and N. Aoyama (2004). From conceptual mod-
els to simulation models: Model driven development of agent-based simulations.

[Kleppe et al., 2003] A. Kleppe, J. Warmer, and W. Bast (2003). MDA FEaxplained: The
Model Driven Architecture: Practice and Promise (Addison-Wesley).

[Mellor and Balcer, 2002] S. J. Mellor and M. J. Balcer (2002). Ezecutable UML: A
Foundation for Model-Driven Architecture (Addison-Wesley).

[Minar et al., 1996] N. Minar, R. Burkhart, C. Langton, and M. Askenazi.
The swarm simulation system:a toolkit for building multi-agent simulations.
http://www.santafe. edu/ projects/ swarm/ overview/ overview.html (1996).

[Parker, 2001] M. T. Parker (2001). What is ascape and why should you care? Journal
of Artificial Societies and Social Simulation 4(1), http://www.soc.surrey.ac. uk/
JASSS/4/1/5.html.

[Sun, 2004] Sun. Javaserver pages. http://java.sun.com/products/jsp/ (2004).

[W3C, 2004] W3C. Scalable Vector Graphics. http://www.w3.org/Graphics/SVG/
(2004).

[Eclipse Project, 2004] Eclipse Project. Eclipse. http://www.eclipse.org/ (2004).

[Eclipse Project, 2004] Eclipse Project. Graphical Editing Framework
. http://www.eclipse.org/gef/ (2004).

[Eclipse Project, 2004] Eclipse Project. Java development tools
. http://www.eclipse.org/jdt/ (2004).

[Eclipse Project, 2004] Eclipse Project. Java emitter templates
. http://www.eclipse.org/emf/ (2004).

[Object Management Group, 2000] Object Management Group (2000). OMG Unified
Modeling Language Specification (Object Management Group).

15



