
From Conceptual Models to Simulation Models:

Model Driven Development of Agent-Based Simulations

Takashi Iba †1

Yoshiaki Matsuzawa †2

Nozomu Aoyama †2

†1 Faculty of Policy Management, Keio University

†2 Graduate School of Media and Governance, Keio University

1 Introduction

Every social issue surrounding us today stems
from complex factors. Now we need to estab-
lish a trans-disciplinary approach so that we
can examine the flow of interconnected phe-
nomena. The solution lies with new methodol-
ogy called agent-based modeling. This concept
makes it possible to model our society as a sys-
tem formed by an interaction between numbers
of autonomous agents.

In the current state in the study of simulating
agent-based economic models, however, there is
a problem that needs to be resolved. That is the
absence of integrated environment to support a
whole research process from conceptual model-
ing to simulation analysis. The problem did not
become serious too much up to now, because
the models were small-scale and for experimen-
tal use. It becomes, however, indispensable to
resolve the existing problem, as the simulations
come to be used practically in social science, pol-
icy analysis, and business field.

In this paper, we propose a new development
process, which we call “Model Driven Develop-
ment”. To realize the process, we also propose
tools that help us build the conceptual models
and simulation models. Then, the simple trade
model is introduced as the example in the last
part of the paper.

2 Background

2.1 Supporting Systems for Simula-
tion Development

In the last some years, several languages, frame-
works and tools for agent-based simulations have
been proposed. For example, “Swarm Simu-
lation System”, which seems to be the most
famous and to be used, provides the class li-
brary for the simulation of complex adaptive
systems [Minar et al., 1996]. As well as Swarm,
“RePast” provides the class library to make
the agent-based model [Collier, 2003]. “Ascape”
also provides the framework, and it is said that
the amount of the code description can be less
than that of Swarm and RePast [Parker, 2001].

These support systems try to solve the prob-
lem with a necessary support to the modeler who
has a little (or, no) experience of the computer
programming. As the solution, those systems
assist the modelers to write programs by pro-
viding a general library and framework. In fact,
these systems are useful for the reduction of pro-
gramming. They, however, would not support
for the modelers to do conceptual modeling. We
would like to emphasize that it is important to
support modeling as well as to support program-
ming. Thus, we need a new system that helps
us build the conceptual models and simulation
models.

1

Assembler Language

Programning language
(3rd generation)

Modeling language

Machine Language

L
e
v
e
l
o
f
A
b
s
tr

a
c
ti
o
n

high

low

Java, C++,
Visual Basic,
C, Pascal,...

UML

Examples of
Languages

Languages for
software Development

- Swarm
- RePast
- Ascape

Our Solution
(Boxed Economy)

Supporting Systems for
Agent-Based Simulation

Figure 1: Level of Abstraction, Languages, and
Supporting Systems

2.2 Model Driven Development: A
New Paradigm of Software Devel-
opment

In the field of software engineering, there is a
trend toward considering the design models as
the development artifacts that contribute di-
rectly to software development. “MDA” (Model
Driven Architecture) and “Executable UML”
(Unified Modeling Language) are proposed for
the Model Driven Development [Frankel, 2003,
Mellor and Balcer, 2002, Kleppe et al., 2003].
The point is “using modeling languages as
programming languages rather than merely as
design languages.”[Frankel, 2003]. As a result,
“It makes it possible to raise the level of abstrac-
tion for software development”[Frankel, 2003]
(Figure 1). History tells that the productivity
and quality are improved in consequence of
raising the level of abstraction.

The traditional development process of soft-
ware models is driven by implementation, it
means program coding (Figure 2). In the
traditional development process, the transfor-
mation from design models to program codes
is done by hand. According to the process,
the modeler should write a lot of program
codes. In this sense, design model is said
to be “just paper” [Kleppe et al., 2003] and
“blueprint” [Mellor and Balcer, 2002].

On the contrary, the emerging concept of soft-
ware development process is driven by modeling
(Figure 3). We can use more high-level language
for development, instead of writing in the lower-
level language. It means that a modeler describe

Analysis

Design

Implementation

Execution

Development Process Artifacts Features of
Artifacts

Iteration (if necessary)

human and
machine readable

human and
machine readable

machine readable

DecideMoveByTitForTatBehavior

DecideMoveByTitFor2TatBehavior

DecideMoveByFriedmanBehavior

Behavior

conceptual model

design model

public class SayHelloBehavior extends AbstractSayHelloBehavior {

 protected void initialize() {
 // TODO Auto-generated method stub
 }
 protected void terminate() {
 // TODO Auto-generated method stub
 }
 protected void sayHelloAction() {
 MessageInformation message = new MessageInformation("Hello");
 this.sendInformation(TutorialModel.RELATIONTYPE_Friends,
 TutorialModel.BEHAVIORTYPE_ReceiveBehavior, message);
 }
 protected void receiveMessageAction() {
 Information receivedInformation = getReceivedInformation();
 }
}

source code

simulation results

Pit, Ait, Uit, x, s, Rit, Qit, Sit, Mit

14.3, 90.2, 25.0, 2, 0.2, 3.2, 55.4 ,95.9, 28.7

26.1, 87.5, 26.8, 0, 0.2, 0.0, 38.2, 12.0, 34.1

25.3, 88.9, 25.0, 2, 0.4, 3.9, 53.7 ,93.1, 28.7

38.2, 12.0, 34.1, 2, 0.5, 5.7, 63.9, 86.2, 26.9

57.1, 98.9, 32.3, 0, 0.5, 0.0, 53.7 ,93.1, 28.7

55.4 ,95.9, 28.7, 0, 0.5, 0.0, 47.5, 88.8, 26.1

53.7 ,93.1, 28.7, 0, 0.5, 0.0, 50.5, 87.6, 28.7

52.1, 90.3, 28.7, 0, 0.5, 0.0, 63.9, 86.2, 26.9

50.5, 87.6, 28.7, 0, 0.5, 0.0, 26.1, 87.5, 26.8

49.0, 84.9, 28.7, 0, 0.5, 0.0, 14.3, 90.2, 25.0

47.5, 88.8, 26.1, 1, 0.7, 6.4, 47.5, 88.8, 26.1

name="taro"
ID=2

amount=1

executable code

compiling

human readable
 "just paper"

human readable
 "just paper"

Figure 2: Traditional Process of Software Devel-
opment

the models rather than program codes. There-
fore, the modeler can concentrate on modeling
without considering the software implementa-
tion, because the program code will be an exact
translation of the design model. In this sense,
the design model is no longer “just paper” and
“blueprint”.

In this paper, we propose process and tools
for Model Driven Development of agent-based
social simulations.

3 Proposed Process based on

Model Driven Development

3.1 Process Overview

The proposed process, which is based on Model
Driven Development, consists of three major
phases: “Conceptual Modeling Phase”, “Simu-
lation Design Phase”, and “Verification Phase”
(Figure 4).

In the conceptual modeling phase, the mod-
eler analyzes the target world and describes the
conceptual model. He/She defines the model
elements, for example agents and information,
according to the conceptual model framework
“Boxed Economy Foundation Model” (BEFM).
The products developed in the phase are
“Conceptual-Model Class Diagram”, “Activity
Diagram”, and “Communication-Sequence Dia-

2

Analysis

Design

Implementation

Execution

Development Process Artifacts Features of
Artifacts

Iteration (if necessary)

human and
machine readable

human and
machine readable

human and
machine readable

machine readable

DecideMoveByTitForTatBehavior

DecideMoveByTitFor2TatBehavior

DecideMoveByFriedmanBehavior

Behavior

conceptual model

design model

public class SayHelloBehavior extends AbstractSayHelloBehavior {

 protected void initialize() {
 // TODO Auto-generated method stub
 }
 protected void terminate() {
 // TODO Auto-generated method stub
 }
 protected void sayHelloAction() {
 MessageInformation message = new MessageInformation("Hello");
 this.sendInformation(TutorialModel.RELATIONTYPE_Friends,
 TutorialModel.BEHAVIORTYPE_ReceiveBehavior, message);
 }
 protected void receiveMessageAction() {
 Information receivedInformation = getReceivedInformation();
 }
}

source code

simulation results

Pit, Ait, Uit, x, s, Rit, Qit, Sit, Mit

14.3, 90.2, 25.0, 2, 0.2, 3.2, 55.4 ,95.9, 28.7

26.1, 87.5, 26.8, 0, 0.2, 0.0, 38.2, 12.0, 34.1

25.3, 88.9, 25.0, 2, 0.4, 3.9, 53.7 ,93.1, 28.7

38.2, 12.0, 34.1, 2, 0.5, 5.7, 63.9, 86.2, 26.9

57.1, 98.9, 32.3, 0, 0.5, 0.0, 53.7 ,93.1, 28.7

55.4 ,95.9, 28.7, 0, 0.5, 0.0, 47.5, 88.8, 26.1

53.7 ,93.1, 28.7, 0, 0.5, 0.0, 50.5, 87.6, 28.7

52.1, 90.3, 28.7, 0, 0.5, 0.0, 63.9, 86.2, 26.9

50.5, 87.6, 28.7, 0, 0.5, 0.0, 26.1, 87.5, 26.8

49.0, 84.9, 28.7, 0, 0.5, 0.0, 14.3, 90.2, 25.0

47.5, 88.8, 26.1, 1, 0.7, 6.4, 47.5, 88.8, 26.1

name="taro"
ID=2

amount=1

executable code

compiling

generating

human readable
 "just paper"

(for some parts
 of simulation)

Figure 3: New Process of Software Development

Conceptual Modeling

Simulation Design

Verification

Iteration

Figure 4: Major Phases in Our Proposed Pro-
cess

gram”.
In the simulation design phase, the modeler

designs and implements the simulation model,
which is executable program on the platform
“Boxed Economy Simulation Platform”(BESP).
The modeler translates the conceptual mod-
els into simulation models according to the
software framework “Foundation Model Frame-
work” (FMFW). The products are “Simulation-
Model Class Diagram”, “Statechart Diagram”,
“Initial World-Settings”, and the corresponding
program codes.

In the verification phase, the modeler runs the
simulation and inspects whether the simulation
program is coded rightly. If necessary, the mod-
eler returns to the first or second phase and mod-
ifies the models.

Space World

Information

Behavior

Clock

Goods

*

*
*

*

*

* RelationEntity

Agent

Channel

* *

*

end

start

Figure 5: Major Classes of Boxed Economy
Foundation Model (BEFM)

3.2 Conceptual Modeling Phase

3.2.1 Purpose and Products

The purpose of conceptual modeling phase is to
specify what the target system is. The mod-
eler extracts “Agent”, “Behavior”, “Relation”,
“Goods”, and “Information” from the target
world, and defines them. In addition, he/she
describes the activities of agents and the se-
quence of communications. UML (Unified Mod-
eling Language) is used for describing the model
1. The products developed in the phase are fol-
lowings:

• Conceptual-Model Class Diagram

• Activity Diagram

• Communication-Sequence Diagram

3.2.2 Static View

First step is to specify the characters in the tar-
get world. The specification is done based on
“Boxed Economy Foundation Model” (BEFM).
BEFM can be a frame of reference for recog-
nizing the target world (Figure 5). With us-
ing the model framework, the modeler can focus
on the part of the target world [Iba et al., 2002,
Iba et al., 2002].

The modeler extracts the following characters
from the target world, and defines types of them
in the conceptual-model class diagram.

1UML (Unified Modeling Language) is standard lan-
guage for object-oriented modeling today. See the refer-
ence [Rumbaugh et al., 1999] for more details.

3

Agent An autonomous actor who does an ac-
tivity is represented by Agent type. Each
individual and social groups such as corpo-
rations, governments, families, schools, re-
gional communities, and countries are de-
scribed as Agents in the model.

Behavior The behavior of the agent is repre-
sented by Behavior type. Various activ-
ities such as decision-making, production,
trade and communication, are described as
Behavior in the model. Different Behav-
iors can be done at the same time by the
Agent. A Behavior has an internal state,
and the state can be changed by events.

Relation An agent in a model usually has
some kind of relationship with other agents
rather than being isolated. The relation be-
tween agents is represented by Relation
type. The relationships, such as friends,
spouses, teachers, students, employees, em-
ployers, are described as Relation in the
model. Relation is an object by which two
Agents are connected in a one-way or two-
ways direction.

Goods A material/immaterial thing, which is
possessed by Agents, is represented by
Goods type. For example, automobiles,
oil, corn, financial stocks, right of land,
books, advertisements, memorandums, wa-
ter, voices, noises, garbage, and money are
described as Goods in the model. Goods
often hold Information describing various
contents, which we will explain next.

Information Information which is held by
Goods or Agents is represented by Infor-
mation type. Information will never exist
alone, and will always be held by Goods or
Agents. For example, a newspaper can be
modeled as an object that the newspaper
article (as Information) is printed on pa-
per (as Goods). And a conversation can be
modeled as a combination of the contents
(as Information) and the voice (as imma-
terial and transient Goods). Examples of
information possessed by Agents are “mem-
ory”, “genetic information”, and “name”.

3.2.3 Dynamic View

Next step is to describing the dynamics of
the phenomena with two approaches: “Activity
Analysis” and “Communication-Sequence Anal-
ysis”.

By the activity analysis, the modeler describes
the procedure of agent’s behaviors in an activity
diagram. The activity diagram is very similar to
a flowchart.

By the communication-sequence analysis, the
modeler describes the sequence of the com-
munication among the agents. The agent’s
behavior is often done in cooperation with
the other behaviors. Thus, the modeler de-
scribes the exchange of goods / information
in a communication-sequence diagram. The
communication-sequence diagram can be used
to understand the cooperation of behaviors.

3.2.4 Iteration

Now the modeler has finished the first itera-
tion of conceptual modeling phase, but there is
an unfinished task. The rest task is to define
the goods and information. Since the modeler
ought to describe the communication-sequence
diagram, it is easy to know what types of goods
and information should be defined.

3.3 Simulation Design Phase

3.3.1 Purpose and Products

The purpose of simulation design phase is to
translate the conceptual models into the simula-
tion models (programs). The modeler makes the
simulation model based on the software frame-
work “Foundation Model Framework”(FMFW).
FMFW is a concrete software framework of the
model framework “BEFM”(Figure 6).

UML is also used for describing the model.
The products developed in the phase are follow-
ings:

• Simulation-Model Class Diagram

• Statechart Diagram

• Initial World-Settings

• Simulation Programs

4

RelationType

Relation

GoodsType

Goods

InformationTypeBehaviorTypeAgentType

Agent

Type

Behavior<<abstract>> Information<<interface>>

parents*
*

children<<abstract>>

AGENT_Environment AGENT_AgentCellSpace
- xCellNum : int

- yCellNum : int
- is Loop : Boolean

+ CellSpace ()
+ moveAgent ()

+ addAgent ()
+ removeAgent ()

+ getCell ()
+ getAgents ()

+ getCellList ()
+ getCell ()

+ getAgentCount ()
+ getXCellNum ()

+ get YCellNum ()
- getAbsoluteCellRound ()

- getAbsoluteCellNotRound ()
- xRangeValid ()

- yRangeValid ()
- xyRangeValid ()

Cell
- x : int

- y : int

SSSearchResultInformation SSSearchRequestInformation
SSFieldInformation

+ getSugar ()

SSCellInformation
- sugar : int

*
*

*
ScopeScope

MooreScopeMooreScope
+ getNeighborCells+ getNeighborCells

- range : int- range : int

<<GoodsType>>Format2_VCR<<GoodsType>>Format1_VCR

<<GoodsType>>VCR

AgentType
AGENT_Environment SupplySugarBehavior

MoveAndEatBehaviorAGENT_SSAgent<<instanceOf>>

RelationType

RELATION_DiffusionController
RELATION_SurveyTarget

RELATION_Friend
RELATION_InformationSupplier

RELATION_Seller

<<instanceOf>>

Model Framework
"Boxed Economy
 Foundation Model"

Software Framework
"Foundation Model
 Framework"(FMFW)

Space World

Information

Behavior

Clock

Goods

*

* *

*

*
* RelationEntity

Agent

Channel

* *
*

end
start

higher level
of Abstraction

Conceptual Model
<<Type>>

<<Type>><<Type>>

Agent

<<Type>>

<<Type>>

<<Type>>

<<Type>>

<<Type>>

<<Type>>

<<Type>>

Simulation Model

AgentType

RecognizeVCRNeedsBehavior

ReplyFormatBehavior

PurchaseVCRBehavior

UseVCRBehavior

AGENT_Consumer

AGENT_DiffusionControlFunction PermitVCRNeedsBehavior

AGENT_Shop SellVCRBehavior

SurveyBehaviorAGENT_SurveyCompany

<<instanceOf>>

ChannelEvent[,]
/ PurchaseVCRBehavior

TimeEvent /

ChannelEvent
[,]

ChannelEvent []

/

TimeEvent

/ VCR

Supporting
for Modeling

Supporting
for Modeling

Conceptual Modeling

Simulation Design

Verification

2 layers of Frameworks Modeling Process

Figure 6: Layered Architecture of Frameworks

3.3.2 Static View

The modeler describes the types and classes in
“Simulation Model Class Diagram”. It is based
on the conceptual model class diagram, which
has been developed in the conceptual modeling
phase. These diagrams are often same or very
similar.

Some classes, however, are added to the class
diagram in the phase. First, it is the class for
operating simulation rather than the element of
the conceptual model. The example is the be-
havior that manages the order of activating the
other behaviors. Second, it is an implemented
class to describe behavior and information. This
kind of class diagrams is for understanding the
computational model rather than the conceptual
model.

3.3.3 Dynamic View

The modeler describes the statechart diagram
in order to describe the dynamics of the model.
In many cases, much time is spent in design-
ing the statechart diagrams in the development
process. The modeler designs the statechart di-
agrams based on the following diagrams, which
are developed in the conceptual modeling phase:
Communication-Sequence Diagram and Activ-
ity Diagram.

As a guideline of finding states of behav-
ior, the point of a leaving arrow in the
communication-sequence diagram indicates the
beginning point of the state. And the point of
a coming arrow indicates the end of the state.

The candidate of the action is the activity in the
activity diagram.

Then, the modeler may implement the details
of the simulation as a program code 2. The
phase is supported a lot by our tools, which we
will discuss in the next section. In the phase,
the modeler writes the following program codes
if necessary:

• Action Methods in Behavior Class

• Guard-Condition Methods in Behavior
Class

• Fields and Methods in Information Class

• Priority Settings of TimeEvent in Model
Class

Since the other parts of the simulation pro-
grams are generated by the tools, the modeler
does not have to write any more codes.

3.3.4 Initialization

The modeler describes the initial settings of sim-
ulated world. They are the data for building the
simulation at the instance level. The modeler
describes the following settings:

• Agent

– number

– Behavior

– Goods

– Information

• Relation

– source

– target

– direction
2Current tools, which we propose in this paper, are

not sophisticated enough to transform from design mod-
els to program code for a hundred percent. The modeler
should write the program code of the action description of
agent’s behavior. We, however, try to define patterns of
the actions in order to develop more sophisticated tools.
Note that the automatic generation of action description
is also discussed at the field of UML standardization. See
the reference [Mellor and Balcer, 2002].

5

Figure 7: Proposed Process and Tools

3.4 Verification Phase

3.4.1 Purpose and Products

The purpose of the verification phase is to run
and verify the simulation. The products devel-
oped in the phase are followings:

• Verified Simulation Program

3.4.2 Running and Verifying the simula-
tion

The modeler runs the simulation, which he/she
has been developed, in order to investigate
whether the program works or not. In order
to get a reliable result, the simulation should be
verified. “Verification” is the inspection whether
the simulation program is coded rightly from the
conceptual model. The modeler investigates the
correspondences between the initial settings and
the simulation results.

4 Proposed Tools based on

Model Driven Development

4.1 Component Builder

In order to support modeling and designing sim-
ulations, we would like to propose “Component
Builder” (CB). Component Builder consists of
four designers and a composer: Model De-
signer, Activity Designer, Communication De-
signer, Behavior Designer and World Composer.
They are the tools to generate the program code
just by drawing the diagram and setting the pa-
rameters with a graphical user interface3. The
correspondence between process and tools is de-

3The tools and the platform, which we will propose
later, provide the setup by which the programming to
make the simulation is greatly reduced. As a result, the
modeler comes to be able to make the simulation as long
as they have the basic skills of programming, they do not
have to make the design and the implementation concern-
ing the structure which make the programming more dif-
ficult. Moreover, the modeler can make and change their
simulation promptly, and then can give priority to the
analysis of the consequences.

6

Figure 8: Model Designer

Figure 9: Activity Designer

scribed in Figure 7.

4.1.1 Model Designer

Model Designer is a supporting tool for model-
ing the static view of the simulation (Figure 8).
The modeler uses the tool in both phase of con-
ceptual modeling and the simulation design. In
the conceptual modeling phase, he/she draw the
conceptual-model class diagram. In the simula-
tion design phase, he/she draw the simulation-
model class diagram. The tool can generate the
program code automatically.

4.1.2 Activity Designer

Activity Designer is a supporting tool for model-
ing the activity of Agents (Figure 9). The mod-
eler uses the tool for drawing the activity dia-
gram in conceptual modeling phase.

Figure 10: Communication Designer

Figure 11: Behavior Designer

4.1.3 Communication Designer

Communication Designer is a supporting tool
for modeling the interaction among Agents (Fig-
ure 10). The modeler uses the tool for draw-
ing the communication-sequence diagram in the
conceptual modeling phase.

4.1.4 Behavior Designer

Behavior Designer is a supporting tool for mod-
eling the dynamic view of the simulation (Fig-
ure 11). The modeler uses the tool for drawing
the statechart diagram in the simulation design
phase. The tool can generate the program code
automatically.

4.1.5 World Composer

World Composer is a supporting tool for model-
ing the initial state of the simulation world (Fig-
ure 12). The modeler uses the tool for setting

7

Figure 12: World Composer

the parameters to initialize the simulation in the
simulation design phase. The tool can generate
the program code automatically.

4.2 Boxed Economy Simulation Plat-
form (BESP)

Another tool what we would like to propose is
“Boxed Economy Simulation Platform” (BESP)
[Iba et al., 2002, Iba and Takefuji, 2002]. BESP
is a software platform to execute and to analyze
the agent-based social simulations4 (Figure 13).

BESP is designed to realize an extensible soft-
ware application with component-based archi-
tecture. The user can obtain the simulation en-
vironment which suits the needs, only if he/she
sets necessary components into the platform.

There are two kinds of components built into
the platform: that is “model component” and
“presentation component”. The model com-
ponent is a software component that imple-
ments the model which the user wants to simu-
late. The model component is made based on
“Boxed Economy Foundation Model”(BEFM)
and “Foundation Model Framework”(FMFW).
The presentation component is a software com-
ponent for the user interface to operate and to
visualize the simulation. The simulation is ex-
ecuted by setting up the social model as the
model components and the user interface as the
presentation components in BESP. Model com-

4Boxed Economy Simulation Platform (BESP) is
able to be downloaded freely from our web page
(http://www.boxed-economy.org/). Or please contact us
by E-mail to box-designers@crew.sfc.keio.ac.jp.

Figure 13: Boxed Economy Simulation Platform

Baker

Customer

Bread

Money

Favorite Shop

300 yen,
please.

I want 3.

$

Figure 14: Illustration of BakerWorld

ponents and presentation components are inde-
pendent each other, communicating indirectly
by sending and receiving the events through
BESP. Therefore, the modeler simulates his/her
original economic model with existing presenta-
tion components even if he/she makes only the
model components. In contrast, the developer
makes his/her original user interface as presen-
tation components that do not specialize in a
specific social model.

5 An Example: BakerWorld

5.1 Model Overview

The example which I would like to present
here is a simple trade model, “BakerWorld”
[Boxed Economy Project, 2003]. The overview
of the world is illustrated in Figure 14. There
are two types of agents: Baker and Customer,
where the baker bakes bread and sells them to
the customer. In the following subsections, the
diagrams in each phase are shown.

8

Figure 15: Conceptual Model Class Diagram for
BakerWorld

5.2 Conceptual Modeling Phase

In the conceptual modeling phase, we specify the
characters in the target world and describe it in
the conceptual-model class diagram (Figure 15).
The baker is modeled as “BakerAgent”, and the
customer is modeled as “CustomerAgent”. Bak-
erAgent has “SalesBehavior”, and CustomerA-
gent has “ShoppingBehavior”. The relation be-
tween them is modeled as “FavoriteShopRela-
tion”.

Next step is to describing the activities of
agents with activity analysis. The activities
of BakerAgent are “greeting”, “saying price”,
“receiving order”, “demanding payment”, “re-
ceiving money”, and “giving bread” (Figure
16). The activities of CustomerAgent are “say-
ing hello”, “asking price”, “ordering”, “payment
money”, and “receiving bread” (Figure 17).

Third step is to describe the sequence of the
communication among the agents (Figure 18).
CustomerAgent sends the message “Hello!” to
BakerAgent, then the BakerAgent replies the
message “May I help you?”. After that, Cus-
tomerAgent asks “How much is it?”, and Bak-
erAgent replies “100 yen”. CustomerAgent
says “I want 3”, then BakerAgent calculates
the sum and says “300 yen, please”. Finally,
they exchange MoneyGoods and BreadGoods.
The communication can be described in the
communication-sequence diagram (Figure 18).

The rest task is to define the goods and in-
formation. For Goods, there are BreadGoods
and MoneyGoods (Figure 19). For Information,

greeting

saying price

receiving order

demanding payment

receiving money

giving bread

Figure 16: Activity Diagram of BakerAgent for
BakerWorld

saying hello

asking price

ordering

paying money

receiving bread

Figure 17: Activity Diagram of CustomerAgent
for BakerWorld

9

"Hello."

"100 yen."

"I want 3."

"300 yen, please."

Receiving Order

BakerAgent

TimeEvent

CustomerAgentClock

Bread

Money

Receiving Money

Receiving Money

"May I help you?"

"How much is it?"

Figure 18: Communication-Sequence Diagram
for BakerWorld

there are PriceInformation and OrderInforma-
tion (Figure 20).

5.3 Simulation Design Phase

In the simulation design phase, we modify the
class diagram, which has been developed in the
conceptual modeling phase. Then, we describe
the statechart diagram of the agent’s behaviors.
Figure 21 and 22 show the statechart diagram
of ShoppingBehavior and SalesBehavior respec-
tively. In addition, it is necessary to implements
some action methods in Behavior classes. For
example, the following source code is a method
of ShoppingBehavior.

protected void sayingHelloAction() {

MessageInformation message

= new MessageInformation("Hello!");

this.sendInformation(BakerWorldModel.

RELATIONTYPE_FavoriteShopRelation,

BoxTownModel.BEHAVIORTYPE_SalesBehavior, message);

}

Next step is describing the initial settings of
simulated world. The followings are the data for

Figure 19: Goods in the Conceptual Model
Class Diagram for BakerWorld

Figure 20: Information in the Conceptual Model
Class Diagram for BakerWorld

Figure 21: Statechart Diagram of ShoppingBe-
havior for BakerWorld

10

Figure 22: Statechart Diagram of SalesBehavior
for BakerWorld

initialization:

• Agent

– BakerAgent

∗ number = 1
∗ Behavior = SalesBehavior

– CustomerAgent

∗ number = 1
∗ Behavior = ShoppingBehavior

• Relation

– FavoriteShopRelation

∗ source = CustomerAgent
∗ target = BakerAgent
∗ direction = one-way

5.4 Verification Phase

Finally, we run the simulation in order to inves-
tigate whether the program works or not. There
are two types of agents on the screen: Baker-
Agent and CustomerAgent (Figure 23). The
BakerAgent sells BreadGoods to the Customer-
Agent.

6 Conclusion

In this paper, we proposed the process and tools
for Model Driven Development of agent-based

Figure 23: BakerWorld on BESP

social simulations. The tools are opened to
public on http://www.boxed-economy.org/. Cre-
ating the foundation for the social simulations
study is an oversized project for our members to
complete. We would like to realize it by collab-
orating with many researchers in various fields.
Please contact us, if you are interested in our
challenge.

References

[Boxed Economy Project, 2003] Boxed Econ-
omy Project. Designers Guide to Social
Simulations. Fujita Institute of Future Man-
agement Research 2 edn. (2003). in Japanese.

[Collier, 2003] N. Collier (2003). Repast: An exten-
sible framework for agent simulation. The Uni-
versity of Chicago’s Social Science Research ,
http://repast.sourceforge.net/.

[Frankel, 2003] D. S. Frankel (2003). Model Driven
Architecture: Applying MDA to Enterprise
Computing (Wiley Publishing).

[Iba and Takefuji, 2002] T. Iba and Y. Takefuji
(2002). Boxed Economy Simulation Platform
for Agent-Based Economic and Social Modeling
in Computational Analysis of Social and Orga-
nizational Systems 2002.

[Iba et al., 2002] T. Iba, Y. Chubachi, Y. Takabe,
K. Kaiho, and Y. Takefuji (2002). Boxed Econ-
omy Foundation Model in The AAAI-02 Work-
shop on Multi-Agent Modeling and Simulation
of Economic Systems pp. 78–83.

[Iba et al., 2002] T. Iba, Y. Takabe, Y. Chubachi,
J. Tanaka, K. Kamihashi, R. Tsuya, S. Kitano,
M. Hirokane, and Y. Matsuzawa (2002). Boxed

11

Economy Foundation Model: Toward Simula-
tion Platform for Agent-Based Economic Simu-
lations in Exploring New Frontiers on Artificial
Intelligence pp. 227–236 (Springer-Verlag).

[Iba et al., 2002] T. Iba, Y. Chubachi, Y. Mat-
suzawa, K. Asaka, and K. Kaiho (2002). Resolv-
ing the Existing Problems by Boxed Economy
Simulation Platform in Agent-based Approaches
in Economic and Social Complex Systems pp.
59–68 (IOS Press).

[Kleppe et al., 2003] A. Kleppe, J. Warmer, and
W. Bast (2003). MDA Explained: The Model
Driven Architecture: Practice and Promise
(Addison-Wesley).

[Mellor and Balcer, 2002] S. J. Mellor and M. J. Bal-
cer (2002). Executable UML: A Foundation for
Model-Driven Architecture (Addison-Wesley).

[Minar et al., 1996] N. Minar, R. Burkhart,
C. Langton, and M. Askenazi. The swarm
simulation system:a toolkit for building multi-
agent simulations. http://www.santafe. edu/
projects/ swarm/ overview/ overview.html
(1996).

[Parker, 2001] M. T. Parker (2001). What is as-
cape and why should you care? Jour-
nal of Artificial Societies and Social Sim-
ulation 4(1), http://www.soc.surrey.ac. uk/
JASSS/4/1/5.html.

[Rumbaugh et al., 1999] J. Rumbaugh, I. Jacobson,
and G. Booch (1999). The Unified Modeling
Language Reference Manual (Addision Wesley
Longman).

12

