
博士論文 平成 15年度 (2003)

社会・経済シミュレーションの基盤構築
— 複雑系と進化の理論に向けて —

慶應義塾大学大学院 政策・メディア研究科

井庭 崇

博士論文要旨 平成 15年度 (2003)

社会・経済シミュレーションの基盤構築
— 複雑系と進化の理論に向けて —

本論文では、複雑系のシステム観に基づく社会・経済シミュレーションを作成する

ためのモデル・フレームワークとシミュレーション・プラットフォームを提案する。

複雑系とは、広義には「内部状態をもつ多数の構成要素が相互作用し、それぞれの内

部状態を変化させていくシステム」であり、狭義には、これに加えて「構成要素の振

舞いのルールが変化し得る」という定義が加わる。近年、社会科学においてこのよう

な捉え方が重要視されているが、現状では、複雑系のモデルを記述し操作するための

有効な手段は存在しない。

本論文では、複雑系の社会・経済モデルを記述・操作するために、オブジェクト指

向計算モデルを導入する。そして、基本となるモデル要素を定義し、モデル化から

シミュレーションまでの一貫した支援を行うためのモデル・フレームワーク「Boxed

Economy Foundation Model」を提案する。さらに、提案モデル・フレームワークに

基づくモデルのシミュレーションの作成・実行・分析を支援するために、コンポーネ

ントベースのソフトウェア「Boxed Economy Simulation Platform」を提案する。ま

た、動的な振舞いの構成方法を、モデル・パターンとして記述することを提案し、具

体的なモデル・パターンを提示する。

本論文では、提案モデル・フレームワークと提案ソフトウェアの有効性を明らかに

するため、これらを既存モデルおよび独自モデルに適用する。既存モデルでは、成長

するネットワークモデル、繰り返し囚人のジレンマモデル、貨幣の自生と自壊モデル、

Sugarscapeモデル、人工株式市場モデルという 5つの代表的なモデルを取り上げる。

独自モデルとしては、家庭用 VCRの規格競争シミュレーションを取り上げる。これ

らの事例への適用により、本論文の提案の有効性が実証された。

慶應義塾大学大学院 政策・メディア研究科

井庭崇

Abstract of Ph.D Thesis Academic Year 2003

A Study on Simulating Economies and Societies

as Evolutionary Complex Systems

This dissertation presents a model framework and a simulation platform for simu-

lating economies and societies as complex systems. In a broad sense, the complex

system means that the system has the components where each component changes

the internal states by mutually interacting with the other components. In addition,

in a strict sense, the complex system means that the rules of each component behav-

ior are changed dynamically during the simulation. There is no satisfactory scheme

for modeling and simulating the complex systems, although the complex system

model has been highly demanded in social sciences.

We introduce an object-oriented computational modeling for social sciences in

order to model and simulate the complex system where the model framework, “Boxed

Economy Foundation Model,” is proposed. Moreover, the component-based software

system “Boxed Economy Simulation Platform” is proposed for building/simulating

a model and analyzing the system. In addition, the model pattern is proposed to

describe examples on how to build the dynamic behavior.

In this dissertation, we apply the proposed framework and software system to

existing models and an original model. The existing models include the followings:

the model of evolving networks, the model of iterated prisoner’s dilemma, the model

of emergence and collapse of money, Sugarscape model, and the model of artificial

stock markets. Then, the original model is examined and used for video cassette

format competition. The performance of the proposed framework and the software

system are justified in the application.

Takashi Iba

Graduate School of Media and Governance

Keio University

目 次

第 1章 本論文の目的と概要 1

1.1 新しい思考の道具をつくる . 1

1.2 モデル・フレームワークの提案 . 3

1.3 シミュレーション・プラットフォームの提案 4

1.4 モデル・パターンの提案 . 6

1.5 提案システムの適用事例 . 8

1.5.1 既存モデルの再現 . 8

成長するネットワークモデル: 関係とエージェントの動的生成 8

繰り返し囚人のジレンマゲーム: 行動変更による振舞いの変化 8

貨幣の自生と自壊モデル: 段階的なモデル拡張 8

SugarScapeモデル: 環境のエージェント化 9

人工株式市場モデル: 情報変化による振舞いの変化 9

1.5.2 独自モデルによる分析 . 9

第 2章 社会・経済のモデル化とその分析方法 11

2.1 メタファーとしてのモデル . 11

2.2 いまどのようなメタファーが求められているのか 12

2.2.1 広義の複雑系: 内部状態をもつ構成要素からなるシステム . . . 14

2.2.2 狭義の複雑系: 構成要素の振舞いのルールが動的に変化するシ

ステム . 15

2.2.3 進化: 変異を伴う複製 . 16

2.3 複雑系と進化のメタファーに期待されていること 16

2.3.1 戦略とルーティンの進化 . 17

2.3.2 意味と解釈を扱う社会モデルの構築 17

2.3.3 制度と行動の関係の探究 . 18

2.4 複雑系の記述と分析に関する課題 . 19

2.5 シミュレーションによる計算と分析 20

2.5.1 シミュレーションと計算科学 20

2.5.2 科学的研究におけるシミュレーション利用 20

2.6 シミュレーションの作成に関する課題 22

i

第 3章 オブジェクト指向計算モデルの導入 27

3.1 どのように写し取るのか: 計算モデルの導入 27

3.2 オブジェクト指向計算モデルの考え方 28

3.3 クラスによるモデル設計 . 29

3.3.1 概念とクラス . 29

3.3.2 クラス間の関連 . 30

3.4 UML(統一モデル化言語) . 32

第 4章 モデル・フレームワークの提案 35

4.1 モデル・フレームワークとは . 35

4.1.1 概念モデル・フレームワーク 35

4.1.2 シミュレーションモデル・フレームワーク 37

4.2 提案モデル・フレームワーク: Boxed Economy Foundation Model

(BEFM) . 39

4.2.1 BEFM 概念モデル・フレームワーク 39

World, Space, Clock . 39

Entity, Agent, Goods . 39

Information . 40

Behavior . 40

Relation, Channel . 41

4.2.2 BEFM シミュレーションモデル・フレームワーク 41

Agent . 42

Behavior . 43

Event . 43

Type . 44

World . 44

Goods . 46

Entity . 46

Information . 46

Relationと Channel . 46

4.3 提案モデル・フレームワークを用いたモデル作成のプロセス 47

4.3.1 分析フェーズ . 47

4.3.2 設計フェーズ . 47

4.3.3 実装フェーズ . 48

4.3.4 実行・評価フェーズ . 48

4.4 先行研究との比較 . 48

ii

第 5章 シミュレーション・プラットフォームの提案 51

5.1 シミュレーション・プラットフォームとは 51

5.1.1 研究プロセスを一貫して支援する統合環境の提供 51

5.1.2 モデル部品の再利用と並行開発を支援する仕組みの提供 52

5.1.3 シミュレーション環境の再利用と拡張を支援する仕組みの提供 52

5.2 提案シミュレーション・プラットフォーム: Boxed Economy Simulation

Platform (BESP) . 54

5.2.1 基本アーキテクチャ . 54

モデルコンポーネント . 55

プレゼンテーションコンポーネント 56

モデルコンテナ . 56

プレゼンテーションコンテナ 56

BESPコンテナ . 57

5.2.2 提供されるプレゼンテーションコンポーネント 57

Control Panel . 57

World Initializer . 58

Data Collector . 58

Data Collector . 59

Relation Viewer . 59

Status Viewer . 60

Board . 60

5.3 提案シミュレーション・プラットフォームにおける設計と実装の支援 61

5.3.1 プログラミングの軽減の仕組み 61

5.3.2 支援ツール: Component Builder 62

Behaviorの作成 . 62

Worldの作成 . 68

Modelの作成 . 68

5.4 先行研究との比較 . 69

第 6章 モデル・パターンの提案 73

6.1 モデル・パターンとは . 73

6.2 パターンによる記述 . 73

6.2.1 パターンとは何か . 73

6.2.2 パターンの基本構造 . 74

6.2.3 パターンの役割 . 74

6.2.4 これまで提案されてきたパターン 75

建築におけるパターン . 75

iii

ソフトウェア開発におけるパターン 75

プロジェクトマネジメントのパターン 76

6.3 提案モデル・パターン . 77

6.3.1 エレメンタリーなモデル・パターン 78

6.3.2 コミュニケーションのモデル・パターン 78

6.3.3 行動変化のモデル・パターン 78

6.3.4 アクティベーションのモデル・パターン 78

6.4 発展のための覚書 . 78

第 7章 提案システムによる既存モデルの再現 81

7.1 成長するネットワークのモデル . 81

7.1.1 ランダムリンクモデル . 81

7.1.2 ランダム選択成長モデル . 86

7.1.3 優先的選択成長モデル (スケールフリー・モデル) 89

7.2 繰り返し囚人のジレンマモデル . 93

7.2.1 コンテスト・シミュレーション 93

7.2.2 戦略模倣シミュレーション . 103

7.3 貨幣の自生と自壊モデル . 110

7.3.1 物々交換モデル . 110

7.3.2 貨幣的交換モデル . 117

7.3.3 進化的モデル . 123

7.4 SugarScapeモデル . 127

7.4.1 Sugarscapeモデル . 127

7.5 人工株式市場モデル . 132

7.5.1 人工株式市場モデル . 132

第 8章 提案システムによる事例研究 139

8.1 家庭用 VCRにおける規格競争 . 139

8.1.1 規格競争におけるネットワーク外部性の特徴 139

8.1.2 取り上げる事例の概要と特徴 140

8.2 概念モデル . 141

8.2.1 全体像 . 141

8.2.2 エージェント . 142

欲求認識フェーズ . 142

情報探索フェーズ . 144

購買前代替案評価フェーズ . 145

購買フェーズ . 145

iv

消費フェーズ . 146

購買後代替案評価フェーズ . 147

処分フェーズ . 147

8.3 シミュレーションモデル . 147

8.4 シミュレーション結果 . 153

8.4.1 設定 . 153

8.4.2 基本的な振舞いの確認 . 154

近傍範囲とマーケットシェアの関係 154

耐久性の有無とマーケットシェアの関係 154

8.4.3 マーケットシェアの推移と市場の状態遷移 155

8.4.4 局所的影響によるマーケットシェア抑制効果 156

8.4.5 現実のデータへの適合 . 164

8.4.6 マーケットシェアの逆転現象 166

8.5 考察 . 170

第 9章 結言 173

謝辞 175

注 177

参考文献 206

付 録A UML(統一モデル化言語)の表記について 219

A.1 クラス図の記法 . 219

A.2 オブジェクト図の記法 . 221

A.3 ステートチャート図の記法 . 222

A.4 シーケンス図の記法 . 223

付 録B BEFMシミュレーションモデル・フレームワークの詳細 225

B.1 Worldクラス . 225

B.1.1 シミュレーション時計・空間の設定/取得 225

B.1.2 財の生成/明示的な消費 . 225

B.1.3 エージェントの生成/参照/削除 226

B.1.4 タイプとプライオリティの設定 226

B.1.5 乱数ジェネレータの追加/取得 227

B.2 Agentクラス . 227

B.2.1 行動の追加/取得 . 227

B.2.2 所有財の追加/取得 . 228

v

B.2.3 情報の追加/取得 . 229

B.2.4 関係の追加/取得 . 229

B.3 Behaviorクラス . 230

B.3.1 エージェント/世界の参照 . 230

B.3.2 財の送信 . 230

B.3.3 情報の送信 . 231

B.3.4 財/情報の受信 . 231

付 録C モデル・パターン カタログ 233

C.1 モデル・パターンの分類 . 233

C.2 パターンにおけるクラス名・オブジェクト名について 234

C.3 設計におけるオブジェクト図について 234

C.4 サンプルコードについて . 234

C.5 バリエーションについて . 235

エレメンタリーなモデル・パターン . 235

Agent Creation . 236

Relation Creation . 238

Related Agent Creation . 240

Agent Destruction . 242

Goods Creation . 244

Information Creation . 246

コミュニケーションのモデル・パターン 247

Information Sending . 248

Blank Information Sending . 252

Internal Information Sending . 256

Immediate Reply . 260

Collect Immediate Replies . 264

Appointed Destination Reply . 268

Super BehaviorType Calling . 272

行動変化のモデル・パターン . 276

Behavior Creation . 276

Behavior Destruction . 278

Behavior Switching . 280

Temporary Behavior Creation . 282

Requested Behavior Attachment . 284

Forced Behavior Attachment . 288

アクティベーションのモデル・パターン 289

vi

TimeEvent Distributer Agent . 290

TimeEvent Filtering . 294

TimeEvent Distributer Behavior . 296

Time-Consuming Behavior . 298

vii

図 目 次

1.1 複雑系のシステム観 (第 2章より) . 2

1.2 物理学、広義の複雑系、および狭義の複雑系における構成要素の特徴

(第 2章より) . 2

1.3 BEFM 概念モデル・フレームワークのクラス図 (第 4章より) 3

1.4 Boxed Economy Simulation Platform (BESP)の画面 (第 5章より) . 5

1.5 BESPの内部構造 (第 5章より) . 5

1.6 カタログ形式で記述されたモデル・パターンの例 (第 6章より) 7

2.1 モデルによる思考 . 12

2.2 社会・経済システム論の変遷の大まかな流れ 13

2.3 複雑系のシステム観 . 14

2.4 物理学、広義の複雑系、および狭義の複雑系における構成要素の特徴 15

2.5 マクロからミクロへの影響 . 18

2.6 シミュレーション研究の典型的なフロー 22

3.1 モデルの種類 . 28

3.2 オブジェクト指向のイメージ . 29

3.3 現実認識における概念 . 30

3.4 人間認知における「概念」とオブジェクト指向における「クラス」 . 30

3.5 クラスとオブジェクト . 31

3.6 クラス間関係とオブジェクト間関係 31

3.7 概念の特化／汎化 . 32

3.8 概念の集約 . 32

4.1 2つのモデル・フレームワークとモデル作成の流れ 36

4.2 モデル作成における概念モデル・フレームワークの役割 37

4.3 シミュレーション作成におけるシミュレーションモデル・フレームワー

クの役割 . 38

4.4 BEFM 概念モデル・フレームワークのクラス図 40

4.5 Typeとその関連クラス . 45

4.6 Typeの継承の例 . 45

ix

4.7 BEFMを用いたモデル作成プロセス 47

4.8 一般的なエージェントの設計 (Bruun, 2002) 49

4.9 提案モデル・フレームワークにおけるエージェントの設計 49

5.1 シミュレーション・プラットフォームの基本構造 52

5.2 探索的モデルビルディング (Iba et al., 2000) 53

5.3 コンポーネントによる実装と設定の分離 54

5.4 Boxed Economy Simulation Platform (BESP) 55

5.5 BESPの内部構造 . 55

5.6 Control Panelプレゼンテーションコンポーネント 57

5.7 Control Panelプレゼンテーションコンポーネント (一定時間実行設定) 58

5.8 WorldInitializerプレゼンテーションコンポーネント 58

5.9 DataCollectorプレゼンテーションコンポーネント 59

5.10 Graphプレゼンテーションコンポーネント 59

5.11 RelationViewerプレゼンテーションコンポーネント 60

5.12 StatusViewerプレゼンテーションコンポーネント 60

5.13 Boardプレゼンテーションコンポーネント 61

5.14 Component Builder . 62

5.15 BESPの支援ツールを用いたシミュレーションの作成の流れ 63

5.16 Component Builderを用いた行動の作成 64

5.17 Component Builder上で作成した状態遷移図 64

5.18 Component Builderによって自動生成されたAbstractBehaviorのコー

ド (1) . 65

5.19 Component Builderによって自動生成されたAbstractBehaviorのコー

ド (2) . 66

5.20 Component Builderによって自動生成された Behaviorのコード、およ

びそこに追加したコード (網掛け部分) 67

5.21 BESP Component BuilderのWorld生成ウィンドウ 68

5.22 Component Builderを用いた世界の作成 68

5.23 BESP Component BuilderのModel設定生成ウィンドウ 69

5.24 Component Builderを用いたモデル設定の作成 69

5.25 既存シミュレーションシステムとの比較 (North(2002)を元に改変) . . 70

6.1 カタログ形式で記述されたモデル・パターンの例 77

6.2 パターン間の関連 . 80

7.1 ランダムリンクモデルのイメージ . 82

7.2 ランダムネットワークモデルの全体像 82

x

7.3 ランダムリンクモデルのシーケンス図 83

7.4 ランダムリンクモデル: RandomNetworkBehavior 83

7.5 ランダムリンクモデルのシミュレーション結果 (1) 84

7.6 ランダムリンクモデルのシミュレーション結果 (2) 85

7.7 ランダムリンクモデルにおける最大クラスターのノード数の推移 . . . 85

7.8 ランダム選択成長モデルのイメージ 86

7.9 ランダム選択成長モデルの全体像 . 87

7.10 ランダム選択成長モデルのシーケンス図 87

7.11 ランダム選択成長モデル: RandomAttachBehavior 87

7.12 ランダム選択成長モデル: 形成されたネットワーク 88

7.13 ランダム選択成長モデル: リンク数と順位の関係 (両対数グラフ) . . . 88

7.14 線形グラフと両対数グラフにおけるべき乗分布 88

7.15 優先的選択成長モデルのイメージ . 89

7.16 優先的選択成長モデルの全体像 . 90

7.17 優先的選択成長モデルのシーケンス図 91

7.18 優先的選択成長モデル: PreferentialAttachBehavior 91

7.19 優先的選択成長モデル: 形成されたネットワーク 92

7.20 優先的選択成長モデル: リンク数と順位の関係 (両対数グラフ) 92

7.21 コンテスト・シミュレーションのイメージ 94

7.22 コンテストと試合と対戦の関係 . 94

7.23 戦略を行動として表現する . 95

7.24 コンテスト・シミュレーションの全体像 96

7.25 戦略行動: ALLCStrategyBehavior 97

7.26 戦略行動: ALLDStrategyBehavior 97

7.27 戦略行動: RandomStrategyBehavior 98

7.28 戦略行動: TFTStrategyBehavior . 98

7.29 戦略行動: TF2TStrategyBehavior . 98

7.30 戦略行動: FRIEDMANStrategyBehavior 98

7.31 戦略行動: JOSSStrategyBehavior . 99

7.32 戦略行動: PER-CDStrategyBehavior 99

7.33 戦略行動: PER-CCDStrategyBehavior 99

7.34 コンテスト・シミュレーションのシーケンス図 100

7.35 コンテスト・シミュレーション: ManageContestBehavior 101

7.36 コンテスト・シミュレーション: ConductMatchBehavior 101

7.37 コンテスト・シミュレーション: PlayBehavior 101

7.38 戦略模倣シミュレーションのシーケンス図 104

7.39 戦略模倣シミュレーション: ChangeStrategyBehavior 105

xi

7.40 戦略模倣シミュレーション: 各戦略を採用しているプレイヤー数の推移

(試合結果による戦略変更) . 105

7.41 戦略模倣シミュレーション: 各プレイヤーの得点と平均得点の推移 (試

合結果による戦略変更) . 105

7.42 戦略模倣シミュレーション: プレイヤーの戦略の変化 (試合結果による

戦略変更) . 106

7.43 戦略模倣シミュレーション: 各戦略を採用しているプレイヤー数の推移

(コンテスト結果による戦略変更�) 107

7.44 戦略模倣シミュレーション: 各プレイヤーの得点と平均得点の推移 (コ

ンテスト結果による戦略変更�) . 107

7.45 戦略模倣シミュレーション: プレイヤーの戦略の変化 (コンテスト結果

による戦略変更�) . 108

7.46 戦略模倣シミュレーション: 各戦略を採用しているプレイヤー数の推移

(コンテスト結果による戦略変更�) 109

7.47 戦略模倣シミュレーション: 各プレイヤーの得点と平均得点の推移 (コ

ンテスト結果による戦略変更�) . 109

7.48 物々交換モデルの全体像 . 112

7.49 物々交換モデル: TimeEvent(奇数)のときのシーケンス図 113

7.50 物々交換モデル: TimeEvent(偶数)のときのシーケンス図 114

7.51 物々交換モデル: SearchBehavior . 114

7.52 物々交換モデル: RespondToSearchBehavior 114

7.53 物々交換モデル: DecideTradeBehavior 115

7.54 物々交換モデル: RespondToDecideBehavior 115

7.55 物々交換モデル: ExchangeBehavior 115

7.56 物々交換モデル: RespondToExchangeBehavior 115

7.57 物々交換モデル: ConsumeProductBehavior 115

7.58 物々交換モデル: ResetUtilityBehavior 115

7.59 物々交換モデル: 各ターンごとの得点の推移 (N=50, Threshold=0.078) 116

7.60 物々交換モデルで起こっていることのイメージ (欲望の二重の一致の困

難) . 116

7.61 貨幣的交換モデルのイメージ (人気のある商品の需要) 117

7.62 貨幣的交換モデルの全体像 . 118

7.63 貨幣的交換モデル: TimeEvent(奇数)のときのシーケンス図の一部 . . 119

7.64 貨幣的交換モデル: ChangeKnowledgeBehavior 120

7.65 貨幣的交換モデル: RespondToChangeKnowledgeBehavior 120

7.66 貨幣的交換モデル: 交換のために保有されている商品の単位数の推移

(N=50, Threshold=0.078) . 121

xii

7.67 貨幣的交換モデル: 最も市場性の高い商品の市場性の推移 (N=50, Thresh-

old=0.078) . 121

7.68 貨幣的交換モデル: 各ターンごとの得点の推移 (N=50, Threshold=0.078)122

7.69 進化的モデルの全体像 . 124

7.70 進化的モデル: TimeEvent(奇数)のときのシーケンス図の一部 125

7.71 進化的モデル: ChangeThresholdBehavior 125

7.72 進化的モデル: RespondToChangeThresholdBehavior 126

7.73 進化的モデル: 貨幣の市場性の推移 126

7.74 進化的モデル:閾値の平均値の推移 . 126

7.75 Sugarscapeモデルの全体像 . 128

7.76 Sugarscapeモデルのための CellSpaceクラス 128

7.77 Sugarscapeモデルのシーケンス図 . 129

7.78 Sugarscapeモデル: AddSugarBehavior 129

7.79 Sugarscapeモデル: MoveAndEatBehavior 130

7.80 Sugarscapeモデル: SearchBehavior 130

7.81 Sugarscapeモデル: SendSugarBehavior 130

7.82 Sugarscapeモデル: シミュレーション結果 131

7.83 人工株式市場モデルの全体像 . 133

7.84 人工株式市場モデルのシーケンス図 135

7.85 人工株式市場モデル: StockExchangeBehavior 136

7.86 人工株式市場モデル: TraderBehavior 136

7.87 人工株式市場モデル: RiskFreeSecuritySupplierBehavior 136

7.88 人工株式市場モデル: CompanyBehavior 137

7.89 人工株式市場モデル: シミュレーションの実行画面 137

8.1 日本におけるVHS方式と Beta方式のマーケットシェアの推移 140

8.2 Rogersによるイノベーションの採用時期の採用者分布 (Rogers, 1982) 143

8.3 日本における家庭用 VCRの普及と Rogersの普及曲線の比較 143

8.4 レンタルビデオ店舗数の推移とそれに近似する Rogers普及曲線 . . . 146

8.5 規格競争モデルにおける AgentTypeと Behavior 147

8.6 規格競争モデルにおけるGoodsType 147

8.7 規格競争モデルにおける RelationType 148

8.8 規格競争モデルにおける InformationType 148

8.9 SurveyCompanyエージェントの SurveyBehavior 149

8.10 Consumerエージェントの ReplyFormatBehavior 149

8.11 Consumerエージェントの RecognizeVCRNeedsBehavior 149

8.12 DiffusionControlFunctionエージェントの PermitVCRNeedsBehavior 150

xiii

8.13 Consumerエージェントの PurchaseVCRBehavior 150

8.14 Shopエージェントの SellVCRBehavior 151

8.15 Consumerエージェントの UseVCRBehavior 151

8.16 規格競争モデルにおける Behaviorの動的な生成と消滅 152

8.17 BESP上での規格競争モデルのシミュレーション実行画面 153

8.18 近傍範囲 rを変化させた場合のマーケットシェア推移の比較［シグモ

イド型大域影響度, 多項ロジット選択, 無限耐久性, l = 10, g′ = 10の

場合］ . 154

8.19 耐久性の有無によるマーケットシェアの推移の変化［シグモイド型大

域影響度, 多項ロジット選択, r = 10, l = 0, g′ = 5の場合］ 155

8.20 個人の選好のみに基づいて方式選択する場合のマーケットシェアの推

移と市場のヒストリカルマップ［シグモイド型大域影響度, 多項ロジッ

ト選択, 無限耐久性, r = 10, l = 0, g′ = 0の場合］ 158

8.21 個人の選好および局所的なシェアに基づいて方式選択する場合のマー

ケットシェアの推移と市場のヒストリカルマップ［シグモイド型大域

影響度, 多項ロジット選択, 無限耐久性, r = 10, l = 5, g′ = 0の場合］ 159

8.22 個人の選好および大域的なマーケットシェアに基づいて方式選択する

場合のマーケットシェアの推移と市場のヒストリカルマップ［シグモイ

ド型大域影響度, 多項ロジット選択, 無限耐久性, r = 10, l = 0, g′ = 5

の場合］ . 160

8.23 個人の選好、局所的なシェア、および大域的なマーケットシェアに基

づいて方式選択する場合のマーケットシェアの推移と市場のヒストリ

カルマップ［シグモイド型大域影響度, 多項ロジット選択, 無限耐久性,

r = 10, l = 5, g′ = 5の場合］ . 161

8.24 最終シェア・ランドスケープ：局所的影響度 lと大域的影響度 g′のそ
れぞれの組み合せにおける優位方式の最終シェア［シグモイド型大域

影響度, 多項ロジット選択, 無限耐久性, r = 20の場合］ 162

8.25 最終シェア・ランドスケープ：局所的影響度 lと大域的影響度 g′のそ
れぞれの組み合せにおける優位方式の最終シェア［シグモイド型大域

影響度, 多項ロジット選択, 有限耐久性, r = 20の場合］ 162

8.26 大域的影響度に関するモデルの違いによる優位方式の最終シェア・ラ

ンドスケープの比較［多項ロジット選択, 有限耐久性, r = 20の場合］ 163

8.27 現実のデータとの適合度が高い設定におけるマーケットシェア推移例

［シグモイド型大域影響度, 多項ロジット選択, 有限耐久性, r = 20,

l = 10, g′ = 49の場合］ . 164

xiv

8.28 フィットネス・ランドスケープ：局所的影響度 lと大域的影響度 g′の
それぞれの組み合せにおけるシミュレーション結果の現実への適合度

(シミュレーション結果の 95%信頼区間内に存在する現実の推移点の数)

［シグモイド型大域影響度, 多項ロジット選択, 有限耐久性, r = 20の場

合］ . 165

8.29 「シグモイド型大域的影響度」と「多項ロジット選択」の組み合せに

おける逆転現象の頻度［シグモイド型大域影響度, 多項ロジット選択,

有限耐久性, r = 20の場合］ . 166

8.30 「定数型大域的影響度」と「効用最大化選択」の組み合せにおけるフィッ

トネス・ランドスケープと逆転現象の頻度［定数型大域的影響度, 効用

最大化選択, 有限耐久性, r = 20の場合］ 167

8.31 「シグモイド型大域的影響度」と「効用最大化選択」の組み合せにおけ

るフィットネス・ランドスケープと逆転現象の頻度ランドスケープ［シ

グモイド型大域影響度, 効用最大化選択, 有限耐久性, r = 20の場合］ 168

8.32 「定数型大域的影響度」と「多項ロジット選択」の組み合せにおける

フィットネス・ランドスケープと逆転現象の頻度ランドスケープ［定数

型大域的影響度, 多項ロジット選択, 有限耐久性, r = 20の場合］ . . . 169

8.33 逆転シミュレーションのみのフィットネス・ランドスケープ：局所的影

響度 lと大域的影響度 g′のそれぞれの組み合せにおけるシミュレーショ
ン結果の現実への適合度 (シミュレーション結果の 95%信頼区間内に存

在する現実の推移点の数)［シグモイド型大域影響度, 多項ロジット選

択, 有限耐久性, r = 20の場合］ . 170

xv

表 目 次

1.1 本論文で提案するモデル・パターン (第 6章より) 6

2.1 先行研究のモデルにおけるエージェント (1) 24

2.2 先行研究のモデルにおけるエージェント (2) 25

2.3 先行研究のモデルにおけるエージェント (3) 26

4.1 各モデル要素の作成方法 . 42

6.1 本論文で提案するモデル・パターンの一覧 79

7.1 コンテスト・シミュレーションの結果 102

8.1 日本における VHS 方式と Beta 方式の累積マーケットシェアの推移

(Cusumano et al., 1992) . 165

xvii

第1章 本論文の目的と概要

1.1 新しい思考の道具をつくる

本論文の目的は、社会・経済を分析するための新しい思考の道具を提案することに

ある。この思考の道具は、「組織化された複雑性」の領域にある社会・経済現象を、複

雑系のシステム論的アプローチで取り組むことを支援するものである。社会のような

組織化された複雑性をもつ対象は、従来の解析的方法や統計的方法では理解が困難で

あるといわれているが、本論文では、システム論的な捉え方とコンピュータ・シミュ

レーションによってアプローチすることを目指す。

社会・経済システムの研究は、同時代のシステム論からの影響を受けつつ発展して

きており、近年「複雑系」(complex system)と呼ばれるシステム観が重要視されはじ

めている。しかし現在のところ、「複雑系」という用語について確立された定義や明確

な合意があるわけではない。そこで本論文では、複雑系研究の現状を踏まえ、「広義

の複雑系」と「狭義の複雑系」という二つの定義に分けて整理することにする。第一

の定義である「広義の複雑系」とは、「内部状態をもつ構成要素が多数相互作用する

システム」のことである (図 1.1)。そして、第二の定義である「狭義の複雑系」とは、

上記の定義の中でも特に「構成要素の振舞いのルールが動的に変化するシステム」の

ことである。いずれの場合でも、複雑系の構成要素は原子論的な意味でのアトムでは

なく、内部状態をもつという点に特徴がある (図 1.2)。これは、「分解を推し進めるこ

とによって、最終的には不変の最小単位に到達する」と考える物理学とは異なる立場

をとることになる。このシステム観は、特に社会・経済や生命を理解する上で不可欠

であると近年考えられている。

ところが、現在「広義の複雑系」および「狭義の複雑系」として社会・経済を分析

するための有効な方法と道具立ては存在しない。社会システム論では、システム論的

な捉え方の重要性を早くから訴えてきたが(1)、記述したモデルを操作するための具体

的な道具立ては提案されていないのが現状である。また、シミュレーションの分野で

は、「広義の複雑系」の支援システムがいくつか提案されているものの、「狭義の複雑

系」については未だ有効な支援がなされていない。その結果、有効な方法と道具立て

の不在が、研究の進展を困難なものにしているということ、そして今後その問題がさ

らに深刻化するということが、本論文の基本的な問題意識である。

このような現状に対し、本論文では、そのモデル記述の方法としてオブジェクト指

1

図 1.1: 複雑系のシステム観 (第 2章より)

図 1.2: 物理学、広義の複雑系、および狭義の複雑系における構成要素の特徴 (第 2章

より)

2

Space World

Information

Behavior

Clock

Goods

*

*
*

*

*

*
RelationEntity

Agent

Channel

* *

*

end

start

<< type >>

<< type >> << type >> << type >>

<< type >><< type >><< type >>

<< type >> << type >>

<< type >>

図 1.3: BEFM 概念モデル・フレームワークのクラス図 (第 4章より)

向計算モデルによる記述を採用し、「広義の複雑系」および「狭義の複雑系」としての

社会・経済を記述するためのモデル・フレームワークを提案する。また、そのフレー

ムワークに基づくコンピュータ・シミュレーションを作成・実行するためのソフトウェ

ア、および動的な振舞いの記述を支援するモデル・パターンを提案する。本章では、

本論文における重要な論点を先取りして、その概要提示することにしたい。

1.2 モデル・フレームワークの提案

本論文では、複雑系の社会・経済モデルを記述・操作するために、基本枠組みとし

てオブジェクト指向計算モデルを導入する (第 3章)。そして、基本となるモデル要素

を定義し、モデル化からシミュレーションまでを一貫して支援するモデル・フレーム

ワークを提案する (第 4章)。

モデル・フレームワークとは、社会・経済のモデルを記述する際に、頻繁に登場す

る要素と構造を定義したメタモデルのことである。モデル・フレームワークには、モ

デルの概念レベルの「概念モデル・フレームワーク」と、プログラムの実装レベルの

「シミュレーションモデル・フレームワーク」の 2種類がある。モデル作成者は、モデ

ル化しようとしている対象が「どのようなものであるか」(What)を洗い出し、記述

する際に、概念モデル・フレームワークを用いることができる。また、概念モデル・

フレームワークがシミュレーションモデル・フレームワークと一貫性を有することか

ら、シミュレーションモデルへの移行をシームレスに行うことができる。

本論文で提案するモデル・フレームワーク「Boxed Economy Foundation Model」

は、オブジェクト指向計算モデルによって、複雑系としての社会・経済を記述するた

めのフレームワークである (図 1.3)。エージェント間の相互作用を、財 (情報が付随す

3

ることがある)のやりとりとして明示化するという点と、エージェントの行動を、エー

ジェントとは別のモデル要素として定義するという点に特徴がある。このようなエー

ジェントの設計は、新しい行動の追加や削除、そして行動の組み換えなどを簡単に行

えるという柔軟性がある。したがって、「振舞いのルールに従って状態が変化する」だ

けでなく、「状態の変化によって振舞いのルールが変化する」という「狭義の複雑系」

のモデルも表現できるようになる。

1.3 シミュレーション・プラットフォームの提案

本論文では、複雑系としての社会・経済のシミュレーションを作成・実行・分析す

るためのソフトウェア「Boxed Economy Simulation Platform」(図 1.4)を提案する

(第 5章)。Boxed Economy Simulation Platform (以下、BESP)を用いることで、提

案モデル・フレームワークに基づくモデルのシミュレーションを作成・実行・分析す

ることができるようになる。

BESPが目指しているのは、研究プロセスを一貫して支援するための統合環境を提

供することである。このような統合環境の支援によって、「モデルの作成」から「実

装」、「実行」、「評価」、「現実との比較」というプロセスをシームレスに、かつ効率的

に行うことが可能となる。時々刻々と変化していく社会・経済を up-to-dateに捉えて

いくためには、モデルを迅速に作成し、実行・分析することが重要となるが、BESP

ではそのための工夫がなされている。

BESPでは、モデルのコンポーネント (部品)を組み合わせて、シミュレーションを

設定できる仕組みになっている (図 1.5)。シミュレーションは、複数のコンポーネント

の組み合わせによって動作するが、それぞれのコンポーネントは、独立して理解した

り作成したりすることができる。今後作成したいモデルが複雑かつ大規模になるにつ

れて、一つの研究グループでモデルのすべてを作りきれなくなると予想されるため、

コンポーネントの再利用性はますます重要になるだろう。

また、BESPでは、シミュレーションを作成する際のプログラミングを大幅に軽減

させる支援ツールも提供している。BESPとともに提供している「コンポーネントビ

ルダー」は、 Behaviorの状態遷移図を作成すると、モデルコンポーネントのプログ

ラムコードを自動生成してくれるツールである。このツールを用いると、シミュレー

ションにおいて最も重要であるがプログラミングが難しい「動的な振舞い」について

のプログラミングをしなくて済むので、複雑なモデルも比較的容易に作成できるよう

になる。また、BESP本体が提供するさまざまな機能 (例えば実行や制御に関する部

分)は、すでにプログラミングされているため、シミュレーション作成者がプログラ

ミングする必要はないということも、プログラミング作業の軽減や品質の向上に寄与

している。

4

図 1.4: Boxed Economy Simulation Platform (BESP)の画面 (第 5章より)

BESP Container

Model Container Presentation Container

Model Component Presentation Component

図 1.5: BESPの内部構造 (第 5章より)

5

1.4 モデル・パターンの提案

本論文では、動的な振舞いの構成方法のノウハウを、モデル・パターンとして記述

することを提唱し、実際に重要だと思われるモデル・パターンを提案する (第 6章お

よび付録C)。モデル・パターンとは、モデルを構成する部分部分の「組み立て方」に

関する知識である。パターンの考え方は、もともと建築デザインのために考案され、

その後ソフトウェア・デザインに取り入れられたものであるが、本論文では、そのパ

ターンの考え方をモデル・デザインに応用することを提唱する (表 1.1, 図 1.6)。

モデル・パターンは、モデル・フレームワークと異なり、それを必ずしも採用する

必要はない。モデル・パターンのなかには、お互いに対立するものも含まれており、

モデル作成者は、代替案の中から選びながらモデルをつくることになる。

表 1.1: 本論文で提案するモデル・パターン (第 6章より)

モデル・パターンの分類 モデル・パターン名

エレメンタリーなモデル・パターン

Agent Creation

Relation Creation

Related Agent Creation

Agent Destruction

Goods Creation

Information Creation

コミュニケーションのモデル・パターン

Information Sending

Blank Information Sending

Internal Information Sending

Immediate Reply

Collect Immediate Replies

Appointed Destination Reply

Super BehaviorType Calling

行動変化のモデル・パターン

Behavior Creation

Behavior Destruction

Behavior Switching

Temporary Behavior Attachment

Requested Behavior Attachment

Forced Behavior Attachment

アクティベーションのモデル・パターン

TimeEvent Distributer Agent

TimeEvent Filtering

TimeEvent Distributer Behavior

Time-Consuming Behavior

6

図 1.6: カタログ形式で記述されたモデル・パターンの例 (第 6章より)

7

1.5 提案システムの適用事例

1.5.1 既存モデルの再現

本論文の提案 (モデル・フレームワーク、シミュレーション・プラットフォーム、モ

デル・パターン)の適用可能性を明らかにするために、それらを用いて既存モデルを複

数作成する (第 7章)。取り上げるモデルは、(1)成長するネットワークモデル、(2)繰

り返し囚人のジレンマモデル、(3)貨幣の自生と自壊モデル、(4)Sugarscapeモデル、

(5)人工株式市場モデルの 5つである。これらは、社会・経済シミュレーションの典型

的な特徴を備えた代表的なモデルである。

成長するネットワークモデル: 関係とエージェントの動的生成

成長するネットワークモデルは、社会ネットワークの分野におけるモデルである。

この分野は近年、スケールフリー・ネットワークという新しいネットワークの表現方

法の研究が進み、注目を集めているが、そのスケールフリー・ネットワークの生成モ

デルを取り上げる。提案システムでは、ノード (Agent)の追加やリンク (Relation)の

追加が容易であることから、このようなモデルに対して有効であることを示す。

繰り返し囚人のジレンマゲーム: 行動変更による振舞いの変化

繰り返し囚人のジレンマゲームは、政治学等で非常によく用いられる分析枠組みで

ある囚人のジレンマを、繰り返し行うゲームとして展開したものである。ここでは、

戦略を Behaviorの状態遷移で直接的に記述する。また本論文では、試合やコンテスト

の結果から、自分より強いプレイヤーの戦略を模倣するという拡張を行い、マクロ情

報がある場合とない場合の振舞いの違いについて分析する。この戦略模倣シミュレー

ションでは、プレイヤー (Agent)が戦略 (Behavior)を状況に応じて切り替えるという

「狭義の複雑系」のモデルを実現している。

貨幣の自生と自壊モデル: 段階的なモデル拡張

貨幣の自生と自壊モデルは、商品の物々交換社会において、他者の欲するものを記憶

として持たせることで、貨幣の機能を果たす商品が登場するということをシミュレー

トしたものである。ここでは、エージェントに対して、Behaviorを追加・組み替えを

行うことによって、モデルの拡張が可能であることを示す。

8

SugarScapeモデル: 環境のエージェント化

SugarScapeモデルは、砂糖が生成される 2次元セル平面上で、蟻のようなエージェ

ントが移動しながら砂糖を採取・消費し、取引を行うというモデルである。このモデ

ルは、2次元セル空間による社会シミュレーションの枠組みを広く普及させた代表的

なモデルである。ここでは、砂糖が生成される「環境」も、エージェントによって表

現することができることを示す。

人工株式市場モデル: 情報変化による振舞いの変化

人工株式市場モデルでは、状況によって異なる行動をとるトレーダーを実現するた

め、クラシファイアシステムを導入したモデルを取り上げる。株式市場では、自分の

戦略だけでなく、取引する他のトレーダーの戦略によって結果が異なるため、絶えず

優位な戦略というものは存在しないことが観察される。ここで取り上げる SantaFeモ

デルの枠組みは、その後多くの研究で、代表的な人工市場のモデルとして取り入れら

れている。ここでは、Behaviorの切替ではなく、戦略情報の内容によってエージェン

トの振舞いを変化させるモデルを実現する。

1.5.2 独自モデルによる分析

独自モデルとして、「家庭用VCRの規格競争」のモデルを取り上げる (第 8章)。こ

のモデルは、家庭用VCRの VHS方式と Beta方式の規格競争における、消費者間の

相互依存関係を組み込んだ需要側の人工市場モデルである。提案した人工市場モデル

では、ミクロレベルのモデル化を行うため、従来のマクロ集計的なネットワーク外部

性モデルでは分析できない局所性や逆転現象などが分析可能であることを示した。な

お、このモデルの記述面における特徴は、エージェントが必要に応じて、行動を追加

したり削除したりしている点である。

9

第2章 社会・経済のモデル化とその分析

方法

2.1 メタファーとしてのモデル

社会・経済を理解したいとき、社会科学では、対象となる現象の説明根拠を、その

社会そのもの、あるいはそれを構成する人間に求め、その要因を把握することを試み

る。もちろん実際には、「そのような要素は、具体的現象においては相互に入り組ん

でおり、ほとんどのばあい説明もできなければ把握できないほどに縺れ合っている」

(Schumpeter, 1915)ため、本当の意味ですべての因果の連鎖を把握することは不可能

である。それゆえ、本質的に重要だと思われる連関についての「モデル」を作成し、

現象を理解したり予測したりすることになる (図 2.1)。

モデルとは何かという定義にはいろいろなものがあるが、ここではWilson (1990)

による次のような定義を想定しておくことにしよう。「“モデル”とは、ある人間に

とっての、ある状況、あるいは状況についての概念 (idea)の明示的な解釈 (explicit

interpretation)である。モデルは、数式、記号、あるいは言葉で表すことができるが、

本質的には、実体、プロセス、属性、およびそれらの関係についての記述 (description)

である」(Wilson, 1990)。

このように捉えると、モデルという知的構築物は、メタファー (隠喩)(2)の役割を果

たしていると考えることができる (Black, 1962; Hesse, 1966; Hesse, 1980)。ここでい

うメタファーとは、単なる言葉の綾や修辞的な文飾のことではなく、人間の認知や思

考に組み込まれた「見立て」の方法のことである (Lakoff and Johnson, 1980)。つま

り、メタファーとは、「より抽象的で分かりにくいカテゴリーに属する対象を、より

具体的で分かりやすいカテゴリーに属する対象に見立てることによって、世界をより

よく理解する方法」(瀬戸, 1995)である。メタファーの基本要素は、「たとえられるも

の」と「たとえるもの」、「そのたとえの根拠」であるが、この場合、現実世界におけ

る対象が「たとえられるもの」、モデルが「たとえるもの」である。科学的研究とは、

「たとえるもの」(モデル)を作成し、「そのたとえの根拠」を、実験などを通じて検証・

確証・反証していくという営みということになる。

近年の科学哲学では、Hanson (1970)や Kuhn (1962)等で主張されているように、

科学的知識も客観的なものではなく、それぞれの科学者の認識の枠組みで解釈され構

成されたものであると考えられている。観察行為というプリミティヴな行為でさえ、

11

図 2.1: モデルによる思考

現実からありのままの「事実」を受動的に受けとっているのではなく、「～として見

る」(seeing as)や「～ことを見る」(seeing that)というメカニズムが不可避的に組み

込まれているのである。そのため、私たちの思考の中の「たとえるもの」の表現力が

貧弱であれば、分析によってわかることも貧弱なものにならざるを得ないということ

になる。「認識装置が新たに開発されてはじめて、既存のそれにはなかったリアリティ

が取りだせる」(今田, 1986, p.28)ことから、「たとえるもの」の表現力を上げていく

ことも、科学における重要な活動となる。

本章では、これまで社会科学において、社会・経済がどのようなメタファーで捉え

られてきたかかを明らかにし、本論文で扱おうとしてている複雑系の捉え方までを概

観する。本論文の目的は、複雑系のシステム観にもとづく思考の道具を構築すること

にあるが、「問題状況を記述する方法 (モデル化言語)は、扱っている問題の本質にあっ

たものでなければならない」(Wilson, 1990)ため、このような準備が不可欠となる。

2.2 いまどのようなメタファーが求められているのか

社会・経済のメカニズムの解明を目指し、「システム」の考え方を自覚的に適用する

のが、社会・経済システムの考え方である。システムという語は多義的であり、分野

や時代によって様々な意味で用いられてきているが、大方の共通する定義としては、

「複数の諸部分が互いに関係をもって相互作用しており、より大きな全体として統合

されている」という点である。

社会・経済システムの研究は、並行して発展してきたシステム論(3)の流れのなかで

どの段階のシステム観を採用するかによって、さまざまな形態が存在する (図 2.2)。ま

ず、社会有機体論や社会機械論から始まり(4)、その後、パーソンズによって社会シス

テム論が打ち立てられた(5)。同時期に、サイバネティクス(6)や一般システム論(7)が発

展し、それらの影響を受けて社会科学への導入も試みられてきた(8)。その後、システ

12

図 2.2: 社会・経済システム論の変遷の大まかな流れ

ム論では、第二世代といわれる「開放性の動的非平衡システム」(9)、すなわち散逸構

造理論(10)、シナジェティクス(11)、ハイパーサイクルなどが登場する。これらの考え方

は、社会シミュレーションのモデル化に導入されたほか (Weidlich and Haag, 1983)、

社会科学や科学哲学における思想面で影響を及ぼしている。また、神経生理学におい

て提唱されたオートポイエーシス (自己創出)理論は、N. ルーマンによって社会シス

テム論として展開されている。そして近年、これらのシステム論の流れと、分散人工

知能などの情報科学の流れを受けて、「複雑系」のシステム観が登場する。

しかし、現在のところ「複雑系」という用語について確立された定義や明確な合意

があるわけではない。複雑系という概念の定義は、研究者によって、あるいは時代に

よって、まったく異なる意味で用いられており、また、未定義語のまま使用されてい

ることも多い。そこで本論文では、混乱した状況を整理して議論しやすくするために、

ひとまずの定義を行うことにしたい。その定義とは、「内部状態をもつ構成要素が相

互作用するシステム」(広義の複雑系)と、「構成要素の振舞いのルールが動的に変化

するシステム」(狭義の複雑系)という二つの定義である (図 2.3)(12)。これらは、明確

に分けることはできないが、現段階における理解の助けとしては、有効な区分である

と思われる。以下では、この二つの定義について述べた後、これらのメタファーに期

待される分析対象についての考察を行う。

13

図 2.3: 複雑系のシステム観

2.2.1 広義の複雑系: 内部状態をもつ構成要素からなるシステム

本論文で定義する「広義の複雑系」とは、「内部状態をもつ構成要素からなるシス

テム」のことである。物理学をはじめとして自然科学では、対象をより小さな部分へ

と分解していくことにより、最終的には不変の最小単位 (アトム)に到達すると考えら

れてきた。原子論的なアトムである構成要素は、全体から切り取られても、切り取る

前の性質を保ったままである。それゆえ、対象を要素に還元して理解し、その後、要

素を足し合わせて全体を理解するという理解の仕方が可能となる。

これ対し、広義の複雑系の構成要素は、原子論的な意味でのアトムではなく、内部

状態をもつという点に特徴がある。内部状態をもつということは、外から決めること

のできない内部自由度をもっていることを表している。それゆえ、その振舞いを知る

ためには、いまどの状態にあるのかということを考慮する必要がでてくる。また、そ

のために、どのようにその状態に行き着いたのか、という文脈 (コンテクスト)につい

ても、注意を払う必要がある。

社会科学では、社会を構成する人間は「物理学的なアトムではない」ということが

繰り返し強調されてきた(13)。人間は複数の内部状態をもっており、それらはその人が

置かれている状況や役割、体調などの要因によって刻々と変化していく。そして、そ

の内部状態に依存して、価値基準や判断が変化したり、状況の認知や他者との関係が

影響を受けるのである。

このように構成要素を捉えることは、内部に自由度をもった主体が、相互作用を行っ

てその状態を変化させていく点に注目するということである。このため、構成要素は、

「自律的」(autonomous)であるといわれる。自律とは、外部からの作用が行なわれた

としても、自分自身の原理で処理することである(14)。

14

図 2.4: 物理学、広義の複雑系、および狭義の複雑系における構成要素の特徴

また、それぞれに状態が異なることから、それぞれの構成要素は、個性をもつこと

になり、それゆえマクロ的にみると多様性 (diversity)があるということになる。多様

性というのは、同じ種類の主体同士であっても、それぞれがもっている特徴や置かれ

ている社会的状況が様々であるということを指している。この意味で、広義の複雑系

は「不均質なシステム」であるということができる。

2.2.2 狭義の複雑系: 構成要素の振舞いのルールが動的に変化するシステム

本論文で定義する「狭義の複雑系」とは、システムが内部状態をもつ構成要素から

なっているという広義の複雑系のなかでも、「構成要素の振舞いのルールが動的に変

化するシステム」のことである (井庭および福原, 1998)。

このような複雑系の定義を採用しているものには、Casti (1996)、塩沢 (2000)、安

冨 (2000)、出口 (2000)などがある。Casti (1996)は、「エージェントは一定のルール

に従って決断を下し、そこで得られた新しい情報に基づいて自発的に行動ルールを修

15

正できる」(邦訳 p.4)とし、特に「複雑系におけるエージェントは、グローバル (全

体的)な情報ではなくローカル (局地的)な情報に基づいて決断を下し、みずから行動

ルールを更新していく」としている。塩沢 (2000)は、「人間はその内部 (すなわち脳

内)に外部世界 (すなわち環境)に関する仮説を構築し、外部世界を観察するとともに、

その状況に応じて仮説を修正し、行動パタンを変える存在である」(p.61)と捉えるこ

とが「人間という行為主体をふくむ相互作用システムを複雑系とみる」ということで

あると指摘している。また、安冨 (2000)は、「要素の性質が変化するとシステムも変

化せざるをえないが、要素はその変化に対応して再度変化することができる」システ

ムとし、出口 (2000)は「主体のような自律的エージェントは、固有の活動ルールを持

ち、それがさらに学習や創発、進化などにより変化する」(p.38-39)としている(15)。

2.2.3 進化: 変異を伴う複製

狭義の複雑系は、行動の「進化」という捉え方と関連が深い。経済学では近年、最

適化原理における合理性の考え方に変わる枠組みとして、進化経済学という領域がで

きつつある (進化経済学会, 1998; 進化経済学会および塩沢, 2000; 江頭, 2002)。複雑

系の場合と同様、進化経済学とは何かという確立された定義や明確な合意があるわけ

ではないが、ひとまず「進化経済学は、制度・組織・技術・システムなどの多様性に

注目し、内生的に進化するものとしてそれらを分析・研究しようとする」(有賀ほか,

2000)アプローチだと考えてよいだろう。産業化の経済学における進化論的アプロー

チの必要性を指摘した村上 (1994)は、河田 (1989)を引用して「進化とは、世代を通

じて受け継がれていく生物の性質が変化していくこと」であるとし、次のような説明

を加えている。「変わらないものが変わっていくというパラドックスが進化なのであ

る。変わるものが変わるのは、単なる変化であって進化ではない。不変性を貫こうと

する力とその不変なるものを変える力が絡み合う二重の機制が、進化に他ならない」

(村上, 1994, p.119)。社会・経済においてこのような進化の対象だと思われるものに

は、制度、組織、技術、作業ルーティン (Nelson and Winter, 1982)、定型行動 (塩沢,

1998)、習慣、知識、商品 (Witt, 1997; Witt, 1998)、戦略などがあるだろう。進化的

な視点で捉えるということは、生成されるものがまったくの無から生まれると考える

のではなく、既存のものを組み合わせたり、土台としてその上に新たなものを構築し

たりすることで生まれると捉えることになる。

2.3 複雑系と進化のメタファーに期待されていること

複雑系と進化というメタファーによって、私たちは社会・経済のどのような側面を

より深く理解することができるのだろうか。ここではその期待される分析対象につい

て整理することにしたい。

16

2.3.1 戦略とルーティンの進化

まず第一に戦略やルーティンが進化することの分析があげられる。ヴェブレン(16)

などの古典的な進化経済学を現代的に復活させたネルソンとウィンターの『経済変化

の進化理論』(Nelson and Winter, 1982)では、企業の決定ルールが基本的な操作概

念として扱われている。この決定ルールは、「ルーティン」となって日々繰り返され

る(17)。ルーティンとは、「ものを作るための高度に特殊化された技術的手順や、雇用

と解雇の手続きを通じた新規の在庫の指示、需要の多い項目の生産の増大といったこ

とから、投資政策、研究開発、宣伝、製品の多様化と海外投資に関するビジネス戦略

まで」(Nelson and Winter, 1982)(18)を含めた概念である(19)。このようなルーティン

は、成功しているうちは維持されるが、業績悪化などを契機として再考され、組み替

えられたり改良されたりすることになる。これを、進化的な視点でみると、「
•
行

•
動の

代替的諸様式が相互に競争し、適切さの劣るものをふるい捨てる傾向をもつ淘汰過程

が体系的に、また理解可能なかたちで作用する」(Nelson, 1998, p.8)と捉えることが

できるのである。このような視点は、人間や組織の意思決定を、その場その場の選択

ではなく、それらの選択パターンの選択という、一段抽象度の高いレベルで捉えなお

すということを意味している (塩沢, 1998)(20)。

2.3.2 意味と解釈を扱う社会モデルの構築

コミュニケーションにおける意味と解釈という問題、そして主体における世界像の

問題を扱う道が開けてくる。知識は、「分散された諸断片としてだけ存在する」(Hayek,

1945, p.53)のであるが、人びとはそれらをコミュニケーションによって伝達する。コ

ミュニケーションでは、伝達された情報をもとに、受け手は自らの解釈体系 (知識、メ

ンタルモデル)を用いて意味を理解する。そのため、必ずしも意図した意味が伝達さ

れるとは限らず、むしろあらゆる場合において、厳密に正確な伝達は不可能であると

もいえる。従来の社会・経済システム論では、情報が多くの場合シグナルとして用い

られてはいるものの、あらかじめその情報の意味が外生的に与えられてきた。これに

対し、広義の複雑系では、構成要素に内部状態を想定することにより、同じ情報を受

け取っても、受け手 (の内部状態)によって、異なる意味を得るということを含むモデ

ルの探求を行うことが期待される。

また、情報は、単に主体のもっている解釈体系によって解釈されるだけではなく、

解釈体系の変化を促す可能性ももっている。つまり、知識は社会を認識し思考するた

めの枠組みを構成し、人々の行動に影響を与えるのである。そのため、「コミュニケー

ションは単に情報を伝達するのではなく、それは知識体系の発展と伝達に資すること

を理解することが重要である」(Boulding, 1985, p.150)のである。

このような、社会科学の文脈関係で考えてみると、現象学の影響を受けた社会学理

17

図 2.5: マクロからミクロへの影響

論などに関連が深いことがわかる。シュッツの現象学的社会学、バーガー=ルックマ

ンの知識社会学 (Berger and Luckmann, 1966)、生活世界論などでは、主体による世

界像の構築が重視されている。しかし、「現象学的社会学やエスノメソドロジーのよ

うに主体のリアリティの構成を重視する領域と社会システム論では、互いの概念に相

互翻訳可能性がない状況が続いてきた」(出口, 2000, p.63)のであり、複雑系はこの二

つの流れを接続するということが期待されている(21)。

2.3.3 制度と行動の関係の探究

社会科学において、このような狭義の複雑系が問題となるのは、主体の行動の結果

生まれた秩序や制度が、また主体の行動に影響を及ぼすという循環的な関係を捉える

必要があるからである (図 2.5)。このような要素 (部分)とその上位の階層 (全体)の間

に循環的な関係があるからこそ、複雑系という対象は、要素還元的には理解し得ない

ことになる。なぜなら、部分に分けた時点で、その振舞いのルール (機能)を規定する

メカニズムを、取り除いてしまうことになるからである。現在の行動は、これまでに

起こったことの結果として採用されているのであり、状況からばらばらに切り離して

考えることはできないのである。

秩序や制度の創発という問題は、これまでも社会科学では自己組織化の文脈の中で

取り上げられてきた。自己組織化とは、システムが自身の構造をつくり替え、新たな

秩序を形成することをいうが、自然科学における自己組織化と、要素が思考する社会

科学における自己組織化は、同じ用語を用いていても異なる概念であるという点に注

意が必要である。今田 (1986)は、「社会システムにおける創発特性は、その構成要素

である人間個人が創発特性事態を主題化することにある。これは要素がシステムの全

体を主題化することでもあり、人間行為者の自省作用によってはじめて可能である。」

(p.186)と指摘している。つまり、秩序 (上位の階層)が形成された場合、物理・化学

18

であればそこまでであるが、社会システムを考えたときには、構成要素である人間が、

その秩序を認識し、それをもとに行動を変えるといったことが起こる。それゆえ社会

科学では、散逸構造やシナジェティクスなどで展開された形態形成としての自己組織

化の理論で満足することはできず、さらに狭義の複雑系の自己組織化論へと展開され

なければならないのである(22)。その点、社会学においては他の社会科学と異なり、こ

の今田の自己組織性の社会理論やルーマンの社会システム理論などのような独自に発

展してきた理論をもっており、これが狭義の複雑系と社会科学との接点となるだろう。

2.4 複雑系の記述と分析に関する課題

これまで、多くの研究者によって、複雑系や進化するシステムの捉え方の重要性が

指摘されてきた。ところが、それは多くの場合問題意識として、あるいは認識の枠組

みとして導入されているに過ぎない。このようなシステム観に則って社会科学研究を

行おうとするならば、私たちは実際にシステムのモデルを記述し、操作できる必要が

ある。まさに現在、このような複雑系としての社会・経済を記述し操作する手段が求

められているのである。

しかし、このような複雑系のモデルを厳密に記述するためには、従来の力学系を超

えて、相空間の次元やルールなどの点で「開いた力学系」(金子および池上, 1998)の

開発が必要となるが、現在のところ、そのような記述体系は考案されていない。また、

これらの記述力に加えて、そのモデルの「操作性」が容易であり効率的である点も重

要となる。モデルを操作する人間の能力は限られているため、モデルの操作性は社会

科学にとって本質的に重要な点である。

さらに、モデル化の容易さや可読性の観点から、人間の「経験的感覚との対応」が

取りやすい方法が望ましいといえる。それは、把握した社会のイメージを素直に、か

つ直接的にモデルに表現できるならば、そのイメージとモデルの間に歪みが生じる可

能性が少なくなるためである。厚東 (1991)は、「想像力なしには「社会」を認識する

ことはできない」と指摘した上で、「モデルは、想像力を生き生きと活動させるため

の触媒」であるとし、「重要なのはモデルの導入によって、想像力が解き放たれるか

どうかである」という。その点、わかりやすく記述されたシミュレーションモデルで

あれば、動的に変化する現象の表現力や説得力の面で優れているといえるだろう。

これらを踏まえ、本論文では、社会・経済を複雑系として「擬似的に記述する」た

めの体系について提案することにしたい。

19

2.5 シミュレーションによる計算と分析

2.5.1 シミュレーションと計算科学

本論文の対象である広義の複雑系や狭義の複雑系のモデルは、解析的に解くことが

非常に困難であるか、あるいは不可能であるため、コンピュータ・シミュレーションに

よってモデルの特徴を理解するという方法がとられることが多い。シミュレーション

とは、用意したモデルと初期条件からそのモデルを時間的に展開させるということで

あり、それを通じて、モデルの特徴についての経験的な知見を得ることができる(23)。

また、シミュレーションでは、モデルの設定や条件などを変更して試すことが容易で

あり、頭の中ではもはや自由に操作することのできないような大規模で複雑なモデル

を扱うことも可能となる。そのため、現在の科学的研究においては、シミュレーショ

ンは理論を発展させるための非常に重要な方法となっているのである。

コンピュータ・シミュレーションを用いた科学的研究は、1986年に K. G. Wilsonに

よってその必要性が提唱されて以来、「計算科学」(computational science)として発

展しつつある(24)。計算科学は、「科学や工学の問題を解決するため、シミュレーショ

ンや実験データ解析にコンピューターを積極的に利用して、理論や実験と補完し合う

手段（実験と理論的アプローチの間にあるギャップを埋める）」(田子, 1998)というも

のであり、科学研究の両輪と言われる「理論」と「実験」に加えて「計算」を重視す

る。なお、シミュレーションをコンピュータ上における「実験」と捉えることもある

が、シミュレーションは現実内における実験とは性格が異なることに注意が必要であ

る。実験は、現実世界の中で対象によって現象を生成し、それを仮説と比較すること

によって経験的な知見を得る手段である。これに対し、シミュレーションは、人工的

な思考世界の中で仮説モデルから現象を生成し、それを現実世界の現象と比較するこ

とによって、経験的な知見を得る手段である。この違いは、得られた結果の妥当性と

関係するため、意識する必要がある。

2.5.2 科学的研究におけるシミュレーション利用

科学的研究におけるシミュレーションの利用法には、大きく分けて次の 3つのアプ

ローチがある。第一のアプローチは、対象の将来に関する「予測」である。予め妥当

と思われるモデルがあり、それを時間経過させることによってどのような結果になる

のかを観察・分析するというものである。つまり、過去のデータを用いてシミュレー

ションを行うことによって、将来の動向を予測するのである。第二のアプローチは、

対象の「特徴についての理解」である。部分モデルの振る舞いがわかっている場合に、

それらを組み合わせると全体としてどのような振舞いをするのかを観察するために用

いられるのである(25)。第三のアプローチは、対象の「内部メカニズムについての理

解」である。これは、全体的な振る舞いがわかっているが、内部のメカニズムがわかっ

20

ていないという対象を理解したい場合に行われる。内部メカニズムの仮説的なモデル

(構成モデル)を作成し、その振る舞いと対象を比較して改良し、徐々にモデルを対象

に近づけていくのである。

これらのアプローチの中で、特に「予測」については、ビジネスや政策分析からの

現実的要請として求められることが多いものの、シミュレーション研究者の中では、

このような利用の効果を疑問視する声も多い。社会シミュレーションの先駆者である

J. W. Forresterも、予測については、当初から懐疑的な意見を述べている。「とくに

注意したいのは、将来の特別な時点における 特定の事象 の定量的な予測が、モデル

の目的には含まれていないということである。従来、有用なダイナミック・モデルな

らば、ある将来の時点におけるシステムの特定の状態を予測できなければならないと

いうことは自明である、と間違って考えられてきた。これは望ましいことかもしれな

いが、モデルの有用性は、未来における特定の進路を予測する能力にかかっている必

要はない。」(Forrester, 1961, 下線は原文より)。また、Gilbert and Troitzsch (1999)

も、「従来の社会科学の科学哲学では、説明と予測を過剰に関係づけてきたと言える

だろう。つまり、理論をテストするのに、その理論がうまく将来を予測できるかどう

かで判断される傾向があるのである。これは非線形理論、特にミクロレベルにおいて

は、適切な判断基準であるとはいえない。」と注意を促している。

これらの指摘からもわかるように、現在では、理論を発展させるための方法として、

「特徴についての理解」や「内部メカニズムについての理解」に重きが置かれること

が多い。「特徴についての理解」というのは、例えば、現象の発生頻度やネットワー

ク構造などについてのマクロ的な特性を知るということである。多数の要素が相互作

用するシステムでは、べき乗法則という特性がよくみられる。例えば、砂山における

雪崩の規模と頻度、地震の規模と頻度、そして価格変動の規模と頻度の関係は、べき

乗法則に従っていることが知られている。また、最近のネットワーク理論では、友人

関係や経済ネットワーク、ワールド・ワイド・ウェブ (WWW)など、成長するネット

ワークにおいても、べき乗法則が見られることが明らかになっている。しかし、私た

ちが知ることができるのは、このような全体的な特性とそのメカニズムのみである。

どのタイミングでどの規模の現象が起きるのかということや、どの点とどの点がリン

クされるのかというミクロレベルの予測は非常に困難、もしくは不可能である。

「内部メカニズムについての理解」は、複雑系研究でよく行われており、「構成的手

法」や「構成による分析」(analysis by synthesis)と呼ばれている。従来のような還元

的な方法では分析できない複雑系のモデルを、コンピュータ上にヴァーチャルに構成

し、そのシミュレーションの振る舞いを観察しながらモデルを修正していくのである。

21

図 2.6: シミュレーション研究の典型的なフロー

2.6 シミュレーションの作成に関する課題

シミュレーションによる研究方法には特有の問題が存在する。それは、コンピュー

タ・シミュレーションが一種のコンピュータ・プログラムであるため、モデルだけで

なくプログラムについても注意を払う必要があるという点である。シミュレーション

による研究プロセスは、一般に、「対象の観察」、「特徴の抽出」、「モデルの構築」、「シ

ミュレーションの実装 (プログラミング)」、「シミュレーションの設定」、「シミュレー

ションの実行」、「シミュレーション結果の分析・評価」、「現実とシミュレーションの

振舞いの比較」というフェーズで構成されている (図 2.6)。このように、社会科学理

論以外の作業が多く存在する。それゆえ、シミュレーションを作成するためのプログ

ラミングや、研究分野全体におけるプログラムの共有や蓄積までを含めて考えなけれ

ばならないのである。

プログラミングの必要性は、シミュレーションのソフトウェア品質に必要な技術を

含めると、社会科学者などが参加する際の障壁となっている。シミュレーションが正し

くプログラムにコード化されているかどうかの判定を「正当性の検証」(verification)

というが、シミュレーションの場合、モデルが複雑になるほど結果の事前予測が難し

くなり、プログラムの正当性の検証が困難になる。そのため、事後的に正当性をテス

トするという方法に頼るのではなく、シミュレーションの開発プロセスの中にソフト

ウェア品質を確保するための仕組みを導入する必要がある。一般にソフトウェアには

潜在欠陥はつきものであるため、開発過程や保守過程における徹底的な品質管理が重

22

要となる。言うまでもなく科学的研究や政策分析で用いられる場合、「正しさ」に関す

る品質はゼロ欠陥であることが求められる。ところが、このゼロ欠陥というのは、専

門的なプログラマでさえ実現が難しい要求である(26)。潜在欠陥はソフトウェアの規

模が大きくなるほど増大するが、欠陥除去率は規模が大きくなるにつれて低下するこ

とが知られているため、今後シミュレーション・プログラムにおいても問題が深刻化

することは必至である。そのため、研究者への負担は最小限に留めたままで、ソフト

ウェア品質の高いシミュレーションを作成することを支援する仕組みが求められる。

また、従来のシミュレーション支援システムでは、作成したモデルの一部を他の研

究者と交換したり再利用したりすることを支援する仕組みは提供されていない(27)。そ

のため、シミュレーションにおけるモデルの再利用はほとんど行われず(28)、その都

度ゼロから作られることが多い。実際、これまで作成されてきたシミュレーションモ

デルを調べてみると、モデルの構成単位レベルでは共通部分が多いため、これらを重

複して開発するというのは非効率であることがわかる (表 2.1, 2.2, 2.3)。このように

その都度ゼロから作るという開発方法は、モデルが大規模になるようになるにつれて

開発時間とコストの面で限界が生じることが予想される。これはまさに、シミュレー

ション分野における「ソフトウェア危機」と言えるだろう。このような状況に対し、

開発時間の短縮とコストの低減のために、モデルの再利用や複数の開発者による独立

した並行開発などの対処が課題となっている。

23

表 2.1: 先行研究のモデルにおけるエージェント (1)

モデル化の対象 実装言語 エージェント エージェントの行動

株 式 市 場 (Palmer

et al., 1994)

Objective-C,

Swarm

トレーダー 株価予測, 注文, 株売買

株式市場 (山本ほか,

2001)

C++(X-

Mart)

トレーダー 売買のタイミング決定, 注文, 株売買

株式市場 (横田および
小林, 2001)

VC++ 投資家 株価予測, 注文, 株売買

株式市場 (Iba, 1999) Java トレーダー 株価予測, 注文, 株売買
先物取引市場 (佐藤ほ
か, 2001)

Java(U-

Mart)

取引所会員 株価予測, 注文方法・注文量・注文価格
決定, 注文, 売買

外国為替市場 (和泉お
よび植田, 1999)

Pascal ディーラー レート予想, 戦略決定,レート・注文量
決定, 注文, 売買

商品市場 Java, 生産者 生産, 消費, Bid, 売買
(水田ほか, 2000) Java (ASIA) 投機家 価格推定, Bid, 売買

オークション仲
介者

Bid要求, Bid集計, 価格決定

オンラインオークショ
ン (水田, 2001)

Java, 買い手 状況確認, Bid, 購入

Java (ASIA) オークショナー Bid要求, Bid集計, 落札者・落札価格
決定

排出権取引市場 Java (ASIA) Nation 国内削減量決定, Bid, 取引
(Mizuta and Yama-

gata, 2001)

COP Bid 要求, Bid 集計, 価格決定, 取引許
可

サプライチェーン 工場 生産, 在庫, 出荷
(谷口ほか, 2001) IF/Prolog 事業部 調達, 在庫, 出荷

販社 調達, 在庫, 販売
規格競争 (VCR)(井庭
ほか, 2001)

C,

Java(BESP)

消費者 欲求認識, シェア認知, 商品購入

規格競争 (フリー MATLAB 潜在的採用者 シェア認知, 商品購入
ソフトウェア)(Dalle

and Jullien, 2000)

環境マーケティング Delphi 消費者 商品購入
(石 川 お よび 寺 野,

2000)

生産者 商品企画, 商品販売, 倒産, 行動の模倣,

行動規範の模倣

24

表 2.2: 先行研究のモデルにおけるエージェント (2)

モデル化の対象 実装言語 エージェント エージェントの行動

貨幣の自生と自壊 (安
冨, 2000)

C 経済主体 財の生産, 物々交換, 記憶

社 会 (Sugarscape)

(Epstein and Axtell,

1996)

C, Java (As-

cape)

架空の主体 移動, 収集, 消費, 生殖, 文化伝播, 略奪,

価格交渉, 物々交換, 融資, 返済, 疾病
感染, 免疫応答

市場経済 C, C++ 企業 稼動率調整, 価格調整, 生産, 販売
(吉 地 お よび 西 部,

2000)

消費者 購入

消費者 消費, 労働, 商品購入, 許容証券価格決
定, 証券売買

ケ インジアン 経済
(Bruun, 1997)

Pascal 消費財生産者 生産, 雇用, 投資決定, 商品配送, 証券
発行, 許容証券価格決定, 証券売買

資本財生産者 生産, 雇用, 投資・注文決定, 資本財引
渡, 証券発行, 許容証券価格決定, 証券
売買

家計 労働, 商品購入, 貯蓄・引出, 国債売買,

納税,失業保険受取,社会保障受取,ロー
ン借入・返却

食品製造業 生産, 価格決定, 設備投資, 雇用, 販売,

納税, ローン借入・返却
非耐久財製造
業

生産, 価格決定, 設備投資, 雇用, 販売,

納税, ローン借入・返却
自動車製造業 生産, 価格決定, 設備投資, 雇用, 販売,

納税, ローン借入・返却
アメリカ経済 (AS-

PEN)

C, C++ 住宅建設業 生産, 価格決定, 設備投資, 雇用, 販売,

納税, ローン借入・返却
(Basu et al., 1998) 銀行 預金・引出受入, 貸出・返却受入, 国債

売買, 雇用, ローン貸出・返却受入, 中
央銀行への準備預金預入・引出

政府 徴税, 失業保険支給, 社会保障支給, 国
債発行, 雇用

連邦準備 銀行への貸出・返却受入, 国債売買
不動産業 賃貸料徴収, 雇用, 納税
資本財製造業 生産, 雇用, 販売, 納税
「金融市場」 国債取引の調整

25

表 2.3: 先行研究のモデルにおけるエージェント (3)

モデル化の対象 実装言語 エージェント エージェントの行動

政府 公共投資, 雇用, 有利子国債発行・償還
受入, 国債発行・償還受入, 徴税, 税率
決定, 国債金利決定, 補助金支給

銀行 預金・引出受入, 貸出・返却受入, 中央
銀行からの借入・返却, 中央銀行への準
備預金預入・引出, 預金金利決定, 貸出
金利決定

中央銀行 国債引受・償還, 銀行への貸出・返却受
入, 銀行からの準備預金預入・引出受
入, 公定歩合決定

パン製造業 価格決定, 原料購入, 生産, 販売, 設備
投資, 雇用, 貯蓄・引出, 借入・返却, 納
税, 有利子国債購入・償還, 補助金受取

バーチャル経済 (出口,

2000)

製粉業 価格決定, 原料購入, 生産, 販売, 設備
投資, 雇用, 貯蓄・引出, 借入・返却, 納
税, 有利子国債購入・償還, 補助金受取

農家 価格決定, 生産, 販売, 設備投資, 雇用,

貯蓄・引出, 借入・返却, 納税, 有利子
国債購入・償還, 補助金受取

機械製造業 価格決定, 原料購入, 生産, 販売, 設備
投資, 雇用, 貯蓄・引出, 借入・返却, 納
税, 有利子国債購入・償還, 補助金受取

製鉄業 価格決定, 生産, 販売, 設備投資, 雇用,

貯蓄・引出, 借入・返却, 納税, 有利子
国債購入・償還, 補助金受取

家計 労働力供給, 購入, 住宅投資, 貯蓄・引
出, 借入・返却, 納税, 有利子国債購入・
償還, 補助金受取

26

第3章 オブジェクト指向計算モデルの導入

3.1 どのように写し取るのか: 計算モデルの導入

モデル化方法について考えるためには、対象を「どのように写し取るのか」(how)と

いうことを考える必要がある。本論文の対象となる複雑系のモデルは、従来の言語モ

デルや図式モデル、数学モデルで扱うことが困難であることから(29)、ここでは、「計

算モデル」(computational model)という表現形式を導入することにしたい。計算モ

デルは、コンピュータ・サイエンスとソフトウェア工学の分野で考えられ発展してき

たものであり、処理の種類と対象を記述してあるため、「計算」(computing)(30)を行

うことができる。

計算モデルは、数学モデルに比べて、社会科学のモデル化に適していると言われて

いる。例えば、Gilbert and Troitzsch (1999)では、計算モデルは (1)現実との対応関

係の把握が容易であり、(2)並列的なプロセスや順序の決まっていないプロセスの扱

いが容易であり、(3)モジュール性(31)をもたせることが容易であり、(4)多様な主体を

組み込んだモデルの構築が容易であるとしている。また、Knuth (1985)は、数学とコ

ンピュータ・サイエンスを比較して、次のような暫定的な結論を導いている。数学に

は、「複雑度」すなわち「操作の節約」という概念がほとんどなく、また過程の状態

に関する動的な概念 (代入の概念)がないのに対し、コンピュータ・サイエンスでは、

同時に実行される諸過程間の相互作用を研究するときにも状態の概念が重要となり、

また、本質的に均質でない諸概念に柔軟に対処できる、としている。

計算モデルの代表的なものには、手続き型計算モデルや関数型計算モデル、論理型

計算モデル、オブジェクト指向計算モデルなどがある (図 3.1)。近年の計算モデルの発

展は、「命令から宣言へ、手続きからオブジェクトへ、逐次集中から並列分散へ」(青

木 1993)という方向にある。第一の点は、「これをやってから、次にこれをやる」と

いうように詳細な計算手順を命令的に記述するスタイルから、「これはそれとこのよ

うな関係にある」というように、計算の意味を宣言的に記述するスタイルになってき

ているということである。第二の点は、主に計算手順を記述するスタイルから、計算

手順とデータをひとまとまりとして扱うようなスタイルになってきているということ

である。そして第三の点は、計算の実行がひとつのところで集中的に行われるという

スタイルから、分散して存在する複数の実行部が、協調して計算を行うというスタイ

ルが多くなってきたということである。このような方向性によって、計算モデルの特

27

図 3.1: モデルの種類

徴がますます強化されているが、そのなかでも特に有力なパラダイムのひとつが、本

稿で導入する「オブジェクト指向」である。以下では、オブジェクト指向によるモデ

ル化について、簡単に見ていくことにしよう。

3.2 オブジェクト指向計算モデルの考え方

計算モデルのなかでも、オブジェクト指向によるモデル化は、人間の認知の仕組み

に近く、より自然なモデル化が可能であるといわれている。「オブジェクト指向」で

は、物理的あるいは概念的なモノのひとつひとつを「オブジェクト」として捉え、その

状態や関係の変化で対象となる現象をモデル化する。ここでいう「オブジェクト」と

は、現実に存在する有形無形の「モノ」(thing)を表す一つのまとまりのことである。

日常的な例でいうと、机や椅子、テレビ、携帯電話、新聞、人間、犬、観葉植物など

は、どれもオブジェクトとして表現することができる。モデルの観点からいうと、オ

ブジェクトとは、現実世界における個々のモノを、その「状態」と「振る舞いのルー

ル」をひとまとめにして (カプセル化して)表現したものであり、もっとも基本的な思

考の単位となる。

オブジェクト指向では、さまざまなオブジェクトが、それぞれ役割を分担しながら

相互作用することで世界が動いていると捉える。オブジェクト間の相互作用は、互い

にメッセージを送り合うことで表される。オブジェクトは、自分の知っている (リン

クをもつ)オブジェクトに対してメッセージを送ることができ、そのメッセージを受

けたオブジェクトは自分の状態を変化させたり、必要があれば何らかのメッセージを

送り返したり、他のオブジェクトにメッセージを送ったりする。これが、オブジェク

ト指向の基本的な世界観である (図 3.2)。状態と振る舞いのルールを保持しているオ

ブジェクトが多数存在し、それらが相互作用しているという点が、オブジェクト指向

の本質である。

オブジェクト指向が現実世界のモデル化に適しているのは、実はオブジェクト指向が

考案された背景が関係している。オブジェクト指向の起源は、1960年代にノルウェーで

28

図 3.2: オブジェクト指向のイメージ

開発された Simulaというコンピュータ言語にさかのぼる (Dahl and Nygaard, 1966)。

Simulaは ”simulation language”の略で、その名が示す通り、現実世界のさまざまな

現象をシミュレートするためのコンピュータ言語であった。Simulaは、何千もの構成

要素からなる複雑なシステムのモデルをコンピュータ上で動かすことを目的に設計さ

れたため、動的で複雑な現実世界をそのままコンピュータ上に取り込むための工夫が

なされている。このような問題意識から生まれた考え方だからこそ、オブジェクト指

向は、複雑な現実をモデル化する際の有力な方法となり得るのである(32)。

3.3 クラスによるモデル設計

3.3.1 概念とクラス

オブジェクト指向がもつ記述力を発揮するためには、「クラス」という考え方を導入

する必要がある。「クラス」とは、複数のオブジェクトを共通の性質ごとに分類したも

ののことである。クラスを用いることによって、オブジェクトの体系的な整理が可能

となる上、効率的な記述が可能となる。モデル化の対象となる現実世界はさまざまな

ものから構成されているため、これらを個別に把握したりモデル化したりしようとす

ると、時間と手間が膨大にかかってしまう。クラスの考え方を用いれば、よく似たオ

ブジェクトを個別記述していかなくても、共通項を一括して表現できるようになる。

オブジェクトをクラスに分類するという仕組みは、実は、人間の認知プロセスにお

ける「概念化」と同じメカニズムである。私たち人間は世界のさまざまな物事を認知

するとき、複数のものを共通する性質に着目して、概念を用いてまとめて把握したり、

体系化したりしている (図 3.3)(33)。具体的なものと概念の関係、そしてオブジェクト

とクラスの関係の対応を図示すると図 3.4のようになる。認知における「具体的なも

の」と、オブジェクト指向におけるオブジェクトは、それぞれ概念とクラスの「イン

スタンス」(実例)と呼ばれる (図 3.5)。クラスは状態をもたないが、そのインスタン

スであるオブジェクトは必ず状態をもつ。個別のものをクラス (概念)で分類するとい

29

図 3.3: 現実認識における概念

図 3.4: 人間認知における「概念」とオブジェクト指向における「クラス」

うことは、世界の複雑さに対処するためのひとつの方法なのである。

オブジェクト指向では世界の動きを複数のオブジェクトの相互作用で表現すること

はすでに述べた通りであるが、このときもそれぞれのオブジェクトを生成するクラ

ス同士の関係として一括して定義することができる。オブジェクト同士の関係は、そ

れぞれの型であるクラスどうしの関係に準ずるからである。クラスの関係は、関連

(association)と呼ばれる。関連のインスタンスはリンク (link)と呼ばれ、関連するそ

れぞれのクラスのインスタンスであるオブジェクト間の意味的な結び付きに用いられ

る (図 3.6)。あるクラスが他のクラスとまったく関連を持たなければ、そのクラスの

インスタンスであるオブジェクトは、協調作業することのない孤立したオブジェクト

ということになる。

3.3.2 クラス間の関連

人間は現実世界を認知する際に、その複雑さに対処するために複数の概念を関係づ

けるメカニズムを利用しているのだが、オブジェクト指向でも同様に複数のクラスを

関係づけるメカニズムを用いる。ここでは、特によく用いられる「汎化／特化」と「集

30

図 3.5: クラスとオブジェクト

図 3.6: クラス間関係とオブジェクト間関係

約」について説明する(34)。

「汎化 / 特化」(generalization / specialization)の関係は、共通する属性や振舞い

を一括して定義した上位クラスと、特化した下位クラスによる階層関係である (図 3.7

)。この階層において、上位クラスは下位クラスを「汎化」したものであり、逆に下位

クラスは上位クラスを「特化」したものとなる。この関係は、「a-kind-of」(～の一種

である)ということができる。汎化／特化の関係を用いる利点は、あるクラスが他の

クラスよりも包括的であることを識別することで、クラスを体系化することができる

点にある。また、この関係を用いて、少しだけ違うようなもの同士を体系化して整理

することもできる。また、モデル記述の観点から言えば、共通の振る舞いや属性は上

位のクラスで一度だけ記述すれば良く、下位クラスで記述する必要がないという利点

もある。おそらく、クラス階層の下位クラスでは上位クラスにはない特化した属性や

振舞いをもっていると思われるが、上位クラスの属性や振舞いはすべて下位クラスが

31

図 3.7: 概念の特化／汎化

図 3.8: 概念の集約

引き継ぐ。これを「継承」というのだが、このメカニズムによって、下位クラスには、

上位クラスと下位クラスとの差の部分のみを記述すればよいということになる。

複雑さに対処するためのもうひとつのメカニズムは「集約」(aggregation)である。

集約は、あるオブジェクトが、別のオブジェクトから構成されていることを表す関係

である。コンポジション (composition)の関係は、全体をあらわす全体クラスと、そ

の構成要素にな部分クラスの関係であり、「composed of」(～から構成される)という

ことができる (図 3.8)。コンポジションの利点は、多くの部分から組み立てられてい

るものを 1つの全体として扱うことができる点にある。全体に対する属性が、部分に

ついても適用できるのである。例えば、「自転車」オブジェクトは、「サドル」、「ペダ

ル」、「車輪」、「フレーム」などのオブジェクトから構成されている。この自転車が他

の場所に移動すれば、その部品も移動するだろう。また、オブジェクトの構成要素が、

時間とともに変化することを許すことでもある。先ほどの「自転車」オブジェクトに

ある時点で「ライト」が装着されるかもしれないが、その後は「ライト」オブジェク

トも含めて移動することになるのである(35)。

3.4 UML(統一モデル化言語)

オブジェクト指向のモデルを記述するための記法は、近年、UML(Unified Modeling

Language: 統一モデル化言語)として、標準化されている。UMLは、「ソフトウェアシ

ステムの成果物を規定、構築、可視化、文書化する言語」(Object Management Group,

32

2000)であり、「大規模で複雑なシステムをモデル化する上でその有効性が実証され

た工学上の最良の実践を収集し、代表するもの」(Object Management Group, 2000)

である。UMLの開発の背後にあった目標の中で、「第 1の最も重要な目標は、UML

がすべてのモデル作成者が利用することのできる汎用のモデリング言語となること」

(Rumbaugh et al., 1999)であり、そのため「UMLは所有権の設定されたものではない

と同時に、コンピュータ業界の大多数による共通の合意の基づいたもの」(Rumbaugh

et al., 1999)であるという。また、「できるだけシンプルでありながら、それでいて

構築しなければならない広範な実用システムをモデリングできるようにすること」

(Rumbaugh et al., 1999)が目指された(36)。

本論文で用いるUML図の記法については、付録 Aにまとめておく。

33

第4章 モデル・フレームワークの提案

4.1 モデル・フレームワークとは

本章では、複雑系として社会・経済をモデル化する際によく現れる要素や構造を抽

出し、「モデル・フレームワーク」として定義する。ここでは、抽象度の違いにより、

「概念モデル・フレームワーク」と「シミュレーションモデル・フレームワーク」と

いう 2種類のフレームワークを考える。これらのフレームワークは一貫性を有してお

り、概念モデルの作成からシミュレーションモデルの実装までをシームレスに行うた

めの支援をする (図 4.1)。

4.1.1 概念モデル・フレームワーク

概念モデル・フレームワークは、対象についての概念モデルを作成する際に、共通

して登場する要素と構造を定義したものである。モデル作成者は、モデル化しようと

している対象が「どのようなものであるか」(What)を洗い出し、記述する際に、この

概念モデル・フレームワークを用いることができる。加えて、概念モデル・フレーム

ワークがシミュレーションモデル・フレームワークと一貫性を有することから、シミュ

レーションモデルへの移行をシームレスに行うことができる。概念モデル・フレーム

ワークは、(1)現実世界の認識のための準拠枠の明示化、(2)概念モデルを記述するた

めの語彙の提供、(3)概念モデルの共有化とコミュニケーションの支援、という 3つ

の役割を果たす (図 4.2)。

(1) 現実世界の認識のための準拠枠の明示化

概念モデル・フレームワークは、対象となる現実世界を認識する際の準拠枠となる。

概念モデル・フレームワークを、「世界の中に含まれるものを拾い集めようとして用

いる、一種のふるい」(William, 1925)として用いることにより、動的で捉えどころの

ない世界を把握することが容易になる。

私たち人間は、現実世界からありのままの「事実」というものを受動的に受けとっ

ているのではなく、認知枠のフィルターを通じて能動的に選びとっている。生体的・

認知的制約から現実世界のすべてを認識することはできないため、重要と思われる部

分に焦点を当てて把握しているのである。このように、「知覚する」という行為は「枠

35

RelationType

Relation

GoodsType

Goods

InformationTypeBehaviorTypeAgentType

Agent

Type

Behavior
<<abstract>> Information<<interface>>

parents*
*

children<<abstract>>

AGENT_Environment AGENT_AgentCellSpace
- xCellNum : int

- yCellNum : int
- is Loop : Boolean

+ CellSpace ()
+ moveAgent ()

+ addAgent ()
+ removeAgent ()

+ getCell ()
+ getAgents ()

+ getCellList ()
+ getCell ()

+ getAgentCount ()
+ getXCellNum ()

+ get YCellNum ()
- getAbsoluteCellRound ()

- getAbsoluteCellNotRound ()
- xRangeValid ()

- yRangeValid ()
- xyRangeValid ()

Cell
- x : int

- y : int

SSSearchResult
Information SSSearchRequest

Information
SSField

Information
+ getSugar ()

SSCell
Information

- sugar : int

*

*

*
ScopeScope

MooreScopeMooreScope

+ getNeighborCells+ getNeighborCells
- range : int- range : int

<<GoodsType>>
Format2_VCR

<<GoodsType>>
Format1_VCR

<<GoodsType>>
VCR

AgentType
AGENT_Environment SupplySugarBehavior

MoveAndEatBehaviorAGENT_SSAgent<<instanceOf>>

RelationType

RELATION_DiffusionController

RELATION_SurveyTarget

RELATION_Friend

RELATION_InformationSupplier

RELATION_Seller

<<instanceOf>>

Space World

Information

Behavior

Clock

Goods

*

*
*

*

*

* RelationEntity

Agent

Channel

* *
*

end
start

AgentType

RecognizeVCRNeedsBehavior

ReplyFormatBehavior

PurchaseVCRBehavior

UseVCRBehavior

AGENT_Consumer

AGENT_DiffusionControlFunction PermitVCRNeedsBehavior

AGENT_Shop SellVCRBehavior

SurveyBehaviorAGENT_SurveyCompany

<<instanceOf>>

図 4.1: 2つのモデル・フレームワークとモデル作成の流れ

組みのなかへの定位」(村上, 1971)を意味している。前提をおくことによってそれが

認識の枠組みとなり、動的で捉えどころのない世界をある側面から把握できるように

なるのである(37)。

(2) 概念モデルを記述するための語彙の提供

概念モデル・フレームワークにおけるモデル要素は、モデルを記述するための語彙

として用いることができる。認識や分析で得られた概念は、それを記述するためのな

んらかの表現手段が必要となるが、概念モデル・フレームワークは、そのドメインに

特化した語句と、それらの可能な組み合わせの規則を提供する。

認識や分析で得られた概念は、そのままでは形がないため、それを記述するために

はなんらかの具体的な表現手段が必要である。適度の長さと複雑さをもつ表現を用い

て思考し表現するのであるが、それを効率よく運用するために、表現の意味を記号に

圧縮する (藤村, 1999)。このような言語——ここでの対象としてはモデル化のための

言語—–は、表現単位となる語句(38)と、その組み合わせの規則(39)とによって成り立っ

ている。このような対象世界を表現するための体系によって、私たちは安定的に、あ

らかじめ定められた有限個の記号を用いて、並べ方の形式に従って組み合わせて表現

することができるようになる。

(3) 概念モデルの共有化とコミュニケーションの支援

概念モデル・フレームワークは、複数のモデル作成者に共通の視点を与えるため、

モデル要素の粒度や捉え方がモデルごとに異なってしまうという問題を回避できる。

36

図 4.2: モデル作成における概念モデル・フレームワークの役割

また、共有された語彙を用いることで、詳細な情報を伝達することなく重要な点を強

調することができるため、円滑で効率的なコミュニケーションが可能となる。

一般にコミュニケーションは、発信者が決まりに従って表現し、受信者はその決ま

りによって読みとって理解する。この決まりを「コード」と呼ぶのであるが、「理想

的なコミュニケーションでは、話し手と聞き手が「メッセージ」の作成と解読に際し

て利用する「コード」は同一のもの」(池上ほか, 1994)である場合で、特に科学的コ

ミュニケーションにおいては重要となる(40)。共通の枠組みを用いることで、認識・分

析して得られたものをそのまま記述し、他者へ伝達し、知的蓄積へ積み上げていくこ

とができるのである。

4.1.2 シミュレーションモデル・フレームワーク

シミュレーションモデル・フレームワークは、得られた概念モデルを、シミュレー

ションモデルとして「どのように実現するか」(How)を規定するものである。シミュ

レーションモデル・フレームワークは、ソフトウェア・フレームワークとして実行環境

の一部となることで、シミュレーションモデルを実行することができる。シミュレー

ションモデル・フレームワークは、(1) シミュレーションモデルへの変換方法の明示

化、(2)シミュレーションの実装の支援、(3)シミュレーションモデルの共有化と再利

用の支援、という 3つの役割を果たす。主に次の 3つの役割を果たす (図 4.3)。

37

wait goodswait goods

ChannelEvent ChannelEvent
/ PutGoodsIntoManager/ PutGoodsIntoManager

wait timewait time

ClockEventClockEvent
/ / TaTakeGoodsFromManagerkeGoodsFromManager

/ SendGoods/ SendGoods

took goodstook goods

SendGoodsBehaviorSendGoodsBehavior ReceiveGoodsBehaviorReceiveGoodsBehavior

図 4.3: シミュレーション作成におけるシミュレーションモデル・フレームワークの

役割

(1) シミュレーションモデルへの変換方法の明示化

シミュレーションモデル・フレームワークは、シミュレーションモデルとして何を

どのように記述すべきかを明らかにする。概念モデル・フレームワークと一貫性があ

るため、概念モデルをシミュレーションモデルに変換する手続きを事前に規定するこ

とができる。

(2) シミュレーションの実装の支援

シミュレーションモデル・フレームワークは、シミュレーションモデルの実装の方

法を明らかにする。そして、シミュレーションモデル・フレームワークは、シミュレー

ションの基本的な仕様の定義を行うため、シミュレーションの実行に関するプログラ

ムや環境をあらかじめ用意しておくことが可能となる。また、一部のプログラムを自

動生成する作成支援ツールを開発することができるようになる。

(3) シミュレーションモデルの共有化と再利用の支援

シミュレーションモデル・フレームワークは、モデルコンポーネント間の仕様やそ

れらの接続方法を規定するため、モデルコンポーネントを共有したり、再利用したり

するための仕組みを提供する。

38

4.2 提案モデル・フレームワーク: Boxed Economy Founda-

tion Model (BEFM)

複雑系として社会・経済のモデルを作成するためのモデル・フレームワークとして、

「Boxed Economy Foundation Model」(以下、BEFM)を提案したい(41)。以下では、

概念モデルの作成を支援する「BEFM 概念モデル・フレームワーク」と、シミュレー

ションモデルの作成を支援する「BEFM シミュレーションモデル・フレームワーク」

について、順に説明する。

4.2.1 BEFM 概念モデル・フレームワーク

BEFMの主な特徴としては、エージェント間の相互作用を、財 (情報が付随すること

がある)のやりとりとして明示化するという点と、エージェントの行動を、エージェン

トとは別のモデル要素として定義するという点である。BEFM 概念モデル・フレーム

ワークは、World、Space、Clock、Entity、Agent、Goods、Information、Behavior、

Relation、Channelなどのクラス (型)から構成されている (図 4.4)。各クラスについ

てまとめると以下のようになる。

World, Space, Clock

対象世界を表現する土台が「World」である。Worldは、その世界に固有の空間と

時間によって規定されている。空間は「Space」によって、その世界の地理的な構造が

表される。また、不可逆的な時間の流れを表すために「Clock」があり、この時間が経

過することで現象が進行する。Worldには、後述の Entity、すなわちAgentと Goods

が配置される。

Entity, Agent, Goods

世界に存在する実体が「Entity」である。Entityには、Agentと Goodsの 2種類が

あり、どちらにも後述する Informationを付随させることができる。

社会・経済において、さまざまな活動を行う個人や社会集団 (企業・政府・家族・学

校・地域社会・国)が「Agent」である。また、動的に変化する環境や「モデルの外部」

なども Agentとして表現することがある。Agentは Goodsを所有し、その行動 (振る

舞い)は、後述するように Behaviorとして定義する。

Agentに所有し交換される有形/無形のものが「Goods」である。BEFMにおける

「Goods」とは、人間の欲求を充足する性質をもつという経済学における狭義の意味で

はなく、世界におけるさまざまなものを示す広義の概念として用いている。例えば、

39

Space World

Information

Behavior

Clock

Goods

*

*
*

*

*

*
RelationEntity

Agent

Channel

* *

*

end

start

<< type >>

<< type >> << type >> << type >>

<< type >><< type >><< type >>

<< type >> << type >>

<< type >>

図 4.4: BEFM 概念モデル・フレームワークのクラス図

自動車、石油、トウモロコシ、株、土地の権利、書籍、広告、日記、回覧板、水、声、

騒音、ごみ、貨幣などは、どれも Goodsである。

Information

Entityが保持する情報は「Information」として表される。例えば、Agentが記憶した

情報や、Goodsに付随して取引される情報などが、Informationである(42)。Information

は単独では存在せず、必ず Entity、つまり AgentやGoodsによって保持されている。

Agentが保持する Informationは、主体の内部に貯蔵されている「記憶」や「遺伝子」

をはじめとして、Agentのさまざまな属性を表現する。Goodsに Informationが付随

するというのは、例えば、新聞は「紙」(Goods)に「記事内容」(Information)が付随

したものであり、会話は無形で瞬間的な「声」(Goods)に「会話内容」(Information)

が付随したものと捉えるということである。Goodsに付随している Informationは、

その Goodsが他の Agentに渡されると、Goodsとともに送られる。また、Agentに

よって保持されている Informationは、すでに持っているGoodsか、そのために作成

した Goodsに付随させて、他の Agentに送ることができる。

Behavior

エージェントの行動は、「Behavior」として表される。例えば、企業における生産行

動や販売行動、個人における購買行動や労働行動などは、どれも Behaviorである。後

述するように、オブジェクト指向によってエージェントをモデル化する場合には、エー

ジェントの行動を Agentクラスの操作として記述するのが一般的であるが、BEFMで

40

は行動をモデル要素の 1つとして分離する。これは、状況によって振る舞いが動的に

変化することを表現できるようにするためである。

BEFMでは、Agentは複数の Behaviorを並列的に実行することができる。内部状

態を各 Behaviorにもたせることで、複数の行動の多様な組み合わせを実現すること

ができる。

Relation, Channel

ある Agentから他の Agentへの関連性は、「Relation」によって表される。これに

より、友人関係や家族関係、雇用関係などの関係を表現することができる。実際のコ

ミュニケーションの際には、このRelationに基づいて開設されるコミュニケーション・

パスである「Channel」を通じて、商品や会話、貨幣などの Goodsをやりとりする。

Relationと Channelは、密接に関わっている概念であるが、これらは別のものであ

る。Relationは「参加」という「構造的関係」(西部, 1997)を表しており、Channel

は「活動」という「過程の関係」(西部, 1997)である。Relationは Agent間の関連性

を表すが、それに基づいて開設される Channelは、Behavior同士を接続する。同一

の Agent内における Behavior間のやりとり(43)であっても、Channel上の Goodsの

やりとりで表現されるので、Behaviorどうしのやりとりはすべて、Channelを通じた

Goodsの取引として抽象化されることになる。

4.2.2 BEFM シミュレーションモデル・フレームワーク

BEFMシミュレーションモデル・フレームワークは、BEFM概念モデル・フレー

ムワークと一貫性をもつように設計されている。また、このフレームワークに基づい

て作成されたモデルは、Boxed Economy Simulation Platform上でシミュレートする

ことができる。

BEFMシミュレーションモデル・フレームワークでは、概念モデルのモデル要素のそ

れぞれに対し、種類の違いをどのように表現するのかの変換方法を規定している(44)。

種類の表現方法としては、「継承」による方法と「パワータイプ」による方法の 2種

類がある。

継承による方法は、クラスを特化したサブクラスを定義することで、種類の違いを

クラスレベルで実現するものである。この方法を用いるものには、Behaviorと Infor-

mationがある。この 2つのモデル要素は、種類の違いが、単なる属性値の差異ではな

く、振る舞いや内部構造の差異であるためである。

パワータイプによる種類の表現は、種類クラスを作って、その種類クラスのインスタ

ンスレベルで多様性を実現するというものである (Martin and J.Odell, 1995; Fowler,

1996)。この方法によって種類を表現するものは、Agent と Goods、そして Relation

41

である (表 4.1)。この場合、新たにクラスを作成することなく、インスタンスレベル

で差異を表現することができる(45)。BEFMシミュレーションモデル・フレームワー

クでは、後述する「Type」クラスをパワータイプとして用いることができる。

以下では、BEFMシミュレーション・プラットフォームの概要を説明する (詳細に

ついては、付録 Bを参照してほしい)。

Agent

BEFM シミュレーションモデル・フレームワークでは、エージェントの行動を、

Behaviorオブジェクトとして外部化し、「オブジェクトコンポジション」によってAgent

オブジェクトに付加するという方法を採用している。オブジェクトコンポジションと

は、役割を外部化するためのオブジェクトを用意して振る舞いを委譲し、そのオブジェ

クトを実行時に関連づけるという設計のことである (Gamma et al., 1995; Coad and

Mayfield, 1999)。同様に、エージェントの記憶 (情報)や、他のエージェントへの関

係も、Informationや Relationのオブジェクトコンポジションとして保持する設計に

なっている。

このような設計により、シミュレーションモデルにおけるコーディング作業は、Be-

haviorや Informationの記述が中心となり、それらの組み合わせ方によって、エージェ

ントが設定できるようになる。この場合、Agent自体はそれらの行動を束ねる役割を

果たしているにすぎない。例えば、Agentをインスタンス化すると、単なるAgentオ

ブジェクトが得られるが、そこに PurchaseBehaviorを加えると、購買行動を行う「消

費者エージェント」となる。このようなエージェントの設計は、新しい行動の追加や

削除、そして行動の組み換えなどを簡単に行えるという柔軟性がある。また、既に作

成されている Behaviorを利用することも可能になるため、再利用性を考慮した設計

といえる。

Agentのもつ主な機能は、TimeEventの受信、OpenChannelEventの受信、Behavior

の追加・削除・取得、Goodsの追加・削除・調査、Relationの追加・削除・取得である。

表 4.1: 各モデル要素の作成方法
基礎モデル要素 作成方法
Agent AgentTypeを追加
Goods GoodsTypeを追加
Relation RelationTypeを追加
Information Information インターフェースを実装
Behavior Behaviorクラスを継承（コンポーネントビルダーによって自動化）
World Worldクラスを継承
Clock AbstractClockを継承（StepClock、RealClockを利用可能）
Space Space インターフェースを実装（CellSpaceを利用可能）

42

Agentは、時刻の経過を示すTimeEventを受信し、もっているBehaviorに配信する。

また、経路の開設を求める OpenChannelEventを受信した場合には、経路開設を試

みる。成功すれば、適切な Behaviorに対して開設された Channelを返す。Agentは、

BehaviorTypeを指定することで Behaviorの追加や取得、削除をすることができる。

追加されたBehaviorは自動的に開始状態となる。また、Goodsの追加や、GoodsType

をもとにしたGoodsの取り出しやGoodsの量を調査が可能である。そして、Relation

の追加や Typeによる検索・削除を行うことができる。

Behavior

BEFMシミュレーションモデル・フレームワークでは、エージェントの持つそれぞ

れの Behaviorを「状態機械」として定義する。状態機械とは、何らかのトリガーとな

るイベント (影響を及ぼすさまざまな出来事)を受け取ると、現在の状態に応じた「ア

クション」(動作)を行い、新しい状態へ遷移するシステムである。ある時点をみてみ

ると、Behaviorオブジェクトは、必ずどれか 1つの状態にとどまっている。Behavior

の状態遷移を引き起こすイベントには、時間が経過したことを表す「TimeEvent」と、

Goodsが送られてきたことを表す「ChannelEvent」がある。

このような設計により、外界のイベントの種類と、現在の自分の状態によって、振

る舞いが異なるというモデルを実現できる。本来、システムの内部状態とは、システ

ムのすべてのパラメータの値の集合のことであるが、状態機械では、それらの状態の

うちの一部を意識的に切り出して注目することになる。このことは、本論文で目指し

ている複雑系 (状態の変化によって振る舞いのルールが変化するシステム)のモデルを

記述する際に、モデルの状態の複雑さを隠蔽し、注目すべき状態を強調することがで

きるのである。

エージェントが複数の行動を並列的に動作させる場合には、その内部状態は複雑に

ならざるを得ないが、BEFMに基づくモデル化では、Behaviorという分かりやすい

単位ごとに状態を把握することができる。また、Behaviorの多くの詳細な部分はユー

ザーには見えない形で隠蔽されているので、状態機械としての Behaviorの動作部分

の実装については、ユーザーはほとんど意識する必要はない(46)。

Event

Behaviorが受け取るEventには、代表的なものとして「TimeEvent」と「ChannelEvent」

がある。TimeEventは、時間の経過を知らせる Eventである。モデル外部から時刻

が経過したことを知らせるために Agentに送られて、Agentが Behaviorに転送する。

ChannelEventは、ほかの Behaviorから Goodsが送られたことを知らせる Eventで

ある。

43

このほか、通常用いないが用意されているEventもある。「OpenChannelEvent」は、

Relationから Agentを通して受け取るEventである。明示的に書かなくても受け取っ

て Channelを開設するが、あえて明示的にこの Eventを受け取るように記述すること

もできる。「(AutoTransition)」は、状態機械において遷移は外部からの刺激のみによ

るという定義があるため推奨はしないが、Eventを受け取らなくても自動的に状態が

遷移するように記述することも可能である。これは条件によって分岐させる場合など

に用いることができる。

Type

BEFMシミュレーションモデル・フレームワークでは、モデルに存在するオブジェク

トの要素を分類するための識別子として、「Type」クラスが用意されている。Typeに

は、AgentType、GoodsType、InformationType、RelationType、BehaviorTypeの

5種類がある (図 4.5)。Typeの導入により、柔軟な検索・取得・識別が可能となる。例

えば、同じ振る舞いをする Agentであっても、異なるTypeが付加してあれば、別々

に識別可能となる。

Typeは、複数の Type間に親子関係を定義することができるので、上位概念・下位

概念を表現することができる。これによって、異なるTypeをもつものであっても、同

じ親Typeをもつものどうしであれば、一括して扱うことができるのである。例えば、

図 4.6左は、「ビデオ」には「VHS規格のビデオ」と「Beta規格のビデオ」があるとい

うことを表している。このような概念間の関係性を定義することによって、エージェ

ントにその Goodsの種類についての複雑な知識をもたせることができるようになる。

例えば、市場におけるビデオの普及率を知りたい場合には、GoodsType「ビデオ」を

親タイプとしてもつ Goodsの数を調べればよいし、各規格の市場シェアを知りたい

場合には、GoodsType「VHS規格のビデオ」と GoodsType「Beta規格のビデオ」の

Goodsの数をそれぞれ調べればよい。また、図 4.6右は、「ビデオ一体型テレビ」が

「テレビ」でもあり「ビデオ」でもある、ということを表している。あるエージェント

が GoodsType「ビデオ一体型テレビ」の Goodsをもっている場合、そのエージェン

トは、「ビデオ一体型テレビを所有しているか」という質問にはもちろんのこと、「テ

レビを所有しているか」や「ビデオを所有しているか」という質問にも、正しく答え

ることができるようになるのである。

World

Worldは、まず、モデルにおける時間・空間を定義するためにそれぞれただ１つの

Clock、Spaceを持つ。Worldは Agentを配置してそれらを管理し、それらの追加、

削除、生成、取得を行うことができる。また、RandomNumberGeneratorを同様に

44

RelationType

Relation

GoodsType

Goods

InformationTypeBehaviorTypeAgentType

Agent

Type

Behavior
<<abstract>>

Information
<<interface>>

parents*

*
children

<<abstract>>

図 4.5: Typeとその関連クラス

<<GoodsType>>

Beta
<<GoodsType>>

VHS

<<GoodsType>> <<GoodsType>><<GoodsType>>

<<GoodsType>>

図 4.6: Typeの継承の例

複数もつことができる。RandomNumberGeneratorは、モデルで乱数を利用すると

きに用いるクラスである。コンピュータは、その構造上完全にランダムな数字を生

成することはできないが、複雑なアルゴリズムによって事実上乱数と捉えて差し支

えない数字 (擬似乱数)を生成することができる。乱数生成にはいろいろな方法があ

るため、モデルやモデル作成者によって利用したい方法も異なると考えられる。こ

のことを考慮し、RandomNumberGeneratorは、乱数として数字を生成するアルゴ

リズムを内包して、さらに値を取得するためのメソッドを持つクラスと定義されて

いる。RandomNumberGeneratorは、World上に同時に複数存在できる。その場合、

RandomNumberGeneratorは名前によって識別され、Behaviorなどから名前で取得

されて、利用されることになる。

モデル作成の際には、Worldクラスを継承したクラスで、initializeWorld()および

initializeAgents()をオーバーライドし、Agentの配置やRelationの構築、Behaviorの

追加を行う。

45

Goods

Goodsは、種類 (GoodsType)、量 (GoodsQuantity)、付随情報 (Information)から

なるオブジェクトとして定義する。GoodsのQuantityを直接変更することはできず、

必ず Agentのメソッドを用いて分割や結合を行う。

Entity

Entityは Agent、Goodsの親クラスである。これらの２つのクラスの共通の性質で

ある Informationを管理するインターフェースを持っている。

Informationの管理はハッシュテーブルによって行われる。ハッシュテーブルにお

けるキーも Informationである。これにより、Informationをキーとして Information

を格納し、取り出すことができる。また、取り扱いを簡単にするために、自動的に取

り扱いたい Informationの InformationTypeをキーとして操作するメソッドが追加さ

れている。

Information

Informationの実装は Informationインターフェースを実装する必要がある。Infor-

mationインターフェースは空インターフェースである。メソッドは何も定義されてい

ないので、それ以外は完全に作成者に依存している。

Relationと Channel

Channelの作成（経路の開設）は Relationの openChannel()メソッドを呼び出すこ

とによって行われる。openChannel()は BehaviorTypeを引数にとなる。経路開設で

は、Relationの先の Agentの Behaviorの中から BehaviorTypeに該当する Behavior

を探し、その Behaviorと経路を開設する。開設した経路 (Channelクラス)は open-

Channel()の返り値として返される (ただし、この部分の多くは Behaviorの持つメ

ソッドで隠蔽されているので Relationの openChannel（）メソッドを呼び出す必要は

ない)。

また、Channelの持つパラメータとして keepパラメータがある。これは財送信後そ

の Channelが継続して存在するかを設定するものである。falseの場合には、財送信・

受信処理が完了すると Channelは自動的に close()が呼ばれる。trueの場合には、財

送信・受信処理後も Channelオブジェクトは存続し、Behaviorから取得することがで

きる。

46

図 4.7: BEFMを用いたモデル作成プロセス

4.3 提案モデル・フレームワークを用いたモデル作成のプロセス

BEFMを用いたモデル作成プロセスは、オブジェクト指向開発プロセスに基づいて、

「分析」、「設計」、「実装」「実行・評価」のスパイラルモデルとなる (図 4.7)。このモデ

ル作成プロセスは、次のような流れで進められる (Boxed Economy Project, 2003; 松

澤ほか, 2003)。

4.3.1 分析フェーズ

モデル作成プロセスの第一段階である「分析フェーズ」は、どのような対象領域の

シミュレーションを行うのかを明らかにし、それを概念モデルとして記述するフェー

ズである。モデル化しようとしている対象が、「どのようなものであるか」(What)を

明確化するために、BEFM概念モデル・フレームワークを利用して、対象領域に登

場するAgent、Information、Goods、Behavior、Relationをすべて洗い出して定義す

ることから始める。まず最初にエージェントとその行動を明らかにし、それらのエー

ジェントの関係について、「概念モデルクラス図」を記述する。そして、エージェント

の行動のフローチャートを「行動アクティビティ図」として記述する。この過程で、

登場する財や情報も洗い出して概念モデルクラス図に追加・修正していく。また、こ

れらの分析をもとに、各行動の間でどのような相互作用 (財や情報のやりとり)がある

かを確認し、その一つのシナリオを時系列に表現する「取引シーケンス図」を記述す

る。以上のような記述によってモデル要素の洗い出しと定義が終わるまで、このプロ

セスを繰り返していく。

4.3.2 設計フェーズ

モデル作成プロセスの第二段階である「設計フェーズ」は、 分析フェーズで作成

された概念モデルをもとに、シミュレーションモデルの設計を行うフェーズである。

概念モデルの各モデル要素について、シミュレーションとして動作させるための詳細

を決めていくのである。まず、パワータイプを用いて種類を表現するAgent、Goods、

Relationについて、それぞれ AgentType、GoodsType、RelationTypeを定義する。

47

Behaviorは、Behaviorクラスを継承して詳細を定義するので、行動アクティビティ図

と取引シーケンス図をもとに、Behaviorの状態遷移図を記述する。Informationには、

Informationクラスを継承して詳細を定義するものと、InformationTypeだけでよいも

のという 2種類がある。まず、Informationクラスを継承して詳細を定義するのは、ど

のような情報がどのような形式で格納されるかを定義しなければならない Information

の場合である。他の行動に対して依頼や質問をする際に使用するものなど、内容を含

まない情報は、InformationTypeを定義するだけでよい(47)。次章でみるように、この

設計フェーズは、記述を支援するツールを用いることができる。

4.3.3 実装フェーズ

モデル作成プロセスの第三段階である「実装フェーズ」は、設計フェーズで作成さ

れたシミュレーションモデルを、Java言語を用いて実装するフェーズである。次章で

みるように、Typeの実装は、私たちの提供しているタイプエディタを用いて行うこ

とができる。また、Behaviorの実装は、私たちの提供しているコンポーネントビル

ダーからソースコードの雛型を生成し、その雛型の一部を埋めるようにして実装する。

Worldおよび Informationの実装は、ソースコードを記述することで行う。

4.3.4 実行・評価フェーズ

モデル作成プロセスの第四段階である「実行評価フェーズ」は、実装フェーズで作

成されたシミュレーションを、実行して評価するフェーズである。シミュレーション

の実行は、次章で提案するシミュレーション・プラットフォーム「Boxed Economy

Simulation Platform」を用いることができる。この段階で、シミュレーションが意図

した通りに動作するかという正当性の検証も行う。そして、シミュレーションの設定

をさまざまに変化させながら、シミュレーションの結果と現実の現象を比較し、妥当

性の検証を行う。このとき必要があれば、分析フェーズに戻るなどして、次のイテレー

ションに入ることになる。

4.4 先行研究との比較

オブジェクト指向によってエージェントを表現する場合、現状ではエージェントを

ひとつのオブジェクトとして設計することが多い。例えば、Bruun (2002)はエージェ

ントベース経済シミュレーションのためのフレームワークとして、図 4.8のようなエー

ジェントの設計を提案している。また Axtell (2002)などでも、エージェントを表すオ

ブジェクトの操作としてエージェントの行動が定義されている。しかし、実はこのよ

うな設計は、エージェントをひとつのオブジェクトにカプセル化してしまうので、行

48

図 4.8: 一般的なエージェントの設計 (Bruun, 2002)

図 4.9: 提案モデル・フレームワークにおけるエージェントの設計

動の種類そのものが動的に変化するエージェントを作成する場合や、エージェントの

一部を再利用する場合に限界が生じる。

これに対し、提案モデル・フレームワークでは、「継承」を用いる代わりに「コンポ

ジション」を用いることで、柔軟性と再利用性を考慮した設計になっている。この設

計では、エージェントクラスの中に操作として行動を記述するのではなく、エージェ

ントの役割別に行動クラスを作り、それらのオブジェクトを「主体」の核となる部分

が保持するという設計となる (図 4.9)。

このような行動のコンポジションによるエージェント表現は、モデルの意味的な側

面における利点もある。それは第一に、ひとつのエージェントが複数の社会的役割を

担っているということを自然な形で表現できるということである。例えば、「消費者

エージェント」や「労働者エージェント」という実在しない主体をモデル化するので

はなく、「個人」が時として消費者の役割を担ったり、労働者の役割を担ったりすると

いう表現になるのである。このようなエージェントが複数の役割を担うというモデル

化は、特に経済全体をシミュレートするような場合に不可欠となる。経済社会におけ

るエージェントの異質性というのは、結局のところ行動や役割が異なるということか

ら生じるからである。存在するのはあくまで個人や社会集団であり、それらの行う行

動が異なるがゆえに異なる種類のエージェントとして識別されるのである。

行動のコンポジションの第二の利点は、新しい行動の追加や削除、行動の手続きの

変更などが可能になるということである。例えば、小売業が銀行機能の一部を担うよ

うになるということを表すためには、小売業のエージェントが、銀行のもつ機能の一

部を取り入れる必要がある。従来のようなエージェント単位の設計では、小売業エー

ジェントや銀行エージェントというようにエージェントにその振る舞いをカプセル化

49

しているため、多重継承で拡張するか、銀行兼務小売業エージェントのようなものを

新たに作成しなければならくなる。しかしこのような方法では、継承の階層が深く複

雑化するため、長期的にみると限界がある。経済全体が分析対象の場合には、時間的

にも長期となり、状況によってエージェントが成長して行動の種類を変更したりする

ことが考えられる。それゆえ、エージェント単位で定義するのではなく、それらの個

別の行動ごとに分割して定義し、コンポジションによってエージェントを特徴づけて

いくという設計が不可欠となるのである。

50

第5章 シミュレーション・プラットフォー

ムの提案

5.1 シミュレーション・プラットフォームとは

本章では、シミュレーションの作成・実行・分析を支援するシステムを提案する。

ここでは、シミュレーションプログラムを、個々の機能単位ごとに分割された「コン

ポーネント」と、それをまとめるプラットフォームからなるシステムとして設計する

(図 5.1)。コンポーネントとは、明確に定義された用途と境界を持つソフトウェアモ

ジュールのことであり、他のコンポーネントと協調することでシステムの動作の一部

を担うものである。

このようなコンポーネントとプラットフォームという構造を採用するのは、モデル

や機能をコンポーネントに分割して独立させることで、容易に一部を再利用・拡張し

たりできるようにするためである。それは、シミュレーション研究の支援システムは

様々なモデルや分析に対応できることが要求されるため、システムのモジュール性や

拡張性、そして再利用性を高める必要があるからである。

コンポーネントベースのシミュレーション・プラットフォームには、研究プロセス

を一貫して支援する統合環境の提供、モデル部品の再利用と並行開発を支援する仕組

みの提供、シミュレーション環境の再利用と拡張を支援する仕組みの提供、という利

点がある。

5.1.1 研究プロセスを一貫して支援する統合環境の提供

シミュレーション・プラットフォームは、シミュレーション研究のプロセスを一貫

して支援するための統合環境を提供する。これにより、研究プロセスの各フェーズを

シームレスに、また効率的に行うことが可能になる。また、一つの統合環境上で動か

しているため、初期値を自動的に変化させて結果の振る舞いをチェックするような自

動化機能などを実現することもできるようになる (Iba et al., 2000)。さらに、シミュ

レーションに関係する様々な要素の体系的管理が可能となる。

51

Simulation Platform

Component

図 5.1: シミュレーション・プラットフォームの基本構造

5.1.2 モデル部品の再利用と並行開発を支援する仕組みの提供

シミュレーション・プラットフォームは、モデル部品の再利用を支援する仕組みを

提供する。これによって、モデル作成時に既存のモデル部品を再利用することや、構

成的理解のために部分モデルを交換するという模索的な作業を行うことが可能になる

(図 5.2)。また、再利用する側だけでなく、モデル部品を作成する側にとっても、再利

用性を意識せずに自然と再利用可能なプログラム部品を作成することができる(48)。

このことは、「シミュレーションの実装 (プログラミング)」と「シミュレーションの

設定」のフェーズを明確に分離することが可能になるということでもある。コンポー

ネントの実装を行う「実装」フェーズでは、コンポーネントはソースコードを見るこ

とができるホワイトボックスとして扱われる。これに対し、複数のコンポーネントの

組み合わせと設定を行う「設定」フェーズでは、それぞれの機能が実装されているブ

ラックボックスとして扱うことができる。このような実装と設定の分離は、コンポー

ネントを開発する人と、それを組み合わせてシミュレーションを設定・実行する人が

別の人でもよい、ということ意味している (図 5.3)(49)。これにより、プログラミング

技術をもたない社会科学者であっても、設定と実行を行うことができるようになる。

また、シミュレーション・プラットフォームは、複数のコンポーネント開発者がコ

ンポーネントを並行して開発することを可能とする。例えば、あるコンポーネント開

発者が企業間取引の行動を作成するときに、他のコンポーネントデベロッパーが消費

者の独立に商品購買行動を作成しても、これらは同じフレームワークのもとで整合的

に動くことが保証されるのである。

5.1.3 シミュレーション環境の再利用と拡張を支援する仕組みの提供

シミュレーション・プラットフォームは、シミュレーション環境の再利用と拡張を

支援する仕組みも提供する。シミュレーション研究を中長期的に捉えた場合、時間が

経つにつれて発展するのはモデルだけではなく、そのモデルを分析する手法も同様に

発展すると考えられる。そのため、シミュレーション環境は、様々なモデルや分析に

52

 const1=64
 const2=128
 p = 3.14

for (s=1 ; s<100 ; s++)

 for (a=0 ; a<100 ; a++)
 for (b=0 ; b<100 ; b++)
 for (c=0 ; c<10 ; c+=0.1)

 (strategy = A, matching = X ...)
 (strategy = B, matching = X ...)
 (strategy = A, matching = Y ...)
 (strategy = B, matching = Y ...)

図 5.2: 探索的モデルビルディング (Iba et al., 2000)

53

図 5.3: コンポーネントによる実装と設定の分離

対応できることが要求され、システムの拡張や表現に対する柔軟性がもとめられるこ

とになる。

コンポーネントベースのシミュレーション・プラットフォームであれば、利用者ご

とに多種多様なシミュレーション環境を実現できるほか、独自に新たな機能を追加す

ることができるようになる。

5.2 提案シミュレーション・プラットフォーム: Boxed Economy

Simulation Platform (BESP)

ここでは、広義の複雑系と狭義の複雑系のシミュレーションを作成・実行するため

の Boxed Economy Simulation Platformを提案する。Boxed Economy Simulation

Platform (以下、BESP)は、エージェントベースの社会・経済モデルのシミュレーショ

ンを作成・実行・分析するためのプラットフォームである (図 5.4)。BESPは、オブ

ジェクト指向に基づいて Java言語で実装されたマルチプラットフォームのソフトウェ

アである(50)。

5.2.1 基本アーキテクチャ

BESPの基本的なアーキテクチャは、ベースとなるコンテナと、それらにプラグイ

ンするコンポーネント群で構成される (図 5.5)。「モデルコンテナ」、「プレゼンテー

54

図 5.4: Boxed Economy Simulation Platform (BESP)

BESP Container

Model Container Presentation Container

Model Component Presentation Component

図 5.5: BESPの内部構造

ションコンテナ」、および「BESPコンテナ」を含んだ部分がシミュレーション実行

の基盤となるプラットフォーム部分である。BESPのユーザは、このプラットフォー

ムに、必要なコンポーネントをセットすることで自分のニーズに適合したシミュレー

ション環境を実現することができる。BESPにセットされるコンポーネントは大きく

わけて「モデルコンポーネント」と「プレゼンテーションコンポーネント」の二種類

がある。

以下では、モデルコンポーネント、プレゼンテーションコンポーネント、モデルコ

ンテナ、プレゼンテーションコンテナ、BESPコンテナについて説明する。

モデルコンポーネント

モデルコンポーネントは、ユーザが分析したいシミュレーションモデルの各要素を

コンポーネント化したものである。このモデルコンポーネントを BESPのモデルコ

55

ンテナに配置することで、シミュレーションを行うことができる。BEFMシミュレー

ションモデル・フレームワークが定義されているため、このようにモデルコンポーネ

ントとして切り分けることが可能なのである。

プレゼンテーションコンポーネント

プレゼンテーションコンポーネントは、シミュレーションの操作や表示、および記

録を行うためのソフトウェア部品である。このプレゼンテーションコンポーネントを

BESP上のプレゼンテーションコンテナに配置することで、その機能が利用できるよ

うになる。プレゼンテーションコンポーネントには、コンピュータ画面にシミュレー

ションの状況を文字やグラフィックスで表示するためや、マウスやキーボードからシ

ミュレーションの設定を変更するために用いられる「GUIコンポーネント」と、シ

ミュレーション状況を記録としてファイルに書き出すために用いられる「レポートコ

ンポーネント」の二種類がある。

モデルコンテナ

「モデルコンテナ」は、シミュレーションを実行するモデル (Worldクラス)を管

理する。その第一の役割は、「モデルの管理」である。モデルコンテナはWorldオブ

ジェクトを持ち、これをシミュレーションを行うモデルとして管理する。このWorld

オブジェクトは、Worldクラスのインポートによって更新される。第二の役割は、「モ

デルスレッドによるシミュレーションの実行」である。シミュレーションの実行をす

るということはモデルの時間を進めることだが、この役割はモデルスレッドによって

行なわれる。モデルスレッド (ModelThread)は独立に稼動するスレッドであり、一定

時間ごとにモデルの Agentに TimeEventを配信して時刻を進める。これにより、モ

デルの時間が経過してモデルが動くことになる。TimeEventの Agentへの配信順は、

AgentTypeごとに Priorityを設定することで変えることができる(51)。

第三の役割は、「Typeの管理」である。モデルで利用する Typeの追加・削除・取

得を行うことが出来る。モデルコンテナにこの機能を持たせることによってモデルと

モデルで扱われる意味空間を分離させることができ、複数のモデルで意味空間を共有

することができるようになる。

プレゼンテーションコンテナ

「プレゼンテーションコンテナ」は、プレゼンテーションコンポーネントを配置す

るためのコンテナである。プレゼンテーションコンポーネントからシミュレーション

実行の制御などを行うための制御コマンド群、プレゼンテーションコンポーネントフ

56

図 5.6: Control Panelプレゼンテーションコンポーネント

レームワークを含んでいる。BESPにおけるユーザーの入出力はプレゼンテーション

コンテナに集約され、プレゼンテーションコンテナが管理することになる。このこと

によって、プレゼンテーションコンポーネント作成者はモデルの操作について実装を

する必要がない。また、プレゼンテーションコンテナは、メインウィンドウを持って

いるが、このメインウィンドウに追加するプラグイン (プレゼンテーションコンポー

ネントとしてのウィンドウも含む)を管理する機能ももっている。

BESPコンテナ

「BESPコンテナ」は、モデルコンテナとプレゼンテーションコンテナを持ち、BESP

で最初に起動されるコンテナ部分である。BESPの初期化・終了シーケンスを行う。

この中にはプラグインの読み込みが含まれており、BESPのパッケージには含まれて

いないコンポーネントの読み込みを行ったりする。この機能により、ユーザは追加し

たいコンポーネントのクラスファイルや JARファイルをクラスパスに置くだけで、簡

単にプラグインが追加することができる。

5.2.2 提供されるプレゼンテーションコンポーネント

プレゼンテーションコンポーネントの例として、現在提供している汎用のプレゼン

テーションコンポーネントの概要を説明する。

Control Panel

Control Panelは、シミュレーションの実行や停止の操作を行うためのプレゼンテー

ションコンポーネントである (図 5.6)。制御パネルには、「実行」、「一定時間実行」、

「停止」、「リセット」のボタンがあり、BESPに現在読み込まれているモデルの名前

が表示されるようになっている。「実行設定」ボタンを押すことによって、指定した

時間だけ実行するという「一定時間実行」の期間指定は、できる (図 5.7)。1ステップ

ごとにどのくらいの時間を進めるのかといった設定も可能である。

57

図 5.7: Control Panelプレゼンテーションコンポーネント (一定時間実行設定)

図 5.8: WorldInitializerプレゼンテーションコンポーネント

World Initializer

World Initializaerは、モデルの初期設定を行うためのプレゼンテーションコンポー

ネントである (図 5.8)。Worldクラスで指定の準備を行っている変数について、その

初期値を変更することができる。

Data Collector

Data Collectorは、シミュレーションの実行結果を選択的に記録するためのプレゼ

ンテーションコンポーネントである (図 5.9)。分析のためにはすべてのデータを採取し

ておくことが望ましいが、シミュレーションの進行に伴い膨大な量のデータが生成さ

れるため、実際にはコンピュータのメモリや実行速度の制約を考慮して、必要な情報

を選択的に記録するという方法が現実的である。Data Collectorでは、指定したデー

タセットについて、シミュレーション実行時にデータを格納する場所を作成する。

58

図 5.9: DataCollectorプレゼンテーションコンポーネント

図 5.10: Graphプレゼンテーションコンポーネント

Data Collector

Graphは、Data Collectorで登録したデータをグラフとして表示し、シミュレー

ションの状況をリアルタイムに反映するプレゼンテーションコンポーネントである (図

5.10)。

Relation Viewer

Relation Viewer は、エージェント間の関係を表示するためのプレゼンテーション

コンポーネントである (図 5.11)。どのAgentTypeのエージェントを表示するのか、そ

してどの RelationTypeの関係を表示するのかを設定することができる。ネットワー

ク構造の表示は、エージェントが円形に配置される「Circle」ビュー、AgentTypeご

とに階層的に配置される「Layer」ビュー、ランダムに配置される「Random」ビュー

がある。

59

図 5.11: RelationViewerプレゼンテーションコンポーネント

図 5.12: StatusViewerプレゼンテーションコンポーネント

Status Viewer

Status Viewerは、モデル要素の生成や消滅の状況を表示するためのプレゼンテー

ションコンポーネントである (図 5.12)。どのモデル要素についての状況を表示するの

かを設定することができる。

Board

Boardは、板寄約定方式の人工市場における「板」を表示するためのプレゼンテー

ションコンポーネントである (図 5.13)。それぞれの価格に対する売り注文量と買い注

文量が表示される。

60

図 5.13: Boardプレゼンテーションコンポーネント

5.3 提案シミュレーション・プラットフォームにおける設計と

実装の支援

5.3.1 プログラミングの軽減の仕組み

BESPでは、シミュレーションを作成するためのプログラミングを大幅に軽減させ

る仕組み・ツールを提供している。これを使用することにより、ユーザはシミュレー

ションを迅速に作成・変更できるようになるため、シミュレーションの分析などに研

究の重点を置くことが可能となる。また、このプログラミングの軽減によって、社会

科学者から見た参入障壁の多くを取り除くことができる。プログラミングにおいて難

関となりやすい構造に関する設計や実装をしなくて済むので、基礎的なプログラミン

グの知識さえあればシミュレーションを作成することができるようになるからである。

プログラミングの軽減は具体的には三つの方法によってなされる。第一に、エージェ

ントベース経済モデルをシミュレーションとして実行するために必要なプログラムの

多くが、すでに BESP本体に実装されているということがあげられる。第二に、シミュ

レーション・プログラムの作成を支援するツール (コード・ジェネレータ等)が、プレ

ゼンテーションコンポーネントとして提供されるということがあげられる。第三に、

モデルコンポーネントやプレゼンテーションコンポーネントを再利用できる点があげ

られる。ユーザは、自分の作成したいモデルの一部がすでにモデルコンポーネントと

して作成されているならば、それを再利用することで、プログラミングの量を減らす

ことができる。また、将来的にモデルコンポーネントの蓄積が充実すれば、コンポー

ネントを組み合わせて設定するだけでシミュレーションを作成するというコンポーネ

ントベースの開発が可能になる。

また、いま述べてきたプログラミングの軽減と密接な関係があるのだが、BESPは、

ユーザへの負担を大きくせずにシミュレーションのソフトウェア品質を向上させるた

めの仕組みを提供していることにもなる。それは、第一に、シミュレーションを実行

61

図 5.14: Component Builder

するためのプログラムの多くの部分が、すでに BESPにおいて実現されているため、

各ユーザは自分で新たに作成した部分のみをチェックすればよいということになる。

第二に、作成支援ツールを用いることで、プログラミング時における人間のミスを減

らすことができるため、念入りなチェックを行わなくて済むようになる。第三に、す

でに作成されテスト済みのモデルコンポーネントを再利用するならば、その部分に関

しても正当性の検証が軽減されるのである。このように、BESPの利用は、モデルが

正しくプログラムに実装されているかという正当性の検証を行うべき範囲を小規模に

抑える。

5.3.2 支援ツール: Component Builder

BESPでは、BEFMに基づいたモデルコンポーネントを作るためのツールとして、

Component Builderを提供している (図 5.14)(52)。Component Builderを用いること

で、Agentが持つBehaviorの状態遷移図を記述すると、それに対応するソースコード

を生成することができるほか、Worldクラスの雛型や、Typeを定義するModelクラ

スを生成することができる。Component Builderを用いてモデルを作成する流れを示

したものが図 5.15である。

Behaviorの作成

Behaviorは、Component Builderを用いて状態遷移図を記述すると、それに対応する

ソースコードを生成することができる (図 5.16)。例えば、図 5.17のようなBehaviorを、

Component Builderを用いて作成するとしよう。この行動は、第 8章の規格競争モデル

62

/ PutGoodsIntoManager

DecideMoveByAllCBehavior

DecideMoveByAllDBehavior

DecideMoveByTitForTatBehavior

DecideMoveByTitFor2TatBehavior

DecideMoveByPavlovBehavior

DecideMoveAtRandomBehavior

DecideMoveByFriedmanBehavior

Behavior

 Boxed Economy Simulation Platform

protected void initialize() {

 if (!this

 .getAgent()

 .hasInformation(INFORMATION_P)) {

 double random = this.getWorld().;

 this.getAgent().putInformation(

 FormatCompetitionModel.INFO_P,

 new DoubleInformation(random));

 }

 }

protected void initialize() {

 if (!this

 .getAgent()

 .hasInformation(INFORMATION_P)) {

 double random = this.getWorld().;

 this.getAgent().putInformation(

 FormatCompetitionModel.INFO_P,

 new DoubleInformation(random));

 }

 }

図 5.15: BESPの支援ツールを用いたシミュレーションの作成の流れ

の SellVCRBehaviorである。Component Builderでこの状態遷移図を記述し、コード

生成を行うと、「AbstractSellVCRBehavior.java」と「SellVCRBehavior.java」という

ソースコードが生成される。このAbstractSellVCRBehavior.javaは、状態やその遷移の

枠組みを定義している部分であり、モデル作成者が触れる必要のない隠蔽されている部

分である (図 5.18および図 5.19)。モデル作成者は、もう一方の SellVCRBehavior.java

の一部 (図 5.20の網掛け部分)に、具体的なアクションやガード条件の内容を書くだ

けで、エージェントの Behaviorを作成することができる。

63

protected void initialize() {

 if (!this

 .getAgent()

 .hasInformation(INFORMATION_P)) {

 double random = this.getWorld().;

 this.getAgent().putInformation(

 FormatCompetitionModel.INFO_P,

 new DoubleInformation(random));

 }

 }

protected void initialize() {

 if (!this

 .getAgent()

 .hasInformation(INFORMATION_P)) {

 double random = this.getWorld().;

 this.getAgent().putInformation(

 FormatCompetitionModel.INFO_P,

 new DoubleInformation(random));

 }

 }

図 5.16: Component Builderを用いた行動の作成

図 5.17: Component Builder上で作成した状態遷移図

64

/*

 * AbstractSellVCRBehavior.java

 */

package org.boxed_economy.formatcompetition.model.behavior;

import org.boxed_economy.besp.model.fmfw.behavior.AbstractBehavior;

import org.boxed_economy.besp.model.fmfw.ChannelEvent;

import org.boxed_economy.besp.model.fmfw.TimeEvent;

import org.boxed_economy.besp.model.fmfw.behavior.Action;

import org.boxed_economy.besp.model.fmfw.behavior.CompositeState;

import org.boxed_economy.besp.model.fmfw.behavior.Event;

import org.boxed_economy.besp.model.fmfw.behavior.GuardCondition;

import org.boxed_economy.besp.model.fmfw.behavior.State;

import org.boxed_economy.besp.model.fmfw.behavior.StateMachineFactory;

import org.boxed_economy.besp.model.fmfw.behavior.Transition;

/**

* AbstractSellVCRBehavior

*/

public abstract class AbstractSellVCRBehavior extends AbstractBehavior {

 /**

 * This method automatically generated from AbstractBehavior Builder

 * Don't touch by hand

 */

 protected void initializeStateMachine() {

 //factory

 StateMachineFactory factory = this.getStateMachine();

 //states

 State initialState = factory.createInitialState();

 CompositeState = factory.createCompositeState(" ");

 //actions

 Action VCR = new Action() {

 public void doAction() {

 VCR ();

 }

 public String toString() {

 return " VCR ";

 }

 };

 Action = new Action() {

 public void doAction() {

 ();

 }

 public String toString() {

 return " ";

 }

 };

 //guard-conditions

 GuardCondition = new GuardCondition() {

 public boolean isMatched(Event e) {

 return (e);

 }

 };

 //transitions

 Transition transition To = factory.createTransition();

 Transition transition To 1 = factory.createTransition();

 Transition transitionInitialStateTo = factory.createTransition();

図 5.18: Component Builderによって自動生成されたAbstractBehaviorのコード (1)

65

 //states setting

 //structure of states

 this.setInitialState(initialState);

 this.addState();

 //transitions setting

 transition To .setEvent(TimeEvent.class);

 transition To .addAction(VCR);

 transition To 1.setEvent(ChannelEvent.class);

 transition To 1.setGuardCondition();

 transition To 1.addAction();

 //connection of transitions

 transition To .setSourceState();

 transition To .setTargetState();

 transition To 1.setSourceState();

 transition To 1.setTargetState();

 transitionInitialStateTo .setSourceState(initialState);

 transitionInitialStateTo .setTargetState();

 }

 /**

 * VCR

 */

 protected abstract void VCR ();

 /**

 *

 */

 protected abstract void ();

 /**

 *

 */

 protected abstract boolean (Event e);

 }

図 5.19: Component Builderによって自動生成された AbstractBehaviorのコード (2)

66

/*

 * SellVCRBehavior.java

 */

package org.boxed_economy.formatcompetition.model.behavior;

import java.util.HashMap;

import java.util.Iterator;

import java.util.Map;

import org.boxed_economy.besp.model.fmfw.Channel;

import org.boxed_economy.besp.model.fmfw.Goods;

import org.boxed_economy.besp.model.fmfw.behavior.Event;

import org.boxed_economy.besp.model.fmfw.informations.IntegerInformation;

import org.boxed_economy.formatcompetition.model.FormatCompetitionModel;

import org.boxed_economy.formatcompetition.model.information.OrderInformation;

public class SellVCRBehavior extends AbstractSellVCRBehavior {

 private Map orders = new HashMap();

 /**

 * @see org.boxed_economy.besp.model.fmfw.behavior.AbstractBehavior#initialize()

 */

 protected void initialize() {

 }

 /**

 * @see org.boxed_economy.besp.model.fmfw.behavior.AbstractBehavior#terminate()

 */

 protected void terminate() {

 }

 /**

 * @see org.boxed_economy.formatcompetition.model.behavior.AbstractSellVCRBehavior# ()

 */

 protected void () {

 this.orders.put(this.getActiveChannel(), this.getReceivedInformation());

 }

 /**

 * @see org.boxed_economy.formatcompetition.model.behavior.AbstractSellVCRBehavior

* # VCR ()

 */

 protected void VCR () {

 Iterator i = this.orders.keySet().iterator();

 while (i.hasNext()) {

 Channel channel = (Channel) i.next();

 OrderInformation order = (OrderInformation) this.orders.get(channel);

 Goods vcr = this.getWorld().createGoods(order.getFormat(), 1.0);

 channel.sendGoods(vcr, this);

 }

 this.orders = new HashMap();

 }

 /**

 * @see org.boxed_economy.formatcompetition.model.behavior.AbstractSellVCRBehavior# (Event)

 */

 protected boolean (Event e) {

 return this.getWorld().getInformationType(this.getReceivedInformation())

 == FormatCompetitionModel.INFORMATION_Order;

 }

}

図 5.20: Component Builderによって自動生成された Behaviorのコード、およびそ

こに追加したコード (網掛け部分)

67

図 5.21: BESP Component BuilderのWorld生成ウィンドウ

protected void initialize() {

 if (!this

 .getAgent()

 .hasInformation(INFORMATION_P)) {

 double random = this.getWorld().;

 this.getAgent().putInformation(

 FormatCompetitionModel.INFO_P,

 new DoubleInformation(random));

 }

 }

図 5.22: Component Builderを用いた世界の作成

Worldの作成

Worldは、Component Builderを用いて、その雛型をつくることができる (図 5.21)。

この雛型に、Agentの生成や、Agentへの Behaviorや Relationの追加などのプログ

ラムを書き込むことで、シミュレーションの初期設定を作成する (図 5.22)。

Modelの作成

モデル要素の種類の概念を表すTypeは、Component Builderを用いることで、そ

のを定義を行うModelクラスのソースコードを生成することができる。AgentType、

GoodsType、RelationType、BehaviorType、InformationTypeの入力部分に定義し

たい名前を入力することで、それぞれの設定が登録される (図 5.23)。Behaviorと In-

68

図 5.23: BESP Component BuilderのModel設定生成ウィンドウ

protected void initialize() {

 if (!this

 .getAgent()

 .hasInformation(INFORMATION_P)) {

 double random = this.getWorld().;

 this.getAgent().putInformation(

 FormatCompetitionModel.INFO_P,

 new DoubleInformation(random));

 }

 }

図 5.24: Component Builderを用いたモデル設定の作成

formationについては、対応する Behaviorクラスと Informationクラスを対応づける

こともできる。最後にこのエディタを終了すれば、Modelクラスのソースコードを自

動生成することができる (図 5.24)。

5.4 先行研究との比較

これまでにも、エージェントベースシミュレーションを支援するための言語やツー

ルがいくつか開発されている (Dugdale, 2000)。その中で最も有名であり利用されて

いると思われる「Swarm Simulation System」は、複雑適応系のシミュレーション

のためのクラスライブラリ (Objective-C言語と Java言語)を提供している (Langton

et al., 1998)。また、Swarmと同様のコンセプトの「RePast」(REcursive Porous Agent

69

図 5.25: 既存シミュレーションシステムとの比較 (North(2002)を元に改変)

Simulation Toolkit)は、マルチエージェントモデルを作成するためのクラスライブラ

リ (Java言語)を提供している (RePast,)。「Ascape」は、フレームワーク (Java言語)

を提供しており、Swarmや RePastに比べてコード記述量が少なくて済むといわれて

いる (Parker, 2000; Parker, 2001)。

このほか、汎用のプログラミング言語を用いるのではなく、独自の簡易言語を設定

している支援システムもある。シミュレーション原理の教育に有効であるといわれる

「StarLogo」では、LOGO言語を拡張した簡易言語を定義している。また、Swarmと

StarLogoの中間レベルを実現しようとしている「MAS」(Multi-Agent Simulator)で

は、Visual Basic言語に似た言語文法を独自に定義している (服部ほか, 2000; 玉田,

2001)。

このように、これまで提案されてきた支援システムは、プログラミング経験が少な

い (もしくは無い)作成者への支援が必要であるという問題意識を共有しており、そ

の解決策として汎用的なライブラリなどの提供による補助を行っている。しかし、こ

のようなソースコードレベルでの補助は、モデル作成プロセスにおける実装フェーズ

を支援するが、分析フェーズや設計フェーズを支援することはない。本論文の提案シ

ミュレーション・プラットフォームは、提案モデル・フレームワーク (BEFM)ととも

に提案されているため、分析や設計の段階から、一貫した支援が可能である。

North (2002)のシミュレーター比較図を参考に、提案シミュレーション・プラット

フォームを位置づけると、図 5.25のようになると思われる。この図は、あくまで概略

的なものであり、数値的な評価によってプロットされているわけではないが、先行研

究との比較の参考にはなるだろう。Boxed Economy Simulation Plarformが、広がり

70

をもって示されているのは、どのようなモデルを作成するのかによって、その難易度

が異なるためである。まず、狭義の複雑系をモデル化するのであれば、BESPは直接

的な支援をしているため、他のツールに比べて圧倒的に優位にあると言える。そのた

め、その点を考慮するならば、モデル化能力は、プログラミング言語をそのまま使う

場合や、Ascape、RePast、Swarmを使う場合よりも高いと言える。ただし、セル空

間を用いるモデルであれば、それを直接的に支援している Ascapeの方がモデル化が

容易である。また、プログラミング言語としての Java言語と比べた場合には、複雑

なモデル (相互作用や多い、状態遷移が複雑、狭義の複雑系など)であれば、Java言

語でゼロから作成するよりは、BESPを用いたモデル化の方が容易である。これがフ

レームワークの効用であり、フレームワークに関する学習の負荷を考慮に入れたとし

ても、これらの複雑なモデルの作成においては利点があるように思われる。これに対

し、状態遷移を持ち出すまでもない簡単な相互作用モデルや、セル状の簡単なモデル

であれば、ゼロから作成した方が簡単なこともあり得る。

71

第6章 モデル・パターンの提案

6.1 モデル・パターンとは

これまでの章では、フレームワーク (Boxed Economy Foundation Model)における

要素と、ソフトウェア (Boxed Economy Simulation Platform)におけるコンポーネン

トという部品を組み合わせることで、モデル全体を作成する仕組みについて提案して

きた。このような仕組みは、大規模で複雑なモデルを作成する場合に、強力な支援の

道具となるだろう。

しかし、モデル作成者に対する支援は、はたしてこれだけで十分だろうか。私は、

時間の流れに伴う変化・生成を扱うモデルの作成支援としては、不十分だと考える。

なぜなら、Boxed Economy Foundation Modelでは、モデル要素とその関係性につい

て整理しているが、動的な振舞いの構成については構文的な定義しか行っていないか

らである。これに加えて、種々の動的な振舞いをどのように実現できるのかという整

理が必要であると思われる。

そこで本章では、モデル要素をどのように組み合わせて、動的な振舞いを構成すれ

ばよいのかということを、「パターン」の考え方を取り入れてまとめることにしたい。

パターンの考え方は、もともと建築デザインのために考案され、その後ソフトウェア・

デザインに取り入れられたものである。本章ではさらに、モデル・デザインへ応用す

ることを提案し、それを「モデル・パターン」と呼ぶことにしたい。本章でのモデル・

パターンは、次章とその次の章におけるモデル事例を作成する際に用いることにする

(各パターンの詳細は、付録Cにモデル・パターン カタログとして示してある)。

6.2 パターンによる記述

6.2.1 パターンとは何か

ここで取り上げる「パターン」とは、分析や設計の際に繰り返し現れる問題を明ら

かにし、その問題の解法をまとめたもののことである。パターンを利用することによ

る利点は、大きく分けて二つある。一つは、熟練者が自らの経験から得た経験則を明

文化しているため、その問題の初心者であっても、効率的かつ洗練された方法でその

問題を解決することができるという点である。もう一つは、その設計原理についての

共通の語彙を提供するので、これまで直接指し示すことができなかった関係性などに

73

ついて、簡単に言及することができるようになるという点である。それゆえ、パター

ンは「複雑な設計を行うための建築素材である」(Gamma et al., 1995)といわれる。

6.2.2 パターンの基本構造

パターンは、「状況」、「問題点」、「解決策」という 3つの観点で構成されるルール

である (Alexander, 1979, 邦訳 p.202)。状況とは、どのような時にそれを用いるのか

ということであり、パターンの適用条件である。問題点とは、何の問題を解決したい

のかということであり、パターンを適用する目的である。解決策は、設計の要素や、

それらの関連、責任、協調関係などである。これらに対し、問題とその解法を簡潔に

記述した「名前」をつけることで、パターンが作成される(53)。

これらのパターンは、単独で使うというよりは、使う人が状況に合わせて組み合わ

せて使うことが前提となっている。それゆえ、それらを体系づけたパターン言語やパ

ターンシステムが志向される。パターンの体系を得ることができれば、一つのパター

ンを適用した結果、新しい文脈が生まれ、そこに次のパターンを適用する・・・という

ように連鎖的な適用を行うことができるようになる。

なお、パターンを集めて体系化して記述したものを、パターンの「カタログ」と呼

ぶ。カタログ内の各パターンは、統一したフォーマット (テンプレート)に従って書か

れている。

6.2.3 パターンの役割

パターンを明示化し共有する第一の意義は、巧みな設計の再利用とその生成力にあ

る。パターンは一種のルールであり、その目的を実現するためにどうすべきかを述べ

ている。このような経験に基づいたパターンを知っていれば、そのような巧みな設計

を再発見する必要がなくなるため、効率的によい設計を実現できる。それゆえ、その設

計問題に対する初心者であってもパターンを身につけていれば、生成力のあるパター

ンの力を借りて、これまでの定石やよい設計を行うことも可能となる。「私たちの頭

にあるパターンは動的であり、力をもち、生成力を備えている。それは私たちになす

べきことを教えてくれる。それをいかに生成すべきか、または生成できるかを教えて

くれる。さらに、一定の環境ではそれを作り出すべきだと教えてくれるのである。」

(Alexander, 1979, 邦訳 p.151)。パターンは、繰り返し現れる問題と解法における関

係性を抽象レベルで表しているため、それでどのような具体的な問題を扱うのかとい

うことは限定しておらず、多様な具体物を生成するための生成機構となり得るのであ

る(54)。

パターンを明示化し共有する第二の意義は、設計に関する共通の語彙 (ボキャブラ

リ)を増やし、コミュニケーションを支援するということである。「パターンに名前を

74

付けることで、設計における用語の語彙を増やすことになる。それによって高い抽象

レベルで設計することが可能となる。パターンに関する語彙が増えれば、同僚と議論

したり、文書に記録したり、自分自身で考えを整理するのにも役立つ。設計に関して

検討したり、設計上のトレードオフを人に伝えることも容易になる。」(Gamma et al.,

1995, 邦訳 p.15)(55)

6.2.4 これまで提案されてきたパターン

建築におけるパターン

クリストファー・アレグザンダーは、建物や街の形態に繰り返し現れるものを観察

し、それが要素の関係性、すなわちパターンであることを突き止めた。『時を超えた建

設の道』で、建物や街を組み立てる本質を探っている際に、「『要素』は単純な積み木

に見えても、実は変化しつづけ、現れるたびに異なる」(Alexander, 1979, 邦訳 p.73)

ため、「この要素と称するものは空間を構成する究極の『原子』とは言えない」(同上)

としている。そして、「要素と要素との関係も、要素そのもの以上にくり返し発生す

る」(同上, 邦訳 p.75)ということに注目する。ここで、各要素間の関係のパターンと

いう考え方が登場するのである(56)。

アレグザンダーは、建物や街を構成するためのパターンの数はそれほど多くないと

指摘し、建物は 2、3ダースのパターンで定義でき、都市も 2～300のパタンで定義で

きるという (Alexander, 1979)。このように、比較的少ないパターンで世界が構成さ

れるのは、「私たちは自分の頭にある類似のパタンからこの世界の現実のパタンをイ

メージし、心に描き、作り出し、建設し、そこに住む」ためであるという(57)。

Alexander (1977)では、8年間の建設作業や計画作業をまとめた 253のパターンが紹

介されている。アレグザンダーは、このようなパターン言語を普及させることにより、

デザイン・プロセスへのユーザー参加を実現しようとした。「これを活用すれば、隣人

と共に自分の町や近隣を改良したり、家族と共に自宅を設計することができる。また

関係者と力を合わせて、オフィス、作業場、学校のような公共建物も設計できる。さ

らにこのランゲージは、実際の工事手順の手引きとしても使える」(Alexander, 1977,

邦訳 p.ix)のである。

ソフトウェア開発におけるパターン

1980年代後半に、建築の分野で提案されたパターンの考え方を、ソフトウェアの分

野に適用するというヴィジョンが提案された (Beck and Cunningham, 1987; Rochat

and Cunningham, 1988)。また、同じ頃、E. Gammaは GUIフレームワークの設計

上のパターンを抽出・記述した (Gamma, 1991)。

ソフトウェア開発におけるパターンには、大別すると、「アナリシスパターン」、

75

「アーキテクチャパターン」、「デザインパターン」、「プログラミングパターン」などの

種類がある。アナリシスパターンは、分析の際に繰り返し現れるパターンであり、ソ

フトウェアの設計や実装ではなく、ビジネスドメインの概念構造を反映したものであ

る (Fowler, 1996)。アナリシスパターンに分類されるもののなかで代表的なものには、

Fowler (1996)のアナリシスパターン、Coad et al. (1995)のパターン、Hay (1996)の

データモデルパターンがある (中谷および青山, 1999)。典型的な分析モデルの例を示

しており、パターン言語の形式を採用していない。

アーキテクチャパターンは、典型的なソフトウェア全体の構造 (ソフトウェア・アー

キテクチャ)に関するものである。構成要素とその役割、それらの関係について記述

するのである。アーキテクチャパターンのカタログとして有名な Buschmann et al.

(1996)では、「混沌から構造へ」「分散システム」「インタラクティブシステム」「適応

型システム」などが提案されている(58)。このほか、Shaw et al. (1996)によってまと

められたアーキテクチャパターンもある。

デザインパターンは、設計段階において、優れた設計に繰り返し現れるオブジェク

トとその構成を記述したものである (Gamma et al., 1995)。「種々状況における設計

上の一般的な問題の解決に適用できるよう、オブジェクトやクラス間の通信を記述し

たもの」(Gamma et al., 1995, 邦訳 p.15)というように、アーキテクチャパターンに

比べると、局所的な構造や振舞いをパターン化したものだといえる(59)。

プログラミングパターンは、イディオムとも呼ばれ、プログラミング言語に特化し

たプログラミングスタイルのことである。Coplien (1992)では、良いプログラムを書

くのに重要なのは、文法だけでなく、「イディオム」と「スタイル」であると指摘して

いる。例えば、Beck (1997)などのように、プログラミング言語に依存しているのが

普通である。記述は、直接的にソースコードなどを提示することで、パターン言語よ

りも簡潔に書かれることが多い。

プロジェクトマネジメントのパターン

プロジェクトマネジメントのパターンは、開発組織やプロセスに関するパターンで

ある。組織をパターンの観点で分析するのは新しいことではないが、Coplien (1995)

はそれに生成的パターンとして持たせることを最初に提案した。Coplien (1995)は、

「パターンは、とりわけ組織の構築と発展に適している。パターンは、関係のパター

ンによって文化を定義する、より現代的な文化人類学の基礎を形成する。」(Coplien,

1995, 邦訳 p.347)と述べている。その後、Ambler (1998); Ambler (1999)としてまと

められている。

この他にも、これまでの優れた手本としてのパターンではなく、悪い見本のパター

ンというのもまとめられている。このような反面教師のパターンは、Koenig (1998)

で「アンチパターン」と名づけられ、その後、Brown et al. (1998); Brown et al.

76

図 6.1: カタログ形式で記述されたモデル・パターンの例

(1999); Brown et al. (2000)で広く知られるようになった。Brown et al. (1998)

は、ソフトウェアプロジェクトの失敗の原因となることを解説しており、Brown et al.

(1999)は、「ソフトウェア構成管理（SCM）」のアンチパターンについて解説してい

る(60)。

6.3 提案モデル・パターン

ここでは、モデル要素をどのように組み合わせて、動的な振舞いを構成すればよい

のかということを、「モデル・パターン」(model patterns)としてまとめることにした

い。提案するモデル・パターンは、Boxed Economy Foundation Modelに基づいてモ

デルを作成する際に頻繁に遭遇する問題に対して、どのようにモデル化すればよいの

かを提示するものである。建築分野やソフトウェア開発におけるパターンと同様、モ

デル・パターンも、巧みな設計の再利用を可能とし、モデルの変化についての共通の

語彙を増やしてコミュニケーションを支援する。

モデル・パターンは大きく分けて、「エレメンタリーなモデル・パターン」、「行動変

化のモデル・パターン」、「コミュニケーションのモデル・パターン」、「アクティベー

ションのモデル・パターン」の 4つに分けられる。各パターンの基本動作やサンプル

コードなどの詳細は、本論文の付録 Cのモデル・パターン カタログにまとめてある

(図 6.1)。これらのパターンを分類すると、表 6.1および図 6.2のようになる。

77

6.3.1 エレメンタリーなモデル・パターン

第一のエレメンタリーなモデル・パターンは、モデル・パターンのうち、「エレメン

タリー・パターン」(Wallingford, 1998)として捉えることができるものである。エレメ

ンタリー・パターンとは、初心者に良いプログラミングを教えるための手段として用い

るパターンである。エレメンタリーなモデル・パターンは、初心者が Boxed Economy

Foundation Modelに基づくモデルをどのように作成すればよいのかを示すものであ

る。そのほとんどが、Behaviorのアクション内で、1、2行のプログラムで実行でき

る程度のものである。

6.3.2 コミュニケーションのモデル・パターン

第二のコミュニケーションのモデル・パターンは、他のエージェントとのGoodsや

Informationのやりとりに関してのモデル化をまとめたものである。複数のエージェ

ントに質問を投げて回収するなど、相互作用を含むモデルで頻繁に登場するパターン

を集めてある。

6.3.3 行動変化のモデル・パターン

第三の行動変化のモデル・パターンは、行動の生成・削除・組み換え等のモデル化

をまとめたものである。これらの行動変化は、すでに本論文の最初の方で述べたよう

に、複雑系の記述において不可欠である。

6.3.4 アクティベーションのモデル・パターン

第四のアクティベーションのモデル・パターンは、エージェントの活性化に関する

モデル化をまとめたものである。ある時間ステップにおいて、一部のエージェントに

だけ行動を起こさせたい場合などのパターンがある。

6.4 発展のための覚書

本章では、Boxed Economy Foundation Modelに基づくモデル化のためのモデル・

パターンについて述べてきた。今後、これらのパターンは経験的に検証されて修正さ

れるべきである。なぜなら、「パタンは単なる仮説にしかすぎない」(Alexander, 1979,

邦訳 p.218)からである。また、新しいパターンを追加していくことも重要である。こ

れらのモデル・パターンを組み込んだモデル作成支援ツールを開発することも考えら

れるが、これは今後の課題である。

78

表 6.1: 本論文で提案するモデル・パターンの一覧

モデル・パターンの分類 モデル・パターン名

エレメンタリーなモデル・パターン

Agent Creation

Relation Creation

Related Agent Creation

Agent Destruction

Goods Creation

Information Creation

コミュニケーションのモデル・パターン

Information Sending

Blank Information Sending

Internal Information Sending

Immediate Reply

Collect Immediate Replies

Appointed Destination Reply

Super BehaviorType Calling

行動変化のモデル・パターン

Behavior Creation

Behavior Destruction

Behavior Switching

Temporary Behavior Attachment

Requested Behavior Attachment

Forced Behavior Attachment

アクティベーションのモデル・パターン

TimeEvent Distributer Agent

TimeEvent Filtering

TimeEvent Distributer Behavior

Time-Consuming Behavior

79

図 6.2: パターン間の関連

80

第7章 提案システムによる既存モデルの

再現

本論文の提案 (モデル・フレームワーク、シミュレーション・プラットフォーム、モデ

ル・パターン)の適用可能性を明らかにするために、ここでは、代表的な既存モデル

を再現することにしたい。取り上げるモデルは、成長するネットワークモデル、繰り

返しの囚人のジレンマモデル、貨幣の自生と自壊モデル、Sugarscapeモデル、人工株

式市場モデルの 5つである。

7.1 成長するネットワークのモデル

近年、ノードの生成やリンクの生成・組み替え・除去など、ネットワークのトポロ

ジーに影響するプロセスを扱うことのできる「成長するネットワーク」の理論研究が

進んでいる。Barabási (2002)の指摘するように、現実世界に存在するネットワーク

は、そのほとんどが「成長する」という特徴をもっている。このような成長するネッ

トワークについての理解を深めるためには、シミュレーションによるアプローチが不

可欠であるが、Agent(ノード)や Relation(リンク)が動的に生成・削除できるBEFM

/ BESPは、このようなシミュレーションに適しているといえる。

ここでは、成長するネットワークの研究における代表的なモデルをいくつか再現す

ることにしたい。まず最初に、ノード数が一定のままリンクが生成される「ランダム

リンクモデル」を作成し、次に、新しいノードを生成してランダムにリンクを張って

いく「ランダム選択成長モデル」、そして最後に、優先的選択によってリンクを張っ

ていく「優先的選択成長モデル」を作成する。

7.1.1 ランダムリンクモデル

まず最初に作成するランダムリンクモデルでは、最初多くの孤立したノードが存在

する。時間の経過とともに、このノード同士をランダムにつないでいく (図 7.1)。

このモデルの全体像は、図 7.2のようになる。ここでは、2人の Nodeエージェン

トを選んでリンクを張る処理を行うOrganizerエージェントを用意する。シミュレー

ションの流れは、次のようになる (図 7.3)。Organizerエージェントは、TimeEventを

RandomNetworkingBehavior (図 7.4)で受け取り、Nodeエージェントの中からラン

81

図 7.1: ランダムリンクモデルのイメージ

 : RandomNetworkWorld : EvolvingNetworkModel

AGENTTYPE_Organizer : AgentType : Agent

 : Agent AGENTTYPE_Node : AgentType

BEHAVIORTYPE_RandomNetworking : BehaviorType: RandomNetworkingBehavior

RELATIONTYPE_Subject : Relation

 : Agent AGENTTYPE_Node : AgentType

RELATIONTYPE_Link : Relation

図 7.2: ランダムネットワークモデルの全体像

ダムに 2人を選び、その 2人の間に関係を結ぶ。

シミュレーション結果は、図 7.5, 7.6のようになる。最初は、ノードとノードがつ

ながったペアが生まれるだけだが、しばらくすると、ペアとペアがつながってクラス

ターが形成される。初期のクラスターは小規模なものだが、ある時、クラスター同士

が結びついて巨大クラスターが出現する。その時々の最大クラスターに属するノード

の数を時系列で描くと図 7.7のようになる。

82

図 7.3: ランダムリンクモデルのシーケンス図

図 7.4: ランダムリンクモデル: RandomNetworkBehavior

83

step 0

step 3

step 12

図 7.5: ランダムリンクモデルのシミュレーション結果 (1)

84

step 15

step 16

図 7.6: ランダムリンクモデルのシミュレーション結果 (2)

図 7.7: ランダムリンクモデルにおける最大クラスターのノード数の推移

85

7.1.2 ランダム選択成長モデル

成長するネットワークは、小さなネットワークから始めて、徐々にノードを追加し

ていくというモデルで表現できる。ここではまず最初に、ランダム選択成長モデルを

考えることにしよう。ランダム選択成長モデルでは、新しく追加されたノードは、ラ

ンダムに選ばれた 2つのノードとリンクが張られる (図 7.8)。

図 7.9は、このモデルの全体像である。新しい Nodeエージェントを追加し、既存

の Nodeエージェントとリンクを張る処理を行う Organizerエージェントを用意す

るする。このシミュレーションの流れは、次のようになる (図 7.10)。TimeEventを

RandomAttachmentBehaviorで受け取ったOrganizerエージェントは、Nodeエージェ

ントを 1人生成し、世界に追加する (図 7.11)。そして、既に存在する Nodeエージェ

ントの中からランダムに 2人を選び、さきほど追加した Nodeエージェントとの間に

関係を結ぶ。

シミュレーションの結果は、図 7.12のようになる(61)。このネットワークの各ノー

ドのリンク数とその順位を両対数グラフにプロットすると、図 7.13のようになる。こ

のグラフから、度数分布が指数関数的な減少を示していることがわかる。

近年、友人関係や経済ネットワーク、ワールド・ワイド・ウェブ (WWW)などのよう

な「成長するネットワーク」では、従来考えられてきたような均質的なネットワーク構

造ではなく、多数のリンクをもつ「ハブ」が少数存在するという構造になっているこ

とがわかっている。そして、そのリンクのつながれ方にはべき乗分布がみられる(62)。

べき乗分布に従うネットワークでは、普通は少ない数のリンクをもっているが、ごく

一部のノードは非常に多くのリンクをもっている。通常、自然界で起こる現象では、

大きな変動の頻度は指数関数的に急激に減少するが、べき乗法則に従う場合には、こ

のような「稀有な事象」も共存することになる。べき乗分布は両対数グラフで表すと、

図 7.14のように直線になる。このシミュレーションからわかることは、ランダム選択

成長モデルでは、現実世界におけるネットワークは説明できないということである。

図 7.8: ランダム選択成長モデルのイメージ

86

 : RandomAttachmentWorld : EvolvingNetworkModel

AGENTTYPE_Organizer : AgentType : Agent

 : Agent AGENTTYPE_Node : AgentType

BEHAVIORTYPE_RandomAttach : BehaviorType: RandomAttachBehavior

RELATIONTYPE_Subject : Relation

 : Agent AGENTTYPE_Node : AgentType

RELATIONTYPE_Link : Relation

図 7.9: ランダム選択成長モデルの全体像

図 7.10: ランダム選択成長モデルのシーケンス図

図 7.11: ランダム選択成長モデル: RandomAttachBehavior

87

図 7.12: ランダム選択成長モデル: 形成されたネットワーク

図 7.13: ランダム選択成長モデル: リンク数と順位の関係 (両対数グラフ)

図 7.14: 線形グラフと両対数グラフにおけるべき乗分布

88

7.1.3 優先的選択成長モデル (スケールフリー・モデル)

現実世界でみられるようなべき乗の結合分布をもつネットワークは、どのようにす

れば形成することができるのだろうか。この問題に取り組むには、「現実のネットワー

クでは、リンクがランダムに張られたりはしない」(Barabási, 2002)という点に注目す

ることが重要となる。現実には、ウェブページでも友人関係でも、リンク数が多いノー

ドほどますます多くのリンクを獲得するということが起こっている。実はこの原理を

用いることで、現実に近い成長するネットワークを作成できることがわかっている。

Barabási et al. (1999)は、「成長」と「優先的選択」という 2つの基本原理によっ

て、結合分布がべき乗になるネットワークを生成できることを解析的に示した。これ

らの原理は、どちらか片方だけではべき乗の結合分布を生み出さないため、両者とも

不可欠であることがわかっている。「成長」とは、新しいノードを加えるということ

であり、「優先的選択」とは、新しいノードを追加する際に、多くのリンクを持ってい

るノードを優先的に選択することである (図 7.15)。新しいノードが、k 個のリンクを

もつノードにリンクを張る確率は、次の式で与えられる。

prob =
k∑
i ki

図 7.16は、このモデルの全体像である。新しいNodeエージェントを生成・追加し

て既存の Nodeエージェントとリンクを張る処理を行うOrganizerエージェントを用

意する。このシミュレーションの流れは、次のようになる (図 7.17)。Organizerエー

ジェントは、TimeEventを PreferentialAttachBehavior (図 7.18)で受け取り、Node

エージェントを 1人生成し、世界に追加する。そして、既に存在する Nodeエージェ

ントのもつリンク数を調べ、もっているリンク数に比例した確率で Nodeエージェン

トを 2人選ぶ。そしてこの 2人の Nodeエージェントと、新しく追加した Nodeエー

ジェントの間にリンクを結ぶ。

このシミュレーションの結果は、図 7.19のようになる。非常に多くのリンクをもつ

図 7.15: 優先的選択成長モデルのイメージ

89

 : PreferentialAttachmentWorld : EvolvingNetworkModel

AGENTTYPE_Organizer : AgentType : Agent

 : Agent AGENTTYPE_Node : AgentType

BEHAVIORTYPE_PreferentialAttach : BehaviorType: PreferentialAttachBehavior

RELATIONTYPE_Subject : Relation

 : Agent AGENTTYPE_Node : AgentType

RELATIONTYPE_Link : Relation

図 7.16: 優先的選択成長モデルの全体像

ハブが出現していることがわかる。この結果を両対数グラフで表すと、図 7.20のよう

にベキ乗になっていることが確認できる(63)。このモデルは、最初にスケールフリーの

べき法則を説明したため、「スケールフリー・モデル」と呼ばれるようになった。この

モデルによって、「まず第一に、ベキ法則によってハブの存在に正当性が与えられた。

次に、スケールフリー・モデルによって、現実のネットワークに見られるベキ法則が、

数学的基礎をもつ概念上の進歩に格上げされた。さらには、進化するネットワークと

いう洗練された理論に支えられて、スケーリング指数やネットワークのダイナミクス

が精密に予測できるようになった。」(Barabási, 2002, 邦訳 p.135)といわれている。

また、社会・経済シミュレーションの研究における意義も大きい。というのは、社

会・経済のシミュレーションを行う場合には、何らかの社会ネットワークを想定する

必要があるが、その際に現実と同型のスケールフリー・ネットワークを用いることで、

より現実に近いモデルになるからである。また、動的に成長する社会ネットワークに

おける社会・経済現象を分析することも可能になる。

90

図 7.17: 優先的選択成長モデルのシーケンス図

図 7.18: 優先的選択成長モデル: PreferentialAttachBehavior

91

図 7.19: 優先的選択成長モデル: 形成されたネットワーク

図 7.20: 優先的選択成長モデル: リンク数と順位の関係 (両対数グラフ)

92

7.2 繰り返し囚人のジレンマモデル

「囚人のジレンマ」は、利己的な主体間で利害が対立する状況の中で、どのように協

調が形成されるのかを調べる枠組みとしてしばしば用いられている。このジレンマは、

1950年頃、心理学研究のなかでM.FloodとM.Dresherによって提唱されたものであ

り、A.W.Tuckerが「囚人のジレンマ」というストーリー仕立てで広めてからは、政

治学や経済学、社会学において、ジレンマの社会的モデルとして頻繁に用いられてき

た。二人のプレイヤーが、それぞれ独立に、協調 (Cooperation)か裏切り (Defection)

かのどちらかの行動をとり、自分の選択と相手の選択の組合せによって、得られる利

得が異なるようになっている。

囚人のジレンマは一回限りのゲームであるが、これを反復的に行うというゲームの

考察も行われており、これを「繰り返し囚人のジレンマ」という(64)。この繰り返しの

囚人のジレンマは、あらかじめわかっている有限回の対戦であれば、裏切る方がより

高い利得を得られることがわかっている。しかし、いつまで続くかわからない場合に

は、必ずしもそのような結果にはならず、万能の戦略がないといわれている。

ここでいう「戦略」とは、各回の選択のことではなく、過去の手を踏まえて自分の

手を決めるための行動決定規則である。同じ戦略でもこれまでの経緯によって (選択

の履歴によって)、協調することもあれば裏切ることもある。自分の状態によって反応

が異なるという意味で、このモデルは、本論文でいうところの広義の複雑系のモデル

になっている。また、戦略を変更するということが起こるならば、それは狭義の複雑

系と捉えることができる。

7.2.1 コンテスト・シミュレーション

ここでは、まず最初に、広義の複雑系のモデルとして、コンテスト・シミュレーショ

ンを行う。戦略の状態の変化は、BEFMの Behaviorの状態変化でモデル化する。

モデルの基本的な枠組みを説明すると、シミュレーションには、1人のRefereeエー

ジェントと、複数の Playerエージェントが登場する (図 7.21)。この Refereeエージェ

ントは、コンテストを仕切る役割を担っている。Refereeエージェントは、Playerエー

ジェント同士が総当りになるように、順番に 2人ずつ Playerエージェントを呼び出

し、試合を行わせる。このとき、試合では 200回の対戦が行われる。各対戦における

得点は、両者が協調すれば 3点ずつ、裏切りあえば 1点ずつ、片方だけ協調し他方が

裏切れば、それぞれ 0点と 5点となる。試合が終了すると、最終的な得点が記録され

る。こうして試合が次つぎに行われ、総当りが実現したら、そのコンテストが終了し、

Refereeエージェントは結果を公表する。コンテストと試合と対戦の関係は、図 7.22

のようになる。

Refereeエージェントは、コンテスト全体を管理するManageContestBehaviorと、

93

JOSS
Strategy
Behavior

Player

AllC
Strategy
Behavior

Player

Random
Strategy
Behavior

Player
AllD
Strategy
Behavior

Player

Friedman
Strategy
Behavior

Player

TF2T
Strategy
Behavior

Player

PerCD
Strategy
Behavior

Player

TFT
Strategy
Behavior

Player

Referee

図 7.21: コンテスト・シミュレーションのイメージ

図 7.22: コンテストと試合と対戦の関係

各試合を取り仕切るConductMatchBehaviorをもっている。Playerエージェントは、

Refereeエージェントとコミュニケーションをとるための PlayBehaviorと、戦略行動

をもっている (図 7.23)。対戦では、各 Playerエージェントは、前回の相手の手のみ

が知らされ(65)、自分の次の手を決めていくことになる。戦略行動は、戦略の状態変

化を Behaviorの状態変化で表現したものであり、次のような種類がある。

ALL-C 相手の手に関係なく、必ず協調する (ALLCStrategyBehavior; 図 7.25)。

ALL-D 相手の手に関係なく、必ず裏切る (ALLDStrategyBehavior; 図 7.26)。

RANDOM 相手の手に関係なく、協調と裏切りをランダムに選択する (RandomStrategyBe-
havior; 図 7.27)。

TFT 最初は協調し、次からは相手が前回とった行動を真似する (TFTStrategyBehavior; 図
7.28)。

94

Player
Behavior

?????
Strategy
Behavior

Friedman
Strategy
Behavior

AllC
Strategy
Behavior

TFT
Strategy
Behavior

Random
Strategy
Behavior

図 7.23: 戦略を行動として表現する

TF2T 最初は協調し、2回連続して相手が裏切ったときに、裏切る (TF2TStrategyBehavior;
図 7.29)。

FRIEDMAN 最初は協調し、相手が裏切らないかぎり協調を続ける。相手が一度でも裏切
ると、それ以降はずっと裏切り続ける (FRIEDMANStrategyBehavior; 図 7.30)。

JOSS TFT (しっぺ返し)と同様に、最初は協調し、相手に裏切られると裏切り返す。相手が
協調した場合には、9割協調して、1割裏切る (JOSSStrategyBehavior; 図 7.31)。

PER-CD 協調、裏切り、協調、裏切り・・・・を繰り返す (PERCDStrategyBehavior; 図 7.32)。

PER-CCD 協調、協調、裏切り、協調、協調、裏切り・・・・を繰り返す (PERCCDStrategy-
Behavior; 図 7.33)。

モデルの全体像は、図 7.24のようになり、シミュレーションの流れは、次のように

なる (図 7.34)。最初に TimeEventを受け取るのは、Priorityが高く設定されている

Refereeエージェントである。Refereeエージェントは、ManageContestBehavior(図

7.35)で TimeEventを受け取り、総当たりの対戦表を作成する。その後、Conduct-

MatchBehavior(図 7.36)に対戦組合せの情報を 1組分ずつ渡し、その試合を開始する。

Refereeエージェントは、今回対戦する 2人の Playerエージェントに、まず初回の

手を尋ねる。Playerエージェントは PlayBehavior(図 7.37)で連絡を受け取り、それ

ぞれのもつ StrategyBehaviorに初回の手を出すよう連絡する。StrategyBehaviorは

初回の手を返答し、PlayBehaviorを通じて、Refereeエージェントに伝える。Referee

エージェントは、ConductMatchBehaviorで返答を受け取り、2人の Playerエージェ

ントの手を照合して、今回の得点を計算する。

2回目以降の対戦では、Refereeエージェントは、各Playerエージェントに対戦相手

の前回の手を知らせて、次の手を求める。Playerエージェントは対戦相手の前回の手

を PlayBehaviorで受け取り、その手を StrategyBehaviorに伝える。そして、Strate-

gyBehaviorから次の手を受け取り、それを Refereeエージェントに返答する。この返

答を Refereeエージェントは ConductMatchBehaviorで受け取り、各Playerエージェ

ントの手を照合して、今回の得点を計算する。そして、それぞれの Playerエージェン

トがこれまでに獲得した得点に今回の得点を加算する。200回の対戦が終了するまで、

以上の処理を繰り返す。

95

 : IPDContestWorld : IPDContestModel

BEHAVIORTYPE_ManageContest : BehaviorType: ManageContestBehavior

AGENTTYPE_Referee : AgentType : Agent

BEHAVIORTYPE_ConductMatch : BehaviorType: ConductMatchBehavior

RELATIONTYPE_ToMyself : RelationType : Relation

AGENTTYPE_Player : AgentType : Agent

BEHAVIORTYPE_Play : BehaviorType: PlayBehavior

RELATIONTYPE_ToMyself : RelationType : Relation

RELATIONTYPE_ToPlayer : RelationType : Relation

BEHAVIORTYPE_ChangeStrategy : BehaviorType: ChangeStrategyBehavior

BEHAVIORTYPE_ReceiveScore : BehaviorType: ReceiveScoreBehavior

BEHAVIORTYPE_ReceiveResult : BehaviorType: ReceiveResultBehavior

BEHAVIORTYPE_TFTStrategy : BehaviorType: TFTStrategyResultBehavior

RELATIONTYPE_ToReferee : RelationType : Relation

図 7.24: コンテスト・シミュレーションの全体像

96

図 7.25: 戦略行動: ALLCStrategyBehavior

図 7.26: 戦略行動: ALLDStrategyBehavior

200回の対戦終了後、Refereeエージェントは、対戦した Playerエージェントに、

今回の試合におけるお互いの得点を知らせる。Playerエージェントは、ReceiveScore-

Behaviorでその情報を受け取り、記憶する。次に Refereeエージェントは、今回の試

合の得点を、自らのManageContestBehaviorに知らせる。知らせを受けたManage-

ContestBehaviorは、今回の試合の得点を、これまでの試合で各 Playerエージェント

が獲得した総得点のリストに加算する。こうして 1組の試合が終了する。以上の処理

を、すべての Playerエージェントが総当りで試合を終えるまで繰り返す。

総当たりを終了した後、Refereeエージェントは、今回のコンテストの総得点のリ

ストを受け取り、すべての Playerエージェントに知らせる。Playerエージェントは、

ReceiveResultBehaviorで総得点のリストを受け取り、記憶する。

このシミュレーションの結果は、表 7.1のようになった。同じ戦略でも総得点が異

なるのは、乱数を用いる戦略 (RANDOMと JOSS)があるからである。

97

図 7.27: 戦略行動: RandomStrategyBehavior

図 7.28: 戦略行動: TFTStrategyBehavior

図 7.29: 戦略行動: TF2TStrategyBehavior

図 7.30: 戦略行動: FRIEDMANStrategyBehavior

98

図 7.31: 戦略行動: JOSSStrategyBehavior

図 7.32: 戦略行動: PER-CDStrategyBehavior

図 7.33: 戦略行動: PER-CCDStrategyBehavior

99

図 7.34: コンテスト・シミュレーションのシーケンス図

100

図 7.35: コンテスト・シミュレーション: ManageContestBehavior

図 7.36: コンテスト・シミュレーション: ConductMatchBehavior

図 7.37: コンテスト・シミュレーション: PlayBehavior

101

表 7.1: コンテスト・シミュレーションの結果

戦略 総得点

FRIEDMAN 8872

FRIEDMAN 8824

TFT 8128

TFT 8041

PERCD 8011

PERCD 8001

TF2T 7846

TF2T 7799

ALLD 7716

ALLD 7684

RANDOM 7481

RANDOM 7468

PERCCD 7384

PERCCD 7348

ALLC 7296

ALLC 7275

JOSS 7197

JOSS 7281

102

7.2.2 戦略模倣シミュレーション

ここでは、繰り返し囚人のジレンマのコンテスト・シミュレーションに、独自の拡

張を行ってみることにしたい。その拡張とは、各コンテスト終了後に、各Playerエー

ジェントが自分より強い相手の戦略を模倣するというものである(66)。模倣相手の候

補の選択は、次の 2つの方法のいずれかで行い、候補が複数の場合には、その中から

ランダムに選択することにする(67)。

1. 個別対戦において、自分に勝ったプレイヤーの戦略を採用する (試合結果による

選択)。

2.コンテストにおける総得点が、自分よりも高いプレイヤーの戦略を採用する (コ

ンテスト結果による選択)。

この拡張モデルでは、それぞれの Playerエージェントが戦略の変更を行うが、これ

は行動のルールが変化するという意味で、本論文でいうところの狭義の複雑系のモデ

ルになっている。

戦略模倣シミュレーションでは、コンテスト・シミュレーションの最後の部分に、次

のような流れを追加する (図 7.38)。TimeEventによって発火するRefereeエージェン

トの一連の行動が終わった後、Playerエージェントが TimeEventを受け取る。Player

エージェントは、TimeEventを ChangeStrategyBehaviorで受け取り、他者を模倣し

て戦略変更する (図 7.39)。

戦略ごとに 2人ずつ Playerエージェントを用意したシミュレーションを行ったとこ

ろ、結果は次のようになった。まず、候補選択方式 1(試合結果による選択)の場合に

は、数ステップで「ALL-D」戦略のみになり (図 7.40)、平均得点は初期状態よりも低

い水準になる (図 7.41)。最終的に「ALL-D」戦略のみになった状況では全員が裏切り

あうため、社会的にみて得点が低い水準になるのである。この結果を Playerエージェ

ントの個別状況で見てみると、次のことがわかる (図 7.42)。協調を基本とする戦略は、

裏切りを交える戦略よりも得点が低いことが多く、また、対戦相手が協調を基本とす

る場合には同点になるため、戦略模倣の候補にはなりにくい。これに対し、裏切りを

交える戦略は、協調を基本とする戦略よりも高い得点を獲得するため、戦略模倣の候

補となる。裏切りを交える戦略のなかでも、裏切りが多いほど得点が高くなるため、

「ALL-D」戦略が広まることになる。この結果は、乱数シードを変えても同様の結果

になる。

これに対し、候補選択方式2(コンテスト結果による選択)の場合には、「FRIEDMAN」

戦略が広まり (図 7.43)、平均得点は初期状態よりも高い水準になる (図 7.44)。平均得

点が候補選択方式 1(試合結果による選択)の場合に比べて高いのは、「FRIEDMAN」

戦略における協調の効果である。最終的に「FRIEDMAN」戦略のみになったときに

は、すべての対戦で協調するため、社会的にみて得点が高い水準になるのである。こ

103

<< create >>

<< destroy >>

<< create >>

<< destroy >>

図 7.38: 戦略模倣シミュレーションのシーケンス図

の結果を、Playerエージェントの個別状況で見てみると、協調を基本とするいくつか

の戦略が残った後に、「FRIEDMAN」戦略が広まっていることがわかる (図 7.45)。協

調を基本とする戦略の中でも特に「FRIEDMAN」戦略が残るのは、「ALL-D」戦略な

どの裏切りの多い戦略に対して効果的に反撃することができるためだと考えられる。

この候補選択方式 2(コンテスト結果による選択)では、乱数シードを変更して実行す

ると、「FRIEDMAN」戦略に混じって「TFT」戦略が残ることがある (図 7.46)。こ

の場合にも、両戦略とも協調するので得点は高い水準になる (図 7.47)。

以上の結果をまとめると、次のようになる。まず、試合結果というミクロ的で個別的

な勝敗を判断材料にして戦略を変化させると、裏切りが強調されて加速度的に広まっ

ていく。これに対し、コンテスト結果というマクロ的で総合的な勝敗を判断材料にし

て戦略を変化させると、協調による得点の上昇が効果を発揮し、協調が加速度的に広

まっていく。裏切りがもっている得点のインパクトに比べ、協調の効果は静かなもの

であるが、総合的に見た場合には、この効果が大きくなる。以上のシミュレーション

結果だけで何かを主張することはできないが、社会全体への公表や表彰の存在が、社

会的効用を高めるのに効果がある可能性が示唆されたといえるだろう。

104

図 7.39: 戦略模倣シミュレーション: ChangeStrategyBehavior

図 7.40: 戦略模倣シミュレーション: 各戦略を採用しているプレイヤー数の推移 (試合

結果による戦略変更)

図 7.41: 戦略模倣シミュレーション: 各プレイヤーの得点と平均得点の推移 (試合結果

による戦略変更)

105

図 7.42: 戦略模倣シミュレーション: プレイヤーの戦略の変化 (試合結果による戦略

変更)

106

図 7.43: 戦略模倣シミュレーション: 各戦略を採用しているプレイヤー数の推移 (コン

テスト結果による戦略変更�)

図 7.44: 戦略模倣シミュレーション: 各プレイヤーの得点と平均得点の推移 (コンテス

ト結果による戦略変更�)

107

図 7.45: 戦略模倣シミュレーション: プレイヤーの戦略の変化 (コンテスト結果による

戦略変更�)

108

図 7.46: 戦略模倣シミュレーション: 各戦略を採用しているプレイヤー数の推移 (コン

テスト結果による戦略変更�)

図 7.47: 戦略模倣シミュレーション: 各プレイヤーの得点と平均得点の推移 (コンテス

ト結果による戦略変更�)

109

7.3 貨幣の自生と自壊モデル

次に取り上げるモデルは、安冨 (2000)の貨幣の自生と自壊モデルである。このモ

デルは、主体全員が生産者かつ消費者である社会において、物々交換している商品の

ひとつが、ある時から貨幣としての役割を担うようになるという興味深いモデルであ

る。また、同じモデルにおいて、貨幣の自生という事実への各主体の適応行動が、今

度は逆にその貨幣が崩壊させてしまうということも観察されている。

安冨 (2000)によると、貨幣経済は、人間が単独で自給自足することができず、生

存・欲求充足のために他人とのコミュニケーションが必要となる分業社会において発

生しうる。原始的な分業社会における人びとは、自分の生産する財を、他人が生産し

かつ自分が欲する財と物々交換することで、自分の生存・欲求を充足させている。こ

のような物々交換取引の際に、人びとが「自分の欲求する財しか受け取らない」ので

あれば、欲望の二重の一致の困難が生じるため、取引がきわめて成立しにくい。しか

し、実際は人間はこのように近視眼的ではなく、将来予測を行うことができる。それ

では、人びとが将来の交換の有便性を考慮し、「自分は欲求しないが、多くの人が需

要する財も受け取る」という行動をとる場合には、どのようなことが起こるのだろう

か。安冨 (2000)は、近視眼的な社会と将来予測を行う社会の 2つのケースについて、

シミュレーションによる分析を行っている。その結果、将来予測を行う社会において、

ある商品の交換可能性が極端に高くなり、「貨幣的商品」が発生することが観察され

ている。

ここでは、安冨 (2000)における「物々交換モデル」、「貨幣的交換モデル」、「進化

的モデル」の 3つのシミュレーションを再現することにしたい。

7.3.1 物々交換モデル

物々交換モデルに登場するエージェントは、生産者であり消費者である主体 1種類

だけであり、これを Agentエージェントとする (図 7.48)。このシミュレーションの流

れは次のようになる (図 7.49, 7.50)。

まず、Agentエージェントが TimeEventを受信する。どの順番で Agentエージェ

ントが TimeEventを受信するのかは、ランダムになっている。TimeEventが奇数回

目のときには、Agentエージェントは、SearchBehavior(図 7.51; 厳密には SearchBe-

haviorを特化したMaximumSearchBehavior)で、他のすべての Agentエージェント

に、どのような財を所有しているのかを質問する。他の Agentエージェントは、それ

ぞれ RespondToSearchBehavior (図 7.52)で質問を受けると、現在所有している財の

リストを返答する。Agentエージェントは、MaximumSearchBehaviorで返答を集め

ていき、返答をすべて受け取った後に、自分の欲求する財を最もたくさんもっている

Agentエージェントを選び、その Agentエージェントと物々交換を行うために自分の

110

DecideTradeBehavior (図 7.53)に連絡する。

Agentエージェントは、DecideTradeBehaviorで取引相手が誰なのかという情報を

受け取ると、お互いが実際に交換できる財を特定するために、取引相手に自分のもっ

ている財のリストを知らせる。取引相手となった Agentエージェントは、Respond-

ToDecideTradeBehavior (図 7.54)で財のリストを受け取ると、自分の欲求する財か

ら、相手の所有財リストから自分の需要する財のリストを作成して、自分の所有財

リストと一緒に返答する。相手の需要する財のリストと、所有財リストを受け取った

Agentエージェントは、同様に自分の需要する財のリストを作成して、相手の需要す

る財のリストと照合する。この時、相手が何も需要していなければ、実際には何も交

換しない。

相手が需要している場合には、お互いに渡す財の量が同じになるように、実際に交

換する財のリストを作成し、お互いのExchangeBehavior (図 7.55)に知らせる。Agent

エージェントは、ExchangeBehaviorで実際に交換する財のリストを受け取ると、お互

いの RespondToExchangeBehavior (図 7.56)に財を渡す。この時、渡した個数に応じ

た運送コストを効用から減少させる。RespondToExchangeBehaviorで財を受け取っ

た Agentエージェントは、その財を自分の所有財とする。

一連の物々交換の過程が終了した後に、AgentエージェントはDecideTradeBehavior

からお互いの ConsumeAndProduceBehavior (図 7.57)に対して、財を消費して効用

を高め、欲求を変更するよう連絡する。ConsumeAndProduceBehaviorで連絡を受け

取ったお互いの Agentエージェントは、もし欲求する財をもっていればそれをすべて

消費して、個数分だけ効用を高め、必ず欲求する財を変更する。もし欲求する財をもっ

ていなければ、何も消費せず、効用も高めないが、一定の低い確率で欲求する財を変

更する。

Agentエージェントは、偶数回目の TimeEventを受け取ったときに、ResetUtility-

Behavior (図 7.58)によって自分の効用得点を 0にリセットする。

シミュレーションの結果は、図 7.59のようになった。この図からわかるように、自

分の欲求する財しか受け取らない主体によって構成される社会では、欲望の二重の一

致の困難によって、自分の欲求する財を入手・消費するのは容易ではない (図 7.60)。

111

 : PureBarterWorld

BEHAVIORTYPE_MaximumSearch : BehaviorType: MaximumSearchBehavior

AGENTTYPE_Agent : AgentType : Agent

RELATIONTYPE_ToAgent : RelationType : Relation

 : ComplexityOfMoneyModel

BEHAVIORTYPE_RespondToSearch : BehaviorType: RespondToSearchBehavior

BEHAVIORTYPE_DecideTrade : BehaviorType: DecideTradeBehavior

BEHAVIORTYPE_RespondToDecideTrade : BehaviorType: RespondToDecideTradeBehavior

BEHAVIORTYPE_Exchange : BehaviorType: ExchangeBehavior

BEHAVIORTYPE_RespondToExchange : BehaviorType: RespondToExchangeBehavior

BEHAVIORTYPE_ConsumeAndProduce : BehaviorType: ConsumeAndProduceBehavior

BEHAVIORTYPE_ResetUtility : BehaviorType: ResetUtilityBehavior

AGENTTYPE_Agent : AgentType : Agent

図 7.48: 物々交換モデルの全体像

112

図 7.49: 物々交換モデル: TimeEvent(奇数)のときのシーケンス図

113

図 7.50: 物々交換モデル: TimeEvent(偶数)のときのシーケンス図

図 7.51: 物々交換モデル: SearchBehavior

図 7.52: 物々交換モデル: RespondToSearchBehavior

114

図 7.53: 物々交換モデル: DecideTradeBehavior

図 7.54: 物々交換モデル: RespondToDecideBehavior

図 7.55: 物々交換モデル: ExchangeBehavior

図 7.56: 物々交換モデル: RespondToExchangeBehavior

図 7.57: 物々交換モデル: ConsumeProductBehavior

図 7.58: 物々交換モデル: ResetUtilityBehavior

115

図 7.59: 物々交換モデル: 各ターンごとの得点の推移 (N=50, Threshold=0.078)

図 7.60: 物々交換モデルで起こっていることのイメージ (欲望の二重の一致の困難)

116

7.3.2 貨幣的交換モデル

貨幣的交換モデルでは、「将来の交換の簡便を考えて、たとえ自分が欲求してなく

ても、他人が需要するものを需要するようにする」という戦略を各主体にもたせる

(図 7.61)。モデルでは、実際に交換する財を特定する前に知識交換を行うようにする

ために、DecideTradeBehaviorを ExtendedDecideTradeBehaviorに拡張し、Change-

KnowledgeBehaviorと RespondToChangeKnowledgeBehaviorを、Agentエージェン

トにもたせる (図 7.62)。また、各Agentエージェントに「商品に対する見解」と「閾

値」(0から 1までの実数)の情報をもたせ、商品に対する評価が「閾値」以上であれ

ば、自分が欲求していなくてもその商品を受け取るようにさせる。この貨幣的交換モ

デルでは、すべての Agentエージェントは同じ閾値をもっており、閾値の値も初期設

定のまま変化しないとする(68)。

シミュレーションは、次のような流れになる (図 7.63)。Agentエージェントは、Ex-

tendedDecideTradeBehaviorで取引相手が誰なのかを知り、知識交換を行うように自

分の ChangeKnowledgeBehavior (図 7.64)に連絡する。連絡をうけた ChangeKnowl-

edgeBehaviorは、商品に対する見解を取引相手の Agentエージェントに伝える。取

引相手のAgentエージェントは、RespondToChangeKnowledgeBehavior (図 7.65)で

見解を受け取り、自分の見解に加算・規格化し、新しい見解を返答する。返答を受け

取った Agentエージェントは、新しい見解の数値を記憶する。

物々交換モデルと異なり、貨幣的交換モデルでは、相手の所有する財のリストから、

自分の欲求する財のみならず、自分が欲しくなくても他人が需要しているものがあれ

ば需要する。ある商品に対して需要を表明するか否かは、見解の数値が Agentエー

ジェントのもつ閾値を超えているか否かで判断する。こうして得られたお互いの需要

する財のリストを照合し、実際に交換できる財のリストを作成する処理以降の流れは、

物々交換モデルと同じである。

図 7.61: 貨幣的交換モデルのイメージ (人気のある商品の需要)

117

 : MoneyEmergenceWorld

BEHAVIORTYPE_MaximumSearch : BehaviorType: MaximumSearchBehavior

AGENTTYPE_Agent : AgentType : Agent

BEHAVIORTYPE_RespondToSearch : BehaviorType: RespondToSearchBehavior

BEHAVIORTYPE_ExtendedDecideTrade : BehaviorType: ExtendedDecideTradeBehavior

BEHAVIORTYPE_RespondToDecideTrade : BehaviorType: RespondToDecideTradeBehavior

BEHAVIORTYPE_Exchange : BehaviorType: ExchangeBehavior

BEHAVIORTYPE_RespondToExchange : BehaviorType: RespondToExchangeBehavior

BEHAVIORTYPE_ConsumeAndProduce : BehaviorType: ConsumeAndProduceBehavior

BEHAVIORTYPE_ResetUtility : BehaviorType: ResetUtilityBehavior

RELATIONTYPE_ToAgent : RelationType : Relation

AGENTTYPE_Agent : AgentType : Agent

BEHAVIORTYPE_ChangeKnowledge : BehaviorType: ChangeKnowledgeBehavior

BEHAVIORTYPE_RespondToChangeKnowledge : BehaviorType: RespondToChangeKnowledgeBehavior

 : ComplexityOfMoneyModel

図 7.62: 貨幣的交換モデルの全体像

118

図 7.63: 貨幣的交換モデル: TimeEvent(奇数)のときのシーケンス図の一部

119

図 7.64: 貨幣的交換モデル: ChangeKnowledgeBehavior

図 7.65: 貨幣的交換モデル: RespondToChangeKnowledgeBehavior

シミュレーション結果は、図 7.66, 7.67, 7.68のようになる。図 7.67と図 7.66から

わかるように、最も市場性の高い商品の市場性が急激に高くなったと同時に、交換の

ために保有されている最も市場性の高い商品の単位数も増加し、それ以外の商品は交

換の媒介として所有されなくなっている。このことから、「自分が欲してなくても他

人の受け取るものであれば自分も受け取る」という戦略をもつ主体によって構成され

る社会では、ある時点において、最も市場性の高い商品が交換の媒介として認識され

るようになり、それ以外のものを交換の媒介と見なすことがなくなるということがわ

かる。また、図 7.68のように、貨幣的商品が生まれたことによって、主体の効用得点

の平均値は明らかに高くなっている。貨幣的商品を媒介とすることによって、主体は

本来自分の欲する財を、より効率的に入手・消費できるようになっているからである。

120

図 7.66: 貨幣的交換モデル: 交換のために保有されている商品の単位数の推移 (N=50,

Threshold=0.078)

図 7.67: 貨幣的交換モデル: 最も市場性の高い商品の市場性の推移 (N=50, Thresh-

old=0.078)

121

図 7.68: 貨幣的交換モデル: 各ターンごとの得点の推移 (N=50, Threshold=0.078)

122

7.3.3 進化的モデル

進化的モデルでは、「欲求する財を入手しやすい閾値をもつ Agentエージェントの

閾値を、他の Agentエージェントが模倣する」という行動をモデルに導入する。具体

的には、一日の最後に、得点の低い三人が得点の高い三人の閾値を模倣し、全員の閾

値にノイズをかけるということを行う。

このことを実現するために、閾値の模倣を仲介する EvolutionFunctionエージェン

トをモデルに追加する (図 7.69)。この EvolutionFunctionエージェントが、2024ス

テップ(69)に 1回、効用得点が高いAgentエージェント 3人の閾値を、低いAgentエー

ジェント 3人に模倣させる。

このシミュレーションの流れは、次のようになる (図 7.70)。EvolutionFunctionエー

ジェントは、ChangeThresholdBehavior (図 7.71)で TimeEventを受け取ると、2048

回に 1回、すべてのAgentエージェントに対して、効用得点と閾値を尋ねる。Respond-

ToChangeThresholdBehaviorで質問を受け取った Agentエージェントは、過去 2048

ステップの効用得点の合計値と現在の閾値を答える (図 7.72)。すべての Agentエー

ジェントから返答をうけとったEvolutionFunctionエージェントは、得点の高いAgent

エージェント 3人と得点の低いAgentエージェント 3人を調べ、得点の高い方のAgent

エージェントの閾値を低い方のAgentエージェントに教える。得点の低いAgentエー

ジェント 3人は、RespondToChangeThresholdBehaviorで閾値を受け取ると、それぞ

れの閾値を更新する。

以上の処理の後、EvolutionFunctionエージェントは、すべてのAgentエージェント

に、閾値にノイズをかけるよう連絡する。Agentエージェントは、RespondToThresh-

oldBehaviorで連絡を受け取ると、自分の閾値に平均 0、分散 0.00005のノイズをかけ

る。この時、ノイズによって閾値が 1を超える、あるいは 0未満になる場合は、差分

だけ跳ね返す。例えば、1．02になってしまう場合は、1 − (1.02 − 1) = 0.98とする。

なお、この進化的モデルでは、過去 2048ステップの効用得点の合計値を手に入れるた

め、以前のモデルでは偶数回目のTimeEventで呼び出されていたResetUtilityBehavior

が、2048回に 1回呼び出されるように変更する。

このシミュレーション結果は、図 7.73, 7.74のようになる。およそ 58日目に商品 0

(GOODSTYPE Goods0)が貨幣として選ばれ、310日目まで用いられるが、その後突

然崩壊してしまう。次に商品 39 (GOODSTYPE Goods39)が貨幣となるが、この商品

は 20日間貨幣であり続けた後に崩壊し、その座を商品 15 (GOODSTYPE Goods15)

に受け渡している。図 7.74を見ると、最初急激に閾値が落ちている。これは、貨幣的

商品がまだ生まれていない社会では、閾値の低い主体のほうがより効率よく自分の欲

する商品を入手・消費できることを表している。

123

 : EvolutionaryWorld

BEHAVIORTYPE_MaximumSearch : BehaviorType: MaximumSearchBehavior

AGENTTYPE_Agent : AgentType : Agent

BEHAVIORTYPE_RespondToSearch : BehaviorType: RespondToSearchBehavior

BEHAVIORTYPE_ExtendedDecideTrade : BehaviorType: ExtendedDecideTradeBehavior

BEHAVIORTYPE_RespondToDecideTrade : BehaviorType: RespondToDecideTradeBehavior

BEHAVIORTYPE_Exchange : BehaviorType: ExchangeBehavior

BEHAVIORTYPE_RespondToExchange : BehaviorType: RespondToExchangeBehavior

BEHAVIORTYPE_ConsumeAndProduce : BehaviorType: ConsumeAndProduceBehavior

BEHAVIORTYPE_ResetUtility : BehaviorType: ResetUtilityBehavior

RELATIONTYPE_ToAgent : RelationType : Relation

AGENTTYPE_Agent : AgentType : Agent

BEHAVIORTYPE_ChangeKnowledge : BehaviorType: ChangeKnowledgeBehavior

BEHAVIORTYPE_RespondToChangeKnowledge : BehaviorType: RespondToChangeKnowledgeBehavior

BEHAVIORTYPE_RespondToChangeThreshold : BehaviorType: RespondToChangeThresholdBehavior

BEHAVIORTYPE_ChangeThreshold : BehaviorType: ChangeThresholdBehavior

AGENTTYPE_EvolutionFunction : AgentType : Agent

RELATIONTYPE_ToAgent : RelationType : Relation

 : ComplexityOfMoneyModel

図 7.69: 進化的モデルの全体像

124

図 7.70: 進化的モデル: TimeEvent(奇数)のときのシーケンス図の一部

図 7.71: 進化的モデル: ChangeThresholdBehavior

125

図 7.72: 進化的モデル: RespondToChangeThresholdBehavior

図 7.73: 進化的モデル: 貨幣の市場性の推移

図 7.74: 進化的モデル:閾値の平均値の推移

126

7.4 SugarScapeモデル

Sugarscapeは、Epstein and Axtell (1996)によって提案・分析が行われた人工社

会モデルである。2次元セル空間の一部に、時間とともに再生する砂糖が配置されて

おり、その砂糖をエージェントが取得する。この Sugarscapeを直接的に表現するな

らば、エージェントは、環境 (空間に配置された砂糖)と相互作用することになるが、

BEFMでは、このようなモデルをそのまま記述することはできない。なぜなら、空間

に (どのエージェントにも所有されていない) Goodsを配置することや、その Goods

が自動的に変化することを表現できないからである。この制約が生じるのは、BEFM

が「時間経過とともに変化するものは、エージェントとしてモデル化する」という方

針を採っているためである。

空間に配置された砂糖が時間とともに再生することを表現するためには、次の二つ

の実現方法が考えられる。第一の方法は、2次元セル空間の全セルに、砂糖を生成・

保持するエージェントを配置するというものである。第二の方法は、2次元セル空間

上の砂糖を管理する環境エージェントを作成するという方法である。ここでは、実装

の容易さと実行負荷を考慮して、後者の方法によってモデル化することにする。

ここでは、Epstein and Axtell (1996)の中でも最も基本となる無限再生モデルを再

現することにしたい。

7.4.1 Sugarscapeモデル

Sugarscapeモデルの全体像は図 7.75のようになる。Epstein and Axtell (1996)に

おける「エージェント」を Agentエージェントとし、砂糖の山などの環境を制御する

エージェントを Environmentエージェントとする。Agentエージェントは、2次元セ

ル空間上の 1セルに存在し、時間とともに移動する。Environmentエージェントは、

セル上のどこにも存在しないが、Agentエージェントと関係を持ち、砂糖の取引を行

うことができる。Agentエージェントが配置される 2次元空間は、Spaceクラスを継承

した CellSpaceクラスを作成して表現する。モデルの初期設定で、エージェントが配

置される格子状で端がトーラスとなっているCellの空間を定義し、各Cellに Sugarと

いう財を配置する。CellSpaceクラスを用いて、Cellクラスと Agentクラスを関連付

けることによりエージェントのセルへの配置を表現する。また、この関連付けを変え

ることで、エージェントの移動を表現する。各セルの砂糖の量は、Environmentエー

ジェントのもつ FieldInformationによって保持される (図 7.76)。

このシミュレーションの流れは、次のようになる (図 7.77)。まず最初に TimeEvent

を受け取るのは、Priorityが高く設定されている Environmentエージェントである。

AddSugarBehavior (図 7.78)で TimeEventを受け取った Environmentエージェント

は、あらかじめ設定されているターンあたりの Sugarの回復量に応じて、セル上に配

127

 : SugarscapeWorld : SugarScapeModel

BEHAVIORTYPE_AddSugar : BehaviorType: AddSugarBehavior

AGENTTYPE_Environment : AgentType : Agent

BEHAVIORTYPE_Search : BehaviorType: SearchBehavior

BEHAVIORTYPE_SendSugar : BehaviorType: SendSugarBehavior

RELATIONTYPE_ToAgent : RelationType : Relation

AGENTTYPE_Agent : AgentType : Agent

BEHAVIORTYPE_MoveAndEat : BehaviorType: MoveAndEatBehavior

RELATIONTYPE_ToEnvironment : RelationType : Relation

図 7.75: Sugarscapeモデルの全体像

CellSpace

Cell
SSField

Information

**

Space World

AGENT_Environment

AGENT_Agent

*

1

図 7.76: Sugarscapeモデルのための CellSpaceクラス

置された Sugarの量を回復させる。

次にTimeEventを受け取るのは、Agentエージェントである。MoveAndEatBehavior

(図7.79)でTimeEventを受け取ったAgentエージェントは、自分の周囲のCellに Sugar

がどれだけあるのかを Environmentエージェントに質問する。

Environmentエージェントは、SearchBehavior (図 7.80)で質問を受け取り、Agent

エージェントの視界に応じて、周囲の Cellの Sugarの配置状況を答える。Agentエー

ジェントは、MoveAndEatBehaviorで返答を受け取り、Sugarが最も多いCellの方向

へ移動し、移動先の Cellに配置された Sugarを Environmentエージェントに要求す

る。Environmentエージェントは要求を SendSugarBehavior (図 7.81)で受け取ると、

Agentエージェントのいる Cellに配置されている Sugarをすべて渡す。Agentエー

ジェントは、MoveAndEatBehaviorで Sugarを受け取り、所有財としてもっておく。

128

図 7.77: Sugarscapeモデルのシーケンス図

図 7.78: Sugarscapeモデル: AddSugarBehavior

砂糖獲得後、Agentエージェントは、自分の代謝量に応じた Sugarを消費する。もし

Sugarが足りなければ、Agentエージェントは死亡し、モデル上から削除される。

このシミュレーションの結果は、図 7.82のようになる。最初、全体に散在していた

Agentエージェントは、時間が経つにつれて砂糖の山に集まってくる。また、山から

遠くにいた Agentエージェントは死亡してしまう。

129

図 7.79: Sugarscapeモデル: MoveAndEatBehavior

図 7.80: Sugarscapeモデル: SearchBehavior

図 7.81: Sugarscapeモデル: SendSugarBehavior

130

図 7.82: Sugarscapeモデル: シミュレーション結果

131

7.5 人工株式市場モデル

最後に取り上げるモデルは、Arthur et al. (1996); Palmer et al. (1994)の人工株式

市場モデルである。この人工株式市場では複数のトレーダーエージェントが、自分の

戦略に従って株を売買し、その結果として株の価格などの市場全体の動きが決まる。

そして結果に応じてエージェントは自分の戦略を適応的に変更していく。この研究で

は、「合理的期待論」に代替する新しい「進化経済学」のアプローチを展開しようとし

ている。このアプローチでは、得られる情報が不完全であり、かつ問題の文脈がわか

らない状況において、エージェントが学習しながら行動するというモデルを構成する。

ここでは、Informationで表した戦略によって振舞いが決まるモデルの例として、

Arthur et al. (1996)の人工株式市場を再現することにしたい。

7.5.1 人工株式市場モデル

このモデルの全体像は、図 7.83のようになる。市場には 1種類の株式があり、この

取引を StockExchangeエージェントが管理している。Traderエージェントは、各期

において自分の資産を、安全資産と株式に資産配分を行うが、株式保有者には各期ご

とに配当が与えられ、安全資産には各期ごとに利子がつく。これらを実現するために、

Companyエージェントと RiskFreeSecuritySupplierエージェントが存在する。また、

市場の状況を調べて伝えるための Pressエージェントがいる。

Traderエージェントは、それぞれがもつクラシファイアシステムによって予測・学

習を行う。クラシファイアシステム (Holland, 1986; Goldberg, 1989)は、強化学習

(Sutton and Barto, 1998)の一種であるため、行動の有効度を伝える報酬 (強化信号)

が必要となるだけで、最適な行動を直接的に指示するような教師信号を必要としない。

そのため、エージェントが複雑な環境に自律的に適応するためのメカニズムとして注

目されている。クラシファイアーシステムの条件部は市況を識別する。この市況は 12

桁の２進数で表される。

• 1-6：Currentprice× interestrate/dividend > 0.25,0.5,0.75,0.875, 1.0, 1.125

• 7-10：Currentprice > MA(t, 5),MA(t, 10),MA(t, 100),MA(t, 500)

• 11：always on 1

• 12：always on 0

但し、

MA(t,m) =
m−1∑
τ=0

p(t − τ)/m

である。

132

 : SFIStockMarketWorld : SFIStockMarketModel

AGENTTYPE_StockExchange : AgentType : Agent

 : Agent AGENTTYPE_Trader : AgentType

BEHAVIORTYPE_StockExchange : BehaviorType: StockExchangeBehavior

RELATIONTYPE_ToTrader

BEHAVIORTYPE_Trader : BehaviorType: TraderBehavior

 : Relation

RELATIONTYPE_ToCompany : Relation

 : Agent AGENTTYPE_Company : AgentType

BEHAVIORTYPE_Company : BehaviorType: CompanyBehavior

BEHAVIORTYPE_RiskFreeSecuritySupplier : BehaviorType: RiskFreeSecuritySupplierBehavior

 : Agent AGENTTYPE_RiskFreeSecuritySupplier : AgentType

RELATIONTYPE_ToSecuritySupplier : Relation

図 7.83: 人工株式市場モデルの全体像

クラシファイアーシステムの行動部は、その市場環境のもとでとるべき行動を示し

ている。行動部には predictors（予測部）と呼ばれる整数の組 (a, b)が出力として出

される。出された (a, b)を以下の線形予測式に代入することで、来期の予測を行うこ

とになる。

E[pt+1 + dt+1] = a(pt + dt) + b

多数の If Thenルールがあるとき、複数の If Thenルールが同時に起動する可能性

が出てくる。その際は、If Thenルール毎に与えられている強度に比例した確率でルー

ルを選択することになる。ルールの条件部と市場状況が合致するたびに、合致したす

べてのルールの強度を更新することで、学習が行われる。

このシミュレーションの流れは、次のようになる (図 7.84)。まず最初に TimeEvent

を受け取るのは、Priorityが一番高く設定されている StockExchangeエージェントで

ある。StockExchangeエージェントは、StockExchangeBehavior (図 7.85)によって、

すべてのTraderエージェントに売買注文を提示するように連絡する。Traderエージェ

ントは、連絡をTraderBehavior (図 7.86)で受け取ると、クラシファイアにもとづいて、

売買注文を StockExchangeエージェントに返答する。StockExhangeエージェントは、

すべての Traderエージェントから注文を受け取ると、売り注文と買い注文の量から、

133

今期の株価と各 Traderエージェントが実際に取引できる量を計算し、その結果を各

Traderエージェントに連絡する。Traderエージェントは、その結果をTraderBehavior

で受け取り、売り注文の場合は株を、買い注文の場合はお金を、StockExchangeエー

ジェントに支払う。StockExhangeエージェントは、Traderエージェントから送られ

てきたすべてのお金と株を集計し、先ほどの結果に準じた対価を各 Traderエージェ

ントに支払う。

取引が終わった後に、各Traderエージェントは、RiskFreeSecuritySupplierエージェ

ントに利子を要求する。RiskFreeSecuritySupplierエージェントは、RiskFreeSecuri-

tySupplierBehavior(図 7.87)で要求を受け取ると、Traderエージェントの保有する安

全資産の量に応じた利子を支払う。Traderエージェントは、TraderBehaviorで利子

を受け取る。

次に、各Traderエージェントは、Companyエージェントに配当金を要求する。Com-

panyエージェントは、CompanyBehavior(図 7.88)で要求を受け取ると、Traderエー

ジェントの持ち株数に応じた配当金を支払う。Traderエージェントは TraderBehavior

で配当金を受け取る。配当金を受け取った後、各Traderエージェントは、複数の条件

文が起動した場合の選ばれやすさを決める条件文の強度を更新する。

StockExchangeエージェントの次に TimeEventを受け取るのは、Priorityが 2番目

に高く設定されているCompanyエージェントである。Companyエージェントは、各

Traderエージェントに支払う配当金の額を切り替える。

最後に TimeEventを受け取って行動するのは、Priorityの最も低い Pressエージェ

ントである。TimeEventをPressBehaviorで受け取ったPressエージェントは、Stock-

Exchangeエージェントに過去の株価の推移について質問する。StockExchangeエー

ジェントは、質問を StockExhangeBehaviorで受け取ると、過去の株価の推移につい

て答え、Pressエージェントはその返答を記憶する。次に、Companyエージェントに

過去の配当金の推移について質問する。Companyエージェントは、質問をCompany-

Behaviorで受け取ると、過去の配当金の推移について答え、Pressエージェントはそ

の返答を記憶する。最後に、RiskFreeSecuritySupplierエージェントに安全資産の利

息について質問する。RiskFreeSecuritySupplierエージェントは、質問を RiskFreeSe-

curitySupplierBehaviorで受け取り、安全資産の利息について答え、Pressエージェン

トはその返答を記憶する。

その後、Pressエージェントは、現在の世界の状況をの 2進数の文字列に変換し、そ

れをすべての Traderエージェントに伝える。Traderエージェントは、ReceiveClassi-

fierBehaviorで連絡を受け取ると、それを現在の世界の状況として記憶しておく。

シミュレーションの結果は、図 7.89のようになる。

134

図 7.84: 人工株式市場モデルのシーケンス図

135

図 7.85: 人工株式市場モデル: StockExchangeBehavior

図 7.86: 人工株式市場モデル: TraderBehavior

図 7.87: 人工株式市場モデル: RiskFreeSecuritySupplierBehavior

136

図 7.88: 人工株式市場モデル: CompanyBehavior

図 7.89: 人工株式市場モデル: シミュレーションの実行画面

137

第8章 提案システムによる事例研究

本章では、独自の適用事例として、規格競争のモデルを取り上げたい。具体的には、

規格競争の典型といわれる家庭用 VCRの市場を、消費者の相互作用としてモデル化

し、その振舞いを分析する。このモデルでは、マーケティング・サイエンスや消費者

行動論などのモデルを用いてミクロレベルのモデル化を行うため、従来のマクロ集計

的なネットワーク外部性モデルでは行うことができなかった分析が可能となる。

8.1 家庭用VCRにおける規格競争

8.1.1 規格競争におけるネットワーク外部性の特徴

ある類似した機能を提供する製品において、複数の異なる規格が存在する場合に繰

り広げられる企業間 (または企業グループ間)の競争のことを規格競争という。一般の

製品とは異なり、規格競争では一つの規格が圧倒的なマーケットシェアを獲得すると

いう「ウィナー・テイク・オール現象 (一人勝ち現象)」(Frank and Cook, 1998)が起

こりやすい。そこには互換性という要因が引き起こす「ネットワーク外部性」(Katz

and Shapiro, 1985)が存在するからである。

外部性とは、市場での取引の結果が第三者に影響を及ぼすことをいう経済学の概念

であり、ネットワーク外部性とは、ネットワークの価値が参加人数によって決まると

いう外部性のことである (Katz and Shapiro, 1985)。ネットワーク外部性は必ずしも

物理的なネットワークで結ばれている必要はなく、互換性のない規格やソフトウェア

を媒介とした「見えないネットワーク」についても当てはまる。このような間接的な

ネットワーク外部性の典型的な例としては、家庭用 VCRにおける VHS方式と Beta

方式、オーディオ機器におけるDCC方式とMD方式、パソコンのオペレーティング

システムにおけるMac OSとWindowsなどがある。

ネットワーク外部性が存在する場合、消費者がその製品から得る効用は、その消費

者と製品との間で決まるのではなく、他の消費者の選択に依存して決まるという点に

特徴がある。その結果、シェアが優勢になった規格がますますシェアを高めるという

ポジティブ・フィードバックがはたらくことになり、一人勝ち現象を生み出すのであ

る (Arthur, 1994)。

139

(VHS方式と Beta方式のシェアのデータは累積の生産に関するも

のであり、文献 (Cusumano et al., 1992)より引用。そのソースは、

1976–83年に関しては日経ビジネス (1983年 6月 27日号)、1981–83

年に関しては日本経済新聞 (1984年 11月 21日)、1975年と 1985–

88 年に関しては JVC, Public Relations Dept.(Cusumano et al.,

1992))

図 8.1: 日本におけるVHS方式と Beta方式のマーケットシェアの推移

8.1.2 取り上げる事例の概要と特徴

本研究では規格競争の具体的な事例として、日本における家庭用ビデオカセットレ

コーダー (VCR: Video Cassette Recorder(70))の規格競争を取り上げる。家庭用VCR

は、1975年に Beta方式、1976年に VHS方式という異なる二つの方式が発売されて

以降、多くの企業を巻き込んだ激しい規格競争が繰り広げられた製品である。Beta方

式は VHS方式に比べて画像品質などの面で優れていると言われていたにもかかわら

ず(71)、結果的には VHS方式が圧倒的なマーケットシェアを占めるに至っている (図

8.1)。

家庭用 VCRは一般に「タイムシフト利用」と「ビデオソフト利用」という二つの

目的で用いられる (吉井, 2000)。タイムシフト利用とは、テレビの放送番組を録画し、

後で再生することである。具体的には、留守中に録画しておく「留守録」や、テレビ

番組を見ている最中に他局で放送されている別の番組を録画する「裏録」などがこれ

にあたり、時間に固定されているテレビ番組を時間的にシフトするために使用するこ

とである。基本的に自分で録画したものを後に再生することになるので、「製品利用

の自己完結性」(山田, 1993)が高く、VHS方式と Beta方式のどちらでも構わないと

いうことになる。また、録画したものを家族や友人と貸し借りをすることも考えられ

るが、市場での取引や流通は起きないため、最低限身近な人との互換性が保たれてい

140

ればよいことになる。

一方、ビデオソフト再生とは、セルやレンタルのビデオソフトを再生するという使

用方法である。市場で流通しているビデオソフトを購入または借用することになるの

で、自分の持っている家庭用VCRと同じ方式のビデオソフトを入手する必要がある。

そのため、消費者は市場に出回っているビデオソフトの方式を意識するようになり、

結果としてそのハードウェアである家庭用 VCRのシェアに関心を持たざるをえなく

なる (Katz and Shapiro, 1985)。

日本における家庭用 VCRの利用においては、普及の序盤ではタイムシフト利用が

ほとんどであったが、1980年半ばに主に二つの要因がきっかけとなり、ビデオソフト

再生が消費者の使用目的の中で重要な位置を占めるようになった。第一の要因は、セ

ルビデオの普及である。セルビデオは 1970年代から存在していたものの、高価であっ

たため利用者は限られていた。しかし、1984年にハリウッドの七大メジャー映画会社

が直接販売のために日本法人を設立し、セルビデオの普及のための低価格路線を歩ん

だことなどから、ビデオソフトを購入するという消費行動が消費者のなかに定着した。

第二の要因は、1983年にレンタルビデオが正式に許可されたことである。これを受け

て、後にみるように 1980年代半ばから 1990年頃にかけてレンタルビデオ店が急激に

増加している。このような状況になると、家庭用VCRの購入時の方式選択において、

市場における各方式のソフト流通量が重視されるようになり、市場の動向が購入の意

思決定に重要な影響を及ぼすことになったと考えられる(72)。

このような特徴をもつ規格競争は、「標準化」という観点から企業提携や経営戦略と

いう供給側の観点から多くの議論がなされてきており (伊丹および伊丹研究室, 1989;山

田, 1993; 淺羽, 1995; 山田, 1997)、複雑系経済学においても頻繁に取り上げられてい

る (Arthur, 1994)。しかし技術の選択は最終的には消費者に委ねられているため、そ

の現象を理解するためには消費者の選択という需要側にも着目する必要がある。特に

家庭用VCRの事例においては、その使用形態が普及の途中で変化したことに伴って、

方式選択に影響を及ぼす範囲が局所から大域へと変化していることから、視野が変化

する需要側モデルを扱うことが求められる。本論文では、市場全体の大域的なマーケッ

トシェアが効用を高めるという従来のネットワーク外部性の概念を拡張し、各消費者

を取り巻く局所的なシェアも方式選択に影響を及ぼすというモデルを提案する。

8.2 概念モデル

8.2.1 全体像

本論文で提案する人工市場は N 人の消費者エージェントから構成されている(73)。

消費者エージェントは、大域的状況を知るための情報源をもち、必要であれば各方式

の大域的なマーケットシェアを知ることができるとする(74)。また各消費者エージェン

141

トは他の消費者エージェントと局所的な関係をもっている。消費者エージェント iと

消費者エージェント jが関係をもつとき、その関係性の強さにより、エージェント間

関係は 0 < Rij≦ 1 の実数をとり、そうでないとき Rij = 0 と表現する。

本論文では市場構造を、消費者エージェントが一列に並んで配置される「一次元格

子市場構造」とし、終端がもう一方の終端とループ状に繋がっていると仮定する。す

なわち、エージェント iとエージェント jの関係性は以下のように設定される。

Ri,j =




1

if i − r≦ j≦ i + r, j �= i

0

otherwise

ただし、jの範囲は定義通り 0≦ j < N である。また、近傍範囲 rは片側の並びにお

ける関係人数であり、各消費者エージェントは (r × 2)人と関係をもっているという

ことになる。

シミュレーションは離散的な時間ステップに従って行われ、各消費者エージェント

は並行して動作する。一次元格子状の世界の場合、それを時系列に並べていくと、状

態遷移の歴史が一目で把握できるという利点がある。このような表示の仕方をここで

は、歴史的な遷移を含んだ地図という意味で「ヒストリカルマップ」表現と呼ぶこと

にする。

8.2.2 エージェント

内部モデルのプロセスに従って意思決定する消費者エージェントのモデル化にあたっ

ては、消費者行動論における先行研究が参考になる。ここでは、代表的なモデルの一

つである Engel-Blackwell-Miniard(EBM)モデル (Engel et al., 1995)を基本的な枠組

みとしてとりあげたい。EBMモデルは消費者の購買意思決定を初期状態から目標状

態に至る心的操作の系列とみなし、記憶や情報処理などの認知的なメカニズムによっ

て購買の過程を記述したものである。EBMモデルには、各フェーズにおける意思決

定のアルゴリズムなどは定義されていないため、包括的な枠組みを提供するための概

念モデルといえる。

本論文では、EBMモデルの欲求認識、情報探索、購買前代替案評価、購買、消費、

購買後代替評価、処分の七つの基本フェーズに基づいて各消費者エージェントの意思

決定プロセスを定義していくことにする。

欲求認識フェーズ

欲求認識は、イノベーションの普及家庭に基づいて行われる。このモデル化では、

市場に存在する消費者エージェントのうち、ある特定の割合のエージェントが家庭用

142

図 8.2: Rogersによるイノベーションの採用時期の採用者分布 (Rogers, 1982)

(家庭用 VCRの普及率は、経済企画庁 (1982–1996)より作成)

図 8.3: 日本における家庭用VCRの普及と Rogersの普及曲線の比較

VCR製品に対する欲求を認識する(75)。イノベーションの普及過程は、Rogers (1982)

によって 3000件以上の事例研究をもとにモデル化されており、日本における家電製

品の普及もこの普及モデルで記述できることが知られている。Rogersの普及モデルに

おいては、消費者は採用する時期によって先駆的採用者、初期採用者、前期多数採用

者、後期多数採用者、採用遅滞者に分類され (図 8.2)、これを累積で表すとシグモイ

ド関数となる。

Rogersの普及曲線を家庭用VCRの普及に照らし合わせてみると、普及率 d(t)は以

下のように近似できることがわかる (図 8.3)(76)。

d(t) =
1

1 + exp(−((t − 1975) − 10)/2)

ここで tは年を表している。

ここでのモデルでは、各時間ステップにおいて普及率 d(t)に見合う数の消費者エー

143

ジェントをランダムに選出し、欲求を認識させる。

情報探索フェーズ

欲求を認識したエージェントは、次に情報探索を行う。情報探索は大きく分けて外

部情報探索と内部情報探索に分けられるが、前者はエージェントの外部の情報の探索

を意味し、後者はエージェント内部にある好みや記憶などの情報の探索を意味してい

る。外部情報探索の結果、大域的なマーケットシェアとその消費者エージェントを取

り巻く局所的なシェアの情報を獲得する。時間 tにおける方式 jの大域的なマーケッ

トシェア Gj(t) は、

Gj(t) =




∑

0 ≦ k<N

Hkj(t)

∑

0 ≦ h<F

∑

0 ≦ k<N

Hkh(t)

if
∑

0 ≦ h<F

∑

0 ≦ k<N

Hkh(t) �= 0

0

otherwise

で与えられる。ここで、F は規格競争をする方式の総数である。また、Hij(t)は時間

tにおいてエージェント i が方式 jを所有しているかどうかを表し、所有していれば

Hij(t) = 1、所有していなければ Hij(t) = 0となる。エージェント iの方式 jの局所

的なシェア Lij(t)は、

Lij(t) =




∑

0 ≦ k<N,k �=i

(Hkj(t) · Ri,k)

∑

0 ≦ g<F

∑

0 ≦ k<N,k �=i

(Hkg(t) · Ri,k)

if
∑

0 ≦ g<F

∑

0 ≦ k<N,k �=i

(Hkg(t)

×Ri,k) �= 0

0

otherwise

で与えられる。さらに内部情報探索の結果、各エージェントは自分自身の各方式に対

する選好を得る。エージェント iの方式 jに対する選好 Pijは、0から 1までの実数値

とする。

144

購買前代替案評価フェーズ

欲求を認識した消費者エージェントは情報探索を行った後、その情報をもとに各方

式の評価を行う。ここでは、時間 tにおけるエージェント iの方式 jに対する効用を

計算するために、以下のような線形の効用関数 Uij(t)を仮定する。

Uij(t) = l × Lij(t) + g(t) × Gj(t) + p × Pij

ここで、lと p はシミュレーション開始時に設定される定数であり、それぞれ、局所

的なシェアと選好が効用におよぼす影響度を表している。g(t)は大域的なマーケット

シェアの影響度を表すものであるが、ここでは代替的な二つのモデルを用意する。

本論文で主に用いる「シグモイド型大域的影響度」のモデルでは、大域的影響度 g(t)

は以下のような時間 tの関数として定義される。

g(t) =
g′

1 + exp(−((t − 1975) − 7))

このシグモイド関数は 1983年付近から増加する曲線である。既に述べたように 1980

年代半ばのレンタルビデオの解禁や普及版セルビデオなどの影響によって、普及の途

中から大域的な互換性が重要になってきたことを表現しており、現実のビデオレンタ

ルショップの店舗数の推移に近似するように設定されている (図 8.4)。ここで、g′ は
g(t)の最大値を表しており、lと p と同様、シミュレーション開始時に設定される定

数である。

比較分析のための代替的なモデルである「定数型大域的影響度」モデルでは、大域

的影響度 g(t)は時間とは無関係な定数であると定義し、以下ように定義する。

g(t) = g′

ここで、g′ は大域的影響度を表す定数で、シミュレーション開始時に設定するもので
ある。

購買フェーズ

欲求認識した消費者エージェントは、情報探索で得た情報を用いて購買前代替案評

価を行い、その評価をもとに一方の方式を購入する。本論文では方式選択について代

替的な二つのモデルを用意する。

本論文で主に用いる「多項ロジット選択」モデルでは、購入時の方式選択を多項ロ

ジットモデルに従って確率的に行うとする。すなわち、エージェント iが方式 jを選

ぶ確率は

145

(レンタルショップの店舗数は電通総研 (1996)より)

図 8.4: レンタルビデオ店舗数の推移とそれに近似する Rogers普及曲線

Probij(t) =




exp(Uij(t))∑

0 ≦ k<F

exp(Uik(t))

if
∑

0 ≦ k<F

exp(Uik(t)) �= 0

0

otherwise

で与えられる (Luce and Suppes, 1965; Thiel, 1969)。この関数はマーケティング・サ

イエンスにおいて現実の購買選択との適合度が高いことが知られており、よく用いら

れているものである (片平, 1994; 片平および杉田, 1994; 清水, 1999)。

比較分析のための代替的なモデルである「効用最大化選択」モデルでは、効用が最

大となるように方式選択を行うとする。すなわち、エージェント iは、各方式に対す

る効用 Uij(t)を比較し、もっとも高い値の方式を選択する。

消費フェーズ

ここでは消費を明示的に扱わないため、消費に関するモデルは定義しない(77)。

146

AgentType

RecognizeVCRNeedsBehavior

ReplyFormatBehavior

PurchaseVCRBehavior

UseVCRBehavior

AGENTTYPE_Consumer

AGENTTYPE_DiffusionControlFunction PermitVCRNeedsBehavior

AGENTTYPE_Shop SellVCRBehavior

SurveyBehaviorAGENTTYPE_SurveyCompany

<<instanceOf>>

図 8.5: 規格競争モデルにおける AgentTypeと Behavior

GoodsType GOODSTYPE_VCR
<<instanceOf>> GOODSTYPE_Format1VCR

GOODSTYPE_Format2VCR

図 8.6: 規格競争モデルにおけるGoodsType

購買後代替案評価フェーズ

ここでは購買後代替案評価を明示的に扱わないため、購買後代替案評価に関するモ

デルは定義しない(78)。

処分フェーズ

本論文では処分に関連するモデルとして、製品の耐久性についての代替的な二つの

モデルを定義する。「有限耐久性」モデルでは、家庭用VCRの耐久性をD年とし、購

入から D年たつと故障するように設定する。そのため購入から D年経過した製品を

もつ消費者エージェントは、所持製品を処分し、初回と同じプロセスによって新たな

家庭用VCRを購入する。もう一方の「無限耐久性」モデルでは、家庭用VCRの耐久

性は無限であり故障することがないとする。この場合消費者エージェントは故障によ

る買い換えを行うことはない。

8.3 シミュレーションモデル

Behaviorの状態遷移は、図8.9から図8.15のようになる。シミュレーションの流れは、

以下のようになる。まず、Priorityが高く設定されている SurveyCompanyエージェン

トが、TimeEventを受信する (図 8.9)。このTimeEventを受けて、SurveyBehaviorで

は、調査対象者に対して使用規格を尋ねる。これを受けて、Consumerエージェントは、

ReplyFormatBehaviorで自分の持っている規格を返答する (図 8.10)。SurveyCompany

147

RelationType

RELATIONTYPE_DiffusionController

RELATIONTYPE_SurveyTarget

RELATIONTYPE_Friend

RELATIONTYPE_InformationSupplier

RELATIONTYPE_Seller

<<instanceOf>>

図 8.7: 規格競争モデルにおける RelationType

InformationType

INFORMATIONTYPE_FormatQuestion

INFORMATIONTYPE_FormatAnswerListRequest

INFORMATIONTYPE_NeedsPermissionRequest

OrderInformationINFORMATIONTYPE_Order

FormatAnswerInformationINFORMATIONTYPE_FormatAnswer

FormatAnswerListInformationINFORMATIONTYPE_FormatAnswerList

YesNoInformationINFORMATIONTYPE_NeedsPermission

<<instanceOf>>

図 8.8: 規格競争モデルにおける InformationType

エージェントは、すべての返答を受け取った後、各規格の市場シェアを計算する (図

8.9)。

次に、ConsumerエージェントがTimeEventを受信する。どの順番でConsumerエー

ジェントが TimeEventを受信するのかは、ランダムになっている。最初の段階では、

Consumerエージェントは、RecognizeVCRNeedsBehaviorと ReplyFormatBehavior

のみをもっている。RecognizeVCRNeedsBehaviorで TimeEventを受けると、Diffu-

sionControlFunctionエージェントに欲求許可を依頼する (図 8.11)。DiffusionControl-

Functionエージェントは、分析レベルでは登場しなかった設計レベルのエージェントで、

VCRの普及率を制御するための機能エージェントである(79)。Consumerエージェント

依頼を受けて、DiffusionControlFunctionエージェントは、PermitVCRNeedsBehavior

で、その可否を返答する (図 8.12)。Consumerエージェントの RecognizeVCRNeeds-

Behaviorは、許可されなかった場合には最初の待ち状態に戻り、許可された場合には

PurchaseVCRBehaviorを生成し、RecognizeVCRNeedsBehavior自らはその役割を終

え、消滅する (図 8.11)。

148

図 8.9: SurveyCompanyエージェントの SurveyBehavior

図 8.10: Consumerエージェントの ReplyFormatBehavior

図 8.11: Consumerエージェントの RecognizeVCRNeedsBehavior

149

図 8.12: DiffusionControlFunctionエージェントの PermitVCRNeedsBehavior

図 8.13: Consumerエージェントの PurchaseVCRBehavior

PurchaseVCRBehaviorが起動すると、早速自動遷移が実行され、SurveyCompany

エージェントに市場シェア情報を依頼する (図 8.13)。SurveyCompanyは、SurveyBe-

haviorで先ほど調べた市場シェアを返答する (図 8.9)。それを受けた Consumerエー

ジェントは、今度は知人全員に使用規格を尋ね (図 8.13)、知人 (これもConsumerエー

ジェント)が ReplyFormatBehaviorで返答する (図 8.10)。これらの情報をもとに、

Consumerエージェントはどの規格を買うかを決定し、Shopエージェントに注文を出

す (図 8.13)。Shopエージェントは、SellVCRBehaviorで注文をストックしていく (図

8.14)。

そして、すべての Consumerエージェントが TimeEventを受け取って行動した後、

Priorityが最も低いに Shopエージェントに TimeEventが送信される。Shopエージェ

ントは、ストックしていた注文の送信者全員に、VCRを配送していく (図 8.14)。VCR

を受け取ったConsumerエージェントは、UseVCRBehaviorを生成し、PurchaseVCR-

Behavior自らはその役割を終え、消滅する (図 8.13)。

Consumerエージェントは、次回からTimeEventを受けるたびに、UseVCRBehavior

150

図 8.14: Shopエージェントの SellVCRBehavior

図 8.15: Consumerエージェントの UseVCRBehavior

によってVCRを使用 (耐久残存年数が減少)していく (図8.15)。耐久残存年数が 0になっ

た場合には、その次の TimeEventを受信したときに、PurchaseVCRBehaviorを生成

し、UseVCRBehaviorが消滅する。ConsumerエージェントはPurchaseVCRBehavior

で、初回の購入と同じプロセスで VCRを再購入する (図 8.13)。

このモデル記述における特徴は、エージェントが必要に応じて、行動を追加したり

削除したりしている点である (図 8.16)。このような行動の追加・削除の意義は、モデ

ルの意味的側面と、シミュレーションの技術的側面がある。まず、モデルの意味的側面

とは、エージェントは欲求を認識した時点で初めてその商品の購入を行うため、その

時点で行動が生成される方が、より自然なモデルであるということである。また、技

術的側面というのは、すべてのエージェントが可能性のあるすべての行動をあらかじ

め持っているということは、メモリ使用が非効率となる可能性があるということであ

る。ただし、このことは、その度ごとに行動オブジェクトを生成する負荷とのトレー

ドオフになる。このモデルでは、市場にいる 1024エージェントのうち、ある時間ス

テップにおいて商品購買行動を行うのはほんの一部のエージェントであること、そし

て、その商品購買行動は 1回 (無限耐久性の場合)～数回 (有限耐久性の場合)にすぎな

いということから、必要に応じて行動オブジェクトを生成するという方法を採用して

いる。

151

: RecognizeVCRNeedsBehavior

: PurchaseVCRBehavior

: PurchaseVCRBehavior

: UseVCRBehavior

<< create >>

<< create >>

<< create >>

<< destroy >>

<< destroy >>

<< destroy >>

図 8.16: 規格競争モデルにおける Behaviorの動的な生成と消滅

152

図 8.17: BESP上での規格競争モデルのシミュレーション実行画面

8.4 シミュレーション結果

8.4.1 設定

ここでは、以下の設定で行ったシミュレーションの結果を紹介する(80)。まず、家庭

用VCRの事例では VHS方式と Beta方式の二方式の規格競争となるので、方式の総

数は F = 2となる。また、シミュレーション期間は t = 1975年から t = 1995年まで

とし、時間ステップは ∆t = 0.5年とする。家庭用VCRの耐久消費年数は約 7年とい

われているため (経済企画庁, 1982 – 1996)、有限耐久性の場合には耐久年数をD = 7

年とする。

市場を構成する消費者エージェントの数はN = 1024とする(81)。ここではエージェ

ント間関係における強度を設定せず、関係がある場合には 0、ない場合には 1をとる

とし、双方向Rij = Rjiとする(82)。これらはシミュレーションの開始時点で設定され

てから不変とする。さらに、消費者エージェントの選好の影響度を p = 1に設定し、

エージェント iの方式 jに対する選好 Pij は、各方式に差を設けず一様とし、シミュ

レーション開始時にランダムに決定する(83)。

シミュレーションは、分析したい設定について 40回実行し、その結果のすべても

しくは一部を用いて分析を行う。本論文においては二方式の間に本来的な差異を設け

ていないため、以下の分析では各規格競争シミュレーションにおいて最終的に大きな

マーケットシェアを獲得した方を「優位方式」として分析の対象とすることにしたい。

153

図 8.18: 近傍範囲 rを変化させた場合のマーケットシェア推移の比較［シグモイド型

大域影響度, 多項ロジット選択, 無限耐久性, l = 10, g′ = 10の場合］

8.4.2 基本的な振舞いの確認

具体的なシミュレーション分析に入る前に、一部の設定とモデルの振舞いとの関係

を把握しておくことにしよう。ここでは近傍範囲 rと耐久性についての基本的な特徴

を理解した上で、次節では近傍範囲を固定することにし、また耐久性についても片方

だけを取り上げることにしたい。

近傍範囲とマーケットシェアの関係

近傍範囲 rが優位方式のマーケットシェアの拡大にどのように影響しているかを調

べるために、近傍範囲 rを変化させた場合のそれぞれのシェアの推移を表すと図 8.18

のようになる。この図から近傍範囲が大きくなるほど、シェアの拡大が大きくなるこ

とがわかる。これは、近傍範囲が大きくなると、初期の採用者の決定がより多くの追

随者に影響を与えることになるため、初期のわずかな差異が大きく拡大することに起

因している。

自明なことであるが、局所的シェアが大域的シェアに近づくことは最終的には全エー

ジェントと関係をもつことになるため、すべての消費者エージェントの局所的シェア

が大域的なマーケットシェアに等しくなり、局所性は消滅する。

耐久性の有無とマーケットシェアの関係

無限耐久性と有限耐久性ではマーケットシェアの推移にどのような差異が生じるか

を調べると図 8.19のようになる。有限耐久性モデルでは購入から D = 7年経ったと

154

図 8.19: 耐久性の有無によるマーケットシェアの推移の変化［シグモイド型大域影響

度, 多項ロジット選択, r = 10, l = 0, g′ = 5の場合］

きに買い換えが発生するため、普及の後半において優位な方式がシェアを伸ばす結果

となる。この傾向は優位方式のシェアが大きいほど顕著になることが観察される。

8.4.3 マーケットシェアの推移と市場の状態遷移

マーケットシェアの推移を理解するために、市場状態の変化を観察し、マーケット

シェアとの関係を分析してみよう。図 8.20から図 8.23は、マーケットシェアの推移

と市場の状態遷移を表している。市場の状態遷移は、エージェント識別番号 i = 0～

139の部分のヒストリカルマップによって、時間 tの変化に伴う各エージェントの所

持方式の変化を示している。各セルは、そこに位置する消費者エージェントが方式 0

をもっている場合に黒色、方式 1をもっている場合に灰色、そして何も持っていない

場合に白色になる。ここでは、シグモイド型大域影響度, 多項ロジット選択, 無限耐久

性、近傍範囲 r = 10の場合の典型的な例を示す。

個人の選好のみに基づいて方式選択する場合には、マーケットシェアは初期の偏り

の後、約 50%に落ち着く (図 8.20)。これは、各消費者エージェントの選好 Pijが、乱

数によって初期化されていることに起因しており、大数の法則によっても納得がいく

結果である。ヒストリカルマップにおいても、各消費者エージェントがランダムに方

式を選択している様子が観察される。

次に、個人の選好のほかに、局所的なシェアも考慮に入れて方式選択する場合を見

てみよう (図 8.21)。マーケットシェアの推移を見る限りにおいては、個人の選好のみ

の場合と類似しているが、その具体的な状態遷移を調べると、大きく状況が異なって

いることがわかる。図 8.21のヒストリカルマップでは、地域ごとに採用されている

155

方式が分離するという「地域性」の発生が観察される。これは、各消費者エージェン

トは大域的なマーケットシェアを知ることなく、局所的なシェアに影響を受けるため、

地域ごとの先駆的革新者によってたまたま選択された方式が、周囲の初期採用者や前

期採用者の選択に影響を及ぼしていることによって生じている。このように、マクロ

集計量では同様に見える現象であっても、ミクロ的にみると差異が観察されることが

あり、ここにマルチエージェントモデルによってミクロ構造を明示的にモデル化する

意義を見いだすことができる。

個人の選好と大域的なマーケットシェアに基づいて方式選択する場合は図 8.22のよ

うになる。マーケットシェアは、後半になってから大域的影響度 g(t)のシグモイド関

数の影響で優位方式がシェアを拡大する。ヒストリカルマップをみると、小規模の地

域性が発生しているようにも見えるが、局所的影響の場合のような意味での地域性は

発生していない。なぜなら設定上局所的影響が存在しないため、各消費者エージェン

トの選択方式と地理的要因との間に相関はないからである。採用人数が多いために、

結果として同じ方式を選択した消費者エージェントが近接して位置しているにすぎな

いということである。

最後に、個人の選好、局所的なシェア、そして大域的なマーケットシェアに基づい

て方式選択を行う場合を見てみることにしよう (図 8.23)。ここでも局所的影響によっ

て引き起こされる地域性が観察される。しかも図 8.23のヒストリカルマップからわか

るように、地域性のクラスターが発生しており、このことが原因で優位方式の後半に

おけるシェア拡大が、大域的影響のみの場合に比べて抑制されていると考えられる。

8.4.4 局所的影響によるマーケットシェア抑制効果

局所的影響がある場合には、ない場合に比べて優位方式のマーケットシェアが若干

大きくなる。それと同時に、図 8.21および図 8.23では、局所的影響がある場合には

地域性が生じ、そのクラスターが防御壁となり優位方式のシェアの拡大傾向が抑えら

れるということも示唆された。ここでは、局所的影響によってマーケットシェアが抑

制されるという仮説を詳しく調べていくことにしよう。

図 8.24および図 8.25は、局所的影響度 lが 0から 20まで、大域的影響度 g′が 0か

ら 50までの整数値をとる場合の 1071(= 21 × 51)の各組み合せについてシミュレー

ションを行い、その優位方式の最終的なマーケットシェアを描いたものである。図 8.24

は無限耐久性の場合であり、図 8.25は有限耐久性の場合である。このような「最終

シェア・ランドスケープ」によって、局所的影響度と大域的影響度のパラメータ変化

にともなうシミュレーションの振舞いを容易に把握することができる。

局所的影響がない場合 (図 8.24と図 8.25において局所的影響度 l = 0の場合)には、

大域的影響度 g′が大きいほど最終シェアも大きくなっているのがわかる。しかし局所
的影響がある場合 (l > 0)には、ない場合に比べて最終シェアが大きくならないこと

156

がわかる。またその抑制の度合いは局所的影響度 lが大きいほど強くはたらいている

ことがわかる。

次に、大域的影響度を定義する「シグモイド型大域的影響度」モデルを「定数型大

域的影響度」モデルに入れ換えた場合と比較してみよう (図 8.26)。定数型大域的影響

度の場合にも大域的影響度 g′が大きいほど最終シェアは大きくなる。しかも定数型大
域的影響度の場合は大域的影響が序盤から影響を及ぼすため、局所的影響による地域

性が生じにくい。これに対しシグモイド型の場合には、大域的影響が効果をもちはじ

めたころにはすでに地域性が発生しているのでマーケットシェアの拡大が抑制されて

いるということがわかる。この分析により、家庭用 VCRのように普及の途中まで局

所的影響があるような規格競争においては、局所的な影響についても考慮する必要が

あるということが明らかになった。

157

図 8.20: 個人の選好のみに基づいて方式選択する場合のマーケットシェアの推移と市

場のヒストリカルマップ［シグモイド型大域影響度, 多項ロジット選択, 無限耐久性,

r = 10, l = 0, g′ = 0の場合］

158

図 8.21: 個人の選好および局所的なシェアに基づいて方式選択する場合のマーケット

シェアの推移と市場のヒストリカルマップ［シグモイド型大域影響度, 多項ロジット

選択, 無限耐久性, r = 10, l = 5, g′ = 0の場合］

159

図 8.22: 個人の選好および大域的なマーケットシェアに基づいて方式選択する場合の

マーケットシェアの推移と市場のヒストリカルマップ［シグモイド型大域影響度, 多

項ロジット選択, 無限耐久性, r = 10, l = 0, g′ = 5の場合］

160

図 8.23: 個人の選好、局所的なシェア、および大域的なマーケットシェアに基づいて

方式選択する場合のマーケットシェアの推移と市場のヒストリカルマップ［シグモイ

ド型大域影響度, 多項ロジット選択, 無限耐久性, r = 10, l = 5, g′ = 5の場合］

161

図 8.24: 最終シェア・ランドスケープ：局所的影響度 lと大域的影響度 g′のそれぞれ
の組み合せにおける優位方式の最終シェア［シグモイド型大域影響度, 多項ロジット

選択, 無限耐久性, r = 20の場合］

図 8.25: 最終シェア・ランドスケープ：局所的影響度 lと大域的影響度 g′のそれぞれ
の組み合せにおける優位方式の最終シェア［シグモイド型大域影響度, 多項ロジット

選択, 有限耐久性, r = 20の場合］

162

図 8.26: 大域的影響度に関するモデルの違いによる優位方式の最終シェア・ランドス

ケープの比較［多項ロジット選択, 有限耐久性, r = 20の場合］

163

図 8.27: 現実のデータとの適合度が高い設定におけるマーケットシェア推移例［シグ

モイド型大域影響度, 多項ロジット選択, 有限耐久性, r = 20, l = 10, g′ = 49の場合］

8.4.5 現実のデータへの適合

モデルやパラメータがどのような組み合せの場合に、現実に近いマーケットシェア

の推移が得られるのかを調べることにしよう。ここでは、現実に照らし合わせてより

適していると思われる「シグモイド型大域的影響度」と「有限耐久性」、そしてマー

ケティング・サイエンスの研究成果を踏まえた「多項ロジット選択」のモデルを用い

ることにする。その設定のもとで、特定化されていない局所的影響度 lと大域的影響

度 g′を変化させて適合度がどうなるかを観察する。
各設定について乱数の seedを変化させて 40回シミュレーションを実行し、その平

均と 95%信頼区間を算出する。評価に際しては、1976年から 1988年の現実のVHSの

マーケットシェアに関する年次データ (表 8.1)の 13項目のうち、信頼区間に入ってい

る個数をここでの適合度と定義する。

図 8.27は、適合度が 13となる初期設定におけるマーケットシェアの平均推移とそ

の信頼区間、および現実の VHSのマーケットシェア推移との関係を示している。ま

た図 8.28は、局所的影響度 lと大域的影響度 g′の組み合わせのそれぞれの場合の適
合度を表している。このような「フィットネス・ランドスケープ」(Wright, 1931)で

表現することにより、どのような値の組み合せのときに現実のデータに近くなるのか

ということが明確になる。

164

図 8.28: フィットネス・ランドスケープ：局所的影響度 lと大域的影響度 g′のそれぞ
れの組み合せにおけるシミュレーション結果の現実への適合度 (シミュレーション結

果の 95%信頼区間内に存在する現実の推移点の数)［シグモイド型大域影響度, 多項

ロジット選択, 有限耐久性, r = 20の場合］

表 8.1: 日本におけるVHS方式とBeta方式の累積マーケットシェアの推移 (Cusumano

et al., 1992)
年 VHS方式 Beta方式

1975 - 100

1976 36 64

1977 42 58

1978 52 48

1979 56 44

1980 61 39

1981 65 35

1982 68 32

1983 70 30

1984 74 26

1985 80 20

1986 84 16

1987 87 13

1988 89 11

165

図 8.29: 「シグモイド型大域的影響度」と「多項ロジット選択」の組み合せにおける

逆転現象の頻度［シグモイド型大域影響度, 多項ロジット選択, 有限耐久性, r = 20の

場合］

8.4.6 マーケットシェアの逆転現象

前節でのシミュレーション結果を、その平均ではなく個別に解析すると、約 3～4割

程度の割合でマーケットシェアの逆転現象が生じていることがわかった。つまり、規

格競争の序盤でマーケットシェアが他方より小さかった方式が中盤に逆転して優位方

式となることが観察されるのである。局所的影響度 lと大域的影響度 g′のそれぞれの
場合についてこの逆転現象がみられる頻度を表すと図 8.29のようになる。

ここで、このような逆転現象を生み出す原因を明らかにするため、大域的影響度を

定義する「シグモイド型大域的影響度」と「定数型大域的影響度」、そして購買にお

ける「多項ロジット選択」と「効用最大化選択」のそれぞれの組み合せの場合を比較

してみることにしよう。図 8.30から図 8.32をみると、どの組み合せの場合もほとん

ど逆転現象が起こっていないことがわかる。つまり、マーケットシェアの逆転現象は、

ある特定のモデル設定だけに起因するというのではなく、「シグモイド型大域的影響

度」と「多項ロジット選択」の二つのモデルの組み合せによって生じやすくなるとい

うことである。

この組み合わせからわかることは、序盤において局所的な影響だけを受けながら確

率的に方式選択する場合に逆転現象が生じ得るということである。序盤では製品を購

入している消費者が非常に少ないため、そのわずかな差は欲求認識する消費者の位置

や方式選択の偶然性によって簡単に覆される可能性があるのである。このような設定

の場合には、Arthur (1994)が指摘するような初期値の鋭敏性が必ずしも言えるわけ

ではないという結果となった(84)。また、普及の中盤以降では地域性の発生や大域的

なマーケットシェアの影響などにより逆転現象は起こらないため、規格競争の結果を

左右するのは、序盤の後半から中盤の始めにかけてであるということが示唆される。

166

図 8.30: 「定数型大域的影響度」と「効用最大化選択」の組み合せにおけるフィット

ネス・ランドスケープと逆転現象の頻度［定数型大域的影響度, 効用最大化選択, 有限

耐久性, r = 20の場合］

167

図 8.31: 「シグモイド型大域的影響度」と「効用最大化選択」の組み合せにおける

フィットネス・ランドスケープと逆転現象の頻度ランドスケープ［シグモイド型大域

影響度, 効用最大化選択, 有限耐久性, r = 20の場合］

168

図 8.32: 「定数型大域的影響度」と「多項ロジット選択」の組み合せにおけるフィッ

トネス・ランドスケープと逆転現象の頻度ランドスケープ［定数型大域的影響度, 多

項ロジット選択, 有限耐久性, r = 20の場合］

169

図 8.33: 逆転シミュレーションのみのフィットネス・ランドスケープ：局所的影響度

lと大域的影響度 g′のそれぞれの組み合せにおけるシミュレーション結果の現実への
適合度 (シミュレーション結果の 95%信頼区間内に存在する現実の推移点の数)［シグ

モイド型大域影響度, 多項ロジット選択, 有限耐久性, r = 20の場合］

マーケットシェアは数ではなく割合を表しているので、測定された時期によってその

実質的な意味が異なってくるということが分析の際に注意すべき点であるといえるだ

ろう。

逆転現象が生じたシミュレーション結果のみを用いて、信頼区間および適合度を再

度計算し、フィットネス・ランドスケープを描くと図 8.33のようになる。すべての結

果を対象とした図 8.28においては、結果の平均をとる際に序盤のばらつきが打ち消

されてしまうため、序盤の推移が現実のデータと乖離してしまい、適合度が最高でも

10であった。しかし、逆転現象の生じた結果のみを扱った図 8.33では、序盤の推移

も近くなるため、適合度が最高値の 13となる組み合せが観察された。本シミュレー

ションによって、方式間に差異がない場合でも、マーケットシェアの逆転も含めて現

実に近似したマーケットシェア推移を生み出すことが可能であるということが明らか

になった。

8.5 考察

本論文では、商品市場の研究を進める手始めとして、特徴的な規格競争の事例を取

り上げた。その中でも規格競争の事例として家庭用 VCRを取り上げた理由は、よく

知られた事例である上、以下の点で扱いやすい事例だからである。

• 競争が二方式で行われているため、消費者の認知において混乱が生じにくい (伊

丹および伊丹研究室, 1989)。

170

• どちらの方式も広告が盛んに行われており、消費者は両方式の製品ついて十分
認知している (山田, 1993)。

• どちらの方式の製品も店頭に複数並んでおり、自由に選択できる状況にある (山

田, 1993)。

• 高価な耐久消費財であるため、消費者の意思決定においてバラエティー・シー
キング(85)のような例外的行動が起きにくい。

• 互換性が決定的に重要であったため方式間の価格差があまり問題にならない。

• 耐久消費財であるため、買い直しの回数が少ない。

• 普及の過程において次世代映像機器との世代間規格競争が起こらなかった。

• 代表的な耐久消費財であるため、データや文献が比較的多く存在している。

このような特徴により、一般の商品市場が本来もつ複雑性の多くを単純化すること

ができた。その上で本論文では、モデルの作成において普及学やマーケティング・サ

イエンス、消費者行動論などの既存のモデルを用いて、モデル構築においても妥当性

に注意を払った。また本論文ではモデルの評価として、逆転現象などの定性的な特徴

と、現実のマーケットシェアとの定量的な比較を行った。

しかし、モデルの妥当性の検証に関しては、現実の年次データ 13点との関係で評価

したにすぎず、これだけでモデルが現実を説明しているということはできないだろう。

データが比較的得やすい特徴的な事例であるにもかかわらず、妥当性を主張するのに

必要なデータが圧倒的に不足しているという問題に直面した。以上のようなモデル構

築の際の妥当性の組み込みと評価データの確保ということは今後のシミュレーション

研究の課題として検討していく必要があるだろう。

同時に、社会シミュレーションの妥当性の検証を支えるものとして、ミクロレベル

のデータやアンケートなどを多面的に用いて評価していくという方法論の構築も必要

であると思われる。例えば、本論文で取り上げた家庭用 VCRを例にとると、家電製

品を購入する際の情報経路に関する調査結果 (Robertson, 1971)によって、マスコミュ

ニケーションは認知段階で強く影響し、パーソナルコミュニケーションが意思決定段

階に強く影響を及ぼしているということがわかっている。また、家庭用 VCRの購入

時の情報経路に関する調査結果 (廣島, 1985)では、家庭用 VCRの方式選択について

もパーソナルコミュニケーションが一つの重要な要因であったというデータが得られ

ている。このようなアンケート・データをどのようにモデル構築や妥当性の検証に用

いるのかということは、今後十分に議論されるべき問題であると思われる。

171

第9章 結言

本論文では、複雑系のシステム観に基づく社会・経済シミュレーションを作成するこ

と支援するために、オブジェクト指向計算モデルを導入し、モデル・フレームワーク

とシミュレーション・プラットフォーム、そしてモデル・パターンを提案した。

まず、複雑系としての社会・経済モデルを記述するためのモデル・フレームワーク

として、「Boxed Economy Foundation Model」を提案した。提案モデル・フレーム

ワークでは、新しい行動の追加・削除・組み換えなどを柔軟に行うことができるため、

狭義の複雑系のモデルの記述が可能となった。そして、シミュレーションの作成と実

行を支援するソフトウェアとして「Boxed Economy Simulation Platform」を提案し

た。提案シミュレーション・プラットフォームでは、コンポーネントベースのアーキ

テクチャを実現しているため、複雑系研究で行われる構成的手法を支援することがで

き、コンポーネントの再利用も可能となった。さらに、動的なモデルの構成方法のノ

ウハウを「モデル・パターン」としてまとめることを提案し、実際に 23のモデル・パ

ターンを提案した。これらの提案の有効性を明らかにするため、本論文では、代表的

な既存モデルと独自モデルに提案しシステムを適用した。これらのモデルは、行動の

組み換えやエージェントの生成等を伴う複雑系のモデルであり、これらを実際にモデ

ル化し、シミュレートしたことで本提案の有効性を実証した。

本論文を貫くひとつの基本思想は、小さな部分の組み合わせで、より複雑なモデル

を作るということである。「私たちの理解したい対象は部分に還元できない」というこ

とと、「そのモデルを部分の組み合わせで作成する」ということは、一見矛盾するよう

に思えるかもしれない。しかし、後者は、前者のようなモデルを作成するための工学

的な知恵であって、必ずしも矛盾するわけではない。私たち人間は、同時にすべてを

作成することはできないため、部分部分の作成の積み重ねで全体を作っていくほかな

い。しかしこのことは、全体が部分に還元できることを意味しているわけではない、

ということは強調してもし過ぎることはない。部分と部分は、全体を構成するために

不可分に結びついているのであり、それゆえ、モデル作成者に求められるのは、「全体

性を考慮しながら部分を作りこむ」ということである。このとき、あまりに小さい粒

度の部分に注目しなければならないとなると、全体との関係性を把握できなくなって

しまうだろう。そこで、詳細を隠蔽して扱うことができるモデル・フレームワークの

クラスや、さらにもう一つ大きなまとまりとしてのモデル・パターンが重要になるの

である。

173

本論文の成果は、複雑系と進化の社会科学に向けてのほんの一歩に過ぎないだろう。

しかし、今後具体的なモデルによる実証研究を行うとともに、本論文で提案してきた

ような研究基盤についても議論を重ね、さらなる発展をはかっていく必要がある。そ

のような刺激的な研究を、今後も多くの方とともに続けて行きたいと思う。

174

謝辞

本研究を遂行し、まとめるにあたって、実に多くの方にお世話になりました。この場

を借りて、感謝の意を述べさせていただきたいと思います。

まず、指導教官主査の武藤佳恭先生は、自由な雰囲気のもと、研究環境から学会発

表の支援まで、さまざまな面で見守っていてくださいました。そして、同じく主査と

もいえるほど指導・支援してくださったのが、竹中平蔵先生です。竹中先生は国務大

臣を務めるにあたり、最終的には副査から抜けることになりましたが、研究の初期段

階から実に多くの議論につきあっていただき、また研究環境の面でも支援していただ

きました。古川康一先生には、大学院プロジェクトを通じて助言をいただき、あたた

かく見守っていただきました。本論文の執筆に入るころ、「歴史に残る博士論文を。」

という励ましをいただいたことで、思い切って取り組めたように思います。大岩元先

生には、直接的な助言だけでなく、後に述べる技術的な協力者の方々の指導教官とし

ても間接的に多く助言をいただきました。小澤太郎先生には、修士のころから、折に

触れてアドバイスをいただきました。熊坂賢次先生は、「新しい考え方で世の中をみ

るには、分析装置も新しくないとね。」と、本論文の意義を指摘してくださいました。

本研究の後半戦は、千葉商科大学に勤めながら進めました。千葉商科大学学長の加

藤寛先生、政策情報学部長の井関利明先生には、研究環境の支援だけでなく、内容に

ついても助言をいただきました。また、同僚であり、同じく博士 (政策・メディア)を

目指す玉村雅敏さんと久保裕也さんには、幅広く議論していただいただけでなく、幾

度となく励ましの言葉をいただきました。

本論文の内容は、私が立ち上げ代表をしているBoxed Economy Projectのメンバー

との共同研究に多くを負っています。もともと社会・経済シミュレーションのフレー

ムワークとシミュレーション・プラットフォームの構築ということを掲げてはいたも

のの、それを現在の BEFMや BESPのようなきわめて洗練されたかたちで実現する

ことができたのは、中鉢欣秀さんの力が不可欠でした。そして、BESP の開発にあた

り、海保研さん、松澤芳昭さん、浅加浩太郎さん、青山希さんには、かなり力を注い

でいただき、設計思想や実装面での貢献ははかりしれないものがあります。また、上

橋賢一さん、津屋隆之介さん、田中潤一郎さん、高部陽平さん、廣兼賢治さんとは、

BEFMを作成するにあたり、かなり時間をかけて一緒に議論していただきました。特

に、上橋さんとは、社会科学における BEFMの役割・意義について、徹底的な議論

175

を行いました。また、津屋さんには、本論文の執筆の段階において、モデル作成や作

図などの点でも協力していただきました。そして、山田悠さんには、人工株式市場モ

デルの作成や科学哲学的な議論などにおいて協力していただきました。北野里美さん

と森久保晴美さんには、ビジネスとの接点や国際化に向けての準備などでお世話にな

りました。岡部明子さんには、モデル・パターンの作成や作図等で協力していただき

ました。そして、Boxed Economy Projectのメンバーではありませんが、島広樹さ

んと岩村拓哉さんとの議論や構想も、本研究の下敷きになっています。社会・経済シ

ミュレーション、ひいては社会科学に、オブジェクト指向、フレームワーク、プラッ

トフォーム、パターンなどを導入するという本研究の方向性が構想されたのも、島さ

ん、岩村さんとの議論を行った初期の段階でした。

学会においてさまざまな先生方に助言と叱咤激励をいただいたことは、本研究に大

きく影響しています。ここですべての方のお名前を挙げることはできませんが、その

中でも特にお世話になった方は、塩沢由典先生 (大阪市立大学)、寺野隆雄先生 (筑波

大学)、生天目章先生 (防衛大学)、出口弘先生 (東京工業大学)、松井啓之先生 (京都大

学)、和泉潔さん (産業技術総合研究所)である。また、進化経済学会の若手研究者の

方々、西部忠さん (北海道大学)、吉田雅明さん (専修大学)、橋本敬さん (北陸先端科

学技術大学院大学)、江頭進さん (小樽商科大学)、中島義裕さん (大阪市立大学)、篠

原修二さん (京都産業大学)、遠藤正寛さん (慶應義塾大学)、鈴木健さん (東京大学)、

吉地望さん (北海道大学)、澤辺紀生さんとも、有益な議論をさせていただきました。

武藤佳恭研究室の仲間、そしてノーベルコンピューティングプロジェクトの仲間に

は、いろいろとお世話になりました。特に、『複雑系入門』の共同執筆者である福原

義久さんや、吉池紀子さん、舘俊太さん、岡宗一さん、武田圭史さんには、博士論文

とそれに関連する提出書類のことについて、相談にのっていただきました。

本研究を遂行するにあたり、フジタ未来経営研究所から研究環境と多額の予算支援

をいただいています。藤田田名誉所長および藤田元所長をはじめとして、事務局と研

究員の皆様にはさまざまな面でお世話になりました。また、本研究の一部は、日本学

術振興会特別研究員 (DC1)時代に行ったものであり、文部省科学研究費補助金 (特別

研究員)の支援を受けています。また、何度かにわたる森泰吉郎記念研究振興基金の

支援、森基金国外学会発表経費補助、および高度科推進研究費をいただいて遂行され

ています。

最後に、父 亨と母 伎世子、弟 麗、そして妻 美穂は、研究生活のベースを支えてく

れました。

以上の皆様の助言・支援・協力・励ましに対し、深く感謝申し上げます。

井庭 崇

176

注

(1) 例えば、本論文の対象である複雑系に近い社会システム論を展開しているものに

公文 (1978); 公文 (1995)などがある。

(2) メタファーは、物事の類似性を間接的に暗示する。直喩が「Aは Bのような」と

いうのに対し、メタファー (隠喩)は「Aは Bである」という形式になる。経済

学におけるメタファーの重要性を指摘しているものに、Hodgson (1993); 塩野谷

(1998); 西部 (2000)などがある。

(3) システム論は、おもに生物を対象として、次のように変遷してきた (河本, 1995)。

まず、システム論の前身といえる有機体論と機械論がある。これらを受けて、シ

ステム論の第一世代といわれる「開放性の動的平衡システム」が登場する。この

システム観の代表的なものに、ホメオスタシス、サイバネティクス、一般均衡理

論がある。そこでは、システムが環境との相互交換を通じて境界を維持するとい

うシステムと環境の図式が取り入れられる。そして、次にシステム論の第二世

代といわれる「開放性の動的非平衡システム」が登場する。散逸構造、シナジェ

ティクス、ハイパーサイクルなどである。そして、システム論の第三世代といわ

れるのが、本論文のテーマとなる複雑系やオートポイエーシスである。

なお、この脚注を含む以降の理論変遷の整理において、各原典のほかに、富永

(1993)、富永 (1995)、新および中野 (1984)、Buckley (1967)、今田 (1986)、新

田 (1990)、浜嶋ほか (1997)、森岡ほか (1993)、飯尾 (1995)、徳安 (2000)を参

考にしている。

(4) 社会学が誕生した当初、社会をどのようなものとしてみるかという考え方には、

二つの流れがあった。一つが、社会を生物すなわち「有機体」としてみるという

ものである。そして、もう一つが社会を「機械」としてみるというものである。

どちらも、具象的な実在物をアナロジーとして用いている。この段階で、「シス

テム」という考え方の萌芽は見られたが、その概念が自覚的に用いられていたわ

けではないため、システム論には成り得ていない。

有機体的社会観では、社会を有機体と捉え、社会的分業を有機体の各器官の

相互依存とその機能分化に見立て、生物学・解剖学・生理学の概念で解釈する。

このような有機体のアナロジーは、古代ギリシア時代から行われてきたが、社会

理論としては、サン-シモンが唱え、社会学の創始者の一人であるコントが「社

177

会有機体」の語を創出し、個人や家族などが有機的に結びついて社会的全体が構

成されているとした。そして、イギリス社会学の創始者といわれるスペンサーが

独自の立場からこれを組織的に理論化した。社会は成長・分化・諸部分間の相互

依存・進化の点で社会と有機体は共通するとした。

18世紀末以降すでに展開されていた「生気論」では、生命現象をもたらすと

いう「生命力」を想定し、機械と一線を画そうとしたが、神秘的な力を仮構する

という点で、科学的な土壌にはなじまなかった。要素還元主義に陥らず、かつ神

秘的な力を仮構しないためには、どうすればよいか。この難題に対して突破口を

開いたのが、有機構成 (organization)という考え方である。物理・化学的な要素

が複合体を構成すると、要素単体では見られなかった新しい特性が生じるとする

のである。この考え方により、物理・化学と無理なく接続することができるが、

生命をその要素の物理・化学的性質に還元しないという道が開かれた。これが、

生物学が採用し、後にシステム論における階層性や創発の考え方につながる。

社会学が誕生した当時、よりどころとなるものがなかったため、その頃かな

り発展していた生物学や生理学にたよったのである。社会についての一般原理を

構築するのではなく、その原理を同様に具体化していると思われる有機体という

具体的な実体を、つねにメタファーとして用いた。つまり、社会と有機体には原

理上の平行関係があるとみなしたのが、そこにその二つの共通原理を抽象化し

たシステム一般といったものを定義していないという意味で、システム論にはな

り得ていない。しかし、この考え方は、社会学第二世代のデュルケームらによっ

て、社会の解剖学および生理学として受け継がれることになり、社会を諸機能の

相互連関としてとらえる考え方は、パーソンズの社会システム論に受け継がれる

ことになる。

これに対し、機械論的社会観は、人間の社会を機械として捉える社会観であ

る。そして、機械であるがゆえに、社会は物理学的な方法で解明することができ

るということを意味する。社会を機械とみなす考え方は、古くはホッブズ、デカ

ルト、スピノザなどに遡るが、18世紀の啓蒙思想において展開された。それは、

人間や社会も自然の原理によって説明しようとする企てである。19世紀の初期

の社会学においては、「社会物理学」「社会機械論」「社会エネルギー論」などの

名の下に展開されたが、それらの多くは表面的なアナロジーに終始して、社会現

象の理解にはあまり貢献しなかったといれている (Sorokin, 1928)。

この社会機械説の中で成功したのは、パレートである。パレートは、力学で発

展をとげた連立方程式体系を経済学で導入し、ワルラスとともに一般均衡理論を

確立したが、さらにその考え方を社会学に持ち込み、社会的均衡理論を生みだし

た (Pareto, 1916)。ここでシステムというのは、複数の要素が相互依存している

全体のことである。これの要素間の相互依存関係は方程式体系として表すことが

できる。その特徴は、作用と反作用の循環的波及の結果、最終的には均衡に収斂

178

するというものでる。この均衡の考え方は、経済学で現在までひとつの中心的な

柱となっているだけでなく、社会学でもホーマンズの社会的交換理論や合理的選

択理論に受け継がれている。

(5) パーソンズは、その初期の理論において、ホメオスタシス (恒常性維持)の考え

方を導入した (Parsons, 1951; Parsons, 1954)。ホメオスタシスとは、有機体で

発達している機能で、環境の変化に対して体内の状態を恒常的に保持するメカニ

ズムのことである (Cannon, 1932)。血液中の水や栄養素などを一定水準に保っ

たり、外気温にかかわらず体温を一定範囲に保ったりするメカニズムがこれに該

当する。このとき、機械論的な均衡とは異なり、外界との交換をする開いたシス

テムにおける恒常性を核心としている。

パーソンズは、ホメオスタシス原理を取り入れることで、その後展開されるこ

とになるサイバネティクスと一般システム理論と同様に、システム-環境図式の

視点を得ている。つまり、それまでに展開されていた社会有機体論や社会機械論

は、システムの内部 (部分と全体の関係性)に目を向けていたのに対し、パーソ

ンズの社会システム論では、システムとその外部 (環境)との関係に目が向けら

れている。

パーソンズは、心理学や経済学、政治学、人類学など社会諸科学の成果を取り

込むような「一般化された社会システム論」を構想した。パーソンズは、生物シ

ステムと社会システムの固有の分析方法として、物理的なシステムのものとは異

なる「構造-機能的システム」の考え方を打ち出した。パーソンズは生物学で発

達した「解剖学」と「生理学」に着目したのである。まず、解剖学から「構造」

の考え方を取り入れ、社会システムの構成要素間の関係のなかであまり変化し

ない部分を構造として捉えた。また、生理学から「機能」の考え方を取り入れ、

ある一定の構造のもとで社会システムの維持のために貢献するはたらきを機能

として捉えた。このように、パーソンズは、生物学から取り入れた構造と機能の

概念を接合して、機能によって構造を説明しようとした。これが、構造-機能分

析と呼ばれるものである。

(6) サイバネティクスとは、「舵手」(舵とり)を意味するギリシア語からつくられた

言葉である。1948年に、ウィーナーの『サイバネティクス: 動物と機械における

制御と通信』が出版されている。ウィーナーは、従来まったく異なる存在として

考えられてきた機械と生物を、情報伝達とそれを通じての制御の観点から、統一

的に捉えようとした。このことは、有機体特有と考えられていた機能作用が、機

械論の立場から理解できることを示したことになる。ここで注意が必要なのは、

ここでいう機械というのは、すでに述べたような古典的な機械論とは異なるとい

う点である。古典的な機械論では、機械とは熱機関のことであり、それがエネル

ギーの観点で捉えられていた (例えばハーヴェイは、心臓をポンプによって説明

179

した。また、デカルトは、心臓を一種の熱機関に見立てた)。これに対し、サイ

バネティクスでは、サーモスタットやミサイルなどの自己制御機械が取り上げら

れており、情報と制御の観点で機械が捉えられているのである。自己制御では、

アウトプットの一部を情報として再びインプットすることで、目標値との差異を

減らすように制御される。このフィードバック原理は、キャノンがホメオスタシ

ス原理として提唱したものと同様のものである。

ウィーナーは最初サイバネティクスを社会科学に適用することに対して、「こ

れはあまりに楽観的にすぎ、また科学の成果の本質の誤解によるものと思う」と

して消極的な態度をとっていたが、後に、サイバネティクスの社会科学への適用

を積極的に評価するようになった。

1956年には、アシュビーの『サイバネティクス入門』が出版される。アシュ

ビーは、シャノンとウィーバーの情報理論をサイバネティクスに接合し、システ

ム理論に高めるという貢献をしている。

(7) 一般システム論は、理論生物学者であるベルタランフィによって、従来有機体論

が主張してきた「全体は部分に還元できない」という考え方を統一的に把握する

立場として提唱された。それまでの機械論になかった有機体の特性、すなわち目

的の概念や、秩序、組織性などを取り込んだ。その際、物理学が閉鎖システムを

対象としていたのに対し、開放システムとして生物や社会を捉えるという視点に

力点が置かれた。

一般システム理論では、諸科学の専門分化によって各ディシプリンの知識が断

片化し、非効率になっている状況を解消するため、統一的な方法論によって統合

することが目指された。諸科学を横断するような一般的な概念枠組みが目指され

たため、抽象化したシステムを一般的・形式的に定式化しようとした。階層性と

創発の概念などを明示している点が重要である。

(8) 社会科学におけるサイバネティクスないし一般システム理論の導入は、社会学、

経済学、政治学などで行われたが、その効果は、それぞれの分野によって異なっ

ている。

社会学の場合には、パーソンズの社会システム論の展開が先にあったために、

サイバネティクスや一般システム理論はそれを補強するために導入された。し

かし後に、脱パーソンズの試みの中で、積極的に展開されることになる。社会シ

ステム論にサイバネティクスの考え方を導入しようとしたのは、バックレイであ

る。また、吉田民人は、サイバネティクスの枠組みを利用して、情報-資源処理

システムを打ち立てている。

経済学においても、経済サイバネティクスという名のもと、サイバネティク

スや一般システム理論の導入が試みられたが、主流派理論を補完するにとどまっ

た。この当時、経済学は、静学的均衡の安定性条件に焦点をあてたヒックスの

180

『価値と資本』と、静学的・動学的安定性条件を数学的に定式化したサミュエル

ソンの『経済分析の基礎』が刊行されている。後に、ランゲの経済サイバネティ

クス論やボールディングの経済システム論を経て、コルナイの『反均衡の経済

学』などにつながる。そのほか、日本における青木昌彦、村上泰亮、公文俊平な

どの経済システム論もある。

それまで確固とした理論枠組みをもたなかった政治学では、サイバネティクス

や一般システム理論の考え方が、政治学の概念用具としてストレートに導入され

た。その研究を先駆けて行ったドイチュやイーストンらは、その後の政治学の主

流の位置を占めることになる。

(9) システムにおける階層生成のメカニズムは、自己組織化を考えるうえで避けて通

ることのできない問題である。第二世代のシステム論では、この階層生成が取り

上げられる。すでに存在する階層の関係が問われるのではなく、無秩序の状態か

ら秩序が形成されるメカニズムがその探究の対象なのである。

第一世代のシステム論では、構造が維持されるメカニズムに着目しているた

め、構造変動にいたる過程の理論化を断念せざるを得なかった。本来、逸脱の

なかには、社会変動を引き起こす原動力となるようなものも含まれているので、

パーソンズのいうように、「社会システムの変動の過程についての一般理論は、

現在の知識の状態においては不可能である」ということになったのである。階層

性をもった機能システムでは、上位の機能の生成について考えることができない

ということがある。それは、機能という概念が、システムの作動を考慮しなくて

すむために、システムの作動の結果を特徴づけるものとして導入されたものだか

らである。

第二世代のシステム論には、プリゴジンらによる持続的な秩序の形成を行う

「散逸構造」や、ハーケンの多数の要素の協同現象による自己組織化などがある。

これらはどちらも、熱平衡から遠く離れた開放系におけるパターン形成を扱う点

で共通点をもっている。また、アイゲンは、生成プロセスを持続させる「自己触

媒」メカニズムやハイパーサイクルについて研究している。

(10) 熱力学の立場から階層生成を論じたのが、I.プリゴジンである (Nicolis and Pri-

gogine, 1977; Prigogine, 1981)。古典的な熱力学では熱平衡状態にある系の性質

を調べるが、プリゴジンは、平衡から大きく離れた非平衡状態において安定に維

持される構造を調べ、それを「散逸構造」と呼んだ。

それまでは、ゆらぎや攪乱はシステムを均衡から逸脱させるものであり、それ

ゆえに制御の対象とされてきたが、散逸構造の理論では、それらを新たな秩序が

生まれる契機だと捉える。プリゴジンの言葉でいうならば、「「構造」は常に不

安定性の結果として出現する」(『構造・安定性・ゆらぎ』)のである。このよう

な散逸構造の形成や維持のためには、その非平衡状態を保ち続けるために、エ

181

ネルギーや物質の不断の流れが必要となる。つまり、開放系でなければならず、

外界とのエネルギーや物質の交換による動的な秩序であるといえる。

散逸構造の例として代表的なのは、ベロウソフ-ザボチンスキー反応の化学反

応系や、ベナール不安定性を示す熱対流系などの流体力学系、ロトカ・ボルテラ

の捕食・被食モデルの生態系などである。

(11) H. ハーケンも、非平衡熱力学と物性物理の立場から、物理、化学、生物系にお

ける相転移と自己組織化のモデルを示し、その一般原理を探ろうとする「シナ

ジェティクス」という分野を創始した (Haken, 1978)。相転移の際に、要素が協

調的な特殊な振る舞いをみせることを「協同現象」と呼んだ。協働現象の典型例

としては、レーザー光の発生、ベロウソフ-ザボチンスキー反応、流体パターン

などがあげられる。

ベロウソフ-ザボチンスキー反応では、反応の最初の物質が、いくつかの化学

反応の結果、産物として再度登場する。そのため再び同じ反応が進行し、生成プ

ロセスの連鎖が循環的に繰り返される。この円環的生成プロセスは、動的に安定

しており、一つの階層をなしているととらえることができる。

このシナジェティクスの考え方を社会学に適用し、複雑な社会現象を扱ったの

は、Weidlich and Haag (1983)である。彼らは、人間社会が多数の個人で構成

されており、互いに相互作用するほか、外部環境とも相互作用しているとし、物

理・化学的なシステムとの共通点を示した。「社会も多数の構成員からなってい

て、それぞれ異なった”態度 (attitude)”なり行動の”状態 (state)”をとる。さらに

社会の全体としての変動は個々の構成員のとる態度なり行動状態の変化に関連

している。そして、社会の全体としての状況の変化は、やはり適切な巨視変数例

えば社会の構成員のグループの平均的態度を表すような量を導入することによっ

て記述される。」(Weidlich and Haag, 1983)。このシナジェティクスの社会モデ

ルは、社会シミュレーションの分野では、マルチレベルシミュレーションとして

取り組まれている。

(12) 「相互作用」という言葉から明らかなように、ここでの定義には、
•
複

•
数の構成要

素の存在が不可欠である。「複雑系」を掲げる文献のなかには、単にカオス現象

がみられるシステムのことを複雑系と呼ぶものがあるが、本論文ではそのような

システムを複雑系と捉えることはしない。その理由は、金子および津田 (1996)

における次の文章が端的に述べてくれている。「われわれは、一見複雑に見える

ものを何でも複雑系だというきわめて寛容な態度はとらない。複雑系だとあえて

呼ばなければならない必然性が存在すると思えるからである」(金子および津田,

1996, p.1)。単にカオスが見られるということであれば、カオスシステムもしくは

非線形システムと呼べばよいのであり、わざわざ複雑系という名称を用いる必要

はない。例えば、ロジスティック方程式 Xn+1 = aXn(1−Xn)は、a > 3.5699456

182

のときにカオス的な振舞いをするが、この式 (システム)を複雑系と呼ぶことは、

私には適切だとは思えない。このようなシステムを対象としないという意味で

も、本論文の定義では、「複雑系というシステムでは、その構成要素 (サブシス

テム)が相互作用する」という限定を置くことにする。ただし、この限定は、複

雑系におけるカオスの重要性を必ずしも否定するものではないということに注

意が必要である。例えば、
•
構

•
成

•
要

•
素

•
がカオス生成メカニズムを備えたシステムの

研究は、今後もさらに重要になると思われる。このようなカオス結合系は、それ

ぞれの構成要素が内部状態とその変化ルールをもっているという点で、広義の複

雑系である。このようなシステムの特性については、金子および津田 (1996)を

参照のこと。

(13) 例えば、村上 (1997, p.16)は、「社会の基本単位である個人は決してアトムでは

ありえない」と指摘している。なお、社会システム以外にも、内部状態をもつ構

成要素として捉える視点が重要だといわれているのが、生命システムである。金

子および池上 (1998, p.4)は、生命システムを記述しようとすると、「ある種の内

部自由度あるいは外部からの決定不能性が要素に要求される」(金子および池上,

1998, p.4)とし、「内部状態を持った系の相互作用系の構図は最低限必要」(金子

および池上, 1998, p.8)であると主張している。ここで、そのような要素を、物

理学的な「要素」と区別する意味で「主体」と呼ぶ方がよいのではないかと指摘

している点も興味深い。

(14) これに対し、他律とは、外部から他の原理が持ち込まれ、それによって動かされ

るということである。

(15) 広義と狭義の複雑系の理解を深めるために、分散人工知能やゲーム論に関わって

いる研究者の中で、コンピュータシミュレーションを使用した分析方法として普

及してきてきたのが、エージェントベースシミュレーションである。エージェン

トベースシミュレーションは、分散人工知能におけるマルチエージェントモデル

がベースとなり、複数のエージェントが集まった集団による行動の振舞いを分析

するものである。個々の構成要素に単位を落とした分析により、経済学などが主

に進めてきたマクロ分析的アプローチでは解き明かせなかった現象を観察する

ことに主眼を置いている。マルチエージェントはもともとネットワークシステム

の制御や分散処理の最適化に適用が期待されて研究が行われてきたが、分散的

に配置されたエージェントが大局的には協調するという観点 (自律分散協調)が、

複雑系のテーマとも類似していることから、社会分析への応用としても研究が進

められた。

エージェントシミュレーションは複雑系のシステム観を具体化し分析するため

の手段と捉えることができるので、本論文では、主題的に取り上げることはせ

ず、複雑系の概念の枠内でエージェントベースシミュレーションについて参照す

183

ることにする。

(16) 近代経済学の批判と再構築を行ったヴェブレンは、歴史的な累積的変化に着目す

る必要があると指摘した。「人々の総体に共通のものとして定着した思考の習慣」

(『現代文明における社会の地位』1919年)としての「制度」に着目し、それが

進化すると考えた。この 2つの指摘が、ヴェブレンが進化経済学の記念碑的位置

を占めるとともに、制度派のはじまりの位置を占めている理由である。

(17) カーネギー学派の J・G・マーチと H・A・サイモンなどは、企業の役割構造を

プログラム化されたルーティンのゆるやかな連結であると捉えた。しかし、その

後、「意思決定問題を、プログラム化されたルール集合をもつ主体による、ルー

ル自体の変更をも含む活動として捉え、これを分析するアプローチは意思決定論

の中では発展してこなかった」(出口, 2000, p.28)。しかし、プログラムやルー

ル集合としてシステムを捉えるということは、人工知能や人工生命の分野で研究

されてきた。

(18) 訳は江頭 (2002, p.69)による

(19) ネルソンは、このような進化的な視点をもつに至った理由を次のように語ってお

り、観察にもとづくものであることを強調している。「少なくとも私自身につい

て述べれば、私は生物学に魅せられたために経済的変化の進化的理論に引きつ

けられたのではありません。むしろ、私は経済変化の過程を観察したことによっ

て、そこで進行しているのが現存する複数の変異からの選択と新しい代替的変異

の発生の組合せであるということを強く示唆されたのです」(Nelson, 1998, p.7)。

(20) 実は、そのルーティンの改良のメカニズムもまた、高次のルーティンによって行

われることも多い (Nelson and Winter, 1982)。

(21) 社会のリアリティの問題については、これまで客観や主観に基づいた捉え方に

よる様々な表現で試みられてきたが、橋爪 (2000)は「この試みを純化しようと

すれば、唯物論と現象学のふたつの文体」に分けることができるという。唯物論

(materialism)は、世界について物質の根源性を主張し、それらが人間の意識の

外に独立に存在すると考える。また、精神・意識などは物質にもとづいて成立す

るとされ、人間も社会も自然現象と同様の科学的な態度で解明できるとする。こ

れに対し、現象学 (phenomenology)は、人間の経験にかかわらず世界そのもの

が客観的に存在すると考える自然的態度に対して、世界の現われを人間の意識の

側に「還元」する。つまり、物理的・生理的過程を問題とするのではなく、私た

ちの経験そのものの内部に踏みとどまるのである。

これらの二つの捉え方は互いに対立するものである。しかも、どちらも他方を

排斥することもできない上、折衷したり包摂することもできない。どちらのリア

リティも私たちの社会的現実の一面を捉えているように思われるのだが、純粋な

184

かたちでは唯物論も現象学も社会のリアリティを捉え切ることはできないので

ある。そこで橋爪 (1978)は、このような「唯物論的リアリティ」と「現象学的

リアリティ」という社会的現実の相を「ダブル・リアリティ(二重の現実性)」と

してみることを提案した。そしてこの二重のリアリティが社会の成立にとって根

本的であるとし、「社会理論が解かねばならない問題の核心も、まさにそこにあ

る」(Ibid., p.2)とした。経済や政治、言語などの社会現象は、このふたつのリ

アリティが交錯するところで生起しているというわけである。

ダブル・リアリティの経済社会の模式図

個人は、それぞれの視野において周囲の空間についての了解を構成する。し

かし、個人の感じる現象学的リアリティというのは、全体空間の単なる一部分な

のではない。単に世界の局所を経験するというのではなく、個人的な「意味の世

界」を構成しそれを経験するのである。また、この世界における個人は、決して

全体空間を見ることはできない。せいぜいできることは、私たちが普段してい

るように、この全体空間を「社会」や「世界」などの言葉や概念によって「『全

体』として見出し、個々の身体の近傍に開ける空間をその内部の『部分』として

了解する」(若林, 1995, p.32)ことだけである。それぞれの主体が現象学的リア

リティを個別的に経験するときには、その「まなざし」が主体に属しているとい

うことが重要である。それゆえ、各エージェントの感じる現象学的リアリティは

必ずしも他者のものと整合的であるとは限らないということになる。複雑系とし

ての社会・経済の記述は、このようなダブル・リアリティをもったモデルの構築

を目指すことになる。

実はこの問題は、Giddens (1976)の指摘する社会科学における「二重の解釈

学」の問題とも関係が深い。社会科学の対象は、「認識する主体」であり「自ら思

考する主体」であるため、その認識や思考もモデル化しなければならないという

ことになる。「オブジェクト・レベルにあった客体を、自ら思考する
サブジェクト

主 体 とし

て描き出さなければならない」(Giddens, 2002, p.161)のである。それゆえ、対

象自身の解釈とそれを研究する社会科学者の解釈の二重構造が存在し、「二重の

185

解釈学」になる。「社会科学では、自然科学とは異なり、この厄介な存在をなん

とかきちんと理論化しなければならない」(今田, 1986, p.206)ということから、

広義の複雑系のようなモデル化が、社会科学において不可欠となるのである。

社会科学における二重の解釈学

(22) 吉田民人は、自己組織性の概念を、物理科学の系譜、生物科学の系譜、社会科

学の系譜といった３つのタイプに分類している (吉田, 1990)。物理科学の系譜と

はプリゴジンらの散逸構造理論、生物科学の系譜とはマトゥラーナとヴァレラの

オートポイエーシス理論、社会科学の系譜とは社会学的構造-機能理論や弁証法

的発想である。このうち、後者の２つのタイプは、「プログラムによる制御」が

あるという点で、物理科学の自己組織性とは一線を画していると指摘している。

また、Wallerstein (1996)は、社会科学の分析にとって複雑系の分析が重要であ

ることを指摘しているなかで、このことを的確に述べている。「歴史上の社会シ

ステム [史的社会システム]は、多数の相互作用的な諸単位から構成され、重な

りあった階層的な組織や構造ならびに複雑な時空行動の出現と進化によって特徴

づけられる。さらにまた、固定的で顕微鏡的な相互作用メカニズムをもつ非線形

動学システムによって表されるたぐいの複雑性に加えて、歴史上の社会システム

は、その経験の結果として、内部的な適応と学習のできる個体的要素から構成さ

れている。そこから、新しいレベルの複雑性 (進化生物学や生態学と共通する複

雑性)がつけ加わるが、それは伝統的な物理系に関する非線形力学の複雑性を超

えるものである。」(Wallerstein, 1996, 邦訳 p.121)。

(23) 解析的には解けない問題に対するシミュレーションの適用の効果を表す典型的な

例がカオスのシステムである。たとえば、次の非線形方程式は、すっきりとした

形をしているにもかからわず、解析的な一般解は知られていない。

dx

dt
= −10x + 10y

dy

dt
= 28x − y − xz

dz

dt
= xy − 8

3
z

186

しかし、この式に対し、何か適当な初期値を与えて、相空間での x、y、zの

変化の軌跡を追っていくことによって理解することができる。変数が x、y、zの

三つなので、3次元の相空間を考え、x、y、zの初期値を与え、得られて各変数

の変化量から次のステップの x、y、zを求め、相空間にその軌跡を描いていく。

このようにすることで、一般解を得るということとは別の仕方で、このシステム

を理解することができる。

(24) 計算科学 (computational science)は、計算機科学 (computer science)とは異な

ることに注意が必要である。計算機科学では、コンピュータそのものに関する

研究が行われるが、計算科学では、コンピュータは探求の対象ではなく手段と

なる。

(25) モデルの動きの振舞いには、変数化することが非常に困難なものがあり、そのよ

うな特徴を理解するためには、シミュレーションを行う以外に方法がない場合

がある。例えば、岩村拓哉との共同研究 (岩村ほか, 1998; Iwamura et al., 1999)

は、その点を理解するのにわかりやすい例となる。

このモデルでは、2次元セル上の蟻のコロニーにおける人工蟻の行動の進化を

シミュレートしたものである。蟻の行動は、入力刺激を階層型のニューラルネッ

トワークにインプットすることで決定される。入力には、自分の周囲のセルの状

態や自分の内部状態、過去の出力の再入力などがある。出力には、「右を向く」

「前に進む」「フェロモンを置く」などの動作が割り当てられており、これらの組

み合せで行動が決定される。ニューラルネットワークの結合重みは、蟻の遺伝子

187

からマッピングされ、その世代内で変更されることはない (つまり、誤差逆伝播

による学習などは行われない)。コロニー内のすべての蟻は、すべて同じ結合重

みをもっている (同じ行動規則をもっている)。

蟻は、自らも砂糖を消費してエネルギーを回復させ、エネルギーがゼロになる

と死んでしまう。蟻は幼虫に砂糖を運ぶのだが、その結果と最終的に生き残って

いる蟻のエネルギー総量で適応度が決まる。進化は、蟻の個体レベルではなく、

コロニーレベルで行われる。すなわち、複数のコロニーのなかで、適応度が高い

コロニーの遺伝子を交叉して、新しいコロニーをつくることになる。この進化に

は、遺伝的アルゴリズムを用いて、突然変異も組み込む。

進化の過程を通じて、コロニーごとにさまざまな振舞いが観察される。例え

ば、セル空間の四隅に必ず砂糖の山が配置される静的環境においては、セル空間

の四隅と中心との間を行き来する蟻のコロニーが生じる。また、どこに砂糖の山

が配置されるかわからない動的環境においては、広い空間を探索する探索型の蟻

のコロニーが出現している。壁をうまく回避しつつ広域の探索をする蟻のコロ

ニーや、列を組んで砂糖の連続的な獲得を行う蟻のコロニーなども現れている。

また、興味深いことに、記号の意味の創発についても観察されている。この蟻

は、環境にフェロモンを置くことと、そのフェロモンを感知することができるが、

そのフェロモンが何を意味するのかは、モデルの設定では定めていない。進化の

188

過程において、その意味が規定され、それをコミュニケーションの手段に用いる

蟻のコロニーが出現している。まず、第一のタイプは、すでに配置されたフェロ

モンを避けて移動するというものである。この場合は、「ここはすでに探索済み

だから、ほかを探索してくれ」という意味で、フェロモンを用いていると考える

ことができる。これに対し、第二のタイプは、すでに配置されたフェロモンの中

を移動するというものである。この場合には、「この周辺に砂糖がある」という

意味で、フェロモンを用いていると考えることができる。というのは、フェロモ

ンは時間が経つと消えてしまうため、フェロモンが残っているということは、最

近まで蟻がその周辺にいたことを表している。また、蟻は砂糖がなければ死ん

でしまうので、蟻が生きているということは、その周辺に砂糖があることを表

しているのである。このように、コロニーによって、まったく違う記号の意味を

創発していることになる。コロニーによって、異なる進化を遂げることからも、

歴史性をもっているともいえる。

以上のようなモデルの振舞いは、変数の変化によって把握できるような類の

ものではなく、実際に動きをみてみないとわからないものである。このような例

からも、シミュレーションによる振舞いの観察の効果がわかるだろう。

(26) 一般に、欠陥除去率は「業界トップ」のソフトウェア開発会社で 95%、後進的な

企業では 70%を越えることはめったにないというのが実情のようである (Jones,

1996)。

(27) これまでにも、エージェントベース経済モデルのシミュレーション研究のため

のツールや言語が開発されてきた (Minar et al., 1996; Parker, 2001; RePast,

; Gulyas et al., 1999; 玉田, 2001)。しかし、これらはモデル部品の再利用を促

進させるということにはつながっていない。モデル部品の再利用性を実現する

ためには、ドメインに特化したモデル化の指針と枠組みが必要であるが (岩村ほ

か, 1999; 井庭ほか, 2000)、これらのツールや言語では、分子相互作用や生態系

などを含むマルチエージェントモデル全般を支援するという汎用性に重点が置

かれている。また、分析・表示ツールの共有や、プログラム記述量の減少などを

目的としているものもある。

189

(28) プログラム部品の再利用が行われていない大きな原因は、そもそも再利用可能な

プログラム部品が存在しないということが挙げられる。あるプログラム部品が再

利用可能であるためには、独立性をもったモジュールに切り分けられていなけれ

ばならず、その上でそれが汎用性をもっている必要がある。そのため、再利用可

能なコンポーネントを作成する側にも、それを利用する側にも負担が生じること

になる。まず、プログラム部品を作成する側にとっては、通常の開発よりも初期

開発にコストがかかるため、特別な理由がないかぎりは、再利用可能なプログラ

ム部品を作成するというインセンティブは生じない (Jacobson et al. (1997)の

推定によると、再利用可能なコンポーネントは通常より 1.5倍から 3倍のコスト

がかかり、そのコストを回収するために 3回から 5回使用される必要があるとい

う)。そして再利用する側にとっても、モデルのプログラム部品の再利用には躊

躇が伴う。なぜなら、再利用する場合には、自分の作成しているプログラムと既

存のプログラム部品との間にプログラミング言語やプロトコルの互換性がなけ

ればならず、さらにはモデルの粒度や要素の分類基準なども同じである必要があ

るからである。

再利用可能なコンポーネントの必要性や重要性にもかかわらず、以上のような

二重の負担が生じてしまうのである。それゆえ、単に再利用や蓄積の必要性を

訴えるだけではなく、各研究者が再利用性をそれほど意識しなくても、自然と再

利用性の高いプログラム部品を実現できるような仕組みが求められているので

ある。

(29) 多様性が本質的に重要となる対象は、「解析には複雑すぎ、統計にはあまりに組

織的な領域」(Weinberg 1975)に属する。そのため、このような対象に対しては、

構成要素の数を減らして複雑さに対応する力学的アプローチも、数多く存在する

構成要素の平均値をとることで簡略化する統計学的アプローチも不適切となる。

また、相互作用や学習を伴うシステムでは、相互作用の順序や状況が決定的に重

要となるため、時間を不可逆な流れとして扱う必要がある。

(30) ”calculating”も同じ「計算」という訳語が当てられるため、混同しないように注

意が必要である。”calculating”が数値計算や数学的な記号計算という狭い範囲の

計算を指すのに対し、”computing”は、記号処理や論理演算、構造処理などを含

む広い範囲の計算を指す。

(31) ここでいうモジュールとは、モデルの部品のことである。一般に、モジュールと

は、建築・家具・機械・プログラムなどにおける機能単位のことであり、単独で

一つのまとまった機能を持っているが、他のモジュールと組み合わせることで役

割を果たすように設計されたものである。モジュール化されたシステムでは、そ

の構成を変更する場合にも、関係のある一部のモジュールの変更だけで済ますこ

とができる。また、モジュールごとに再利用することが可能となる。本稿の後半

190

に出てくる「コンポーネント」も、一種のモジュールである。なお、最近は、ビ

ジネスの分野においてもモジュール化の重要性が注目されている (例えば、国領

1995, 青木・安藤 2002 など)。

(32) Penker and Eriksson (2000)やMarshall (1999)では、ビジネスモデルをオブジェ

クト指向によってモデル化するという試みが行われている。ただ残念なことに、

これらの取り組みは、モデル記述の段階にとどまっており、本稿のようなシミュ

レーションによる分析につなげるということは行われていない。

(33) このような概念化の能力は、人間が世界を理解したり世界に働きかけたりする

上で本質的なものであり、知覚、記憶、言語などの認知・思考活動の基礎である

といわれている (Roth and Frisby, 1986)。例えば、私たちは、ベンチや折りた

たみの椅子、車椅子、背もたれのない横長の椅子などを見て、それぞれ形が異

なっているにもかかわらず、これらをひとまとめに『椅子』として認識する。こ

のような分類・概念能力がない場合には、「すべてのものは異なっているという

ことが分かるだけ」(Martin and J.Odell, 1995)であり、見えたものをいちいち

「初めてみるもの」として対処しなければならなくなってしまう。また、新しく

出会った椅子を『椅子』であると理解できないため、その扱い方がわからず、う

まく扱うことができなくなる。人間のもつ概念とオブジェクト指向の関係を明示

的に論じたものにMartin and J.Odell (1995)がある。

(34) ここで示した図は、UML(統一モデル化言語)に従って書いたクラス図である。

UMLの記法とその意味については、付録Aにまとめたので、そちらを参照して

ほしい。

(35) 集約と関連は、実質的にはほとんど違いはない。集約には、集約リンクの連鎖

が閉路を形成してはいけないという制約があるだけである。Rumbaugh et al.

(1999)では、「集約と関連の区別は多くの場合、セマンティクスの違いというよ

りは、むしろ好みの問題」であるとしている。「集約は、集約側が本質的にその

部分の総和であるという考えを伝えるもの」(Rumbaugh et al., 1999, p.265)で

ある。これに対し、コンポジションは、「各部分が１つのオブジェクトに所有さ

れていて、その各部分がそれを所有するオブジェクトから独立に存続しない」と

(Rumbaugh et al., 1999, p.265)いう強い制約を表している。

(36) UMLが誕生した経緯に軽く触れておくと、それは、オブジェクト指向の方法論

は乱立状態が続いた 1990年代前半に、方法論を統一しようとする動きから始

まっている。ソフトウェア開発方法論Booch法を提唱していたG.Boochが、開

発手法OMT法を提唱していた J.Rumbaughとともに、これら 2手法に登場す

る概念を組み合わせることに着手し、1995年に Unified Method 0.8を発表し

た。この流れに、ユースケースの概念を提唱した I.Jacobsonが加わり、この 3人

(“Three Amigos”と呼ばれる)を中心として、Unified Modeling Language 0.9が

191

発表された。その後、他の企業なども加わって仕様が詰められ、1997年に OMG

(Object Management Group)で標準言語として採択された。当初、統一方法論

を開発しようとしていたが、OPENコンソーシアムによるOML(Open Modeling

Language)の開発など、方法論の統一には、反発もあり、最終的には、方法論で

はなく、モデリング言語を統一化するという決断をした。

(37) この点について認知科学では、「われわれは外界に構造 (structure)を付与する」

(Roth and Frisby, 1986)と表現されているしている。また、科学哲学では、観

察の「理論負荷性」(Hanson, 1958)として知られている。

(38) それぞれの科学分野には、基本語句 (primitive terms)という「その体系のなか

では定義をうけず、逆に他の語句を定義する基礎となるもの」(村上, 1975)が存

在し、それが分析的方法の土台として用いられることになる。基本語句の例と

しては、ユークリッド幾何学における点や線、古典力学における質点の位置、時

間、質量、経済学における財などがそれにある (村上, 1975)。これらは理論的語

句の基礎となり、他の理論的語句を説明するために用いられる。用いられる語句

は、思考の単位として概念を固定するという役割も果すといわれている (Engel,

1993)。

(39) 組み合わせの規則は、語句と語句の関係性を規定するものであるが、複数の概

念の関係性には、「全体と部分の関係などのいわゆる階層関係、または時間・空

間・因果関係など非階層関係を形成」(仲本, 1999)している。

(40) 明確に規定されているコードがという共通の了解をいかにして実現するのか。

「「コード」には、それを保証するような明確な規定が拘束力の強い形で含まれて

いなくてはならない」(池上, 1984)のであり、それには、次の４つのことが必要

であるといわれている。第一にメッセージを作成する発信者が用いることのでき

る記号表現が明確に規定されていること、第二にそれぞれの記号表現に担わせう

る情報が記号内容として明確に規定されていること、第三に規定されている記号

表現と記号内容の対応が常に排他的に一対一であるということ、第四に記号表現

の結合に関して、許容される結合がすべて規定されているということである (池

上, 1984)。

(41) 本論文で取り上げる Boxed Economy Foundation Modelは、バージョン 1.1の

ものである (井庭ほか, 2001; Boxed Economy Project, 2003)。BEFMの定義は、

次のようなプロセスで行った。2000年 9月に 3日間に Boxed Economy Project

のメンバーである井庭崇、中鉢欣秀、高部陽平、上橋賢一、松澤芳昭、廣兼賢治、

津屋隆之介の７人でブレインストーミングを行い、重要な概念を洗い出した後、

それらをグループ化し、抽象化していった。そこでの議論をもとに基礎モデルの

基本的な構造が決定された。その後、田中潤一郎と北野里美が加わり、現実へ適

用するための整理が行われ、最初のバージョンを発表した (井庭ほか, 2000; 井

192

庭ほか, 2001)。

ブレインストーミングであげられた経済社会に関係する言葉

2001年 2月から 6月にかけて、田中潤一郎、上橋賢一、北野里美、津屋隆之

介、廣兼賢治、山田悠、井庭崇によって、「個人」、「企業」、「金融機関」、「政府」

の４部門を基礎モデルによってモデル化することを試みた。約 100の行動がモデ

193

ル化された (Boxed Economy Project, 2001; 田中ほか, 2001; 上橋ほか, 2001)。

また、基礎モデルフレームワークの設計にあたり、浅加浩太郎と海保研が加わ

り、技術的な面からの再検討が行われ、バージョン 1.0としてまとめられた (Iba

et al., 2001; Iba et al., 2001; 井庭ほか, 2002)。

要員計画行動 新人募集行動 新人採用行動 勤務記録処理行動 時間外労働命令行動 人材育成行動
人物評価行動 賃金決定行動 賃金支払行動 解雇予告通知行動 解雇行動 退職願受取行動
退職金計算行動 就職応募行動 就職雇用契約行動 勤め行動 勤務記録行動 労働行動
時間外労働命令受取行動 教育研修行動 給料明細受取行動 辞令受取行動 解雇予告通知受取行動 希望退職行動
退職行動 販売行動 商品販売行動 在庫確認行動 仕入行動 出荷行動
入荷行動 注文受取行動 仕入管理行動 在庫管理行動 受注行動 価格決定行動
価格戦略行動 市場地位分析行動 市場調査行動 長期戦略行動 資金調達行動 商品戦略行動
短期市場動向調査行動 生産管理行動 生産行動 公定歩合支払行動 利息支払行動 預金行動
融資行動 担保売却行動 税金支払行動 振込・引落行動 財務行動 口座照会処理行動
公定歩合受取行動 国債償還行動 国債引受行動 引出行動 準備預金預入・引出行動 口座移転行動
返済行動 買物行動 店舗選択行動 商品購買行動 受容行動 購買前代案評価行動
銀行振込行動 現金支払行動 現金受取行動 口座照会行動 経営戦略行動 行動計画実行行動
行動計画実行行動 移動行動 消費行動 生活保護解約行動 生活保護申込行動 納税行動
銀行に行く行動 預金引出行動 預金預入行動 家計記録行動 新聞発行行動 新聞紙面編集行動
新聞制作印刷行動 新聞発送配達行動 情報受信行動 情報提供行動 財受取行動 統計作成行動
公表統計作成行動 予算決定行動 企業税収行動 所得税収行動 国債交換行動 国債買取行動
国債発行行動 生活保護支給行動 生活保護受付行動 公共投資行動 手数料決定行動 地価査定行動
土地登記行動

(42) 吉田 (1990)は情報の処理を、「情報貯蔵」、「情報伝達」、「（狭義の）情報変換」

の 3つに分類しているが、これを BEFMにおける表現で表すと次のようになる。

情報貯蔵は、情報の時間変換ことを意味するが、それは「個体内貯蔵と個体外

貯蔵に 2分され、それぞれ記録・保存・再生の３段階から成り立っている」(吉

田, 1990)という。基礎モデルでは、個体内貯蔵は、Informationが Agentによっ

て保持されることを意味しており、個体外貯蔵は、Agentのもつ Goodsによっ

て、Informationが付随していることを表わしている。どちらの場合も「記録・

保存・再生」は、Behaviorによって行なわれることになる。

情報伝達は情報の空間変換のことを意味するが、「発信・送信・受信の 3段階

から成り立っている」(吉田, 1990)のであり、「個体間の情報伝達のみならず、

個体内の情報伝達をも含意する」(吉田, 1990)という。「発信・送信・受信」は、

Behaviorによって行なわれることになり、その送受信には Channelを用いるこ

とになる。BEFMでは、Agent間の伝達であれ、Agent内の伝達であれ、同じ

ように Channelを介して行うことができる。

情報変換は情報の変容のことを意味するが、それはさらに「情報の担体変換」、

「情報の記号変換」、「情報の意味変換」の 3つに分けられるという。BEFMでは、

担体変換は、対象となる Informationの担荷体であるGoodsが変化することで

表現される。記号変換は、異なる形式の Informationに内容を移し変えることで

表現される。意味変換は、対象となる Informationのもつ InformationContents

の内容が変化することで表現される。

(43) BEFMに基づくモデルでは、一人のエージェントが複数の Behaviorをもつこ

とができ、それらの Behaviorの連携も Channelを介した財や情報のやりとりで

行う。

194

(44) このような方針が必要なのは、概念モデルでは、モデルに登場する要素はすべて

BEFM 概念モデル・フレームワークのクラス (型)を「特化」するかたちで記述

されるが、シミュレーションモデルの設計・実装では、その特化関係を必ずしも

「継承」として実現するわけではないからである。

(45) 継承を用いた実装には、動的な変更ができないことや、多重継承ができないなど

の限界があり、また、実装のしやすさや実行効率などの問題で、継承を用いるべ

きでないこともある。この問題を回避するための代表的な方法が、パワータイプ

を用いた設計である。

(46) BEFMフレームワークに基づいた Behaviorの状態遷移を簡単に作成するため

に、「コンポーネントビルダー」を提供している。後述するように、モデル作成

者は、GUIによって Behaviorの状態遷移図を記述することで、Javaプログラム

のスケルトンを自動生成させることができる。

(47) InformationTypeも Informationの一種であることから、エージェント間のやり

とりでは InformationTypeをそのまま送受信することができるのである。

(48) 従来のようなソースコードレベルでの補助では、プログラミング技術や再コンパ

イルする必要があったが、コンポーネントによるプログラムの作成では、ソース

コードに手を加えることなくモデルを作成・設定・変更できる。テスト済みの部

分とそうでない部分を明確に区切ることができるので、品質管理上のリスクを回

避できるという利点もある。

(49) これらコンポーネント開発者とシミュレーション実行者は、同一のチームメン

バーであることもある。また、時間や空間を越えてお互いに知らない人同士であ

ることもある。もちろん、コンポーネント開発者とシミュレーション実行者が同

一人物であっても構わない。

(50) Java仮想マシン (Java VM)上であれば、オペレーティング・システムを問わず

動作させることができる。つまり、BESPを利用するユーザがそれぞれ異なるコ

ンピュータ環境を使っていたとしても、まったく同じように実行することがで

き、また、BESPのために作成されたコンポーネントも作成されたコンピュータ

環境に依存しないため、他のコンピュータ環境でそのまま利用することができる

のである。C言語などでは、実行可能ファイルはマシン依存の機械語であるが、

Java言語は、その中間言語として機種に依存しないバイトコードに変換される。

そのため、Java VM上であれば、機種に関係なく、実行することが可能となる。

195

Cのコンパイル

Javaのコンパイル

(51) エージェントの優先順位は、Priorityの数値の高い順にTimeEventが配信される。

• 同じ優先順位のエージェントはステップ毎にシャッフルされ、ランダムな順
番で時計信号を受け取る。

• 高い優先順位のエージェントは、低い優先順位のエージェントよりも若い
順番で時計信号を受け取る。

異なる同優先順位のAgentTypeが存在する場合も、その全てのエージェントに

対してシャッフルを行う。例えば、AgentType-A(優先順位 0), AgentType-B(優

196

先順位 0), AgentType-C(優先順位 10)のタイプを持つインスタンスAa, Ab, Bc,

Bd, Ce, Cf(小文字はインスタンス名)がいたとすると、まず、Ce, Cfがシャッフ

ルされ、ランダムな順番で時計信号が送られる。次に、同優先順位の,Aa, Ab,

Bc, Bdが一度にシャッフルされ、ランダムな順番で時計信号が送られる。

5cm

AgentType Priority

"SurveyCompany" 300

"Individual" 200

"Shop" 100

TimeEvent Priority

riority

プライオリティによる優先順位づけ

(52) Component Builderは、統合開発環境である eclipseのプラグインとして作成さ

れている。

(53) ここでのパターンの３つの部分というのは大枠での分類であり、具体的に何を記

述するかという決まった形式はない。パターンの記述形式として有名なものに

は、Alexandrian形式、Coplien形式、GoF形式、POSA形式などがある。

Coplien形式は、Alexander (1977)のAlexander形式の本質的な部分を見出し

として採用したものであり、デザインパターンの記述に用いられている。別名

(Alias)、問題 (Problem)、文脈 (Context)、影響力 (Forces)、解 (Solution)、結

果文脈 (Resulting Context)、根拠 (Rationale)、力学 (Dynamics)

GoF形式は、Gang of Four(Erich Gamma, Richard Helm, Ralph Johnson,

John Vlissidesの 4人を指す)の Gamma et al. (1995)のなかで用いたデザイ

ンパターンのテンプレートである。基本的な項目は、目的 (Intent)、別名 (Also

Known As)、動機 (Motivation)、適用の条件 (Applicability)、構造 (Structure)、

構成要素 (Participants)、協調関係 (Collaborations)、結果 (Consequences)、実

装 (Implementation)、サンプルコード (Sample Code)、事例 (Known Uses)、関

連するパターン (Related Patterns)である。パターンの名前は、喚起的パターン

名、名詞句名、意味のある喩え名で命名される。

POSA形式は、Buschmann et al. (1996)で用いられている形式。基本的な

項目は、名前と別名 (Also Known As)、例 (Example)、前提 (Context)、課題

(Problem)、解決策 (Solution)、挙動 (Dynamics)、実装 (Implementation)、補足

197

(Example Resolved)、バリエーション (Variants)、適用例 (Known Users)、結果

(Consequence)、参考 (See Also)である。

(54) アレグザンダーによると、このようなパターンの考え方は、建築家からは反発も

多いという。これは、「パターン」という言葉が、「パターン化された」や「ワン

パターン」というような使い方のように、ネガティブなイメージを伴うことによ

る。アレグザンダーは次のように言及している。「もの同士の関係の構造がデザ

イナーの優れた創造力からではなく、このような言語から生じるという考えは、

建築家にとって不愉快きわまりないものです。彼らは、自分たちが建築や街やそ

の一部を創造したのであり、それが彼らの豊富なイマジネーションのたまもので

あると思っているのです。」(Grabow, 1985, 邦訳 p.70)。同様の反発は、ソフト

ウェアパターンにおいてもみられるようである。「ソフトウェアーパターンを使

うことで創造性が阻害される、あるいはソフトウェアパターンはあまりに即物的

すぎて我慢がならない、という意見」(鈴木ほか, 2000)も根強いのだという。

このような現状に対し、「ルールが『制約』だと考えられている」(Grabow,

1985, 邦訳 p.71)ことが誤解のもとであるとし、パターンのもつ生成力の側面を

強調する。「ルールを制約とみなすかぎり、創造の中心は独立に存在し、制約は

単に創造を侵害するもののように感じられるでしょう。しかし一度ルールに生成

力があると認めれば、創造の核心に迫ることができます。」(Grabow, 1985, 邦訳

p.71)。アレグザンダーのこのような議論では、しばしば自然言語との対比のた

め、チョムスキーによる文法の生成力の議論が取り上げられる。「英語のルール

のおかげで創造的になれるのは、単語の無意味な組合せにいちいち思い悩まな

くてすむからである。」(Alexander, 1979, 邦訳 p.170)と延べ、それと同じよう

に、パターンは制限ではなく創造性の基盤であるという。「英語のルールのおか

げで、膨大な数の無意味な文章に立ち入ることなく、意味をなすより少ない文章

（といってもかなり多いが）に目を向けられる。その結果、人はそのより微妙な

意味の違いに全精力を注げるのである。もし英語にルールがなければ、何時間

も苦しんだあげくに一言もしゃべれないことになろう。」(Alexander, 1979, 邦訳

p.170)。

(55) パターンによる設計やコミュニケーションの支援の効果について、実務家から

の定性的な評価が多いが (Coplien, 1996; Fraser et al., 1997)、変更容易性につ

いての定量的な評価も若干行われている (Precht and B. Unger, 1997)。Precht

and B. Unger (1997)によれば、パターンの知識があるグループの方が、知識の

ないグループに比べて、変更に必要な工数が 25%少なくて済み、品質の若干の

向上が見られたという。

(56) モデル・パターンとは直接関係がないので、深入りはしないが、この先の文章

で、アレグザンダーは、複雑系の考え方に通じる考えを展開していることは注目

198

に値する。「建物や町の『構造』の大部分が要素の関係のパタンで構成されてい

る。(中略) 一見、この関係のパタンは要素から切り離されているかのように見

える。(中略) なお詳しく見れば、これらの関係が付け足しどころか要素に不可

欠のものであり、むしろ要素の一部でもあることがよく分かる。(中略) さらに

詳しく見ていくと、このような見方ですらまだ十分に正確とは言えないことが分

かる。つまり、関係が要素の属性であるばかりか、実は要素
•
そ

•
の

•
も

•
のが関係のパ

タンなのである。つまり、私たちが『要素』と考えるものの多くが、実はそれと

その周辺のものとの関係のパタンの中に存在することを認めさえすればよい。い

わゆる要素は神話にすぎず、事実、要素自体が関係のパタンに組み込まれている

ばかりか、
•
そ

•
れ

•
自

•
体が関係のパタン以外の何物でもないことが十分に認識できる

のである。要するに、側廊を定義するには、身廊と内陣や東窓との関係のパタン

が必要であり、しかも
•
そ

•
れ

•
自

•
体が、その奥行、その間口、身廊との境にある柱、

外部との境にある窓・・・などとの関係のパタンでもある。」(Alexander, 1979, 邦

訳 p.75-76)。この考え方は、要素が還元的に定義できない、すなわち、関係性の

中で定義されるという複雑系の考え方に通じるものがある。

(57) アレグザンダーのパターンの考え方は、本論文で後に取り上げるメンタルモデル

の考え方に通じるものがある。「すべての人びとがパタン・ランゲージを念頭に

抱いている。あなたのパタン・ランゲージは、建設方法についての
•
あ

•
な

•
た

•
の知識

の総計である。あなたの念頭にあるパタン・ランゲージは、隣人の頭にあるもの

とはわずかに異なっている。完全に同じものは二つとないが、多くのパタンやパ

タンの断片は共有される。設計行為に直面した人のとる行動は、その時点での

自分の頭にあるパタン・ランゲージに支配される。もちろん、各人の記憶にある

パタン・ランゲージは、各人の体験の成長とともにつねに進化する。だが、彼に

設計の必要が生じる特定の時点では、たまたまその時点で蓄積されたパタンに

全面的に頼らなければならない。慎ましいものであれ、とてつもなく複雑なも

のであれ、彼の設計行為を完全に支配するのは、その時点で念頭にあるパタン

とそれらの組合せで新たなデザインを形づくる能力である。」(Alexander, 1979,

邦訳 p.167)。

(58) 「インタラクティブシステム」の中には、本論文で提案する Boxed Economy

Simulation Platformで採用している「Model-View-Controller」のパターンが含

まれている。

(59) Boxed Economy Foundation Model や Boxed Economy Simulation Platform

の設計においても、デザインパターンが数多く利用されている。例えば、Boxed

Economy Foundation Modelでは、Behaviorをコンポジションパターンによっ

て、インスタンスレベルで合成している。また、一連の～Typeは、Type Object

パターンであり、～Managerは、Managerパターンの設計である。

199

(60) アンチパターンには、プロジェクトマネジメント以外のパターンも含まれてい

る。アンチパターンは、開発のアンチパターン、アーキテクチャのアンチパター

ン、マネジメントのアンチパターンの 3種類に分類できる。

(61) このモデルでは、そのとき存在するノードのなかから平等にリンクされるため、

存在時間が長いノードは多くのリンクを得る機会が多く、リンクを多く持つよう

になる。

(62) べき乗分布とは、確率密度関数がべき乗の関数に従っている分布である。原理

的には平均値が 0で標準偏差が無限大という奇妙な分布であるが、非常に強い

安定性がある (高安および高安, 2001)。ここで取り上げたネットワークのほかに

も、多数の要素が相互作用するシステムは、「べき乗法則」に従うということが

知られている。例えば、砂山における雪崩の規模と頻度 (Grumbacher, 1993)、

地震の規模と頻度 (Johnston and Nava, 1985)、そして価格変動の規模と頻度の

関係 (Bak, 1996)などは、どれもべき乗法則に従っていることが知られている。

また、都市人口とその順位 (Simon, 1995; 武者, 1980)、単語の出現頻度とその

順位 (Zipf, 1949)、企業所得とその累積分布 (Okuyama et al., 1999; 高安および

高安, 2001)などがある。このように、多数の要素が相互作用するシステムでは、

絶えず臨界状態に近い状態を保つ性質があるとして、この状態を自己組織的臨界

状態と呼ばれている (Bak and Chen, 1991; Bak, 1994; Bak, 1996)。

(63) この優先的選択成長モデルは、古参のノードほど多くのリンクを持つ可能性があ

る。これに対し、結合度だけでなく、適応度にも比例するように改良された適応

度モデル (Bianconi and Barabási, 2001)もある。

(64) 1970年代に R. Axelrodは、繰り返し囚人のジレンマゲーム大会を行っている。

「選手権の出場者は、経済学者、心理学、社会学、政治学および数学の各分野で

活躍するゲーム理論の研究者であり、これらのべ一四人の応募作に、『でたらめ』

(RANDOM)というプログラムを加えて、総当りのリーグ戦方式で競わせてみ

た」(Axelrod, 1984, p.iv)。そこでの勝者は、『しっぺ返し』(TIT FOR TAT)と

いう単純な戦略であった。『しっぺ返し』は、最初は協調し、次からは相手が前

回とった行動を真似するという戦略である。これは、実際の人間のつきあいに

おいて、協調関係を引き出すものとして知られている (Oskamp, 1971; Wilson,

1971)。さらに、第一回の結果を踏まえて、第二回の大会も行われた。「今度は

六つの国から六二人の応募者があった。その大半はコンピュータ愛好家であった

が、中には進化生物学者、物理学者、コンピュータ・サイエンスの各教授、それ

と前回の参加者も五人含まれていた」(Axelrod, 1984, p.iv)という。結果は、ま

たしても『しっぺ返し』が勝利している。

(65) 過去の自分の手や前回以前の相手の手は、直接的もしくは状態遷移に埋めこまれ

たかたちで、記憶することができる。

200

(66) コンテスト・シミュレーションの拡張には、本論文での拡張のほかにも、強い戦

略の個体数がより多く生き残るという「生態学的シミュレーション」(Axelrod,

1984)や、戦略の遺伝子を遺伝的アルゴリズムによって改善させる「進化的シミュ

レーション」(Axelrod, 1997)などがある。

(67) 自分に勝った「エージェント」の中からランダムに選択するので、それらのエー

ジェントが同じ戦略を採用する場合には、その分その戦略は採用されやすくなる。

(68) この閾値に関する仮定は、後に述べる進化的モデルにおいてはずされる。

(69) ここでのモデル化では、安冨 (2000)のモデルにおける 1ターンが、本モデルの

2ステップになっている点に注意が必要である。

(70) 日本語では VTR(Video Tape Recorder)というのが一般的であるが、本論文で

は VCRに統一する。

(71) Beta 方式の方が技術的に優れていたというのが通説であるが (淺羽, 1995; 山

田, 1997)、二方式が消費者にどう認知されていたのかについては疑問が残る。

Klopfenstein (1989)は、アメリカにおけるコンシューマーレポートにおけるサー

ベイを取り上げ、各方式が画像品質で優れているといわれた回数は、Beta方式

が一度、VHS方式が二度、大差なしが四度という結果であったと指摘している。

VHS 方式の二時間録画が可能であるという点が勝敗を決めたという説 (吉井,

2000)や、VHS方式で発売された特定分野のビデオソフトが原因で VHS方式に

傾いたという説もあり、必ずしも Betaの方が優れていたというわけではないよ

うである。本論文では二方式に差異を設定せず、同じ条件での実験を行う。ここ

で提案するモデルの初期値の変更やモデルの拡張によって各方式に特徴を設定

することが可能であるが、本論文では扱わず今後の課題とする。

(72) 需要の相互依存性を提唱し分析した Rohlfs (1985)の言葉を借りるならば、家庭

用VCRの普及における前半期においては、市場全体におけるマーケットシェア

が意思決定に影響を与える「一様な通話特性」よりも、密な関係をもった集団が

内在し、それが影響を与える「非一様な通話特性」が強かったということになる。

(73) ここで、このモデルの作成プロセスにおける分析フェーズの図を掲載しておく。分

析フェーズでは、モデル化しようとしている対象が、「どのようなものであるか」

(What)を明確化するために、対象領域に登場するAgent、Information、Goods、

Behavior、Relationをすべて洗い出して定義することから始める。まず最初に

エージェントとその行動を明らかにする。

201

規格競争モデルにおけるエージェントとその行動

また、それらのエージェントの関係について記述する。

規格競争モデルにおけるエージェント間関係

そして、エージェントの行動のフローチャートを行動アクティビティ図として記

述する。

「情報収集してビデオテープレコーダーを購入する」行動のアクティビティ

この過程で、登場する財や情報も洗い出して行く。

202

規格競争モデルにおける財

規格競争モデルにおける情報

これらの分析をもとに、各行動の間でどのような相互作用 (財や情報のやりとり)

があるかを表現したものが、次の図である。

規格競争モデルにおける行動間のやりとり

また、エージェント間のやりとりの 1つのシナリオを、時系列に示したものが、

次の取引シーケンス図である。

203

規格競争モデルの 1シナリオ

以上のような記述によってモデル要素の洗い出しと定義が終わるまで、このプロ

セスを繰り返していく。

(74) 実際には、大域的なマーケットシェアを完全に知ることはできないが、ここでは

消費者は選択の際に流通・小売側の情報を通じて間接的に知ることができると仮

定する。

(75) 欲求認識のモデルは本来であれば、広告やくちコミによって家庭用VCRという

製品の存在を知り、それに基づいてエージェント内部から欲求が発生するという

204

モデルが妥当であるが、本研究は家庭用VCR製品全体の普及ではなく、その普

及の中で展開される規格競争を対象とするため、製品欲求の発生を外部から与え

るという単純化をはかることにする。

(76) 現実の普及率のデータにおいて 1990年が落ち込んでいるのは、その年からアン

ケートの中に「ビデオディスク」が加わったために引き起これた混乱が原因と

なった統計データ上の変調であることが知られている (電通総研, 1994)。

(77) 消費フェーズの拡張としては、セルやレンタルのビデオソフトの利用によって経

験やソフトを蓄積するフェーズとすることが考えられる。

(78) 購買後代替案評価フェーズの拡張としては、消費経験により発生した所持方式に

対する満足・不満足度を評価するモデルを用意し、買い換えや買い増し、くちコ

ミなどの際に参照する知識を構築するフェーズとすることが考えられる。

(79) この規格競争モデルでは、各時間ステップにおける購入者数の集計が、Rogers

の普及率 (Rogers, 1982)に合致するように、消費者エージェントの欲求認識を

制御している。そのため、市場全体を眺め、普及率を制御する機能を実現するた

めに、DiffusionControlFunctionエージェントが導入された。

(80) ここで紹介するシミュレーション結果は、井庭ほか (2001)に基づいている。

(81) 参考までに本モデルのスケールを示しておく。本モデルでいう消費者エージェン

トは実際には個人というより世帯に近いと考えられるため、1985年の世帯数と

の比で表すと 1024 : 37980で約 1/37のスケールのモデルということになる。

(82) エージェント間関係に対照性があるとする仮定は、ビデオソフトをやりとりする

知人であれば相手も自分を知っているであろうという経験的理由によって妥当と

思われる。

(83) 本論文では選好 Pijをランダムに設定し、各方式に差を設けないが、各方式の特

徴や性能の違いなどにより Pijに偏りをつけ、その効果を調べる実験や、供給側

のマーケティング活動などにより動的に変化するPijのモデルなどが可能である。

(84) なお、Arthur (1994)のモデルでは決定論的な選択モデルのため逆転現象は生じ

得ないということも付記しておく。

(85) バラエティー・シーキングとは、低関与型の商品選択行動であり、購買時点にお

いてさまざまな商品やサービスを探しまわる傾向のことである。

205

文 献
[清水, 1999] 清水 聰 (1999). 新しい消費者行動 (千倉書房).

[Alexander, 1977] C. Alexander (1977). A Pattern Language (Oxford University Press). ク
リストファー・アレグザンダー, パタン・ランゲージ: 環境設計の手引, 平田翰那 (訳),
鹿島出版会, 1984.

[Alexander, 1979] C. Alexander (1979). The Timeless Way of Building (Oxford University
Press). クリストファー・アレグザンダー, 時を超えた建設の道, 平田翰那 (訳), 鹿島出版
会, 1993.

[Ambler, 1998] S. W. Ambler (1998). Process Patterns: Building Large-Scale Systems Using
Ibject Technology (Cambridge University Press / SIGS Books).

[Ambler, 1999] S. W. Ambler (1999). More Process Patterns: Delivering Large-Scale Sys-
tems Using Object Technology (Cambridge University Press / SIGS Books).

[Arthur, 1994] B. W. Arthur (1994). Positive Feedbacks in the Economy in Increasing Re-
turns and Path Dependence in the Economy (B. W. Arthur ed) pp. 1–12 (The University
of Michigan Press).

[Arthur et al., 1996] W. B. Arthur, J. Holland, B. LeBaron, R. Palmer, and L. Tayler (1996).
“Asset Pricing Under Endogenous Expectations in an Artificial Stock Market”; working
paper 96-12-093, Santa Fe Institute.

[淺羽, 1995] 淺羽 茂 (1995). 競争と協力の戦略 (有斐閣).

[新および中野, 1984] 新 睦人, 中野 秀一郎 (1984). 社会学のあゆみ パート II: 新しい社会学
の展開 (有斐閣).

[Axelrod, 1984] R. Axelrod (1984). The Evolution of Cooperation (Basic Books). ロバート・
アクセルロッド , つきあい方の科学: バクテリアから国際関係まで, 松田裕之 (訳), HBJ
出版局, 1987.

[Axelrod, 1997] R. M. Axelrod (1997). The Complexity of Cooperation: Agent-Based Models
of Competition and Collaboration (Princeton University Press). ロバート・アクセル
ロッド , 対立と協調の科学: エージェント・ベース・モデルによる複雑系の解明, 寺野隆
雄 (監訳),ダイヤモンド社, 2003.

[Axtell, 2002] R. Axtell (2002). “Why Agents? On the Varied Motivations for Agent Com-
puting in the Social Sciences”; Working PaperNo. 17, Center on Social and Economic
Dynamics, The Brookings Institution.

[Bak, 1994] P. Bak (1994). Self-Organized Criticality: A Holistic View of Nature in Com-
plexity: Metaphors, Models, and Reality (G. Cowan, D. Pines, and D. Melzer ed) vol.
XIX (Addison-Wesley).

[Bak, 1996] P. Bak (1996). how nature works (Springer-Verlag).

[Bak and Chen, 1991] P. Bak and K. Chen (1991). Self-organized criticality. Scientific
American 264, 46–53, Per Bak, Kan Chen,「大地震や経済恐慌を説明する自己組織的
臨界状態理論」, 山口昌哉, 木阪正史 (訳), 別冊日経サイエンス 複雑系がひらく世界, 合
原一幸 (編), 日経サイエンス社, 1997.

206

[Barabási, 2002] A.-L. Barabási (2002). LINKED: The New Science of Networks, Perseus
Book Group (Perseus Book Group). アルバート=ラズロ・バラバシ, 新ネットワーク思
考: 世界のしくみを読み解く, 青木薫 (訳), NHK出版, 2002.

[Barabási et al., 1999] A.-L. Barabási, R. Albert, and H. Jeong (1999). Mean-field theory
for scale-free random networks. Physica A (272), 173–187.

[Basu et al., 1998] N. Basu, R. J. Pryor, and T. Quint (1998). ASPEN: A microsimulation
model of the economy. Computational Economics 12, 223–241.

[Beck, 1997] K. Beck (1997). Smalltalk Best Practice Patterns (Prentice Hall). ケント・ベッ
ク, ケント・ベックの Smalltalkベストプラクティス・パターン: シンプル・デザイン
への宝石箱, 梅澤真史, 小黒直樹, 皆川誠, 森島みどり (訳),ピアソン・エデュケーション,
2003.

[Beck and Cunningham, 1987] K. Beck and W. Cunningham (1987). Using Pattern Lan-
guages for Object-Oriented Programs in OOPSLA-87 workshop on the Specification
and Design for Object-Oriented Programming.

[Berger and Luckmann, 1966] P. L. Berger and T. Luckmann (1966). The Social Construc-
tion of Reality: A Treatise in the Sociology of Knowledge (Doubleday & Company).
ピーター・L・バーガー,トーマス・ルックマン, 現実の社会的構成: 知識社会学論考, 　
新版, 山口節郎 (訳), 新曜社, 2003.

[Bianconi and Barabási, 2001] G. Bianconi and A.-L. Barabási (2001). Competition and
multiscaling in evolving networks. Europhysics Letters (54), 436–442.

[Black, 1962] M. Black (1962). Models and Metaphors: Studies in Language and Philosophy
(Cornell University Press).

[Boulding, 1985] K. E. Boulding (1985). The World as a Total System (Sage Publication).

[Boxed Economy Project, 2001] Boxed Economy Project (2001). 社会・経済シミュレーショ
ンのフロンティア — Boxed Economy Project — in SFC Open Research Forum 2001,
慶應義塾大学湘南藤沢キャンパス (SFC).

[Boxed Economy Project, 2003] Boxed Economy Project. Boxed Economy Simulation Plat-
form 1.1 Users Guide. フジタ未来経営研究所 (2003).

[Brown et al., 1998] W. J. Brown, R. C. Malveau, H. W. M. III, and T. J. Mowbray (1998).
Antipatterns: Refactoring Software, Architectures, and Projects in Crisis (John Wiley
& Sons). William J. Brown, Raphael C. Malveau, Hays W. McCormick III, Thomas
J. Mowbray,アンチパターン: ソフトウェア危篤患者の救出, 岩谷宏 (訳),ソフトバンク,
1999.

[Brown et al., 1999] W. J. Brown, H. W. M. III, and S. W. Thomas (1999). Antipatterns
and Patterns in Software Configuration Management (John Wiley & Sons). W. J.
Brown, H.W. S. McCormick III, S. W. Thomas, アンチパターン: ソフトウェア構成管
理の悪夢, 岩谷宏 (訳), ソフトバンク, 1999.

[Brown et al., 2000] W. J. Brown, H. W. M. III, S. W. Thomas, and H. W. McCormick
(2000). Antipatterns in Project Management (John Wiley & Sons).

[Bruun, 1997] C. Bruun (1997). Agent-Based Keynesian Economics in Simulating social
phenomena (R. Conte, R. Hegselmann, and P. Terna ed) pp. 279 – 285 (Springer-
Verlag).

207

[Bruun, 2002] C. Bruun (2002). Prospect for an Economics Framework for Swarm in Agent-
Based Methods in Economics and Finance: Simulation in Swarm (F. Luna and A. Per-
rone ed) (Kluwer Academic Publishers).

[Buckley, 1967] W. Buckley (1967). Sociology and Modern Systems Theory (Prentice-Hall).
W.バックレイ, 一般社会システム論, 新睦人, 中野秀一郎 (訳), 誠信書房, 1980.

[Buschmann et al., 1996] F. Buschmann, H. Rohnert, M. Stal, R. Meunier, and P. Sommer-
lad (1996). Pattern-oriented Software Architecture: A System of Patterns (Wiley). F.
ブッシュマン, H. ローネルト, M. スタル, R. ムニエ, P.ゾンメルラード , ソフトウェア
アーキテクチャ: ソフトウェア開発のためのパターン体系, 金沢典子, , 桜井麻里, 千葉寛
之, 水野貴之, 関富登志 (訳), 近代科学社, 2000.

[Cannon, 1932] W. B. Cannon (1932). The Wisdom of the Body (W. W. Norton). W.B.
キャノン,からだの知恵: この不思議なはたらき, 舘鄰, 舘澄江 (訳), 講談社, 1981.

[Casti, 1996] J. L. Casti (1996). Would-Be Worlds: How Simulation Is Changing the Fron-
tier of Science (John Wiley & Sons). ジョン・キャスティ, 複雑系による科学革命, 中村
和幸 (訳), 講談社, 1997.

[Coad and Mayfield, 1999] P. Coad and M. Mayfield (1999). Java Design: Building Better
Apps & Applets 2 edn. (Yourdon Press, Prentice Hall PTR).

[Coad et al., 1995] P. Coad, D. North, and M. Mayfield (1995). Object Models: Strategies,
Patterns, and Applications (Prentice-Hall).

[Coplien, 1992] J. Coplien (1992). Advanced C++ Programming Styles and Idioms
(Addison-Wesley). 安村通晃, 大谷浩司, 渦原茂 (訳), C++ プログラミングの筋と
定石,トッパン, 1994.

[Coplien, 1995] J. Coplien (1995). A Generative Development-Process Pattern Language
in Pattern Languages of Program Design (J. O. Coplien and D. C. Schmidt ed) vol. 1
(Addison Wesley), PLoPD Editors(編),プログラムデザインのためのパターン言語: Pat-
tern Languages of Program Design選集, 細谷竜一, 中山裕子 (訳), ソフトバンク
パブリッシング, 2001 所収.

[Coplien, 1996] J. Coplien (1996). Industrial Experience with Design Patterns in Proc. ICSE
’96 pp. 103–114, (IEEE CS Press).

[Cusumano et al., 1992] M. A. Cusumano, Y. Mylonadis, and R. S. Rosenbloom (1992).
Strategic maneuvering and mass-market dynamics: The triumph of vhs over beta.
Business History Review 66, 51 – 94.

[Dahl and Nygaard, 1966] O.-J. Dahl and K. Nygaard (1966). Simula — an algol-based
simulation language. Communication of the ACM 9, 671 – 678.

[Dalle and Jullien, 2000] J. D. Dalle and N. Jullien (2000). Windows vs. Linux: Some
Explorations into the Economics of Free Software in Applications of Simulation to
Social Sciences pp. 399–416 (Hermes Science Publishing).

[出口, 2000] 出口 弘 (2000). 複雑系としての経済学：自律的エージェント集団の科学として
の経済学を目指して (日科技連).

[電通総研, 1994] 電通総研 . (1994). 情報メディア白書 1994 (電通総研).

208

[Dugdale, 2000] J. Dugdale. An evaluation of seven software simulation tool for use
in the social sciences. COSI Training on-line resources, http://www.irit.fr/COSI/
training/evaluationoftools/Evaluation-Of-Simulation-Tools.htm (2000).

[江頭, 2002] 江頭 進 (2002). 進化経済学のすすめ: 「知識」から経済現象を読む (講談社現代
新書).

[Engel, 1993] G. Engel (1993). Unambiguity and ambiguity in Unambiguity and ambiguity.

[Engel et al., 1995] J. F. Engel, R. D. Blackwell, and P. W. Miniard (1995). Consumer
Behavior 8 edn. (The Dryden Press).

[Epstein and Axtell, 1996] J. M. Epstein and R. Axtell (1996). Growing Artificial Societies:
Social Science from the Bottom Up (Brookings Institution Press / The MIT Press).
Joshua M. Epstein, Robert Axtell, 人工社会: 複雑系とマルチエージェント・シミュレー
ション, 服部正太, 木村香代子 訳, 共立出版, 1999.

[Forrester, 1961] J. W. Forrester (1961). Industrial Dynamics (MIT Press). J.W. フォレス
ター, インダストリアル・ダイナミックス, 石田晴久, 小林秀雄 (訳), 紀伊国屋書店, 1971.

[Fowler, 1996] M. Fowler (1996). Analysis Patterns: Reusable Object Models (Addison-
Wesley). マーチン・ファウラー, アナリシスパターン: 再利用可能なオブジェクトモデ
ル, 堀内 一, 友野 晶夫, 児玉 公信, 大脇 文雄 (訳), 新装版,ピアソンエデュケーション,
2002.

[Frank and Cook, 1998] R. H. Frank and P. J. Cook (1998). THE WINNER-TAKE-ALL
SOCIETY (Penguin Books USA Inc.).

[Fraser et al., 1997] S. Fraser, K. Beck, G. Booch, J. Coplien, R. Johnson, and B. Opdyke
(1997). Beyond the Hype: Do Patterns and Frameworks Reduce Discovery Costs? in
Proc. ACM OOPSLA ’97 pp. 342–344.

[藤村, 1999] 藤村 龍雄 (1999). 自然言語と普遍言語 [科学／技術と言語 (岡田 節人, 佐藤 文
隆, 竹内 啓, 長尾 眞, 中村 雄二郎, 村上 陽一郎, 吉川 弘之 編)] (岩波書店), 岩波講座 科
学／技術と人間 10.

[Gamma, 1991] E. Gamma (1991). Ph.D. Thesis, Universität Zürich.

[Gamma et al., 1995] E. Gamma, R. Helm, R. Johnson, and J. Vlissides (1995). Design
Patterns : Elements of Reusable Object-Oriented Software (Addison-Wesley). Erich
Gamma, Richard Helm, Raplh Johnson, John Vlissides, オブジェクト指向における再
利用のための デザインパターン, 改訂版, 本位田真一, 吉田和樹 (監訳), ソフトバンクパ
ブリッシング, 1999.

[Giddens, 1976] A. Giddens (1976). New Rules of Sociological Method (Centurym Hutchin-
son). アンソニー・ギデンズ, 社会学の新しい方法規準: 理解社会学の共感的批判, 而立
書房, 1987 (第 2版 2000).

[Giddens, 2002] A. Giddens ed (2002). 情報技術と経済文化 (NTT出版).

[Gilbert and Troitzsch, 1999] N. Gilbert and K. G. Troitzsch (1999). Simulation for the
Social Scientist (Open University Press). N・ギルバート , K.G.トロイチュ, 社会シミュ
レーションの技法: 政治・経済・社会をめぐる思考技術のフロンティア, 井庭崇, 岩村拓
哉, 高部陽平 (訳), 日本評論社, 2003.

209

[Goldberg, 1989] D. E. Goldberg (1989). Genetic Algorithms in Search, Optimization &
Machine Learning (Addison-Wesley).

[Grabow, 1985] S. Grabow (1985). Christopher Alexander: The Search For A New Paradigm
in Architecture (Routledge Kegan & Paul). スティーブン・グラボー, クリストファー・
アレグザンダー: 建築の新しいパラダイムを求めて, 吉田朗, 長塚正美, 辰野智子 (訳), 鹿
島出版会, 1991.

[Grumbacher, 1993] S. K. e. a. Grumbacher (1993). Self-organized criticality: An experi-
ment with sand piles. Am. J. Phys. 61.

[Gulyas et al., 1999] L. Gulyas, T. Kozsik, and J. B. Corliss (1999). The multi-agent mod-
elling language and the model design interface. Journal of Artificial Societies and Social
Simulation 2(3), http:/www.soc. surrey.ac. uk/ JASSS/2/3/8.html.

[Haken, 1978] H. Haken (1978). Synergetics: An Introduction, Noequilirium Phase Transi-
tions and Self-Organization in Physics, Chemistry and Biology 2 edn. (Springer). H.
ハーケン, 協同現象の数理: 物理、生物、化学的系における自律形成, 牧島邦夫, 小森尚
志 (訳), 東海大学出版会, 1980.

[浜嶋ほか, 1997] 浜嶋 朗, 竹内 郁郎, 石川 晃弘 編 (1997). 社会学小辞典 新版 (有斐閣).

[Hanson, 1958] N. Hanson (1958). Patterns of Discovery (Cambridge University Press).
N.R.ハンソン,科学的発見のパターン, 村上陽一郎 訳, 講談社学術文庫, 1986.

[Hanson, 1970] N. R. Hanson (1970). Perception and Discovery: An Introduction to Scien-
tific Inquiry (Wadsworth Pub. Co.). ノーウッド・ラッセル ハンソン, 知覚と発見: 科
学的探究の論理,上下巻, 復刊版, 紀伊国屋書店, 1982.

[橋爪, 1978] 橋爪 大三郎 (1978). “記号空間論”の基本視座. ソシオロゴス (2), 1–10, リーディ
ングス日本の社会学 1:社会学理論 (塩原勉, 井上俊, 厚東洋輔 編, 東京大学出版会, 1997)
に再録.

[橋爪, 2000] 橋爪 大三郎 (2000). 言語派社会学の原理 (洋泉社).

[服部ほか, 2000] 服部 正太, 玉田 正樹, 辺見 和晃, 桑原 敬幸 (2000). “ABS の概要と類
似シミュレータとの比較”; Working Paper No.6, 新型シミュレータ開発プロジェクト,
(http://hachibei.c.u-tokyo.ac.jp/users/yamakage/ntsp1.html).

[Hay, 1996] D. Hay (1996). Data Model Patterns: Convention of Thought (Dorset House).

[Hayek, 1945] F. A. Hayek (1945). The use of knowledge in society. American Economic
Review 35(4), 519–530, F.A.ハイエク,「社会における知識の利用」, 市場・知識・自由:
自由主義の経済思想, 田中真晴, 田中秀夫 編訳, ミネルヴァ書房, 1986 所収, p.52-76.

[Hesse, 1966] M. B. Hesse (1966). Models and Analogies in Science (University of Notre
Dame Press). M. ヘッセ, 科学・モデル・アナロジー, 高田紀代志 (訳), 培風館, 1986.

[Hesse, 1980] M. B. Hesse (1980). Revolutions and Reconstructions in the Philosophy of
Science, (Harvester Press). M. ヘッセ, 知の革命と再構成, 村上陽一郎, 横山輝雄, 鬼頭
秀一, 井山弘幸 (訳), サイエンス社, 1986.

[廣島, 1985] 廣島 康眞 (1985). Master Thesis, 慶應義塾大学 経営管理研究科.

[Hodgson, 1993] G. M. Hodgson (1993). Economics and Evolution: Bringing Life Back into
Economics (University of Michigan Press). ジェフリー・M・ホジソン, 進化と経済学:
経済学に生命を取り戻す, 西部忠 (監訳), 東洋経済新報社, 2003.

210

[Holland, 1986] J. H. Holland (1986). Escaping brittleness: The possibilities of a general
purpose machine learning algorithm applied to parallel rule-based systems in Machine
Learning II pp. 593–624.

[Iba, 1999] T. Iba (1999). Master Thesis, 慶應義塾大学 政策・メディア研究科.

[井庭および福原, 1998] 井庭 崇, 福原 義久 (1998). 複雑系入門: 知のフロンティアへの冒険
(NTT出版).

[井庭ほか, 2002] 井庭 崇, 海保 研, 中鉢 欣秀, 上橋 賢一, 山田 悠 (2002). オブジェクト指向
による社会のモデル化とフレームワーク [第 6回進化経済学会].

[Iba et al., 2000] T. Iba, M. Hirokane, H. Kawakami, T. Y., and H. Takenaka (2000). Ex-
ploratory Model Building: Toward Agent-Based Economics [第四回進化経済学会論集]
pp. 146–149.

[井庭ほか, 2000] 井庭 崇, 岩村 拓哉, 廣兼 賢治, 竹中 平蔵, 武藤 佳恭 (2000). “エージェント
ベース社会シミュレーションのためのフレームワークデザイン”; FIF Working PaperNo. 1,
フジタ未来経営研究所.

[井庭ほか, 2000] 井庭 崇, 中鉢 欣秀, 高部 陽平, 廣兼 賢治, 津屋 隆之介, 田中 潤一郎, 上橋 賢
一, 北野 里美, 高松 祐三, 石渡 元春, 竹中 平蔵 (2000). 箱庭経済シミュレーションの基
礎モデル、および政策分析への可能性 [政策分析ネットワーク 第 2回年次研究大会「政
策メッセ 2001」研究発表要旨集] p. 3.

[Iba et al., 2001] T. Iba, Y. Takabe, Y. Chubachi, J. Tanaka, K. Kamihashi, R. Tsuya,
S. Kitano, M. Hirokane, and Y. Matsuzawa (2001). Boxed Economy Foundation Model:
Toward Simulation Platform for Agent-Based Economic Simulations in JSAI 2001 In-
ternational Workshop on Agent-based Approaches in Economic and Social Complex
Systems pp. 186–193.

[Iba et al., 2001] T. Iba, Y. Takabe, Y. Chubachi, and Y. Takefuji (2001). Boxed Economy
Simulation Platform and Foundation Model in Workshop of Emergent Complexity of
Artificial Markets, 4th International Conference on Computational Intelligence and
Multimedia Applications pp. 34–38.

[井庭ほか, 2001] 井庭 崇, 中鉢 欣秀, 高部 陽平, 田中 潤一郎, 上橋 賢一, 津屋 隆之介, 北野
里美, 廣兼 賢治 (2001). Boxed Economyの実現に向けて：エージェントベース経済シ
ミュレーションのための基礎モデル [情報処理学会研究報告 ICS-123] pp. 79–84.

[井庭ほか, 2001] 井庭 崇, 竹中 平蔵, 武藤 佳恭 (2001). 人工市場アプローチによる家庭用
vtrの規格競争シミュレーション. 情報処理学会論文誌: 数理モデル化と応用 42(SIG14
(TOM5)), 73–89.

[飯尾, 1995] 飯尾 要 (1995). 社会・経済システム論の歴史・現状・課題. 大阪経大論集 45(5),
17–46.

[石川および寺野, 2000] 石川 泰志, 寺野 隆雄 (2000). 分類子システムによるエージェント
の共進化とマーケティングシミュレーション [情報処理学会研究報告 2000-ICS-119] pp.
65–72.

[伊丹および伊丹研究室, 1989] 伊丹 敬之, 伊丹研究室 . (1989). 日本の VTR産業: なぜ世界
を制覇できたのか (NTT出版).

[岩村ほか, 1998] 岩村 拓哉, 井庭 崇, 武藤 佳恭 (1998). マルチエージェント社会における役
割分担の生成: 蟻のコロニーにおける食糧運搬 [情報処理学会第 57回全国大会].

211

[Iwamura et al., 1999] T. Iwamura, T. Iba, and Y. Takefuji (1999). Emergence of Coopera-
tive Behavior by Simple Reactive Agents in Joint Conference of Information Systems
Analysis and Synthesis (ISAS) & The Third Conference of Systemics, Cybernetics and
Informatics (SCI).

[岩村ほか, 1999] 岩村 拓哉, 廣兼 賢治, 井庭 崇, 竹中 平蔵, 武藤 佳恭 (1999). エージェント
ベース経済シミュレーションのためのフレームワークデザイン [第 8回マルチエージェン
トと 協調計算ワークショップ].

[和泉および植田, 1999] 和泉 潔, 植田 一博 (1999). コンピュータの中の市場: 認知機構をも
つエージェントからなる人工市場の構築とその評価. 認知科学 6(1), 31–43.

[Jacobson et al., 1997] I. Jacobson, M. Griss, and P. Jonsson (1997). Software Reuse :
Architecture, Process and Organization for Business Success (ACM Press).

[Johnston and Nava, 1985] A. C. Johnston and S. J. Nava (1985). Recurrence rates and
probability distribution estimates for the new madrid seismic zone. J. Geophs. Res.
B90.

[Jones, 1996] C. Jones (1996). Applied Software Measurement: Assuring Productivity and
Quality 2 edn. (The McGraw-Hill Companies). 鶴保征城, 富野壽 (監訳), ソフトウェア
開発の定量化手法, 第 2版, 共立出版, 1998.

[金子および池上, 1998] 金子 邦彦, 池上 高志 (1998). 複雑系の進化的シナリオ: 生命の発展
様式 (朝倉書店).

[金子および津田, 1996] 金子 邦彦, 津田 一郎 (1996). 複雑系のカオス的シナリオ (朝倉書店).

[片平, 1994] 片平 秀貴 (1994). マーケティング・サイエンス (東京大学出版会).

[片平および杉田, 1994] 片平 秀貴, 杉田 善弘 (1994). マーケティング・サイエンスの最近の
動向：米国を中心として. オペレーションズ・リサーチ 178–188.

[Katz and Shapiro, 1985] M. L. Katz and C. Shapiro (1985). Network externalities, compe-
tition and compatibility. American Economic Review 75, 424–440.

[河田, 1989] 河田 雅圭 (1989). 進化論の見方 (紀伊国屋書店).

[河本, 1995] 河本 英夫 (1995). オートポイエーシス: 第三世代システム (青土社).

[経済企画庁, 1982 – 1996] 経済企画庁 . (1982 – 1996). 消費動向調査 (経済企画庁).

[富永, 1995] 富永 健一 (1995). 行為と社会システムの理論: 構造-機能-変動理論をめざして
(東京大学出版会).

[吉地および西部, 2000] 吉地 望, 西部 忠 (2000). 多層調整企業モデルによる複雑適応系シミュ
レーション [第四回進化経済学会論集] pp. 288–291.

[Klopfenstein, 1989] B. C. Klopfenstein (1989). The Diffusion of the VCR in the United
States in The VCR Age (SAGE Publications).

[Knuth, 1985] D. E. Knuth (1985). Algorithmic thinking and mathematical thinking. Amer-
ican Mathematical Monthly 170–181, Donald E. Knuth,「算法的思考と数学的思考」,
クヌース先生のプログラム論, 有澤誠 (編), 共立出版, 1991 所収).

[Koenig, 1998] A. Koenig (1998). Patterns and Antipatterns in The Patterns Handbook:
Techniques, Strategies and Applications (L. Rising ed) (Cambridge University Press /
SIGS Books).

212

[厚東, 1991] 厚東 洋輔 (1991). 社会認識と創造力 (ハーベスト社).

[Kuhn, 1962] T. S. Kuhn (1962). The Structure of Scientific Revolutions (The University
of Chicago Press). トーマス・クーン, 科学革命の構造, みすず書房, 1971.

[公文, 1995] 公文 俊平 (1995). 情報文明論 (NTT出版).

[Lakoff and Johnson, 1980] G. Lakoff and M. Johnson (1980). Metaphors We Live By (The
University of Chicago Press). G.レイコフ, M.ジョンソン,レトリックと人生, 渡部昇
一, 楠瀬淳三, 下谷和幸 (訳), 大修館書店, 1986.

[Langton et al., 1998] C. Langton, R. Burkhart, I. Lee, M. Daniels, and A. Lancaster. The
swarm simulation system. http:// www.santafe.edu/ projects/ swarm (1998).

[Luce and Suppes, 1965] R. D. Luce and P. Suppes (1965). Utility and Subjective Proba-
bility in Handbook of Mathematical Psychology (R.D.Luce, R.R.Bush, and E.Galanter
ed) (J.Wiley and Sons).

[Marshall, 1999] C. Marshall (1999). Enterprise Modeling with UML: Designing Successful
Software through Business Analysis (Addison Wesley). クリス・マーシャル,企業情報シ
ステムの一般モデル: UMLによるビジネス分析と情報システムの設計, 児玉公信 (訳),
ピアソンエデュケーション, 2001.

[Martin and J.Odell, 1995] J. Martin and J. J.Odell (1995). Object-Oriented Methods: A
Foundation (PTR Prentice Hall). ジェームズ・マーチン, ジェームズ・Ｊ・オデル, オ
ブジェクト指向方法序説： 基盤編, 三菱ＣＣ研究会ＯＯタスクフォース (訳),トッパン,
1995.

[松澤ほか, 2003] 松澤 芳昭, 海保 研, 津屋 隆之介, 青山 希, 井庭 崇 (2003). エージェントベー
ス経済シミュレーションの作成プロセス: Boxed Economy 基礎モデルに基づく分析と設
計 [第 7回進化経済学会].

[Minar et al., 1996] N. Minar, R. Burkhart, C. Langton, and M. Askenazi. The swarm
simulation system:a toolkit for building multi-agent simulations. http://www.santafe.
edu/ projects/ swarm/ overview/ overview.html (1996).

[水田, 2001] 水田 秀行 (2001). マルチエージェントシミュレーションとダイナミックオンラ
インオークション [情報処理学会研究報告 2001-ICS-123] pp. 31–36.

[Mizuta and Yamagata, 2001] H. Mizuta and Y. Yamagata (2001). Agent-based Simula-
tion for Economic and Environmental Studies in Proceedings of the First International
Workshop on Agent-based Approaches in Economic and Social Complex Systems pp.
83–90.

[水田ほか, 2000] 水田 秀行, K. Steiglitz, E. Lirov (2000). マーケットの安定性と価格シグナ
ル: エージェントによるシミュレーションと解析 [情報処理学会研究報告 2000-ICS-119]
pp. 51–56.

[森岡ほか, 1993] 森岡 清美, 塩原 勉, 本間 康平 編 (1993). 新社会学辞典 (有斐閣).

[村上, 1971] 村上 陽一郎 (1971). 物理学と数学の方法 [現代科学の方法 (山内恭彦 編)] (日本
放送出版協会).

[村上, 1975] 村上 泰亮 (1975). 産業社会の病理 (中央公論社).

[村上, 1994] 村上 泰亮 (1994). 反古典の政治経済学要綱: 来世紀のための覚書 (中央公論社).

213

[村上, 1997] 村上 泰亮 (1997). 伝統的思考の宿酔から醒めるとき [村上泰亮著作集 1] (中央公
論社), 初出：週刊東洋経済 臨時増刊 ＜経済体制特集＞, 1967.4, 25頁.

[武者, 1980] 武者 利満 (1980). ゆらぎの世界 自然界の 1/fゆらぎの不思議 (講談社).

[仲本, 1999] 仲本 秀四郎 (1999). 専門用語と人間 [科学／技術と言語 (岡田 節人, 佐藤 文隆,
竹内啓, 長尾 眞, 中村 雄二郎, 村上 陽一郎, 吉川 弘之 編)] (岩波書店), 岩波講座科学／
技術と人間 10.

[Nelson, 1998] R. Nelson (1998). 進化的経済理論の観点 [進化経済学とは何か (進化経済学
会 編)] pp. 3–17 (有斐閣).

[Nelson and Winter, 1982] R. R. Nelson and S. G. Winter (1982). An Evolutionary Theory
of Economic Change (Belknap Press of Harvard University Press).

[Nicolis and Prigogine, 1977] G. Nicolis and I. Prigogine (1977). Self-Organization in
Nonequilibrium Systems (Wiley). G. ニコリス, I.プリゴジーヌ, 散逸構造: 自己秩
序形成の物理学的基礎, 小畠陽之助, 相沢洋二 (訳), 岩波書店, 1980.

[西部, 1997] 西部 邁 (1997). ソシオ・エコノミックス (中央公論社).

[西部, 2000] 西部 忠 (2000). “進化経済学の概念的・方法的基礎: メタファー・アナロジー・
シミュレーション”; 経済学研究, 北海道大学, 第 50巻, 第 1号.

[新田, 1990] 新田 俊三 編 (1990). 社会システム論 (日本評論社).

[North, 2002] M. North (2002). ABMS Architectural Design in Capturing Business Com-
plexity with Agent-Based Modeling and Simulation: Useful, Usable and Used Techniques
Workshop, Argonne National Laboratory.

[Okuyama et al., 1999] K. Okuyama, M. Takayasu, and H. Takayasu (1999). Zipf’s law in
income distribution of companies. Physica A 269, 125–131.

[Oskamp, 1971] S. Oskamp (1971). Effects of programmed strategies on cooperation in the
prisoner’s dilemma and other mixed-motive games. Journal of Conflict Resolution 15,
225–229.

[Palmer et al., 1994] G. R. Palmer, B. W. Arthur, J. H. Holland, B. LeBaron, and P. Tayler
(1994). Artificial economic life:a simple model of a stockmarket. Physica D 75.

[Pareto, 1916] V. Pareto (1916). Trattato di sociologia generale vol. 2 (Barbèra). V.パレー
ト, 一般社会学提要, 姫岡勤 (訳), 刀江書院.

[Parker, 2000] M. T. Parker (2000). Ascape: Abstracting Complexity in Swarmfest 2000
Proceedings.

[Parker, 2001] M. T. Parker (2001). What is ascape and why should you care? Jour-
nal of Artificial Societies and Social Simulation 4(1), http://www.soc.surrey.ac. uk/
JASSS/4/1/5.html.

[Parsons, 1951] T. Parsons (1951). The Social System (Free Press). 社会体系論,佐藤勉 (訳),
青木書店, 1974.

[Parsons, 1954] T. Parsons (1954). Essays in Sociological Theory (Free Press).

[Penker and Eriksson, 2000] M. Penker and H.-E. Eriksson (2000). Business Modeling with
UML: Business Patterns at Wwork (John Wiley & Sons). ハンス=エリク・エリクソ
ン, マグヌス・ペンカー, UMLによるビジネスモデリング, 鞍田友美, 本位田真一 (監
訳), ソフトバンクパブリッシング, 2002.

214

[Precht and B. Unger, 1997] L. Precht and D. C. S. B. Unger (1997). “Applications of the
First Controlled Experiment on the usefulness of Design Patterns: Detailed Description
and Evaluation”; technical report WUCS-97-34, Washington University, St. Louise.

[Prigogine, 1981] I. Prigogine (1981). From Being to Becoming (Freeman). I.プリゴジン,
存在から発展へ: 物理科学における時間と多様性, 小出昭一郎, 安孫子誠也 (訳), みすず
書房, 1984.

[RePast,] RePast. Repast. The University of Chicago’s Social Science Research ,
http://repast.sourceforage.net/.

[Robertson, 1971] T. S. Robertson (1971). Innovative Behavior and Communication (Holt,
Rinehart and Winston, Inc.).

[Rochat and Cunningham, 1988] R. Rochat and W. Cunningham (1988). The Vision of
the Pattern Language of Programs in OOPSLA-88 workshop on the Specification and
Design for Object-Oriented Programming.

[Rogers, 1982] E. M. Rogers (1982). Diffusion of Innovation 3 edn. (The Free Press).

[Rohlfs, 1985] J. Rohlfs (1985). A theory of interdependent demand for a communications
service. Bell Journal of Economics and Management Science 5, 16–37.

[Roth and Frisby, 1986] I. Roth and J. P. Frisby (1986). Perception and Representation: A
Cognitive Approach: Open Guide to Psychology (Open University Press). I.ロス, J.P.
フリスビー, 知覚と表象, 第 2版, 海文堂, 1991.

[Rumbaugh et al., 1999] J. Rumbaugh, I. Jacobson, and G. Booch (1999). The Unified
Modeling Language Reference Manual (Addision Wesley Longman). ジェームズ・ラン
ボー, イヴァー・ヤコブソン,グラディ・ブーチ, UMLリフ ァレンスマニュアル, 石塚
圭樹 (監訳), 日本ラショナルソフトウェア株式会社 (訳),ピアソン・エデュケーション.

[佐藤ほか, 2001] 佐藤 浩, 久保 正男, 生天目 章 (2001). マルチエージェントによる先物取引コ
ンテスト: Pre U-Mart 2000実施報告 [情報処理学会研究報告 2001-ICS-123] pp. 67–72.

[Schumpeter, 1915] J. A. Schumpeter (1915). Vergangenheit und Zukunft der Sozialwis-
senschaften (Verlag von Dunker & Humbolt). シュムペーター,「社会科学の過去と未
来」, 谷嶋喬四郎 (訳), 社会科学の過去と未来, 玉野井芳郎 (監修),ダイヤモンド社, 1972.

[瀬戸, 1995] 瀬戸 賢一 (1995). 空間とレトリック (海鳴社).

[Shaw et al., 1996] M. Shaw, G. David, and D. Garlan (1996). Software Architecture: Pe-
spectives on an Emerging Discipline (Prentice Hall).

[進化経済学会, 1998] 進化経済学会 . 編 (1998). 進化経済学とは何か (有斐閣).

[有賀ほか, 2000] 有賀 裕二, 塩沢 由典, 八木 紀一郎 (2000). 「ゲネシス進化経済学」刊行に
あたって [方法としての進化: ゲネシス進化経済学 (進化経済学会, 塩沢由典 編)] (シュ
プリンガー・フェアラーク東京).

[塩野谷, 1998] 塩野谷 祐一 (1998). シュンペーターの経済観: レトリックの経済学 (岩波書
店).

[塩沢, 1998] 塩沢 由典 (1998). 複雑系と進化 [進化経済学とは何か (進化経済学会 編)] pp.
99–119 (有斐閣).

215

[塩沢, 2000] 塩沢 由典 (2000). システム・アプローチに欠けるもの: 経済学における反省. 社
会・経済システム 19, 55–67.

[公文, 1978] 公文 俊平 (1978). 社会システム論: 社会科学総合化の試み (日本経済新聞社).

[Simon, 1995] H. Simon (1995). On a class of skew distribution functions. Biometrica .

[進化経済学会および塩沢, 2000] 進化経済学会 ., 塩沢 由典 編 (2000). 方法としての進化: ゲ
ネシス進化経済学 (シュプリンガー・フェアラーク東京).

[Sorokin, 1928] P. Sorokin (1928). Contemporary Sociological Theories (Harper and Row).

[Sutton and Barto, 1998] R. S. Sutton and A. G. Barto (1998). Reinforcement Learning
(The MIT Press).

[鈴木ほか, 2000] 鈴木 純一, 田中 祐, 長瀬 嘉秀, 松田 亮一 (2000). ソフトウェアパターン再
考: パターン発祥から今後の展望まで (日科技連).

[中谷および青山, 1999] 中谷 多哉子, 青山 幹雄 (1999). ソフトウェアパターン [bit別冊 ソフ
トウェアパターン (中谷多哉子, 青山 幹雄, 佐藤 啓太 編)] (共立出版).

[田子, 1998] 田子 精男 (1998). 計算の、計算による、計算のための科学 [シミュレーション科
学への招待: コンピューターによる新しい科学] (日経サイエンス社), 別冊日経サイエン
ス 130.

[今田, 1986] 今田 高俊 (1986). 自己組織性: 社会理論の復活 (創文社).

[高安および高安, 2001] 高安 秀樹, 高安 美佐子 (2001). エコノフィジックス: 市場に潜む物
理法則 (日本経済新聞社).

[玉田, 2001] 玉田 正樹 (2001). 日本発マルチエージェント・シミュレータのご紹介 [計測自動
制御学会システム工学部会・知能工学部会共催研究会].

[田中ほか, 2001] 田中 潤一郎, 浅加 浩太郎, 中鉢 欣秀, 井庭 崇 (2001). Boxed Economy 基礎
モデルによる消費者行動のモデル化 [計測自動制御学会 システム工学部会・知能工学部
会共催研究会].

[谷口ほか, 2001] 谷口 憲, 倉橋節也, 寺野 隆雄 (2001). エージェントに基づくサプライチェー
ンモデル [情報処理学会研究報告 2001-ICS-123] pp. 109–114.

[Thiel, 1969] H. Thiel (1969). A multinomial extension of the linear logit model. Interna-
tional Economic Review 10, 251–259.

[徳安, 2000] 徳安 彰 (2000). 社会システム理論の現在. 社会・経済システム 19, 18–27.

[富永, 1993] 富永 健一 (1993). 現代の社会科学者: 現代社会科学における実証主義と理念主
義 (講談社学術文庫).

[上橋ほか, 2001] 上橋 賢一, 松澤 芳昭, 井庭 崇 (2001). Boxed Economy 基礎モデルによる流
通過程のモデル化と分析可能性 [第 5回進化経済学会].

[若林, 1995] 若林 幹夫 (1995). 地図の想像力 (講談社選書メチエ).

[Wallerstein, 1996] I. Wallerstein (1996). Open the Social Sciences: Report of the Gulbenkian
Commission on the Restructuring of the Social Sciences (Mestizo Spaces, Stanford
University Press). イマニュエル・ウォーラーステイン +グルベンキアン委員会, 社会
科学をひらく, 山田鋭夫 (訳), 藤原書店, 1996.

216

[Wallingford, 1998] E. Wallingford. Elementary patterns and their role in instruction work-
shop. ChiliPLoP’98 (1998).

[Weidlich and Haag, 1983] W. Weidlich and G. Haag (1983). Concepts and Models of a
Quantitative Sociology: The Dynamics of Interactiting Populations (Springer Verlag).
W. ワイドリッヒ, G. ハーグ , 社会学の数学モデル, 寺本英, 中島久男, 重定南奈子 (訳),
東海大学出版会, 1986.

[William, 1925] J. William (1925). The Philosophy of William James: Drawn from His Own
Works (The Modern Library). Introduction by H.M.Kallen.

[Wilson, 1971] W. Wilson (1971). Reciprocation and other techniques for inducing cooper-
ation in the prisoner’s dilemma game. Journal of Conflict Resolution 15, 167–195.

[Wilson, 1990] B. Wilson (1990). Systems: Concepts, Methodologies, and Applications 2
edn. (John Wiley＆ Sons). Brian Wilson,システム仕様の分析学：ソフトシステム方法
論, 根来龍之 (訳), 共立出版, 1996.

[Witt, 1997] U. Witt (1997). Self-organization and economics - what is new? Structural
Change and Economic Dynamics 489–508.

[Witt, 1998] U. Witt (1998). 経済学とダーウィニズム [進化経済学とは何か (進化経済学会
編)] pp. 19–44 (有斐閣).

[Wright, 1931] S. Wright (1931). Evolution in mendelian populations. Genetics 16, 97–159.

[山田, 1993] 山田 英夫 (1993). 競争優位の [規格]戦略 (ダイヤモンド社).

[山田, 1997] 山田 英夫 (1997). デファクト・スタンダード (日本経済新聞社).

[山本ほか, 2001] 山本 隆人, 川村 秀憲, 山本 雅人, 大内 東, 車谷 浩一 (2001). X-Economyを
用いた人工市場における取引エージェントの設計 [計測自動制御学会システム工学部会・
知能工学部会共催研究会] pp. 45–48.

[安冨, 2000] 安冨 歩 (2000). 貨幣の複雑性: 生成と崩壊の理論 (創文社).

[横田および小林, 2001] 横田 毅, 小林 康弘 (2001). 人工市場を用いた株価シミュレーションシ
ステムの開発 [計測自動制御学会システム工学部会・知能工学部会共催研究会] pp. 55–60.

[吉井, 2000] 吉井 博明 (2000). 情報のエコロジー: 情報社会のダイナミズム (北樹出版).

[吉田, 1990] 吉田 民人 (1990). 自己組織性の情報科学 (新曜社).

[Zipf, 1949] G. K. Zipf (1949). Human Behavior and the Principle of Least Effort (Addison-
Wesley).

[池上, 1984] 池上 嘉彦 (1984). 記号論への招待 (岩波新書).

[池上ほか, 1994] 池上 嘉彦, 山中 桂一, 唐須 教光 (1994). 文化記号論 (講談社学術文庫).

[Object Management Group, 2000] Object Management Group (2000). OMG Unified Mod-
eling Language Specification (Object Management Group). UML仕様書, OMG Japan
SIG翻訳委員会 UML作業部会 (訳), アスキー, 2001.

217

付 録A UML(統一モデル化言語)の表記

について

本論文では、モデル・フレームワークやシミュレーション・プラットフォームの構造、

そしてシミュレーションモデルを記述するために、UML(Unified Modeling Language:

統一モデル化言語)を用いている。ここでは、この UMLの表記法について、本論文

に関係する部分のみを説明することにしたい (ここで説明する以外の項目や詳細につ

いては、Rumbaugh et al. (1999)などを参照してほしい)。以下では、クラス図、オ

ブジェクト図、シーケンス図、ステートチャート図の順に説明する。

A.1 クラス図の記法

クラス図 (class diagram)は、おもにクラスの内容とそれらの間の関係を表すための

静的ビューの図である。

クラス

クラス図では、矩形で「クラス」が記述される。その矩形の中に「クラス名」が明

示される。また、矩形の中に区画を区切って、そのクラスの「属性」と「操作」を示

すこともできる。その場合には、上の区画にクラス名、中の区画に属性、下の区画に

操作が記述される。これらの属性や操作は、どちらか一方を省略することもできる。

ClassA

ClassA

attribute

operation ()

関連

クラス図において、クラスの結びつきを表す「関連」は、クラスの矩形の間の実線

で記述する。関連がクラスに接続している部分には、「ロール名」や「多重度」を書

くことができる。多重度とは、一方のクラスの１つのインスタンスに対して、もう一

方のクラスのインスタンスが、いくつリンクを持つかを表す数である。

219

ClassA ClassB
0..1 *

role1 role2

あるクラスから出ている関連がそのクラス自身に向けられている場合には、そのオ

ブジェクトがそのオブジェクト自身にリンクされることもあれば、同じクラスのイン

スタンスである別々のオブジェクトがリンクされることもある。

ClassA
0..1

*

role1

role2

集約とコンポジション

クラス間関係において部分/全体関係を表す「集約」関係は、全体側のクラスに結

び付けられる端に白抜きの菱形をつけた実線で表す。また、「コンポジション」(複合

化)関係は、塗りつぶした菱形をコンポジット側の端につけた実線で表す。

ClassA

ClassB

ClassA

ClassB

汎化

「汎化」関係は、スーパークラス側の端に白抜きの三角形をつけた実線で表す。

SuperClass

SubClass

220

汎化関係や集約関係、コンポジション関係などは、いくつかの関係を 1本にまとめ

て、複数に枝分かれするツリーで表すこともできる。一般に、図が体系的になって見

やすくなるため、ツリーで表されることが多い。

SuperClass

SubClassBSubClassA SubClassC

SuperClass

SubClassBSubClassA SubClassC

A.2 オブジェクト図の記法

オブジェクト図 (object diagram)は、ある時点でのシステムのスナップショット・

イメージである。注意が必要なのは、オブジェクト図はシステムの 1状態を表す例に

過ぎず、システムの定義ではないという点である。

オブジェクト

オブジェクトは、クラスと同じ矩形を用い、名前に下線を引いて表す。どのクラス

のインスタンスであるかを表すために「クラス名」が記述され、その名前の前にコロ

ン (:)を書く。これで、そのクラス名のクラスから生成されたオブジェクトである

ということを表す。オブジェクト名を明示することもでき、その場合には、コロンの

前にオブジェクト名を書く。また、オブジェクトは具体的な属性の値をもっているの

で、それを明示する必要がある場合には、区画を区切って表示することができる。

: ClassA Object1: ClassA attribute1 = 64

attribute2 = 102

Object1: ClassA

リンク

オブジェクトとオブジェクトの個々の関係は、リンクによって表される。リンクは、

関連のインスタンスである。リンクは、オブジェクトの矩形を結ぶ実線で表される。

Object1: ClassA Object2: ClassB

221

A.3 ステートチャート図の記法

ステートチャート図 (statechart diagram)は、オブジェクトの振る舞いを記述する

ために用いられる図である。イベントの反応の結果、どのように状態が変化するかの

状態動作系列を表す。

状態機械を、状態 (state)を状態シンボルで、遷移 (transition)をそれらをつぐ矢印

で表される。そこには、そのオブジェクトの振る舞いのすべての可能性が書かれてい

る。これは１つのオブジェクトに着目して記述するので、局所化されたビューである。

状態 (state)

状態は丸み付き四角で表す。

StateA

初期状態 (initial state)

初期状態は、ふつうの状態への遷移をもつ擬似状態 (pseudostate)である。擬似状

態 (pseudostate)とは、完全な状態としての振る舞いは行なわないという意味であり、

オブジェクトは初期状態にとどまることはできず、直ちに遷移する。初期状態は、ト

リガーなし遷移 (triggerless transition)をもっており、必ず 1つ出ていくことが保証

されている必要がある。

初期状態は、塗りつぶした小さい黒丸として表示される。

最終状態 (final state)

最終状態 (final state)は、その実行が完了したことを示す状態である。そのため、

最終状態からはイベントによりトリガーされて出ていく遷移をもつことはできない。

最終状態は、初期状態のような擬似状態ではなく、一定期間アクティブになることが

可能である。

最終状態は、標的アイコン、すなわち小さい白丸で囲まれた小さい黒丸で表記する。

222

遷移 (transition)

遷移は、ある状態からどのイベントに対して発火し、どのようなガード条件を満た

し、どのようなアクションを実行し、どの状態に移るのか、ということを指定する。

ステートチャート図では、遷移はソース状態からターゲット状態に至る実践の矢印で

示す。

遷移の矢印には、次の形式の遷移文字列を記述する。

イベント名 [ガード条件] / アクション式

ガード条件はトリガーイベントのパラメータやその状態機械をもつオブジェクトの

属性や関連についての論理式である。

遷移には、アクションを記述するアクション式 (action expression)が含まれる。こ

れは、その状態機械をもつオブジェクトに影響を及ぼす手続き的計算を表す式であり、

属性値を変更したり、オブジェクトの生成や計算、他のオブジェクトへのイベントの

送信などが行なわれる。アクション式の構文は、UMLでは仕様化されていないため、

プログラミング言語、擬似コード、自然言語などを用いてアクションを表現する。

A.4 シーケンス図の記法

シーケンス図 (sequence diagram)は、オブジェクトの相互作用を時系列に表すため

の図である。注意が必要なのは、シーケンス図は、可能なシナリオのうちの 1 つのシ

ナリオ例を記述するためのものであって、システムの定義ではないという点である。

シーケンス図では、通常、横に相互作用するオブジェクトを並べ、縦に上から下に

進む時間軸を設定する。図の一番上の部分には、オブジェクトが書かれる。オブジェ

クトの配置の順番には意味はなく、わかりやすい配置がとられる。オブジェクトの矩

形から、そのオブジェクトが消滅する時点まで、下方に破線が引かれる。これを生存

線という。あるオブジェクトから他のオブジェクトへの作用は、作用するオブジェク

トの生存線から、作用されるオブジェクトの生存線への矢印で示される。

Object1: ClassA Object2: ClassB

operation ()

223

生成と消滅を伴うシーケンス図を書くこともできる。新しいオブジェクトの生成は、

塗りつぶした三角形を先端にもつ矢印で表す。また、オブジェクトの消滅は、×印で

表す。

Object1: ClassA

Object2: ClassB
create ()

224

付 録B BEFMシミュレーションモデル・

フレームワークの詳細

B.1 Worldクラス

B.1.1 シミュレーション時計・空間の設定/取得

メソッド名 引数 戻り値 説明
setClock Clock clock なし モデル内の時間経過をつかさどる時計を設定する。

このメソッドを用いて時計を設定することで、シミュ
レーション実行時にモデル内へ TimeEventが投げ
られるようになる。離散的な時間経過を扱うモデル
であれば、引数として、new StepClock()を使用し
て差し支えない。

getClock なし Clock この Worldが保持する Clockを取得する。存在し
ない場合、nullを返す。

setSpace Space space なし モデル内の地理的空間を設定する。地理的空間を扱
わないモデルであれば、このメソッドは使用しなく
ても構わない。

getSpace なし Space このWorldが保持する空間を取得する。存在しない
場合、nullを返す。

B.1.2 財の生成/明示的な消費

メソッド名 引数 戻り値 説明
createGoods GoodsType type,

double quantity

Goods 引数の type と quantity の Goods を生
成して返す。

consumeGoods Goods goods なし Goods を明示的に消費して Event を送
りたい時に呼ぶメソッドである。通常は
Agentの removeGoods メソッドで「財
を世界から消す」ことはできるが、このメ
ソッドを使用すると、使用時に Update-

WorldEventが送られるため、プレゼン
テーションコンポーネントなどで消費を
追うことが容易になる。

225

B.1.3 エージェントの生成/参照/削除

メソッド名 引数 戻り値 説明
createAgent AgentType type Agent 引数の Typeのエージェントを生成し

て、World に追加する。生成直後に
Agentの init メソッドを呼ぶ。

createAgent なし Agent デフォルトの Typeを使用したエージェ
ントを生成して、Worldに追加する。モ
デル内にエージェントが１種類しか登
場しない場合や、Typeによるプライオ
リティ設定の必要がない場合に、使用
できる。

destoryAgent Agent agent なし Worldから Agentを削除する。Agent

の死亡・消滅を意味する。存在しない
Agentを削除しようとした時、Excep-

tionを投げる。
getAgent AgentType type Agent 引数の Typeの Agentを返す。該当す

る Agentが複数存在する場合、一番最
初に追加された Agentを返す。存在し
ない場合、Exceptionを投げる。

getAgents AgentType type Collection 引数の TypeのAgentの Collectionを
返す。もし存在しなければ、空の Col-

lectionを返す。
getAgentsRecursively AgentType type Collection 引数のType及びその子TypeのAgent

のCollectionを返す。存在しない場合、
空の Collectionを返す。

getAllAgents Collection Worldに追加されている全ての Agent

の Collectionを返す。

B.1.4 タイプとプライオリティの設定

メソッド名 引数 戻り値 説明
installAgentType String name AgentType AgentTypeを生成して返す。Typeの

生成には必ずこれらのメソッドを用い
ること。

installAgentType String name,

int priority

AgentType プライオリティをもつ AgentType を
生成して返す。Typeによってエージェ
ントの行動順を制御したい場合に使用
するメソッドである。Typeの生成には
必ずこれらのメソッドを用いること。

installGoodsType String name GoodsType GoodsTypeを生成して返す。Typeの
生成には必ずこれらのメソッドを用い
ること。

installBehaviorType String name BehaviorType BehaviorTypeを生成して返す。Type

の生成には必ずこれらのメソッドを用
いること。

installRelationType String name RelationType RelationTypeを生成して返す。Type

の生成には必ずこれらのメソッドを用
いること。

226

B.1.5 乱数ジェネレータの追加/取得

メソッド名 引数 戻り値 説明
installRandom

NumberGenerator

RandomNumber

Generator ran-

dom

なし 引数の RandomNumberGener-

ator を World の randomMap

に追加する。もし、同じ name

の RandomNumberGenerator

が既にあれば、上書きされる。
getRandomNumber

Generator

String name RandomNumber

Generator

引数の name の RandomNum-

berGeneratorを検索して返す。
存在しない場合、nullを返す。

getRandomNumber

Generator

なし RandomNumber

Generator

Default の RandomNumber-

Generator を検索して返す。存
在しない場合、nullを返す。

B.2 Agentクラス

B.2.1 行動の追加/取得

メソッド名 引数 戻り値 説明
addBehavior BehaviorType type なし Behaviorを追加する。追加された

Behaviorは開始状態となる。この
時、追加された Behaviorには所
有者である Agent がセットされ
る。

getBehavior BehaviorType type Behavior 引数の Typeである Behaviorを
返す。該当する Behaviorが複数
存在する場合、一番初めに追加さ
れた Behaviorを返す。存在しな
い場合、Exceptionが投げられる。

getBehaviors BehaviorType type Collection 引数の Typeである Behaviorを
Collectionとして全て返す。存在
しない場合、空の Collectionを返
す。

getBehaviorsRecursively BehaviorType type Collection 引数の Type およびその子であ
る Behaviorを Collectionとして
全て返す。存在しない場合、空の
Collectionを返す。

removeBehavior Behavior behavior なし Behavior を終了して削除する。
Behavior 終了には、特にトラブ
ルが発生しやすいため、注意して
使用すること）

227

B.2.2 所有財の追加/取得

メソッド名 引数 戻り値 説明
addGoods Goods goods なし 財を所有財に追加する。
removeGoods GoodsType

type, double

quantity

Goods 指定された種類の財を指定量引き
出して、返す。指定された種類の
財が指定量存在しない場合は、Ex-

ceptionが投げられる。type は、
引き出す財の種類。quantityは、
引き出す財の量。

removeGoodsRecursibely GoodsType

type, double

quantity

Collection 指定された種類の財を指定量引き
出して、返す。指定された種類に
下位種類があれば再帰的に検索す
るので、返されるのは Goodsで
はなくCollectionである。指定さ
れた種類の財が１種類でも指定量
ぶん存在しない場合、Exception

が投げられる。
removeAllGoods GoodsType

type

Goods 指定された種類の財をすべて引き
出して、返す。指定された種類の
財が存在しない場合、Exception

が投げられる。
removeAllGoodsRecursively GoodsType

type

Collection 指定された種類の財を全て引き出
して、返す。指定された種類に下
位種類があれば再帰的に検索する
ので、返されるのは Goodsではな
くCollectionである。指定された
種類の財が全く存在しない場合、
Exceptionが投げられる。

getQuantity GoodsType

type

GoodsQuantity 指定された種類の財の量を取得
する。指定された種類の財が無
ければ 0 を表す GoodsQuantity

インスタンスが返される。取得し
たGoodsQuantityから int、dou-

bleを得るには、GoodsQuantity

のもつ getValueAsInt()、getVal-

ueAsDouble()を使用すること。
getQuantityRecursively GoodsType

type

GoodsQuantity 指定された種類の財の量を取得す
る。指定された種類に下位種類が
あれば再帰的に検索する。指定さ
れた種類の財が無ければ 0を表す
GoodsQuantity インスタンスが
返される。取得した GoodsQuan-

tityから int、doubleを得るには、
GoodsQuantity のもつ getVal-

ueAsInt()、getValueAsDouble()

を使用すること。
hasGoods GoodsType

type

boolean 指定された種類の財を持っている
かどうか、真偽を返す。

getGoodsTypes なし Collection この Agentが持つ全ての財の種
類を返す。

228

B.2.3 情報の追加/取得

メソッド名 引数 戻り値 説明
putInformation Information key,

Information value

なし エージェントに情報を追加する。keyは、
取り出す時の検索キー（情報）。value

は、追加したい情報。
getInformation Information key Information 引数の Informationをキーとする Infor-

mation(cloneではない)を返す。キーが
見つからなかった場合、Exceptionが投
げられる。

removeInformation Information key Information 引数の Informationをキーとする Infor-

mation(cloneではない)を削除して、返
す。キーが見つからなかった場合、Ex-

ceptionが投げられる。

B.2.4 関係の追加/取得

メソッド名 引数 戻り値 説明
addRelation RelationType

relationType,

Agent target

なし 関係を追加する。エージェントは同じ
種類の関係を複数もつことができる。
relationTypeは、追加したい関係の
Type。targetは、関係先の Agent。

addRelation Agent target なし デフォルトの Typeを利用して関係を
追加する。モデル内で関係を１種類し
か使わない時や、全てのエージェント
が関係を１種類しかもたない時に使用
できる。

getRelation RelationType

type

Relation 引数の Typeである関係を返す。該当
する関係が複数存在する場合、一番最
初に追加された関係を返す。存在しな
い場合、Exceptionが投げられる。

getRelation RelationType

type, Agent

agent

Relation 引数の Type、かつ関係先が引数の
Agentである関係を返す。

getRelations RelationType

type

Collection 引数の Typeである関係を全て返す。
存在しない場合、空の Collectionが
返される。

getRelationsRecursively RelationType

type

Collection 引数の Type 及びその Type の子の
Typeである全ての関係を返す。存在
しない場合、空の Collectionが返さ
れる。

removeRelation Relation rela-

tion

なし 引数の関係を削除する。

removeRelations RelationType

type

なし 引数の Typeの関係全てを削除する。

removeRelationsRecursively RelationType

type

なし 引数の Type及びその子Typeの関係
全てを削除する。

getRelationTypes なし Collection この RelaitonManagerのもつ関係の
Typeを返す。存在しない場合、Ex-

ceptionが投げられる。

229

B.3 Behaviorクラス

B.3.1 エージェント/世界の参照

メソッド名 引数 戻り値 説明
getAgent なし Agent その行動をもっているエージェントを返す。Behaviorを継承した

クラス内で後述したエージェントメソッドを使用するには、このメ
ソッドでエージェントを参照すること。

getWorld なし World その行動をもっているエージェントが存在する世界を返す。Behavior

を継承したクラス内でエージェントを生成するといったワールドメ
ソッドを使用するには、このメソッドで世界を参照すること。

B.3.2 財の送信

メソッド名 引数 戻り値 説明
sendGoods Goods goods なし 既に開いている経路を利用して、財を送信す

る。開いている経路がない場合、Exceptionを
投げる。

sendGoods Relation relation,

BehaviorType behav-

iorType, Goods goods,

boolean keep

なし 関係先の単数のエージェントに対して、経路
を開き財を送信する。relationは、送信したい
エージェント単体に対する関係。behaviorType

は、送信先のエージェントがもつ、送信財を受
け取る行動の Type。goodsは、送信したい財。
keepは経路を keepするかどうかの真偽値。

sendGoods Relation relation,

BehaviorType be-

haviorType, Goods

goods

なし 関係先の単数のエージェントに対して、経路を
開き財を送信する。この時、keep=falseな経
路を自動的に開設するところが、上のメソッド
と異なる。

sendGoods RelationType relation-

Type, BehaviorType

behaviorType, Good-

sType goodsType,

double goodsQuantity,

boolean createGoods,

boolean keep

int 指定した関係先の全てのエージェントに対して、
経路を開いて財を送信する。戻り値は送り先
エージェントの数である。relationTypeは、送
信したい各エージェントに対する関係のType。
behaviorTypeは、送信先の各エージェントが
もつ、送信財を受け取る行動の Type。good-

sTypeは、送信したい財のType。goodsQuan-

tityは、送信したい財の量。createGoodsは、
送信したい財を新しく生成するかどうかの真偽
値。falseの場合、送信財は送信元のエージェ
ントの所有財から取り出される。keepは経路
を keepするかどうかの真偽値。

sendGoods RelationType relation-

Type, BehaviorType

behaviorType, Good-

sType goodsType,

double goodsQuantity,

boolean createGoods

int 指定した関係先の全てのエージェントに対し
て、経路を開き財を送信する。戻り値は送り先
のエージェント数である。この時、Keep=false

な経路を自動的に開設するところが、上のメ
ソッドと異なる。

230

B.3.3 情報の送信

メソッド名 引数 戻り値 説明
sendInformation Information infor-

mation

なし 既に開いている経路を利用して、情報を送信
する。開いている経路がない場合は例外を投
げる。

sendInformation Relation relation,

BehaviorType

behaviorType,

Information infor-

mation, boolean

keep

なし 関係先の単数のエージェントに対して、経路
を開き情報を送信する。relationは、送信し
たいエージェント単体に対する関係。behav-

iorTypeは、送信先のエージェントがもつ、送
信情報を受け取る行動の Type。information

は、送信したい情報。keepは経路を keepす
るかどうかの真偽値。

sendInformation Relation relation,

BehaviorType

behaviorType,

Information infor-

mation

なし 関係先の単数のエージェントに対して、経路
を開き情報を送信する。この時、Keep=false

な経路を自動的に開設するところが、上のメ
ソッドと異なる。

sendInformation RelationType

relationType,

BehaviorType

behaviorType,

Information infor-

mation, boolean

keep

int 指定した関係先の全てのエージェントに対
して、経路を開き情報を送信する。戻り値
は送り先エージェントの数である。relation-

Typeは、送信したい各エージェントに対す
る関係の Type。behaviorTypeは、送信先の
各エージェントがもつ、送信情報を受け取る
行動のType。informationは、送信したい情
報の Type。keepは経路を keepするかどう
かの真偽値。

sendInformation RelationType

relationType,

BehaviorType

behaviorType,

Information infor-

mation, boolean

keep

int 指定した関係先の全てのエージェントに対
して、経路を開き情報を送信する。戻り値
は送り先エージェントの数である。この時、
Keep=falseな経路を自動的に開設するとこ
ろが、上のメソッドと異なる。

B.3.4 財/情報の受信

メソッド名 引数 戻り値 説明
getReceivedGoods なし Goods 最後に送られてきた財の参照を返す。再び財

/情報が送られてくるまで、このメソッドは
同じ参照を返す。

getReceivedInformation なし Information 最後に送られてきた情報の参照を返す。再び
財/情報が送られてくるまで、このメソッド
は同じ参照を返す。

231

付 録C モデル・パターン カタログ

C.1 モデル・パターンの分類

本カタログは、Boxed Economy Foundation Modelに基づくモデルにおいて繰り返

し登場するモデル・パターンを記述したものである。取り上げるモデル・パターンは、

大きく分けて次のような分類ができる。

• エレメンタリーなモデル・パターン
• コミュニケーションのモデル・パターン
• 行動変化のモデル・パターン
• アクティベーションのモデル・パターン

各分類に属するモデル・パターンの一覧は次のようになる。

モデル・パターンの分類 モデル・パターン名

エレメンタリーなモデル・パターン

Agent Creation (p. 236)

Relation Creation (p. 238)

Related Agent Creation (p. 240)

Agent Destruction (p. 242)

Goods Creation (p. 244)

Information Creation (p. 246)

コミュニケーションのモデル・パターン

Information Sending (p. 248)

Blank Information Sending (p. 252)

Internal Information Sending (p. 256)

Immediate Reply (p. 260)

Collect Immediate Replies (p. 264)

Appointed Destination Reply (p. 268)

Super BehaviorType Calling (p. 272)

行動変化のモデル・パターン

Behavior Creation (p. 276)

Behavior Destruction (p. 278)

Behavior Switching (p. 280)

Temporary Behavior Creation (p. 282)

Requested Behavior Attachment (p. 284)

Forced Behavior Attachment (p. 288)

アクティベーションのモデル・パターン

TimeEvent Distributer Agent (p. 290)

TimeEvent Filtering (p. 294)

TimeEvent Distributer Behavior (p. 296)

Time-Consuming Behavior (p. 298)

233

C.2 パターンにおけるクラス名・オブジェクト名について

基本動作、設計、サンプルコードに記載されているエージェント名などは、ここで

の説明用の名称がつけられている。モデルにおいて現れるときには、そのコンテクス

トにあった名前をつける必要がある。

C.3 設計におけるオブジェクト図について

本カタログの「設計」の部分は、オブジェクト図を変形した図で記述している。こ

の図は、モデルにおいて登場するすべてのモデル要素を記述しているため、正しいオ

ブジェクト図とはいえない。なぜなら、本来オブジェクト図は、あるシステムのある

特定の時間における状態のスナップショットを記述するものだからである。Typeオブ

ジェクトによるモデル要素の表現の関係から、本カタログでは、このような変形版オ

ブジェクト図を用いる。

状態遷移図では、そのパターンに関する処理を行う actionについては、その目的を

わかりやすくするための名前をつけている (そうでない場合には、nextAction という

名前をつけてある)。これらの action名も、モデルのコンテクストに合った名前に付

けなおすことが望ましい。

C.4 サンプルコードについて

Worldクラスを継承した「～World」は、initializeWorld メソッドと initializeAgents

メソッドをオーバーライドする。本カタログに示すサンプルはすべて、以下のような

initializeWorld メソッドを想定している。

【～Worldクラス】

・・・
public void initializeWorld() {

super.initializeWorld();

//時計に StepClockを設定
this.setClock(new StepClock());

}

・・・

initializeAgentsメソッドは、モデルによってその処理の内容が異なるため、カタロ

グごとにサンプルコードを掲載している。「～World」の全体像は、次のようになる

(AgentCreationWorldクラスの例)。

234

【AgentCreationWorldクラス】

package org.boxed_economy.agentcreation.model;

import org.boxed_economy.besp.container.BESP;

import org.boxed_economy.besp.model.fmfw.*;

import org.boxed_economy.components.stepclock.StepClock;

public class AgentCreationWorld extends World {

//World の初期化

public void initializeWorld() {

super.initializeWorld();

//時計に StepClockを設定
this.setClock(new StepClock());

}

//Agent の初期化

public void initializeAgents() {

//AgentCreatorエージェントの生成
Agent agentCreator = createAgent(AgentCreationModel.AGENTTYPE_AgentCreator);

//そのエージェントへの CreateAgentBehaviorの追加
agentCreator.addBehavior(AgentCreationModel.BEHAVIORTYPE_CreateAgent);

}

}

C.5 バリエーションについて

ふつう、同じ目的を満たすようなモデルは、いくつか存在する。モデル・パターン

では典型的なサンプルモデルをあげているが、常にこれが最良であるというわけでは

ない。「バリエーション」の項では、代替的な案について、若干補足している。これら

を参考に、適用する文脈に適した形で変形して利用することが期待される。

なお、サンプルモデルでは、登場するエージェントが、それぞれ異なるAgentType

をもつというモデル化をしているが、多くの場合、そのようにする必要はない。説明

の便宜上のものだと考えてほしい。

235

エレメンタリーなモデル・パターン

Agent Creation

■ 目的

新しいエージェントを生成する。

■ 動機

AgentCreator NewAgent

Create
Agent
Behavior

AgentCreator

Create
Agent
Behavior

人口が増減するモデルや、組織が形成・解体さ
れるモデルでは、シミュレーション実行中に、新し
いエージェントを生成し、世界に追加する必要があ
る。このエージェント生成処理を内生化したい場合
には、モデル内のいずれかのエージェントが、生成
処理を行う必要がある。

■ 基本動作

AgentCreator エージェントは CreateAgentBe-
haviorを持っており、このCreateAgentBehaviorに
よって、NewAgentエージェントを生成する。

■ 設計

【全体像】

 : AgentCreationWorld : AgentCreationModel

AGENTTYPE_AgentCreator : AgentType : Agent

 : Agent AGENTTYPE_NewAgent : AgentType

BEHAVIORTYPE_CreateAgent : BehaviorType: CreateAgentBehavior

【CreateAgentBehavior】

 AbstractCreateAgentBehavior

CreateAgentBehavior

 AbstractBehavior
(from org.boxed_economy.besp.model.fmfw.behavior)

createAgentAction ()

236

■ サンプルコード

【AgentCreationWorldクラス】

・・・
public void initializeAgents() {

//AgentCreatorエージェントの生成
Agent agentCreator = createAgent(AgentCreationModel.AGENTTYPE_AgentCreator);

//そのエージェントへの CreateAgentBehavior の追加
agentCreator.addBehavior(AgentCreationModel.BEHAVIORTYPE_CreateAgent);

}

・・・

【CreateAgentBehaviorクラス】

・・・
protected void createAgentAction() {

//新しいエージェントの生成
Agent createAgent = this.getWorld().createAgent(AgentCreationModel.AGENTTYPE_NewAgent);

}

・・・

■ バリエーション

ここでのサンプルでは、生成したエージェントに行動をもたせていないため、このエージェ
ントは何もしない。何らかの行動をさせたい場合には、このエージェントに行動を付加する必
要がある (→ Forced Behavior Attachment 参照)。

■ 関連するパターン

Related Agent Creation: 新しくエージェントを生成して、そのエージェントに関係を結ぶ。

237

エレメンタリーなモデル・パターン

Relation Creation

■ 目的

他のエージェントとの関係を生成する。

■ 動機

Source

Create
Relation
Behavior

Target

NewRelation

Source

Create
Relation
Behavior

Target

エージェント間の関係が変化したり、新しい関係
性が生じるモデルでは、シミュレーション実行中に、
エージェント間の関係を生成して結ぶ必要がある。
この関係生成処理を内生化したい場合には、モデル
内のいずれかのエージェントが、この生成処理を行
う必要がある。

■ 基本動作

Sourceエージェントと Targetエージェントが登
場する。Sourceエージェントは CreateRelationBe-
haviorを持っており、このCreateRelationBehavior
によって NewRelationを生成し、Targetエージェ
ントと関係を結ぶ。

■ 設計

【全体像】

 : RelationCreationWorld : RelationCreationModel

AGENTTYPE_Source : AgentType : Agent

 : Agent AGENTTYPE_Target : AgentType

BEHAVIORTYPE_CreateRelation : BehaviorType: CreateRelationBehavior

RELATIONTYPE_NewRelation : Relation

238

【CreateAgentBehavior】

 AbstractCreateRelationBehavior

CreateRelationBehavior

 AbstractBehavior
(from org.boxed_economy.besp.model.fmfw.behavior)

createRelationAction ()

■ サンプルコード

【RelationCreationWorldクラス】

・・・
public void initializeAgents() {

//Sourceエージェントと Targetエージェントの生成
Agent source = createAgent(RelationCreationModel.AGENTTYPE_Source);

Agent target = createAgent(RelationCreationModel.AGENTTYPE_Target);

//Sourceエージェントへの行動の追加
source.addBehavior(RelationCreationModel.BEHAVIORTYPE_CreateRelation);

}

・・・

【CreateRelationBehaviorクラス】

・・・
protected void createRelationAction() {

//関係を結ぶ相手の特定
Agent target = this.getWorld().getAgent(RelationCreationModel.AGENTTYPE_Target);

//相手と関係を結ぶ
this.getAgent().addRelation(RelationCreationModel.RELATIONTYPE_NewRelation, target);

}

・・・

■ バリエーション

ここでのサンプルでは、関係を結ぶエージェントの特定化に、AgentTypeを用いている。
このほかの代替案としては、(1) エージェントを特定化するための情報を受取り、それを用い
て指定する、(2) 世界に存在するエージェントを調べて、その中から選択して指定する、とい
う方法が考えられる。

■ 関連するパターン

Related Agent Creation: 新しくエージェントを生成して、そのエージェントに関係を結ぶ。

239

エレメンタリーなモデル・パターン

Related Agent Creation

■ 目的

新しいエージェントを生成し、関係を結ぶ。

■ 動機

AgentCreator NewAgent

Create
Related
Agent
Behavior

AgentCreator NewAgent

Create
Related
Agent
Behavior

AgentCreator

Create
Related
Agent
Behavior

NewRelation

エージェントの生成を伴うモデルでは、生成処理
を行うエージェントと、新しく生成されたエージェ
ントの間に、なんらかの関係を持たせたいというこ
とがしばしばある。例えば、個人エージェントが子
供を生む場合は、それらの間に親子関係を結ぶこと
になるだろう。また、個人もしくは組織エージェン
トが、新しい組織を形成したり、内部組織を分化さ
せる場合にも、生成処理を行ったエージェントとな
んらかの関係を結ぶことが想定される。

■ 基本動作

AgentCreatorエージェントは CreateRelatedA-
gentBehaviorを持っている。この CreateRelatedA-
gentBehaviorによって、NewAgentエージェントを
生成した後、NewRelationを結ぶ。

■ 設計

【全体像】

 : RelatedAgentCreationWorld : RelatedAgentCreationModel

AGENTTYPE_AgentCreator : AgentType : Agent

 : Agent AGENTTYPE_NewAgent : AgentType

BEHAVIORTYPE_CreateRelatedAgent : BehaviorType: CreateRelatedAgentBehavior

RELATIONTYPE_NewRelation : Relation

240

【CreateRelatedAgentBehavior】

 AbstractCreateRelatedAgentBehavior

 AbstractBehavior
(from org.boxed_economy.besp.model.fmfw.behavior)

CreateRelatedAgentBehavior

createRelatedAgentAction ()

■ サンプルコード

【RelatedAgentCreationWorldクラス】

・・・
public void initializeAgents() {

//AgentCreatorエージェントの生成
Agent agentCreator = createAgent(AgentCreationModel.AGENTTYPE_AgentCreator);

//そのエージェントへの CreateAgentBehaviorの追加
agentCreator.addBehavior(RelatedAgentCreationModel.BEHAVIORTYPE_CreateRelatedAgent);

}

・・・

【CreateRelatedAgentBehaviorクラス】

・・・
protected void createRelatedAgentAction() {

//新しいエージェントの生成
Agent createAgent =

this.getWorld().createAgent(RelatedAgentCreationModel.AGENTTYPE_NewAgent);

//自分から新しいエージェントへの関係の設定
this.getAgent().

addRelation(RelatedAgentCreationModel.RELATIONTYPE_NewRelation, createdAgent);

}

・・・

■ バリエーション

ここでのサンプルでは、生成したエージェントに行動をもたせていないため、このエージェ
ントは何もしない。何らかの行動をさせたい場合には、このエージェントに行動を付加する必
要がある (→ Forced Behavior Attachment 参照)。

■ 関連するパターン

Agent Creation: 関係をもたないエージェントを生成する。
Relation Creation: すでに存在するエージェントと関係を結ぶ。

241

エレメンタリーなモデル・パターン

Agent Destruction

■ 目的

他のエージェントを消滅させる。

ToTarget

AgentDestroyer

Destroy
Agent
Behavior

Target

ToTarget

AgentDestroyer

Destroy
Agent
Behavior

Target

AgentDestroyer

Destroy
Agent
Behavior

■ 動機

人口が増減するモデルや、組織が形成・解体さ
れるモデルでは、シミュレーション実行中に、エー
ジェントを消滅させる必要がでてくる。例えば、個
人エージェントの死亡や、組織エージェントの解散
などが、これにあたる。このエージェント消滅処理
を内生化したい場合には、モデル内のいずれかの
エージェントが、消滅処理を行う必要がある。

■ 基本動作

AgentDestroyer エージェントは DestroyAgent-
Behaviorを持っている。このDestroyAgentBehav-
iorによって、Targetエージェントを消滅させる (こ
のとき、関係は自動的に消滅する)。

■ 設計

【全体像】

 : AgentDestructionWorld : AgentDestructionModel

AGENTTYPE_AgentDestroyer : AgentType : Agent

 : Agent AGENTTYPE_Target : AgentType

BEHAVIORTYPE_DestroyAgent : BehaviorType: DestroyAgentBehavior

RELATIONTYPE_ToTarget : Relation

242

【DestroyAgentBehavior】

 AbstractDestroyAgentBehavior

DestroyAgentBehavior

 AbstractBehavior
(from org.boxed_economy.besp.model.fmfw.behavior)

destroyAgentAction ()

■ サンプルコード

【AgentDestructionWorldクラス】

・・・
public void initializeAgents() {

//AgentDestroyerエージェントの生成
Agent agentDestroyer = createAgent(AgentDestructionModel.AGENTTYPE_AgentDestroyer);

//そのエージェントへの DestroyAgentBehavior の追加
agentDestroyer.addBehavior(AgentDestructionModel.BEHAVIORTYPE_DestroyAgent);

//消滅させる Targetエージェントの生成
Agent target = createAgent(AgentDestructionModel.AGENTTYPE_Target);

//AgentDestroyerエージェントから Targetエージェントへの関係を結ぶ
agentDestroyer.addRelation(AgentDestructionModel.RELATIONTYPE_ToTarget, target);

}

・・・

【DestroyAgentBehaviorクラス】

・・・
protected void destroyAgentAction() {

//削除するエージェントの特定
Agent target = this.getAgent()

.getRelation(AgentDestructionModel.RELATIONTYPE_ToTarget).getTarget();

//target のエージェントの削除
this.getWorld().destroyAgent(target);

}

・・・

■ バリエーション

ここでのサンプルでは、消滅させるエージェントの特定化に、AgentTypeを用いている。
このほかの代替案としては、(1) エージェントを特定化するための情報を受取り、それを用い
て指定する、(2) 世界に存在するエージェントを調べて、その中から選択して指定する、とい
う方法が考えられる。

243

エレメンタリーなモデル・パターン

Goods Creation

■ 目的

財を生成する。

■ 動機

GoodsCreator

Create
Goods
Behavior

CreatedGoods

GoodsCreator

Create
Goods
Behavior

商品を生産したり調達したりするモデルでは、シ
ミュレーション実行中に、財を生成する必要がある。
この財生成処理を内生化したい場合には、モデル内
のいずれかのエージェントが、生成処理を行う必要
がある。

■ 基本動作

GoodsCreatorエージェントは CreateGoodsBe-
haviorを持っている。この CreateGoodsBehavior
によって、CreatedGoodsを生成する。

■ 設計

【全体像】

 : GoodsCreationWorld : GoodsCreationModel

AGENTTYPE_GoodsCreator : AgentType : Agent

 : Goods GOODSTYPE_CreatedGoods : GoodsType

BEHAVIORTYPE_CreateGoods : BehaviorType: CreateGoodsBehavior

【CreateGoodsBehavior】

 AbstractCreateGoodsBehavior

CreateGoodsBehavior

 AbstractBehavior
(from org.boxed_economy.besp.model.fmfw.behavior)

createGoodsAction ()

244

■ サンプルコード

【GoodsCreationWorldクラス】

・・・
public void initializeAgents() {

//GoodsCreatorエージェントの生成
Agent goodsCreator = createAgent(GoodsCreationModel.AGENTTYPE_GoodsCreator);

//そのエージェントへの CreateGoodsBehaviorの追加
goodsCreator.addBehavior(GoodsCreationModel.BEHAVIORTYPE_CreateGoods);

}

・・・

【CreateGoodsBehaviorクラス】

・・・
protected void createGoodsAction() {

//Goodsの作成
Goods createdGoods =

this.getWorld().createGoods(GoodsCreationModel.GOODSTYPE_CreatedGoods, 1.0);

}

・・・

■ バリエーション

このサンプルで行っているのは、財を生成することのみである。この後に行う動作として
考えられるのは、(1)財を他のエージェントに送るという動作であり、それは、Behaviorの
sendGoods()で行う。あるいは、(2)自分の所有財として保管するという動作も考えられ、そ
れは、Agentの addGoods()で行う。

245

エレメンタリーなモデル・パターン

Information Creation

■ 目的

情報を作成する。

InformationCreator

Create
Information
Behavior

InformationCreator

Create
Information
Behavior

Created
Information

■ 動機

エージェント間の相互作用を行う場合や、何ら
かのデータを記憶したい場合には、シミュレーショ
ン実行中に、エージェントが情報を作成する必要が
ある。

■ 基本動作

InformationCreatorエージェントは、CreateIn-
formationBehavior もっており、この CreateInfor-
mationBehaviorによってCreatedInformationを作
成する。

■ 設計

【全体像】

 : InformationCreationWorld : InformationCreationModel

 : Agent AGENTTYPE_InformationCreator : AgentType

: CreateInformationBehavior BEHAVIORTYPE_CreateInformation : BehaviorType

: CreatedInformationInformation INFORMATIONTYPE_CreatedInformation : InformationType

【CreateInformationBehavior】

 AbstractCreateInformationBehavior

 AbstractBehavior
(from org.boxed_economy.besp.model.fmfw.behavior)

CreateInformationBehavior

createInformationAction ()

246

■ サンプルコード

【InformationCreationWorldクラス】

・・・
public void initializeAgents() {

//InformationCreatorエージェントの生成
Agent informationCreator =

createAgent(InformationCreationModel.AGENTTYPE_InformationCreator);

//そのエージェントへの CreateInformationBehaviorの追加
informationCreator.addBehavior(

InformationCreationModel.BEHAVIORTYPE_CreateInformation);

}

・・・

【CreateInformationBehaviorクラス】

・・・
protected void createInformationAction() {

//情報の生成
CreatedInformation createdInformation = new CreatedInformation();

//情報の追加
this.getAgent().putInformation(createdInformation);

}

・・・

【CreatedInformationクラス】

・・・
public class CreatedInformation implements Information {

//ここに情報の形式、および設定・取得のためのメソッド等を書く
・・・

}

・・・

■ 関連するパターン

Information Sending: 情報を送る。

247

コミュニケーションのモデル・パターン

Information Sending

■ 目的

他のエージェントに、Informationを送信する。

■ 動機

MessageInformation

Sender

Send
Information
Behavior

Receiver

Receive
Information
Behavior

ToReceiver

Sender

Send
Information
Behavior

Receiver

Receive
Information
Behavior

ToReceiver

エージェントが、他のエージェントに何らかの
メッセージを送ったり、質問をしたりするようにし
たい。

■ 基本動作

SenderエージェントとReceiverエージェントが登
場する。Senderエージェントは、SendInformation-
Behaviorをもっている。SendInformationBehavior
は、(ここでは) MessageInformationを生成し、Re-
ceiver エージェントに送信する。Receiver エージ
ェントは、ReceiveInformationBehaviorでそれを受
ける。

■ 設計

【全体像】

 : InformationSendingWorld : InformationSendingModel

AGENTTYPE_Sender : AgentType : Agent

 : Agent AGENTTYPE_Receiver : AgentType

BEHAVIORTYPE_SendInformation : BehaviorType: SendInformationBehavior

INFORMATIONTYPE_Message : InformationType: MessageInformation

BEHAVIORTYPE_ReceiveInformation : BehaviorType: ReceiveInformationBehavior

RELATIONTYPE_ToReceiver : Relation

248

【SendInformationBehavior】

 AbstractSendInformationBehavior

 AbstractBehavior
(from org.boxed_economy.besp.model.fmfw.behavior)

SendInformationBehavior

sendInformationAction ()

【ReceiveInformationBehavior】

 AbstractReceiveInformationBehavior

 AbstractBehavior
(from org.boxed_economy.besp.model.fmfw.behavior)

ReceiveInformationBehavior

receiveInformationAction ()
isMessage ()

【MessageInformation】

Imformation
(from org.boxed_economy.besp.model.fmfw)

<< interface >>

MessageInformation

contents: Srting

setContents (String)

getContents () : String

MessageInformation (String)

■ サンプルコード

【InformationSendingWorldクラス】

・・・
public void initializeAgents() {

//Senderエージェントの生成
Agent sender = createAgent(InformationSendingModel.AGENTTYPE_Sender);

//Senderエージェントへの SendInformationBehaviorの追加
sender.addBehavior(InformationSendingModel.BEHAVIORTYPE_SendInformation);

//Receiverエージェントの生成
Agent receiver = createAgent(InformationSendingModel.AGENTTYPE_Receiver);

//Receiverエージェントへの ReceiveInformationBehaviorの追加
receiver.addBehavior(InformationSendingModel.BEHAVIORTYPE_ReceiveInformation);

//Senderエージェントから Receiverエージェントへの関係の追加
sender.addRelation(InformationSendingModel.RELATIONTYPE_ToReceiver, receiver);

}

・・・

249

【SendInformationBehaviorクラス】

・・・
protected void sendInformationAction() {

//情報の生成 (ここでは、メッセージの内容は文字列)

MessageInformation message = new MessageInformation("Hello!");

//生成した情報の送信
this.sendInformation(InformationSendingModel.RELATIONTYPE_ToReceiver,

InformationSendingModel.BEHAVIORTYPE_ReceiveInformation, message);

}

・・・

【ReceiveInformationBehaviorクラス】

・・・
protected void receiveInformationAction() {

//受信した情報を取得
Information receivedInformation = getReceivedInformation();

//メッセージの内容を取得 (ここでは文字列)

String messageContents =

((MessageInformation)receivedInformation).getContents();

}

protected boolean isMessage(Event e) {

//送られてきた情報が、MessageInformationであれば trueを返す。
return this.getWorld().getInformationType(getReceivedInformation())

== InformationSendingModel.INFORMATIONTYPE_Message;

}

・・・

【MessageInformationクラス】

・・・
public class MessageInformation implements Information {

//ここでは、内容は文字列
String contents;

//コンストラクタ (引数 = 文字列)

public MessageInformation(String contents) {

this.contents = contents;

}

//内容を返す
public String getContents() {

return contents;

}

//内容を設定する
public void setContents(String contents) {

this.contents = contents;

}

}

・・・

250

■ バリエーション

このサンプルでは、文字列の内容を記録するMessageInformationという情報を送っている
が、それ以外の情報形式でも構わない。文脈に応じて自由に設計することができる。
また、このサンプルでは、どのような情報が送られてきたのかを、InformationTypeで判断

させているが、情報の内容で判別させることもできる。

■ 関連するパターン

Information Creation: Informationを生成する。
Blank Information Sending: 内容を伴わないシグナルを送る。

251

コミュニケーションのモデル・パターン

Blank Information Sending

■ 目的

他のエージェントに、内容が空の Informationを送信する。

■ 動機

単に合図や質問を送りたいときには、相手に情報の種類が伝わればよいということがしば
しばある。このような場合には、内容を伴わない Information を送るだけで済ましたい。

BlankInformation

Sender Receiver

Sender

Send
Blank
Information
Behavior

Receiver

Receive
Blank
Information
Behavior

Send
Blank
Information
Behavior

Receive
Blank
Information
Behavior

ToReceiver

■ 基本動作

Senderエージェントと Receiverエージェントが
登場する。Senderエージェントは、SendBlankIn-
formationBehaviorをもっている。SendBlankInfor-
mationBehaviorでは、内容を伴わない BlankInfor-
mationを生成し、Receiverエージェントに送信す
る。Receiverエージェントは、ReceiveBlankInfor-
mationBehaviorでそれを受ける。どのような情報
が送られてきたのかの識別は、BlankInformationの
InformationTypeで判断する。

■ 設計

【全体像】

 : BlankInformationSendingWorld : BlankInformationSendingModel

AGENTTYPE_Sender : AgentType : Agent

 : Agent AGENTTYPE_Receiver : AgentType

BEHAVIORTYPE_SendInformation : BehaviorType: SendBlankInformationBehavior

INFORMATIONTYPE_BlankInformation : InformationType: MessageInformation

BEHAVIORTYPE_ReceiveInformation : BehaviorType: ReceiveBlankInformationBehavior

RELATIONTYPE_ToReceiver : Relation

252

【SendBlankInformationBehavior】

 AbstractSendBlankInformationBehavior

 AbstractBehavior
(from org.boxed_economy.besp.model.fmfw.behavior)

SendBlankInformationBehavior

sendBlankInformationAction ()

【ReceiveBlankInformationBehavior】

 AbstractReceiveBlankInformationBehavior

 AbstractBehavior
(from org.boxed_economy.besp.model.fmfw.behavior)

ReceiveBlankInformationBehavior

nextAction ()

isBlankInformation ()

【BlankInformation】

Imformation
(from org.boxed_economy.besp.model.fmfw)

<< interface >>

BlankInformation

■ サンプルコード

【BlankInformationSendingWorldクラス】

・・・
public void initializeAgents() {

//Senderエージェントの生成
Agent sender = createAgent(BlankInformationSendingModel.AGENTTYPE_Sender);

//Senderエージェントへの SendInformationBehaviorの追加
sender.addBehavior(BlankInformationSendingModel.BEHAVIORTYPE_SendBlankInformation);

//Receiverエージェントの生成
Agent receiver = createAgent(BlankInformationSendingModel.AGENTTYPE_Receiver);

//Receiverエージェントへの ReceiveInformationBehaviorの追加
receiver.addBehavior(

BlankInformationSendingModel.BEHAVIORTYPE_ReceiveBlankInformation);

//Senderエージェントから Receiverエージェントへの関係の追加
sender.addRelation(BlankInformationSendingModel.RELATIONTYPE_ToReceiver, receiver);

}

・・・

253

【SendBlankInformationBehaviorクラス】

・・・
protected void sendBlankInformationAction() {

//空の情報の生成
BlankInformation blankInformation = new BlankInformation();

//その情報の送信
this.sendInformation(BlankInformationSendingModel.RELATIONTYPE_ToReceiver,

BlankInformationSendingModel.BEHAVIORTYPE_ReceiveBlankInformation,

blankInformation);

}

・・・

【ReceiveBlankInformationBehaviorクラス】

・・・
protected void nextAction() {

//BlankInformationを受け取ったら行うアクション

}

protected boolean isBlankInformation(Event e) {

//送られてきた情報が、BlankInformationであれば trueを返す。
return this.getWorld().getInformationType(getReceivedInformation())

== BlankInformationSendingModel.INFORMATIONTYPE_BlankInformation;

}

・・・

【BlankInformationクラス】

・・・
public class BlankInformation implements Information {

//内容は空でよい
}

■ 関連するパターン

Information Creation: Informationを生成する。
Information Sending: 内容を伴う Informationを送信する。

254

255

コミュニケーションのモデル・パターン

Internal Information Sending

■ 目的

自分自身 (エージェント)に対して、Informationを送信する。

■ 動機

Message
Information

SelfSender

Send
Information
ToMyself
Behavior

Send
Information
ToMyself
Behavior

Receive
Information
BehaviorToMyself

SelfSender

Receive
Information
BehaviorToMyself

エージェントが複数の行動をもっている場合、そ
れらの行動を連携させたいことがある。例えば、他
のエージェントとのコミュニケーションを行う行動
が集めた情報を、意思決定・戦略行動が利用すると
いう場合などである。行動間の単なる情報共有で
あれば、情報を記憶し、それを取り出すことで共有
できるが、行動をアクティベートして何らかの処理
をさせたい場合には、直接情報を送る方がわかりや
すい。

■ 基本動作

SelfSenderエージェントは、SendInformationBe-
haviorと ReceiveInformationBehaviorをもってい
る。SendInformationBehaviorでは、MessageInfor-
mationを生成し、自分自身に送信する。SelfSender
エージェントは、ReceiveInformationBehaviorでそ
れを受け取る。

■ 設計

【全体像】

 : InternalInformationSendingWorld : InternalInformationSendingModel

AGENTTYPE_SelfSender : AgentType : Agent

INFORMATIONTYPE_Message : InformationType: MessageInformation

BEHAVIORTYPE_SendInformationToMyself : BehaviorType: SendInformationToMyselfBehavior

RELATIONTYPE_ToMyself : RelationType : Relation

BEHAVIORTYPE_ReceiveInformation : BehaviorType: ReceiveInformationBehavior

256

【SendInformationBehavior】

 AbstractSendInformationToMyselfBehavior

 AbstractBehavior
(from org.boxed_economy.besp.model.fmfw.behavior)

SendInformationToMyselfBehavior

sendInformationToMyselfAction ()

【ReceiveInformationBehavior】

 AbstractReceiveInformationBehavior

 AbstractBehavior
(from org.boxed_economy.besp.model.fmfw.behavior)

ReceiveInformationBehavior

nextAction ()

isMessage ()

【MessageInformation】

Imformation
(from org.boxed_economy.besp.model.fmfw)

<< interface >>

MessageInformation

contents: Srting

setContents (String)

getContents () : String

MessageInformation (String)

257

■ サンプルコード

【InternalInformationSendingWorldクラス】

・・・
public void initializeAgents() {

//SelfSenderエージェントの生成
Agent selfSender = this.createAgent(

InternalInformationSendingModel.AGENTTYPE_SelfSender);

//SelfSenderエージェントに、SendInformationBehavior、
//および ReceiveInformationBehaviorを追加する
selfSender.addBehavior(

InternalInformationSendingModel.BEHAVIORTYPE_SendInformation);

selfSender.addBehavior(

InternalInformationSendingModel.BEHAVIORTYPE_ReceiveInformation);

//SelfSenderの自分自身への Relationの追加
selfSender.addRelation(

InternalInformationSendingModel.RELATIONTYPE_ToMyself,

selfSender);

}

・・・

【SendInformationBehaviorクラス】

・・・
protected void sendInformationToMyselfAction() {

//送信する情報の作成
MessageInformation message = new MessageInformation("Fight!");

//作成した情報を自分に送信する
sendInformation(

InternalInformationSendingModel.RELATIONTYPE_ToMyself,

InternalInformationSendingModel.BEHAVIORTYPE_ReceiveInformation,

message);

}

・・・

【ReceiveInformationBehaviorクラス】

・・・
protected void receiveInformationAction() {

//受信した情報を取得
Information receivedInformation = getReceivedInformation();

//メッセージの内容を取得 (ここでは文字列)

String messageContents =

((MessageInformation)receivedInformation).getContents();

}

protected boolean isMessage(Event e) {

//送られてきた情報が、MessageInformationであれば trueを返す。
return this.getWorld().getInformationType(getReceivedInformation())

== InformationSendingModel.INFORMATIONTYPE_Message;

}

・・・

258

【MessageInformationクラス】

・・・
public class MessageInformation implements Information {

//ここでは、内容は文字列
String contents;

//コンストラクタ (引数 = 文字列)

public MessageInformation(String contents) {

this.contents = contents;

}

//内容を返す
public String getContents() {

return contents;

}

//内容を設定する
public void setContents(String contents) {

this.contents = contents;

}

}

・・・

■ 関連するパターン

Information Creation: Informationを生成する。
Information Sending: 他のエージェントに情報を送る。
Blank Information Sending: 内容を伴わないシグナルを送る。

259

コミュニケーションのモデル・パターン

Immediate Reply

■ 目的

Questioner Respondent

QuestionInformation

ReplyInformation

ToRespondent

Questioner

Question
Behavior

Respondent

Reply
Behavior

Questioner

Question
Behavior

Respondent

Reply
Behavior

Question
Behavior

Reply
Behavior

他のエージェントに質問し、直ちに返答を受ける。

■ 動機

他のエージェントの属性等について知りたい場合
に、質問をして問い合わせることがある。

■ 基本動作

Questionerエージェントと Respondentエージェ
ントが登場する。Questionerエージェントは、Ques-
tionBehaviorをもっており、これによってQuestion-
Informationを生成し (ここでは内容は空とする)、
Respondentエージェントに送信する。Respondent
エージェントは、ReplyBehaviorでそれを受けて、
直ちに ReplyInformationを送り返す (ここでは文
字列の内容をもつとする)。

■ 設計

【全体像】

 : ImmediateReplyWorld : ImmediateReplyModel

AGENTTYPE_Questioner : AgentType : Agent

 : Agent AGENTTYPE_Respondent : AgentType

BEHAVIORTYPE_Question : BehaviorType: QuestionBehavior

INFORMATIONTYPE_Question : InformationType: QuestionInformation

INFORMATIONTYPE_Question : InformationType: ReplyInformation

BEHAVIORTYPE_Reply : BehaviorType: ReplyBehavior

RELATIONTYPE_ToRespondent : Relation

260

【QuestionBehavior】

 AbstractQuestionBehavior

 AbstractBehavior
(from org.boxed_economy.besp.model.fmfw.behavior)

QuestionBehavior

questionAction ()
readReplyAction ()
isReply ()

【ReplyBehavior】

 AbstractReplyBehavior

 AbstractBehavior
(from org.boxed_economy.besp.model.fmfw.behavior)

ReplyBehavior

replyAction ()
isQuestion ()

【QustionInformation】

Imformation
(from org.boxed_economy.besp.model.fmfw)

<< interface >>

QuestionInformation

【ReplyInformation】

Imformation
(from org.boxed_economy.besp.model.fmfw)

<< interface >>

ReplyInformation

contents: Srting

setContents (String)

getContents () : String

ReplyInformation (String)

261

■ サンプルコード

【ImmediateReplyWorldクラス】

・・・
public void initializeAgents() {

//Questionerエージェントの生成
Agent questioner = createAgent(ImmediateReplyModel.AGENTTYPE_Questioner);

//Questionerエージェントへの QuestionBehaviorの追加
questioner.addBehavior(ImmediateReplyModel.BEHAVIORTYPE_Question);

//Respondentエージェントの生成
Agent respondent = createAgent(ImmediateReplyModel.AGENTTYPE_Respondent);

//Respondentエージェントへの ReplyBehaviorの追加
respondent.addBehavior(ImmediateReplyModel.BEHAVIORTYPE_Reply);

//Questionerエージェントから Replyエージェントへの関係の追加
questioner.addRelation(ImmediateReplyModel.RELATIONTYPE_ToRespondent, respondent);

}

・・・

【QuestionBehaviorクラス】

・・・
protected void questionAction() {

//質問 (空の情報) の生成
QuestionInformation questionInformation = new QuestionInformation();

//質問の送信
this.sendInformation(ImmediateReplyModel.RELATIONTYPE_ToRespondent,

ImmediateReplyModel.BEHAVIORTYPE_Reply, questionInformation);

}

protected void readReplyAction() {

//送られてきた返信内容の取得
Information receivedInformation = getReceivedInformation();

String replyContents = ((ReplyInformation)receivedInformation).getContents();

}

protected boolean isReply(Event e) {

//送られてきた情報が ReplyInformationであれば trueを返す
return this.getWorld().getInformationType(getReceivedInformation())

== ImmediateReplyModel.INFORMATIONTYPE_Reply;

}

・・・

【ReplyBehaviorクラス】

・・・
protected void replyAction() {

//返信情報の作成
ReplyInformation replyInformation = new ReplyInformation("My answer is Yes.");

//その返信情報の送信 (現在開いている Channelへ送信)

this.sendInformation(replyInformation);

}

protected boolean isQuestion(Event e) {

262

//送られてきた情報が QuestionInformationであれば trueを返す
return this.getWorld().getInformationType(getReceivedInformation())

== ImmediateReplyModel.INFORMATIONTYPE_Question;

}

・・・

【QuestionInformationクラス】

・・・
public class QuestionInformation implements Information {

//ここでは、質問の内容は空
}

【ReplyInformationクラス】

・・・
public class ReplyInformation implements Information {

//ここでは、内容は文字列
String contents;

//コンストラクタ (引数 = 文字列)

public ReplyInformation(String contents) {

this.contents = contents;

}

//内容を返す
public String getContents() {

return contents;

}

//内容を設定する
public void setContents(String contents) {

this.contents = contents;

}

}

・・・

■ バリエーション

このサンプルでは、質問を送る行動 (QuestionBehavior)が返答を受け取ったが、これら
を分離することもできる。例えば、ReceiveReplyBehaviorのように、受取り専用の行動をつ
くることができる。その場合には、ReplyBehaviorは、返答情報の送り先として、明示的に
ReceiveReplyBehaviorを指定する必要がある。もし事前に ReplyBehaviorが返信先を知って
いたくない場合 (行動コンポーネントのの独立性のため)には、QuestionBehaviorが返信先を
指定することもできる (Appointed Destination Replyパターン)。

■ 関連するパターン

Information Creation: Informationを生成する部分で使用。
Blank Information Sending: 空のメッセージを送信する場合。
Collect Immediate Replies: 複数のエージェントから、直ちに返答を集める場合。この Imme-
diate Replyパターンを内包している。

263

コミュニケーションのモデル・パターン

Collect Immediate Replies

Question
Information

Question
Information

Questioner

Question
Behavior

Reply
Behavior

Respondent

Reply
Behavior

Questioner

Question
Behavior

Reply
Behavior

Respondent

Reply
Behavior

Reply
Information

ReplyInformation

Questioner

Question
Behavior

Reply
Behavior

Respondent

Reply
Behavior

Reply
Information

ReplyInformation

ReplyInformation

Questioner

Question
Behavior

Questioner

Question
Behavior

Reply
Behavior

Respondent

Reply
Behavior

ToRespondent

ToRespondent

■ 目的

複数のエージェントに質問し、直ちに返された返
答を集める。

■ 動機

複数のエージェントの属性等を知りたい場合に、
質問をして問い合わせることがある。例えば、注文
を集める場合、データの合計・平均を調査したい場
合などがこれにあたる。

■ 基本動作

Questionerエージェントと複数のRespondentエー
ジェントが登場する。Questionerエージェントは、
QuestionBehaviorをもっており、これによってQues-
tionInformationを生成し (内容は空でもよい)、連
続して Respondent エージェントに送信していく。
Respondentエージェントは、ReplyBehaviorでそ
れを受けて、直ちに ReplyInformationを送り返す。
ここで、送り返された ReplyInformationは、一度、
Questionerのスタックにたまり、次の Respondent
エージェントの ReplyBehaviorが実行されて、その
返信も、ためられる。すべてのRespondentエージェ
ントの返答が終った時点で、Questionerエージェン
トは、スタックにたまったものをまとめて処理する。

264

■ 設計

【全体像】

 : CollectImmediateRepliesWorld : CollectImmediateRepliesModel

AGENTTYPE_Questioner : AgentType : Agent

 : Agent AGENTTYPE_Respondent : AgentType

BEHAVIORTYPE_Question : BehaviorType: QuestionBehavior

INFORMATIONTYPE_Question : InformationType: QuestionInformation

BEHAVIORTYPE_Reply : BehaviorType: ReplyBehavior

RELATIONTYPE_ToRespondent : RelationType : Relation

INFORMATIONTYPE_Reply : InformationType: ReplyInformation

【QuestionBehavior】

 AbstractQuestionBehavior

 AbstractBehavior
(from org.boxed_economy.besp.model.fmfw.behavior)

QuestionBehavior

sendQuestionToAllAgentAction ()

isReply ()

areAllRepliesReceived ()

【ReplyBehavior】

 AbstractReplyBehavior

 AbstractBehavior
(from org.boxed_economy.besp.model.fmfw.behavior)

ReplyBehavior

replyAction ()

265

■ サンプルコード
【CollectImmediateRepliesWorldクラス】

・・・
public void initializeAgents() {

//Questionerエージェントの生成
Agent questioner =

this.createAgent(CollectImmediateRepliesModel.AGENTTYPE_Questioner);

//Questionerエージェントへの QuestionBehaviorの追加
questioner.addBehavior(CollectImmediateRepliesModel.BEHAVIORTYPE_Question);

//Respondentエージェントの生成（複数人）
for (int i = 0; i < 10; i++) {

//Respondentエージェントの生成
Agent respondent =

this.createAgent(CollectImmediateRepliesModel.AGENTTYPE_Respondent);

//Respondentエージェントへの ReplyBehaviorの追加
respondent.addBehavior(

CollectImmediateRepliesModel.BEHAVIORTYPE_Reply);

//Questionerエージェントの Respondentエージェントへの Relationの追加
questioner.addRelation(

CollectImmediateRepliesModel.RELATIONTYPE_ToRespondent,respondent);

}

}

・・・

【QuestionBehaviorクラス】

・・・
//返信の残り数のカウンタ (クラス変数)

private int receiveCount = 0;

・・・

protected void sendQuestionToAllAgentAction() {

// ToRespondent 関係のエージェント全員に対して、
// QuestionInformationを送り、Respondent の人数を receiveCountに記録する
this.receiveCount = this.sendInformation(

CollectImmediateRepliesModel.RELATIONTYPE_ToRespondent,

CollectImmediateRepliesModel.BEHAVIORTYPE_Reply,

new QuestionInformation());

}

protected void receiveReplyAction() {

private List replies = new ArrayList();

//受け取った ReplyInformationを記録する
replies.add(this.getReceivedInformation());

//返信の残り数を減らす
this.receiveCount--;

}

protected boolean isReply(Event e) {

//ReplyInformationを受け取った場合に trueを返す

266

return this.getWorld().getInformationType(this.getReceivedInformation())

== CollectImmediateRepliesModel.INFORMATIONTYPE_Reply;

}

protected boolean areAllRepliesReceived(Event e) {

//QuestionInformationを送った数だけ、返信を受け取った場合に trueを返す。
return this.receiveCount == 0;

}

・・・

【ReplyBehaviorクラス】

・・・
protected void replyAction() {

//ReplyInformationを送り返す
this.sendInformation(new ReplyInformation());

}

protected boolean isQuestion(Event e) {

//QuestionInformationを受け取った場合、trueを返す
return this.getWorld().getInformationType(this.getReceivedInformation())

== CollectImmediateRepliesModel.INFORMATIONTYPE_Question;

}

・・・

■ 関連するパターン

Information Creation: Informationを生成する部分で使用。
Blank Information Sending: 空のメッセージを送信する場合。
Immediate Reply: 一人のエージェントに対して。Collect Immediate Replies パターンは、こ
の Immediate Reply パターンを内包している。

267

コミュニケーションのモデル・パターン

Appointed Destination Reply

Questioner Respondent

QuestionInformation

ToRespondent

ToReplyReceiver

ToReplyReceiver

Questioner Respondent

Reply
Behavior

Questioner Respondent

Reply
Behavior

Receive
Reply
Behavior

Question
Behavior

Receive
Reply
Behavior

Question
Behavior

Receive
Reply
Behavior

Question
Behavior

ReplyInformation

Questioner Respondent

Reply
Behavior

Receive
Reply
Behavior

Question
Behavior

Reply
Behavior

■ 目的

質問を送ったエージェントに、指定した宛先 (Ap-
pointed Destination)に返答してもらう。

■ 動機

他のエージェントに質問して返答を求める際に、
質問した行動以外の行動に返信を求めたいことがあ
る。例えば、質問を受けてから返答するまでの間に
時間を要する場合や、返信内容によって返信先が異
なる場合などがある。

■ 基本動作

Questionerエージェントと Respondentエージェ
ントが登場する。Questionerエージェントは、Ques-
tionBehaviorをもっており、これによって、返答先
の Agent と BehaviorType を含む QuestionInfor-
mationを生成し、Respondentエージェントに送信
する。Respondentエージェントは、ReplyBehavior
でそれを受けて、その返答先にReplyInformationを
送る。ReplyBehaviorは、ReceiveReplyBehaviorの
ことを事前に知っている必要はない。

■ 設計

【全体像】 : AppointedDestinationReplyWorld

AGENTTYPE_Questioner : AgentType : Agent

 : Agent AGENTTYPE_Respondent : AgentType

INFORMATIONTYPE_Question : InformationType: QuestionInformation

BEHAVIORTYPE_Question : BehaviorType: QuestionBehavior

INFORMATIONTYPE_Reply : InformationType: ReplyInformation

BEHAVIORTYPE_Reply : BehaviorType: ReplyBehavior

RELATIONTYPE_ToRespondent : RelationType

RELATIONTYPE_ToReplyReceiver: RelationType

 : Relation

 : Relation

 : AppointedDestinationReplyModel

BEHAVIORTYPE_ReceiveReply : BehaviorType: ReceiveReplyBehavior

268

【QuestionBehavior】

 AbstractQuestionBehavior

 AbstractBehavior
(from org.boxed_economy.besp.model.fmfw.behavior)

QuestionBehavior

questionAction ()

【ReplyBehavior】

 AbstractReplyBehavior

 AbstractBehavior
(from org.boxed_economy.besp.model.fmfw.behavior)

ReplyBehavior

replyAction ()

isQuestion ()

【ReceiveReplyBehavior】

 AbstractReceiveReplyBehavior

 AbstractBehavior
(from org.boxed_economy.besp.model.fmfw.behavior)

ReceiveReplyBehavior

receiveReplyAction ()

isReply ()

【QuestionInformation】

Information
(from org.boxed_economy.besp.model.fmfw)

<< interface >>

QuestionInformation

QuestionInformation (Agent, BehaviorType)
getAgent ()
getBehaviorType ()

agent : Agent
behaviorType : BehaviorType

269

■ サンプルコード

【AppointedDistinationReplyWorldクラス】

・・・
public void initializeAgents() {

//Questionerエージェントの生成
Agent questioner = createAgent(AppointedDestinationReplyModel.AGENTTYPE_Questioner);

//Questionerエージェントへの QuestionBehaviorと ReceiveReplyBehavior の追加
questioner.addBehavior(AppointedDestinationReplyModel.BEHAVIORTYPE_Question);

questioner.addBehavior(AppointedDestinationReplyModel.BEHAVIORTYPE_ReceiveReply);

//Respondentエージェントの生成
Agent respondent = createAgent(AppointedDestinationReplyModel.AGENTTYPE_Respondent);

//Respondentエージェントへの ReplyBehaviorの追加
respondent.addBehavior(AppointedDestinationReplyModel.BEHAVIORTYPE_Reply);

//Questionerエージェントの Respondentエージェントへの Relationの追加
questioner.addRelation(

AppointedDestinationReplyModel.RELATIONTYPE_ToRespondent, respondent);

}

・・・

【QuestionBehaviorクラス】

・・・
protected void questionAction() {

//質問情報の作成
QuestionInformation question = new QuestionInformation(this.getAgent(),

AppointedDestinationReplyModel.BEHAVIORTYPE_ReceiveReply);

//質問情報を送る
this.sendInformation(AppointedDestinationReplyModel.RELATIONTYPE_ToRespondent,

AppointedDestinationReplyModel.BEHAVIORTYPE_Reply, question);

}

・・・

【ReplyBehaviorクラス】

・・・
protected void replyAction() {

//受け取った情報を取得する
QuestionInformation question = (QuestionInformation) this.getReceivedInformation();

//質問情報から返信先のエージェントと行動を調べる
Agent appointedAgent = question.getAgent();

BehaviorType appointedBehaviorType = question.getBehaviorType();

//指定された返信先エージェントに関係を結ぶ
this.getAgent().addRelation(

AppointedDestinationReplyModel.RELATIONTYPE_ToReplyReceiver, appointedAgent);

//指定された返信先エージェントの指定された行動に返信を送る
this.sendInformation(AppointedDestinationReplyModel.RELATIONTYPE_ToReplyReceiver,

appointedBehaviorType, new ReplyInformation());

}

protected boolean isQuestion(Event e) {

270

//QuestionInformationを受け取った場合に trueを返す
return this.getWorld().getInformationType(this.getReceivedInformation())

== CollectImmediateRepliesModel.INFORMATIONTYPE_Question;

}

・・・

【ReceiveReplyBehaviorクラス】

・・・
protected void receiveReplyAction() {

//受信した情報を取得
Information receivedInformation = getReceivedInformation();

}

protected boolean isReply(Event e) {

//送られてきた情報が ReplyInformationであれば trueを返す
return this.getWorld().getInformationType(getReceivedInformation())

== InformationSendingModel.INFORMATIONTYPE_Reply;

}

・・・

【QuetionInformationクラス】

・・・
public class QuestionInformation implements Information {

private Agent agent;

private BehaviorType behaviorType;

//コンストラクタ（引数 = Agent, BehaviorType）
public QuestionInformation(Agent agent, BehaviorType behaviorType) {

this.agent = agent;

this.behaviorType = behaviorType;

}

public Agent getAgent() {

return this.agent;

}

public BehaviorType getBehaviorType() {

return this.behaviorType;

}

}

・・・

■ 関連するパターン

Information Creation: Informationを生成する。
Collect Immediate Replies: 複数のエージェントから直ちに返答を集める。

271

コミュニケーションのモデル・パターン

Super BehaviorType Calling

■ 目的

具体的行動ではなく、その行動の親 BehaviorTypeで指定したい。

■ 動機

戦略行動のように、同種の行動であるが内容が異なるという行動を扱いたいことがある。こ
れらの行動は、シミュレーションの実行中に、状況に応じて切り替えることが多い。そのた
め、他の行動が、これらの行動と連携・コミュニケーションをはかりたい場合には、指定の仕
方に工夫が必要となる。

QuestionInformation

Sender Receiver

Decide
Carefully
Behavior

ToReceiver

Sender

Question
Behavior

Question
Behavior

Receiver

Decide
Carefully
Behavior

ToReceiver

BEHAVIORTYPE

_DecideC
arefully

BEHAVIORTYPE

_Decide
BEHAVIORTYPE
_Decide

■ 基本動作

QuestionerエージェントとReceiverエージェント
が登場する。Questionerエージェントは、Question-
Behaviorをもっており、それによって QuestionIn-
formationを作成し、Receiverエージェントに送信
する。そのとき、送信先は、Receiverエージェントの
「DecideBehaviorType」の行動になっている。Re-
ceiverエージェントは、この DecideBehaviorType
の子タイプ「DecideCarefullyBehaviorType」の行
動 (DecideCarefullyBehavior)をもっており、この
DecideCarefullyBehaviorで、QuestionInformation
を受け取る。

■ 設計

【全体像】 : SuperBehaviorTypeCallingWorld : SuperBehaviorTypeCallingModel

AGENTTYPE_Questioner : AgentType : Agent

 : Agent AGENTTYPE_Receiver : AgentType

BEHAVIORTYPE_Question : BehaviorType: QuestionBehavior

INFORMATIONTYPE_Question : InformationType: QuestionInformation

BEHAVIORTYPE_DecideCarefully : BehaviorType: DecideCarefullyBehavior

RELATIONTYPE_ToReceiver : RelationType : Relation

BEHAVIORTYPE_Decide : BehaviorType

272

【DecideBehavior】

 AbstractDecideBehavior

 AbstractBehavior
(from org.boxed_economy.besp.model.fmfw.behavior)

DecideBehavior

decideAction ()

isQuestion ()

【DecideCarefullyBehavior】

 AbstractDecideCarefullyBehavior

 AbstractBehavior
(from org.boxed_economy.besp.model.fmfw.behavior)

DecideCarefullyBehavior

decideCarefullyAction ()

isQuestion ()

【タイプの親子関係】

 BEHAVIORTYPE_Decide

 BEHAVIORTYPE_DecideCarefully

■ サンプルコード

【SuperBehaviorTypeCallingModelクラス】

・・・
private static void initializeTypes(BESPContainer container) {

//BEHAVIORTYPE_DecideCarefullyを、BEHAVIORTYPE_Decideの子タイプに設定
BEHAVIORTYPE_Decide.addChild(BEHAVIORTYPE_DecideCarefully);

}

・・・

【SuperBehaviorTypeCallingWorldクラス】

・・・
public void initializeAgents() {

//Questionerエージェントの生成
Agent questioner = this.createAgent(

SuperBehaviorTypeCallingModel.AGENTTYPE_Questioner);

//Questionerエージェントへの QuestionBehaviorの追加
questioner.addBehavior(SuperBehaviorTypeCallingModel.BEHAVIORTYPE_Question);

//Receiverエージェントの生成

273

Agent receiver = this.createAgent(

SuperBehaviorTypeCallingModel.AGENTTYPE_Receiver);

//Receiverエージェントへの DecideCarefullyBehavior の追加
receiver.addBehavior(

SuperBehaviorTypeCallingModel.BEHAVIORTYPE_DecideCarefully);

//Questionerエージェントの Receiverエージェントへの Relation の追加
questioner.addRelation(

SuperBehaviorTypeCallingModel.RELATIONTYPE_ToReceiver, receiver);

}

・・・

【QuestionBehaviorクラス】

・・・
protected void questionAcrion() {

//Receiverエージェントに、QuestionInformationを送る。
this.sendInformation(

SuperBehaviorTypeCallingModel.RELATIONTYPE_ToReceiver,

SuperBehaviorTypeCallingModel.BEHAVIORTYPE_Decide,

new QuestionInformation());

}

・・・

【DecideCarefullyBehaviorクラス】

・・・
protected void decideCarefullyAction() {

//慎重に意思決定する
}

protected boolean isQuestion(Event e) {

//QuestionInformationを受け取った時に trueを返す
return this.getWorld().getInformationType(this.getReceivedInformation())

== SuperBehaviorTypeCallingModel.INFORMATIONTYPE_Question;

}

・・・

■ バリエーション

このサンプルでは、DecideCarefullyBehaviorだけを用意し、DecideBehaviorは用意しな
かった。もし複数の Decide～Behaviorがあり、それらのプログラムに共通部分があるなら
ば、これらの Behaviorの親クラスとして、DecideBehaviorを定義してもよい。この場合には、
BehaviorTypeの親子関係とは別に、プログラム的な汎化関係を用いるということである。

■ 関連するパターン

Information Sending: 他のエージェントに情報を送る。
Internal Information Sending: 自分の持っている他の行動に情報を送る。

274

275

行動変化のモデル・パターン

Behavior Creation

■ 目的

自分自身に新しい行動を生成・追加する。

■ 動機

BehaviorCreator

New
Behavior

Create
Behavior
Behavior

BehaviorCreator

Create
Behavior
Behavior

エージェントの役割が動的に変化するモデルや、
状況に応じた振舞いをするモデルでは、シミュレー
ション実行中に、そのエージェントがいままで持っ
ていなかった行動を生成し追加する必要がある。

■ 基本動作

BehaviorCreator エージェントは CreateBehav-
iorBehavior をもっている。この CreateBehavior-
Behaviorは、NewBehaviorを生成する。その結果、
BehaviorCreatorエージェントは、新たに NewBe-
haviorを持つことになる。

■ 設計

【全体像】

 : BehaviorCreationWorld : BehaviorCreationModel

AGENTTYPE_BehaviorCreator : AgentType : Agent

BEHAVIORTYPE_CreateBehavior : BehaviorType: CreateBehaviorBehavior

BEHAVIORTYPE_New : BehaviorType: NewBehavior

【CreateBehaviorBehavior】

 AbstractCreateBehaviorBehavior

CreateBehaviorBehavior

 AbstractBehavior
(from org.boxed_economy.besp.model.fmfw.behavior)

createBehaviorAction ()

276

【NewBehavior】

 AbstractNewBehavior

NewBehavior

 AbstractBehavior
(from org.boxed_economy.besp.model.fmfw.behavior)

SomeKindOfAction () ※この行動の内容は、文脈に合わせて作成する。

■ サンプルコード

【BehaviorCreationWorldクラス】

・・・
public void initializeAgents() {

//BehaviorCreatorエージェントの生成
Agent behaviorCreator =

createAgent(BehaviorCreationModel.AGENTTYPE_BehaviorCreator);

//そのエージェントへの CreateBehaviorBehaviorの追加
behaviorCreator.addBehavior(BehaviorCreationModel.BEHAVIORTYPE_CreateBehavior);

}

・・・

【CreateBehaviorBehaviorクラス】

・・・
protected void createBehaviorAction() {

//NewBehavior の追加
this.getAgent().addBehavior(BehaviorCreationModel.BEHAVIORTYPE_New);

}

・・・

■ 関連するパターン

Behavior Switching: 新しいエージェントが持っている行動を削除し、新しい行動を追加する。
Temporary Behavior Creation: 生成・追加する行動が、一時的に処理を行って自動消滅する
場合。

277

行動変化のモデル・パターン

Behavior Destruction

■ 目的

エージェントが持っている行動を削除する。

BehaviorDestroyer

Target
Behavior

Destroy
Behavior
Behavior

BehaviorDestroyer

BehaviorDestroyer

Destroy
Behavior
Behavior

Target
Behavior

Destroy
Behavior
Behavior

■ 動機

エージェントの役割が動的に変化するモデルや、
状況に応じた振舞いをするモデルでは、シミュレー
ション実行中に、そのエージェントが持っている行
動を削除したいことがある。現在もっている行動を、
強制的に終了したり、同種の別の行動に置き換えた
りするためである。

■ 基本動作

BehaviorDestroyerエージェントはTargetBehav-
iorと DestroyBehaviorBehaviorを持っている。De-
stroyBehaviorBehaviorによって、TargetBehavior
を削除する (TargetBehaviorの状態にかかわらず、
外部から強制的に削除する)。

■ 設計

【全体像】

 : BehaviorDestructionWorld : BehaviorDestructionModel

AGENTTYPE_BehaviorDestroyer : AgentType : Agent

BEHAVIORTYPE_DestroyBehavior : BehaviorType: DestroyBehaviorBehavior

BEHAVIORTYPE_Target : BehaviorType: TargetBehavior

278

【DestroyBehaviorBehavior】

 AbstractDestroyBehaviorBehavior

DestroyBehaviorBehavior

 AbstractBehavior
(from org.boxed_economy.besp.model.fmfw.behavior)

destroyBehaviorAction ()

■ サンプルコード

【BehaviorDestructionWorldクラス】

・・・
public void initializeAgents() {

//BehaviorDestroyerエージェントの生成
Agent behaviorDestroyer =

createAgent(BehaviorDestructionModel.AGENTTYPE_BehaviorDestroyer);

//そのエージェントへの DestroyBehaviorBehaviorの追加
behaviorDestroyer.addBehavior(

BehaviorDestructionModel.BEHAVIORTYPE_DestroyBehavior);

//そのエージェントへの削除対象動の追加
behaviorDestroyer.addBehavior(

BehaviorDestructionModel.BEHAVIORTYPE_Target);

}

・・・

【DestroyBehaviorBehaviorクラス】

・・・
protected void destroyBehaviorAction() {

//Behavior の削除
this.getAgent().removeBehavior(this.getAgent()

.getBehavior(BehaviorDestructionModel.BEHAVIORTYPE_Target));

}

・・・

■ 関連するパターン

Behavior Switching: ある行動を他の行動に切り替える場合 (現在持っている行動を削除し、新
しい行動を追加する)。

279

行動変化のモデル・パターン

Behavior Switching

BehaviorSwitcher

Target
Behavior

Switch
Behavior
Behavior

BehaviorSwitcher

Target
Behavior

Switch
Behavior
Behavior

BehaviorSwitcher

Switch
Behavior
Behavior

BehaviorSwitcher

New
Behavior

Switch
Behavior
Behavior

■ 目的

エージェントが現在持っている行動を、新しい他
の行動に切り替える。

■ 動機

エージェントの役割が動的に変化するモデルや、
状況に応じた振舞いをするモデルでは、シミュレー
ション実行中に、そのエージェントが持っている行
動を切り替える必要がある。特に典型的な例として
は、戦略 (行動)の切り替えがある。

■ 基本動作

BehaviorSwitcherエージェントは TargetBehav-
iorと SwitchBehaviorBehaviorを持っている。Switch-
BehaviorBehaviorによって、TargetBehaviorを削
除し、SwitchBehaviorBehaviorによって、NewBe-
haviorを追加する。

■ 設計

【全体像】

 : BehaviorSwitchingWorld : BehaviorSwitchingModel

AGENTTYPE_BehaviorSwitcher : AgentType : Agent

BEHAVIORTYPE_SwitchBehavior : BehaviorType: SwitchBehaviorBehavior

BEHAVIORTYPE_Target : BehaviorType: TargetBehavior

BEHAVIORTYPE_New : BehaviorType: NewBehavior

【SwitchBehaviorBehavior】

 AbstractSwitchBehaviorBehavior

SwitchBehaviorBehavior

 AbstractBehavior
(from org.boxed_economy.besp.model.fmfw.behavior)

switchBehaviorAction ()

280

■ サンプルコード

【BehaviorSwitchingWorldクラス】

・・・
public void initializeAgents() {

//エージェントの生成
Agent behaviorSwitcher =createAgent(

BehaviorSwitchingModel.AGENTTYPE_BehaviorSwitcher);

//そのエージェントへの SwitchBehavior 行動と、切り替え前行動の追加
behaviorSwitcher.addBehavior(

BehaviorSwitchingModel.BEHAVIORTYPE_SwitchBehavior);

behaviorSwitcher.addBehavior(BehaviorSwitchingModel.BEHAVIORTYPE_Target);

}

・・・

【SwitchBehaviorBehaviorクラス】

・・・
protected void switchBehaviorAction() {

//切り替え前の行動の削除
this.getAgent().removeBehavior(

this.getAgent().getBehavior(BehaviorSwitchingModel.BEHAVIORTYPE_Target));

//切り替え後の行動の追加
this.getAgent().addBehavior(BehaviorSwitchingModel.BEHAVIORTYPE_New);

}

・・・

■ バリエーション

このサンプルでは、ソースコード中に明示的に切り替え後の BehaviorTypeを指定している
が、BehaviorTypeを情報として入手し、それに応じて切り替え後の行動を決めるということ
もできる。
なお、戦略行動のように、同種の行動であるが内容が異なるという行動を切り替えること

がある (その場合には、Super BehaviorType Callingパターンを使って行動のアクティベー
ションが行われていると思われる)。このような場合には、切り替え前の行動の削除の際に、
親 BehaviorTypeを指定して削除することができる。これにより、切り替え前の行動が具体的
に何であるかを意識することなく、削除することができる。

■ 関連するパターン

Behavior Destruction: 行動を削除する (切り替え前の行動を削除する際に用いる)。
Behavior Creation: 行動を生成する (切り替え後の行動を生成する際に用いる)。
Temporary Behavior Creation: 一時的に行われる行動を生成する (切り替え後の行動が一時
的な行動である場合は、これを用いる)。
Super BehaviorType Calling: 具体的な BehaviorTypeではなく、親 BehaviorTypeで指定す
る (行動を切り替えても、動作するために必要となる)。

281

行動変化のモデル・パターン

Temporary Behavior Creation

BehaviorCreator

Temporary
Behavior

Create
Behavior
Behavior

BehaviorCreator

Temporary
Behavior

Create
Behavior
Behavior

BehaviorCreator

Create
Behavior
Behavior

BehaviorCreator

Create
Behavior
Behavior

■ 目的

一時的に行う行動を追加する。

■ 動機

付加的な処理や例外的な処理などのように、エー
ジェントが一時的に行う行動を追加したいことがあ
る。そのような行動は、通常の行動とは別に動き、
処理が終了したときには自働的に消滅させたい。

■ 基本動作

BehaviorCreator エージェントは CreateBehav-
iorBehaviorをもっている。CreateBehaviorBehav-
iorは TemporaryBehaviorを生成・追加する。Tem-
poraryBehaviorは、処理を完了すると、終了状態
に遷移して自ら消滅する。

■ 設計

【全体像】

 : TemporaryBehaviorCreationWorld : TemporaryBehaviorCreationModel

AGENTTYPE_BehaviorCreator: AgentType : Agent

BEHAVIORTYPE_CreateBehavior : BehaviorType: CreateBehaviorBehavior

BEHAVIORTYPE_Temporary : BehaviorType: TemporaryBehavior

【CreateBehaviorBehavior】

 AbstractCreateBehaviorBehavior

CreateBehaviorBehavior

 AbstractBehavior
(from org.boxed_economy.besp.model.fmfw.behavior)

createBehaviorAction ()

282

【TemporaryBehavior】

 AbstractTemporaryBehavior

 AbstractBehavior
(from org.boxed_economy.besp.model.fmfw.behavior)

temporaryAction ()

TemporaryBehavior

■ サンプルコード

【TemporaryBehaviorCreationWorldクラス】

・・・
public void initializeAgents() {

//BehaviorCreatorエージェントの生成
Agent behaviorCreator = createAgent(

TemporaryBehaviorCreationModel.AGENTTYPE_BehaviorCreator);

//そのエージェントへの CreateBehavior 行動の追加
behaviorCreator.addBehavior(

TemporaryBehaviorCreationModel.BEHAVIORTYPE_CreateBehavior);

}

・・・

【CreateBehaviorBehaviorクラス】

・・・
protected void createBehaviorAction() {

//TemporaryBehavior の追加
this.getAgent().addBehavior(

TemporaryBehaviorCreationModel.BEHAVIORTYPE_Temporary);

}

・・・

■ バリエーション

TemporaryBehaviorが「モデル上の時間」を要する場合には、TimeEventを必要な数だけ
受けた後に終了するという拡張を行う。

■ 関連するパターン

Behavior Creation: 新しい行動を生成・追加する。
Behavior Request Attachment: 何の行動を追加するのかを、他のエージェントから指定され
る場合。
Time-Consuming Behavior: 遂行するのに一定の時間がかかる Behaviorを表現する。

283

行動変化のモデル・パターン

Requested Behavior Attachment

■ 目的

こちらが指定した BehaviorTypeの行動を、他のエージェントに生成・追加してもらう。

■ 動機

RequestInformation

Requester

Request
Behavior

Respondent

Respond
Request
Behavior

Respond
Request
Behavior

Requester

Request
Behavior

Respondent

Respond
Request
Behavior

Requested
Behavior

Requester

Request
Behavior

Respondent
ToRespondent

ToRespondent

ToRespondent

相手にコミュニケーションの手順を合わせてほし
い場合がある。例えば、独特の手順で買い物をする
店では、来店した顧客にその手順を知らせて、それ
に合せて行動してもらう必要がある。また、新しい
役割を委譲する場合などにも、こちらが指定した行
動を、相手にもってもらう必要がある。そのほか、
環境エージェントが、対象となるエージェントの行
動をアフォードさせたいことがある。

■ 基本動作

Requesterエージェントと Respondentエージェ
ントが登場する。Requesterエージェントは、Re-
questBehaviorによって、相手にもってほしい Be-
haviorTypeを相手に送信する (Typeは Information
の一種なので、そのまま送信することができる)。
Respondentエージェントは、RespondRequestBe-
haviorをもっており、RequestInformationを受けて
RequestedBehaviorを生成する。

■ 設計
【全体像】

 : RequestedBehaviorAttachmentWorld : RequestedBehaviorAttachmentModel

AGENTTYPE_Requester : AgentType : Agent

 : Agent AGENTTYPE_Respondent : AgentType

BEHAVIORTYPE_Request : BehaviorType: RequestBehavior

INFORMATIONTYPE_Request : InformationType: RequestInformation

BEHAVIORTYPE_RespondRequest : BehaviorType: RespondRequestBehavior

RELATIONTYPE_ToRespondent : Relation

BEHAVIORTYPE_Requested : BehaviorType: RequestedBehavior

284

【RequestBehavior】

 AbstractRequestBehavior

 AbstractBehavior
(from org.boxed_economy.besp.model.fmfw.behavior)

RequestBehavior

sendRequestAction ()

【RespondRequestBehavior】

 AbstractRespondRequestBehavior

 AbstractBehavior
(from org.boxed_economy.besp.model.fmfw.behavior)

RespondRequestBehavior

addRequestedBehaviorAction ()

isRequest ()

■ サンプルコード

【RequestedBehaviorAttachmentWorldクラス】

・・・
public void initializeAgents() {

//Requesterエージェントを生成する
Agent requester = createAgent(

RequestedBehaviorAttachmentModel.AGENTTYPE_Requester);

//Requesterエージェントに、RequestBehaviorを追加する
requester.addBehavior(

RequestedBehaviorAttachmentModel.BEHAVIORTYPE_Request);

//Respondentエージェントを生成する
Agent respondent = createAgent(

RequestedBehaviorAttachmentModel.AGENTTYPE_Respondant);

//Respondentエージェントに、RespondRequestBehaviorを追加する
respondent.addBehavior(

RequestedBehaviorAttachmentModel.BEHAVIORTYPE_RespondRequest);

//Requesterエージェントに、Respondentエージェントへの Relationを追加する
requester.addRelation(

RequestedBehaviorAttachmentModel.RELATIONTYPE_ToRespondent, respondent);

}

・・・

285

【RequestBehaviorクラス】

・・・
protected void sendRequestAction() {

//Respondentエージェントへ追加したい BehaviorTypeを送る
sendInformation(

RequestedBehaviorAttachmentModel.RELATIONTYPE_ToRespondent,

RequestedBehaviorAttachmentModel.BEHAVIORTYPE_RespondRequest,

RequestedBehaviorAttachmentModel.BEHAVIORTYPE_Requested);

}

・・・

【RespondRequestBehaviorクラス】

・・・
protected void addRequestedBehaviorAction() {

//送られてきた BehaviorTypeを取得する
BehaviorType sentBehaviorType = (BehaviorType) this.getReceivedInformation();

//送られてきた BehaviorTypeを自分自身に追加する
this.getAgent().addBehavior(sentBehaviorType);

}

protected boolean isBehaviorType(Event e) {

//送られてきた情報が BehaviorTypeであれば trueを返す
return getReceivedInformation() instanceof BehaviorType;

}

・・・

■ バリエーション

このサンプルでは、持ってほしいといわれた BehaviorTypeの行動を無条件に追加するが、
受け手側 (Respondentエージェント)の判断に基づいて、追加するかどうかを決定することも
できる。
また、送られてくるBehaviorTypeは、具体的なBehaviorTypeである必要はなく、その子Be-

haviorTypeの行動を選択して追加させることもできる。例えば、BEHAVIORTYPE Strategy
という戦略行動をもつように言われた場合、その子BehaviorTypeであるBEHAVIORTYPE StrategyA
や BEHAVIORTYPE StrategyBの行動を追加することができる (その場合、Super Behav-
iorType Callingパターンを使って、行動のアクティベーションが行われるだろう)。

■ 関連するパターン

Behavior Creation: 行動を生成・追加する。
Information Sending: 情報を送る。
Forced Behavior Attachment: 行動を付加するように依頼するのではなく、外部から強制的に
行動を付加する (この場合には、相手の意思を介在させる余地はないが、受け手側が Respon-
dRequestBehaviorを持っている必要はない)。

286

287

行動変化のモデル・パターン

Forced Behavior Attachment

■ 目的

こちらが指定した BehaviorTypeの行動を、他のエージェントに強制的に追加する。

■ 動機

Master

Forced
Attach
Behavior
Behavior

Forced
Attach
Behavior
Behavior

Slave

Master Slave

Attached
Behavior

ToSlave

ToSlave

相手にコミュニケーションの手順を合わせてほし
い場合がある。例えば、独特の手順で買い物をする
店では、来店した顧客にその手順を知らせて、それ
に合せて行動してもらう必要がある。また、新しい
役割を委譲する場合などにも、こちらが指定した行
動を、相手にもってもらう必要がある。そのほか、
環境エージェントが、対象となるエージェントの行
動をアフォードさせたいことがある。

■ 基本動作

Masterエージェントと Slaveエージェントが登
場する。Masterエージェントは ForcedAttatchBehaviorBehaviorをもっており、Slaveエー
ジェントに強制的に AttachedBehaviorを付加する。

■ 設計

【全体像】

 : ForcedBehaviorAttachmentWorld : ForcedBehaviorAttachmentModel

AGENTTYPE_Master : AgentType : Agent

 : Agent AGENTTYPE_Slave : AgentType

BEHAVIORTYPE_ForcedAttachBehavior : BehaviorType: ForcedAttachBehaviorBehavior

BEHAVIORTYPE_Attached : BehaviorType: AttachedBehavior

RELATIONTYPE_ToSlave : Relation

288

【AttachBehaviorBehavior】

 AbstractForcedAttachBehaviorBehavior

 AbstractBehavior
(from org.boxed_economy.besp.model.fmfw.behavior)

ForcedAttachBehaviorBehavior

forcedAttachBehaviorAction ()

■ サンプルコード

【ForcedBehaviorAttachmentWorldクラス】

・・・
public void initializeAgents() {

//Masterエージェントを生成する
Agent master = createAgent(ForcedBehaviorAttachmentModel.AGENTTYPE_Master);

//Masterエージェントに、ForcedAttachBehaviorを追加する
master.addBehavior(ForcedBehaviorAttachmentModel.BEHAVIORTYPE_ForcedAttachBehavior);

//Slaveエージェントを生成する
Agent slave = createAgent(ForcedBehaviorAttachmentModel.AGENTTYPE_Slave);

//Masterエージェントに、Slaveエージェントへの Relationを追加する
master.addRelation(ForcedBehaviorAttachmentModel.RELATIONTYPE_ToSlave, slave);

}

・・・

【ForcedAttachBehaviorBehaviorクラス】

・・・
protected void forcedAttachBehaviorAction() {

//Slaveエージェントへの Relationを取得する
Relation toSlave = this.getAgent().getRelation(

ForcedBehaviorAttachmentModel.RELATIONTYPE_ToSlave);

//Relationから相手を取得し、AttachedBehaviorを追加する
toSlave.getTarget().addBehavior(

ForcedBehaviorAttachmentModel.BEHAVIORTYPE_Attached);

}

・・・

■ 関連するパターン

Behavior Creation: 行動を生成・追加する。
Requested Behavior Attachment: 外部から強制的に行動を付加するのではなく、行動を付加
するように依頼する (この場合には、相手の意思を介在させる余地がある)。

289

アクティベーションのモデル・パターン

TimeEvent Distributer Agent

■ 目的

TimeEventを一部のエージェントにだけ送りたい。

Activation
Information

Distributer

Distribute
Behavior

Receive
Behavior

Receiver

Receive
Behavior

Distributer

Distribute
Behavior

Receive
Behavior

Receiver

Receive
Behavior

Clock ToReceiver

ToReceiver

■ 動機

モデルのすべてのエージェントではなく、一部の
エージェントだけを活性化させたいときがある。例
えば、1ステップに 1人だけが動作するような場合
である。配信先の決定は、ランダムに選ぶ場合もあ
れば、リストに従って順番に選んでいく場合もある
だろう。

■ 基本動作

Distributerエージェントを用意する。Distributer
エージェントは、TimeEventを代表して受け取り、
ActivationInformationを作成して、対象となるエー
ジェントに配信する。活性化されるエージェントは、
TimeEvent ではなく ChannelEventで状態遷移す
るように記述する。

■ 設計

【全体像】

 : TimeEventDistributerAgentWorld : TimeEventDistributerAgentModel

AGENTTYPE_Distributer : AgentType : Agent

 : Agent AGENTTYPE_Receiver : AgentType

BEHAVIORTYPE_Distribute : BehaviorType: DistributeBehavior

INFORMATIONTYPE_Activation : InformationType: ActivationInformation

BEHAVIORTYPE_Receive : BehaviorType: ReceiveBehavior

RELATIONTYPE_ToReceiver : RelationType : Relation

290

【DistributeBehavior】

 AbstractDistributeBehavior

 AbstractBehavior
(from org.boxed_economy.besp.model.fmfw.behavior)

DistributeBehavior

distributeAction ()

【ReceiveBehavior】

 AbstractReceiveBehavior

 AbstractBehavior
(from org.boxed_economy.besp.model.fmfw.behavior)

ReceiveBehavior

nextAction ()

isActivation ()

■ サンプルコード
【TimeEventDistributerAgentWorldクラス】

・・・
public void initializeAgents() {

//Distributerエージェントの生成
Agent distributer = this.createAgent(

TimeEventDistributerModel.AGENTTYPE_Distributer);

//Distributerエージェントへの DistributeBehavior の追加
distributer.addBehavior(TimeEventDistributerModel.BEHAVIORTYPE_Distribute);

//Receiverエージェントの生成（複数人）
for (int i = 0; i < 10; i++) {

//Receiverエージェントの生成
Agent receiver = this.createAgent(

TimeEventDistributerModel.AGENTTYPE_Receiver);

//Receiverエージェントへの ReceiveBehaviorの追加
receiver.addBehavior(TimeEventDistributerModel.BEHAVIORTYPE_Receive);

//Distributerエージェントの Receiverエージェントへの Relationの追加
distributer.addRelation(

TimeEventDistributerModel.RELATIONTYPE_ToReceiver, receiver);

}

}

・・・

【DistributeBehaviorクラス】(ランダムに 1人ずつに送る場合)

・・・
protected void distributeAction() {

//Receiverエージェントへの Relation のリストを取得する
List toReceivers = (List) this.getAgent().getRelations(

TimeEventDistributerModel.RELATIONTYPE_ToReceiver);

//乱数ジェネレータを用いて、リストからランダムにひとつの Relationを選び出す
int targetIndex = this.getWorld().getRandomNumberGenerator().generate(

291

toReceivers.size());

Relation toReceiver = (Relation) toReceivers.get(targetIndex);

//ActivationInformationを送る
this.sendInformation(toReceiver, TimeEventDistributerModel.BEHAVIORTYPE_Receive,

new ActivationInformation());

}

・・・

【DistributeBehaviorクラス】(順番にひとりずつに送る場合)

・・・
private int targetIndex = 0;

protected void distributeAction() {

//Receiver への Relationのリストを取得する
List toReceivers = (List) this.getAgent().getRelations(

TimeEventDistributerModel.RELATIONTYPE_ToReceiver);

//リストから順番にひとつの Relationを選び出す
if (toReceivers.size() <= targetIndex) {

throw new ModelException("OutOfIndex : " + this);

}

Relation toReceiver = (Relation) toReceivers.get(targetIndex);

//targetIndexを進める（終点の場合、始点に戻る）
if (toReceivers.size() - 1 == targetIndex)

targetIndex = 0;

else

targetIndex++;

//ActivationInformationを送る
this.sendInformation(toReceiver, TimeEventDistributerModel.BEHAVIORTYPE_Receive,

new ActivationInformation());

}

・・・

【ReceiveBehaviorクラス】

・・・
protected boolean isActivation(Event e) {

//ActivationInformationを受け取った時に trueを返す
return this.getWorld().getInformationType(this.getReceivedInformation())

== TimeEventDistributerModel.INFORMATIONTYPE_Activation;

}

・・・

■ 関連するパターン

TimeEvent Filtering: このパターンとの違いはわずかだが、決定的な差異を生み出す可能性があ
ることに注意が必要である。例えば、全体の 20%の数のエージェントが活性化される (TimeEvent
Distributerパターン)のと、各エージェントが 20%の確率で活性化する (TimeEvent Filtering
パターン)というのとでは、結果が異なる場合がある。前者は、必ず全体の 20%のエージェン

トが活性化されるのに対し、後者は、
•
平

•
均

•
す

•
る

•
と全体の 20%のエージェントが活性化する。つ

まり、後者の場合は、各エージェント間の活性化確率は独立であるため、全体としてみると、
活性化する人数が多いときや少ないときがある。

292

293

アクティベーションのモデル・パターン

TimeEvent Filtering

■ 目的

TimeEventを確率的に受信するようにしたい。

■ 動機

Receiver

Receiver

TimeEvent

Filter
Behavior

Filter
Behavior

Clock

TimeEvent

特定のエージェントを、毎回ではなく、ある確率
で活性化させたいときがある。例えば、数回に 1回
だけ活性化するような行動をモデル化する場合で
ある。

■ 基本動作

Receiverエージェントは、FilterBehaviorをもっ
ており、ある確率で TimeEventを受け取る。

■ 設計

【全体像】

 : TimeEventFilteringWorld : TimeEventFilteringModel

AGENTTYPE_Receiver : AgentType : Agent

BEHAVIORTYPE_Filter : BehaviorType: FilterBehavior

【FilterBehavior】

 AbstractFilterBehavior

 AbstractBehavior
(from org.boxed_economy.besp.model.fmfw.behavior)

FilterBehavior

nextAction ()

isActivated ()

294

■ サンプルコード

【TimeEventFilteringWorldクラス】

・・・
public void initializeAgents() {

//Receiverエージェントを生成する（複数人）
for(int i = 0; i<10; i++){

//Receiverエージェントの生成
Agent receiver = createAgent(TimeEventFilteringModel.AGENTTYPE_Receiver);

//Receiverエージェントへの FilterBehavior の追加
receiver.addBehavior(TimeEventFilteringModel.BEHAVIORTYPE_Filter);

}

}

・・・

【FilterBehaviorクラス】

・・・
protected boolean isActivated(Event e) {

//20％の確率で trueを返す
return this.getWorld().getRandomNumberGenerator().generate() < 0.2;

}

・・・

■ 関連するパターン

TimeEvent Distributer Agent: このパターンとの違いはわずかだが、決定的な差異を生み出
す可能性があることに注意が必要である。例えば、全体の 20%の数のエージェントが活性化
される (TimeEvent Distributer パターン)のと、各エージェントが 20%の確率で活性化する
(TimeEvent Filtering パターン)というのとでは、結果が異なる場合がある。前者は、必ず全

体の 20%のエージェントが活性化されるのに対し、後者は、
•
平

•
均

•
す

•
る

•
と全体の 20%のエージェ

ントが活性化する。つまり、後者の場合は、各エージェント間の活性化確率は独立であるた
め、全体としてみると、活性化する人数が多いときや少ないときがある。

295

アクティベーションのモデル・パターン

TimeEvent Distributer Behavior

■ 目的

エージェント内の Behaviorに送る TimeEventの送信順序 (プライオリティ)を制御したい。

Activation
Information

SequentialAgent

Distribute
Activation
Behavior

Distribute
Activation
Behavior

Distribute
Activation
Behavior

ToMyself
Clock

FirstBehavior

SecondBehavior

SequentialAgent

ToMyself
FirstBehavior

SecondBehavior

SequentialAgent

ToMyself
FirstBehavior

SecondBehavior

Activation
Information

■ 動機

エージェントが行う複数の行動を決められた順番
で活性化したい場合がある。しかし、TimeEventの
送信順序 (プライオリティ)はエージェントごとに
設定できるが、Behaviorごとには設定できない。そ
こで、Behaviorの活性化を制御するための工夫が
必要である。

■ 基本動作

SequentialAgentは、DistributeSignalBehaviorと、
最初に活性化したいFirstBehavior、および 2番目に
活性化したい SecondBehaviorをもっている。Dis-
tributeActivationBehaviorが、TimeEventを受け
取ると、あらかじめ決められた順番で、自分自身
の Behaviorに ActivationInformation を配信して
いく。

■ 設計

【全体像】

 : TimeEventDistributerBehaviorWorld : TimeEventDistributerBehaviorModel

AGENTTYPE_Sequential: AgentType : Agent

BEHAVIORTYPE_DistributeActivation : BehaviorType: DistributeActivationBehavior

BEHAVIORTYPE_First : BehaviorType: FirstBehavior

BEHAVIORTYPE_Second : BehaviorType: SecondBehavior

INFORMATIONTYPE_Activation : InformationType: ActivationInformation

296

【DistributeBehavior】

 AbstractDistributeActivationBehavior

 AbstractBehavior
(from org.boxed_economy.besp.model.fmfw.behavior)

DistributeActivationBehavior

activateBehaviorAction ()

■ サンプルコード

【TimeEventDistributerBehaviorWorldクラス】

・・・
public void initializeAgents() {

//SequentialAgent の生成
Agent sequentialAgent = this.createAgent(

TimeEventDistributerBehaviorModel.AGENTTYPE_Sequential);

//SequentialAgent への DistributeSignalBehavior、FirstBehavior、
//SecondBehavior の追加
sequentialAgent.addBehavior(

TimeEventDistributerBehaviorModel.BEHAVIORTYPE_DistributeActivation);

sequentialAgent.addBehavior(TimeEventDistributerBehaviorModel.BEHAVIORTYPE_First);

sequentialAgent.addBehavior(TimeEventDistributerBehaviorModel.BEHAVIORTYPE_Second);

//SequentialAgent の自身への Relationの追加
sequentialAgent.addRelation(TimeEventDistributerBehaviorModel.RELATIONTYPE_ToMyself,

sequentialAgent);

}

・・・

【DistributeActivationBehaviorクラス】

・・・
protected void activateBehaviorAction() {

//自分の FirstBehaviorに ActivationInformationを送る
this.sendInformation(

TimeEventDistributerBehaviorModel.RELATIONTYPE_ToMyself,

TimeEventDistributerBehaviorModel.BEHAVIORTYPE_First,

new ActivationInformation());

//自分の SecondBehaviorに SignalInformationを送る
this.sendInformation(

TimeEventDistributerBehaviorModel.RELATIONTYPE_ToMyself,

TimeEventDistributerBehaviorModel.BEHAVIORTYPE_Second,

new ActivationInformation());

}

・・・

■ 関連するパターン

Internal Information Sending: 自分の他の行動に情報を送る。

297

アクティベーションのモデル・パターン

Time-Consuming Behavior

■ 目的

遂行するのに一定の時間がかかる Behaviorを表現する。

■ 動機

Agent

Time
Consuming
Behavior

Clock

Agent

Time
Consuming
Behavior

ある行動を開始して、しばらくたってから次の動
作を行わせたい場合がある。例えば、数時間ステッ
プかかる思考や行動をモデル化する場合などである。

■ 基本動作

Agentエージェントは、TimeConsumingBehav-
ior をもっている。TimeConsumingBehavior で
は、その一連の動作を終了するまでに、何度か
TimeEventを受ける。ここでは、Eventを受ける
ごとに、FirstAction、SecondAction、ThirdAction
を行う。

■ 設計

【全体像】

 : TimeConsumingBehaviorWorld : TimeConsumingBehaviorModel

AGENTTYPE_Agent: AgentType : Agent

BEHAVIORTYPE_TimeConsuming : BehaviorType: TimeConsumingBehavior

298

【TimeConsumingBehavior】

 AbstractTimeConsumingBehavior

 AbstractBehavior
(from org.boxed_economy.besp.model.fmfw.behavior)

TimeConsumingBehavior

firstAction ()

secondAction ()

thirdAction ()

■ サンプルコード

【TimeConsumingBehaviorWorldクラス】

・・・
public void initializeAgents() {

//Agentエージェントの生成
Agent agent = this.createAgent(TimeConsumingModel.AGENTTYPE_Agent);

//Agentエージェントに、TimeConsumingBehaviorを追加する
agent.addBehavior(TimeConsumingModel.BEHAVIORTYPE_TimeConsuming);

}

・・・

【TimeConsumingBehaviorクラス】

・・・
protected void firstAction() {

//ここで、作業の第 1 ステップを行う
}

protected void secondAction() {

//ここで、作業の第 2 ステップを行う
}

protected void thirdAction() {

//ここで、作業の第 3 ステップを行う
}

・・・

■ 関連するパターン

Temporary Behavior Creation: 一時的に実行する行動を追加する。

299

