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Fractional calculus and analytic continuation
of the complex Fourier-Jacobi transform

Takeshi Kawazoe * and Jianming Liu '

Keio University at Fujisawa and Peking University

Abstract

By using the Riemann-Liouville type fractional integral operators
we shall reduce the complex Fourier-Jacobi transforms of even func-
tions on R to the Euclidean Fourier transforms. As an application
of the reduction formula, Parseval’s formula and an inversion formula
of the complex Jacobi transform are easily obtained. Moreover, we
shall introduce a class of even functions, not C* and not compactly
supported on R, whose transforms have meromorphic extensions on
the upper half plane.

1. Introduction.

Let a,3,A € Cand t € R. For a # —1,-2,—-3,---, ¢2"(t) denotes the
Jacobi function of the first kind, and for \ # —i, —2i, —3i, - - -, @i"ﬁ(t) the one
of the second kind. Let C§°(R) denote the space of all even C* functions on
R with compact support. For f € C§°(R) and Ra > —1 the Fourier-Jacobi
transform fq 5(\) and the complex Fourier-Jacobi one f, 5()\) are defined by

s = = [ 0602l )
and
Fas) = [ PO (0 A0 st e

*Supported by Grant-in-Aid for Scientific Research (C), No. 13640190, Japan Society
for the Promotion of Science.
tSupported by National Natural Science Foundation of China, Project No. 10001002.



respectively, where
Aqp(t) = (2sht)?* T (2cht) 2 (3)

The Fourier-Jacobi transform f — an”@ is well-understood. For example, the
Paley-Wiener theorem and the inversion formula for C§°(R) are obtained by
Flensted-Jensen [2] and Koornwinder [3]. In particular, Koornwinder reduces
the transform fa,g to the Fourier Cosine transform, which corresponds to the
case of a = = —1/2:

fa,,@()\) = 2%t/ \/% (Wl ﬁOWﬂH/Z(f))—l/z,_l/z (M)
= P2 (W0 W2, u(h) . (4)

Here W7 (f), u € C, 0 > 0, is the Weyl type fractional integral of f, which
is for Ry > 0 defined by

W) =)™ [ Fa)(ehor — choy)~'d(chor) (5)

and extended to an entire function in p. Moreover, in the second line of (4)
Wo_g o Wiy (f) is regarded as an even function on R and ( - )" is the
Euclidean Fourier transform on R (see [3, (2.7), (3,7), (3.12)]). One of the
aim of this paper is to obtain an analogous formula for the complex Fourier-
Jacobi transform f, s(A). Actually, we shall reduce fa,ﬂ to the Euclidean
Fourier transform, which corresponds to the case of &« = = —1/2 (see |2,
(2.7)]). In order to obtain the reduction formula we introduce the Riemann-
Liouville type fractional integral Wg(f) : For f € C°(R) and Rp > 0,

W7 (f) is defined by

Va4 _ -1 [Y —1

Wi (£)(y) = oT(w) ™ [ F(@)(choy — chow)~dr - shay (6)
and extended to an entire function in u (see Lemma 3.2). Then the relation
between the complex Fourier-Jacobi transform and the Euclidean Fourier one
is given by

Fap(\) = 272CTIC, 5(=0) (Wi, 5 0 W2 5010 (FAap)) oy

where C, g is the C-function (see (11) and Pr0p0s1t1on 4.2). In this formula,
if Ra > RB > —1/2, two operators VV1 ) and Wﬁ (5+1/2) correspond to
fractional derivatives.



As an application of this formula, Parseval’s formula for C§°(R), which
characterizes the inner product (f,g)r2r, A, ) in terms of fa,g and Ga,3,
easily follows from the one for L?(R) (see Theorem 5.1). Next, we shall
consider analytic continuation of §, g(A\) when g is not C'*° and not compactly
supported. We note that, if I\ is sufficiently large, then @i"ﬁ has exponential
decay and thus, g, 3()\) is well-defined for a large class of even functions.
We shall introduce a class of even functions g on R for which g, (\) has a
meromorphic extension on A > 0. Then we can deduce an inversion formula
of the complex Fourier-Jacobi transform g — g, 5 in a distribution sense (see
Theorem 6.5).

Similar result is obtained in [5] by a different and direct approach without
using the reduction arguments. Moreover, in [1] the Fourier-Jacobi transform
Gap of g(x) = (chz)" is explicitly calculated for the group case of SU(n,1)
(¢ =n—1,4=0). This function (chz)” is a simple example of unbounded
functions whose Fourier-Jacobi transform has a meromorphic extension on
A > 0. Compared with these direct approach, if Ra > RS > —1/2, then
the same result follows in our approach, otherwise, some extra conditions
on g are required to carry out our reduction method. However, under these
extra conditions we see that all poles appeared in our inversion formula are
simple and we can distinguish between poles arisen from the C-function and
ones from the analytic continuation (see Theorem 6.5 and Remark 6.6).

The authors are grateful to the referee for his careful reading and valuable
suggestions.

2. Notations.

Let a,3,\ € C and t € R. We shall consider the differential equation
(La,ﬁ + A\ + ,02)f(t) =0, (7)

where p=a + 4+ 1 and
2

d
Los= T ((2a + 1)ctht + (25 + 1)tht)

%.
Then, for @ # —IN, the Jacobi function of the first kind with order (a, 3)
$30(t) = F (pJ;M, P _QM;a +1; —sh2t> (8)

is a unique solution of (7) satisfying ¢$°(0) = 1 and d¢$’/dt(0) = 0. For

A # —iN, the Jacobi function of the second kind with order (e, )

— 20— 1A p—i\
2 o2

D (t) = (e — e VA PF (p 1—i); —sh2t> (9)

3



is another solution of (7). Then I'(a + 1) '¢%” is entire of a, 3, and for
A\ ¢ iZ, we have the identity

VAT (0t 1) 65 (0) = SCasNBE (1) + 5 Cas (NI (D), (10

where C, 3 is the C-function given by

pop (A p (LA
Cap(N) = - (M ;L<p§ >r <Z<)\ +2,; >2ﬂ> ' (11)

We recall the following properties of these functions (cf. [3] and [4]).

Lemma 2.1. Assume that o, 3 € C and Ra > —1.
(1) For each fized t > 0, as a function of A, qﬁi"ﬁ(t) s an entire function.
There exists a constant K > 0 such that for all t > 0 and all A € C,

(637 ()] < K (14 A (1 + 1),

where € =0 if Ra > —1/2 and e = 1 for —1 < Ra < —1/2.

(2) For each fized t > 0, as a function of X, ®3(t) is a holomorphic
function in C\{—iN}. For each ¢ > 0 there exists a constant K > 0 such
that for all t > ¢ and all S\ > 0,

|(I>§”6 (t) | < Ke(=SA=Rp)t

and for all 0 <t < c and all I\ > 0,

@Rt iR > —1/2,
37 (1)] < K log ft] if Ro = —1/2,
1 if =1 < Ra < —1/2.

(3) For each r > 0, there exists a constant K > 0 such that, if A € C,
S\ > 0 and A is at distance larger than v from the poles of Cy 5(—\)"", then

|Ca,ﬂ(_)\)71| S K(l + |)\|)§Ra+1/2‘

Let Cg°(R) denote the set of even C° functions on R with compact
support. For f € C§°(R) we define the Fourier-Jacobi transform f, () and

4



the complex Fourier-Jacobi transform f,5(\) by (1) and (2) respectively.

From Lemma 2.1 it follows that f, g()) is entire and f, 5()) is holomorphic
for A # —iN. Especially, (10) implies that for all A ¢ iZ,

V21 fa5 (V) = Cap(A) fas(N) + Cas(=A) fas (= N). (12)
In the following we define the Gauss symbol [z] for z € C as [Rz].

3. Fractional integrals.

3.1. Let C°(R,), R, = [a,0), a € R, denote the set of all C* functions
F, on R with compact support, where F' is right differentiable at a. For
F € C*(R,) and —n < Rp, n = 0,1,2,---, we shall define the Weyl type
fractional integral operator Wt by

WP = s [T g s ()

We extend it as an entire function in g. Then WR is the identity operator,
W:{ oWR =R and

ptv
WER . C®(R,) = C*(R,)

is bijection. We also define the Riemann-Liouville type fractional integral
operator WE‘ by

= 1 dr

WEHENW) = oy age J, P =) dr (1)

and extend it as an entire function in p. We note that WOR is the identity
operator and WR o WR(F) = F if Ru > 0. For ®p < 0, WR o WR(F) =
F provided F(a) = F'(a) = --- = F® (@) = 0. On C*(Ry), b > a,
W:‘ o WR = W:iy. For 7,n € Cand m =0, 1,2, - -, we define A7 (R,) the
class of C'™ functions F' on R, of the form F = Fy + Fi;

Fo(z) =(r —a)'G(z), GeC™([a,a+2)) (15)
and
Fi(x)=2"H(z), HeC™((a+1,00)), (16)
where
ogkgms,zlﬁgm@o z* dkzgx) <ec. (17)




Moreover, AT (R,) denote the class defined by replacing (z—a)7 in (15) with

T*,7

log(z —a) - (z —a)” and AT, (R,) the one defined by replacing sup,, <,

T,N*

|H(z)| < ¢, k=01in (17), with sup, <, [(logz)H(z)| < c.

Lemma 3.1. Form =0,1,2,--- and p, 7,1 € C the fractional operators
Wf and WE‘ satisfy the following.
(1) If m+[p]—1>0,Rn <0 and R(n+ p) <0, then

WR AT (R,) — AP TH(R,),

where 6 =7+ p if p=0,—1,-2,---, and otherwise

0 if R(T+ 1) > 0,
§ = { 0 if R(T+ p) =0, (18)
T4+u if R(T+p) <O0.

(2) If m+[p] >0 and R > —1, then
TR . gm m+{u]
W, AT (R,) — ATW% (Ry),
where 6 =n+p if u=0,—1,-2,---, and otherwise

n+p iof Ry > -1,
0=19q (m+wpx* ifRn=-1,
pw—1 if R < —1.

Proof. (1) When p = 0,—1,=2,---, WR(F)(y) = [FCM]* = cFOM(y),
because (n + ) < 0. Therefore, the assertion for yp = 0,—1,—2,-- - easily
follows. Let u #0,—1,—2,---. Also we may assume that u > 0. Actually,
if Rp <0, let W = W;E[u} o W[E”] and note that 0 < R(u — [p]) < 1 and
[ —[p]]+ 1] = [p]. Hence, the assertion for Ry < 0 follows from the cases of
Rp>0and p=0,-1,-2,---. Let F' € AT, (R,) be of the form F' = Fy+ Fy
in (15) and (16). If y > a 4 1, then W¥(F) is defined as
R _ o T -1 o -1
WR(F)(y) = c/y (x — a)"G(x)(x — y)" 'du + c/y T H (z)(x — y)*da
= L(y) + Ly).

Clearly, I,(y) = 0if y > a + 2 and I, € C™*+H). Moreover,

L(y) = g™ [ @ H(ye)(@— 1) e
1
= CynJr“Hﬂ(y)'

6



For 0 <[ <m,
H(l)(y) = / x"HH(l)(yx)(m — 1)”_1dx
1
_ y—(n+u+l)/ HHO (2) (2 — y)Pde
y

and for 0 <1 < [y],

4 00
H;(LHZI)(y) ~ Z yf(n+u+l+k) / anH(l) (l,) (:U - y)uflf(l’fk)dx
k=0 Yy

# %0
Syt / M HO (yz) (z — 1) 1= =8 gy
k=0 !

(1]

~ Sy /1 2 (ay) HO (yar) (z — 1)p~1=00=R) g
k=0

where, if u is positive integer, the term corresponding to I’ = [u], k = 0 equals
y " HO(y) =y~ ./ HO(y) (see the first line). Hence, (17) implies that
y M HIH 0 <141 < m+ [u], is bounded on (a+ 1,00). Therefore, H,(y)
satisfies (17) replaced m with m + [u]. If @ <y < a + 1, then WR}(F) is
estimated as

/ya+1(x — a)TG(x)(a: — y)”fldx i /a: 2"H (2)(z — y)“ildx

1/(y
a) —a)r +a)(x — 1)F tdo 4y

{1 (y — T*“) it R(r+p)>0 }
+1

~ (y—a)™™<{ logy ifR(T+p)=0
1 if V(7 +p) <0
~ (v —a)’G,(z).
Noting 0 < (y —a) < 1 and the argument in the previous case, we see that
G, € ™, Therefore, WE‘(F) is of the desired form.

(2) When p = 0,-1,— WE(F) coincides with ¢F(=*) provided R7 >

—1. Since VVR Wﬁ o W 21 if R <0, as in the first case, we may assume
that Ru > 0. We note that ifa <y <a+1, then

WEF)W) = [(@-0 G- de

— o [ G- e+ a1 - o) s
)

7



and if y > a + 1, then WR(F)(y) is estimated as
a+1 y
/ (¢ — a) G (x)(y — 2)P'dz + / SH (2)(y — )P da
a a+1

1/(y—a)
~ (y— a)”“/o ! 27G((y — a)r +a)(1 —2)* tdx

1
+y"+“/ o H (yz)(x — 1) 'dx
(a+1)/y

1

| if Ry > —1
~ (y—a) "y log(y —a) iRy = -

(y—a)™t ifRp<-—1
~ y‘sHu(a:).

Noting (y — 1) > 1 and —R(7 + p — 1) < 0, as in the first case, we see that
G, € O™ and H, satisfies (17) replaced m with m + [u]. n

Remark 3.2. In Lemma 3.1 we note that, if R(7 + ) > 0 and u #
1,2,3,-- -, then the Weyl type fractional operator Wf does not keep the zero
of F' at x = a even if F' has sufficiently higher order of zero.

3.2. We shall transfer the operators W® and W® on C®(Ry), Ry =
[1,00), to ones for C3°(R). For f € C{°(R), 0 > 0 and —n < Ru, n =
0,1,2,---, we shall define the Weyl type and the Riemann-Liouville type
fractional integral operators W and Wl‘j respectively as follows:

(=D [ _d"f(x)

Wi(Hw) = T(p+mn) Jy d(chaa:)”(Chax_Chay)m_ld(ChM) (19)
and
e _ T ) (choy — chor) il - shoy. (20
SN0 = 50 dichog) y {0 ehoy = cho) e - shoy. (20

Then the change of varibale:

f(@) = [f]"(chox)

yields the relation between W} and W7
Wi (F)(y) = WH(f]7)(choy) (21)

8



and the one between W:‘ and W;{ :

Wi (F)(y) = WiH(f - (show)']%) (choy) - shoy. (22)

7

For r,n € Cand m =0,1,2,- -+, let A7/*(R) denote the space of all even
functions f on R of the form f = fy + fi;

fo(z) = (shox)*"g(chox), g€ C™([1,3)) (23)
and
fi(z) = (choz)"h(choz), h e C™((2,00)), (24)
where
0<k<:1u£x<w o dl;f;(f) <ec. (25)

Moreover, A7, (R) denote the class defined by replacing (shox)?™ in (23)
with (logz)(shoz)®” and A7 (R) by replacing supyc, ., [h(z)] < ¢, k=0

in (25), with supyc, o |(logz)h(z)| < c. Then, using the relations (21) and
(22), we can rewrite Lemma 3.1 for W;* and Wf to the one for W7 and W;:

Lemma 3.3. Let yu,7,n € C and m =0,1,2,---.
(1) If m+[p]—1>0,Rn <0 and R(n+ p) <0, then

o. Aom o,m+[ ]
W2 AZM(R) — AT™H(R),

where § =T+ p if p=0,—1,-2,---, and otherwise 0 is the same as (18).
(2) If m+[p] >0 and RT > —1/2, then

Wi AT (R) = AT] M (R),
where 6 =n+p if u=0,—1,-2,---, and otherwise

N+ i if Rp >0
d=% (m+w* ifRn=0 (26)
1 if ®n < 0.

3.3. As an application of Lemma 3.3, we shall consider the inner product

of f € AZ") and g € A72 , and obtain an adjoint relation between W7 and
Wa
i



Proposition 3.4. Let 0 >0, p€ C and 7;,m; € C,n; € N fori=1,2.
Suppose that Rp > 0, nq + [ — 1 >0, ny + [u] > 0 and

(@) R(m +p) <0,Rn <0,
(0) R(m +m+p+2p/0) <0
(¢c) Rin+n+a+p) >-1
(d) R(re+a)>—1
(e) R(e+a+u) >—-1
Then for f € A7) and g € AT"2
(Wi(f), 9 r2®y.an paz) = ([ Wg(gAa,B)>L2(R+,dz)- (27)

Proof. First we check the both sides of (27) are finite. Lemma 3.3 (1)
with (a) implies that W7 (f) € A;‘”;ju (R) with ¢ in (18). Since gA, 5 €
A7 (R), the left hand side of (27) is finite from (b), (¢), (d). As

Tota+1/2,m24+2p/0
for the right hand side, Lemma 3.3 (2) with (d) implies that

W (gAa ﬁ) € AZQT;+1/2+M 5(R)

with § in (26). Then the right hand side of (27) is also finite from (a) and
(b). We shall prove the equality. When $u > 0, (27) is clear by changing the
order of integration. Let us suppose that —n < Ry < —n+1,n=1,2,3,---.
Then, it follows from (19) that

<W;(,T(f)7 g>L2(R+,Aa’BdI)

. o (_1)n 0 dnf(x) ptn—1 N
B D(p+n) Jy d(choz)" (chow = choy) d(chow) - g(y) Bas(y)dy

o d"f(z) (=" [r—s jin-1
o d(chox) T +n) / 9(y)As5(y)(chox — choy) dy - d(choz).

Since g(y)A,, 5(y) O(x*2T20+1) if 0 < 2 < 1, the last integral with respect
to dy is O(x®Fetrtn)) if 0 < < 1. Thereby, since (e) implies that
2R(mo + a4+ p+n) > —2+ 2n > 0, we can repeat n-times integration by
parts with respect to d(chox). This process shifts the differential operator
d/d(chox) acting on f to the one acting on the inner integral with respect
to dy. Therefore, the desired equality follows from (20). |

4. Reduction formula.
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In order to obtain a reduction formula of f’a,g, we recall some reduction
formulas of ®$” obtained by Koornwinder [3]. Let Ry > 0 and S\ > —Rp.
Then for z > 0,

C’a,ﬁ(—)\)_l(bf\“"g = 23u+10a+u,ﬁ+u(—)\)_IWlf((I)?\‘ﬂ"B"'”)

(see [3, (2.15)]). Hence, applying Proposition 3.4 with Lemma 2.1 (2), we
see that for f € C§°(R),

Cap(=A) " fas(N)
= Cap(=N "2 2Ry A0 i)
= P G (N W@ o,
= 23“+10a+u”3+u(_)‘)71<W3(an’ﬁ)’W>L2(R+’dw)

= 23“+1Ca+u:ﬁ+u(_)‘)il (Wi(anﬁ)A;}r#ﬁ*“)a+u,ﬁ+ﬂ (-

Clearly, this equation is meromorphically extended to «, 3, A\, u € C.

Proposition 4.1. Let Ra > —1 and f € CP(R). As a meromorphic
function of o, B, A\, u € C,

fag(A) = 23T Cap(=) (Wj(an,ﬂ)

(A)-
Cotusrn(=A) \ Batpprn ) a+p,B+p

Now we shall reduce the complex Fourier-Jacobi transform f, 3 to the
Euclidean Fourier transform.

One way to obtain the reduction is to use Proposition 4.1 repeatedly and
to reduce the parameters (a, 3) to (—1/2,—1/2). We here apply another
way, but essentially it is the same way. We note the following formula: Let
Ra > RG> —1/2, s> 0and IA > 0. Then

e = Cos (N1 [ @B () A (s, 1), (28)

where A, 4(s,t) is given by
23(a+1/2)+lsh2t
Pla =B (B+1/2

(see [2, (2.17)]). In particular, it follows from [2, (3.5), (3.12)] that (28) can
be rewritten as

i anﬁ(_)\)7123(a+1/2)wifﬂ o W,@2+1/2((I)§f’ﬂ)(5)‘

t
; / (ch2t — ch2w)?V/2(chw — chs)®*shwdw.

11



Since (o — ) + 2(8 — 1/2) = p, Lemma 2.1 (2) and Lemma 3.3 (1) imply
that the right hand side is well-defined if A > 0. Furthermore, it follows
from Lemma 3.3 (1) that, if S\ is sufficiently large, then

OV = Cap(—A)2° (a+1/2)W2(/3+1/2) oW! (a—p) (€ ),

Since Rae > RG> —1/2 means that R(—(a—/F)) < 0and R(—(6+1/2)) <0
e for a sufficiently large S\ and f € C{°(R) satisfy the assumptions on
f, g in Proposition 3.4. Thereby, it is easy to see that

Ca,ﬂ(_A)_lfa,B&
= Caﬂ(— )71<f7 q)a”@>L2(R+ Aa sdr)

= 2 a+1/2<f7 W2 (B+1/2) © ( )> 2(R4,Aq pdz)
= 27 (a+1/2<W—(a— ) © w2 (/3+1/2)(fA 8),€ i)\()>L2(R+,da:)
— 9-3(a+1/2 (Wl(a Y W2 61172 ( ) e, 1/2
If, for simplicity, we put
Waps =Wa 50W5, and Wag =W,y 0 Wi g, (29)

then we have the following.

Proposition 4.2. Let f € C{°(R) and Ra > RB > —1/2. Then, as a
meromorphic function of a, 3, € C,

FasN) = 2 5DC 5 (-0) (Wb (FAa) ), ) (30)

We shall extend this formula for f € A7"(R). We recall that w, 1 518

a composition of two fractional operators Wi(a, and T2 (B+1/2) (see (29))
and these operators change smoothness accordlng to Lemma 3.3 (2). We
take m = N, 3 defined by

—[=B+1/2)] = [-(a=B)] fR(B+1/2) 2 0,R(a—-p) >0
—[—(8+1/2)] ifR(B+1/2) > 0,R(a—B) <0
[—(B+1/2)] = [-(a=p)] i RE+1/2) <0,R(a—p) >0
0 if (RB+1/2) <0,R(a—pB) <0.

Corollary 4.3. Let o, 3, 7,m € C, Ra > =1, R > 0, R > —R(«
B) —1/2 and R(n + p) > max{—Rp, —R(a — B)}. Then for f € Arn ™ (R ),
fa3(A) is holomorphic on S\ > R(n+ p) and satisfies (30).

12



Proof. Tt follows from Lemma 2.1 (2) that f, 5()) is well-defined if R > —1,
Rr > 0 and I\ > R(n+ p). On the other hand, we note that

F () Do) ~ (char) T2 (thar)27F 204

Since R(7 +a +1/2) > R(r —1/2) > —1/2 and R(n + 2p) > 0, Lemma 3.3
(2) implies that

W2 51709 (D) () ~ (char) TE2072FH12) ()20 12200412,

Since R(r+a+1/2—(+1/2)) =R(t+ (« — 3)) > —1/2 and R(n+ 2p —
206+1/2)) =R+ p+ (a—F)) >0, Lemma 3.3 (2) again implies that

W0 gy 0 W2 501 (fAays) () ~ (char) " (thz)?".

Therefore, the Euclidean Fourier transform of Wa’ 5(fAqp) is well-defined if
SA > R(n+p). n

Remark 4.4. If —(f+1/2) and —(a — 3) are 0, —1, —2,---, then the
condition R(n + p) > max{—Rp, —R(« — ()} is not necessary.

5. Inversion formula.

Let a, 8 € C and Ra > —1. The inversion formula of the Fourier-Jacobi
transform f — fa3, f € C°(R), is obtained by Flensted-Jensen [3] and
Koornwinder [4]. We recall their inversion formula and give a simple proof.

Let D, g denote the set of poles of Cy, 5(—A)~" located in S\ > 0:

Dyg={ym=i(cf—a—-1-2m); m=0,1,2,---,3v, > 0}, (31)

where ¢ = 1 if R > 0 and ¢ = —1 if RF < 0. Let Ry p(7m) denote the
residue of Cy, 5(—\)"" at v, explicitly given by
(_1)m27p+(557a7172m)7: F(é‘ﬁ _ ’ITL)
Raaﬂ(f)/m) = | _ _ _ °
mi/T I'(ef—a—1-2m)

Then it follows from [4, Theorems 2.2, 2.3, 2.4] that
Theorem 5.1 Let a,3 € C and v € R. Suppose that Ra > —1, v > 0,

and v > —R(a £ +1).
(1) For each f € C3°(R) and t > 0,

1O = = [ dasAt )03, (0Cns(—A — i)

13



N / Fag NS (#)(Cap(A) Carp(—N)) "t

(a + 1
o > L200) o, o).

_F(a +1) 2D s Cap(7)

(2) For each f,g € C5°(R),

(fs D) 2Ry A pdo)

1 o . .
= A [ _JasA+ )70\ + i) Cop (=2 — i)\

= <= | Fad s (NCaa (=0
VIS as()ip() Ras ().

Y€Da,s
(3) Ifa,Be Randa > > —1/2, then D,z = 0 and for f,g € CP(R),

([, 9) 2Ry A gdo) = (far85 Ga,8)) 2Ry, |Co s (V)] =2dN) -

Proof. We shall give a simple proof based on Proposition 3.4 and the re-
duction formula in Corollary 4.3. Obviously, it is enough to prove the
first equation in (2). We note that |(f, g)r2r,.a, sax)| < ||fl2]lgll2, Where
|- [|2 is the L2(R.y, Ay gda)-norm, and |fo s(A+iv)| < || flloim, e T2ROR if
supp(f) C [-R, R] and |§a,3(A + iv)| < ||gllr1m,) (see Lemma 2.1). There-
fore, by using approximation argument, we may suppose that f, g belong
to A%V (R) for sufficiently large positive numbers 7 and N. We take v >
R(n + p) > max{—RNp, —R(a — B)}. Hence, Proposition 3.4, (4), (30) and
the Plancherel formula for L?(R) yield that

—~

[y @) 2Ry A pd)
Was(f), Ws3(94573)) 12(R 1 dx)

(Wa,a()e”" Wa5(98:5)e™"") 2R )
1

— 27T<f s(A+ i), Gz 5(A — i) Caz(=A+ ) ") 2@,

I
N | =

ﬁ\

where W, (f) and Waﬁ(gAaﬁ) in the third line are regarded as even func-
tions on R. m
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Similarly, we can deduce the following.

Corollary 5.2. Let o, 3,n € C and Ra > —1. Letv > 0 and v > R(n+
p) > max{—Rp, —R(a — B)}. Then, for all f € CF(R) and g € Aéjg(R),

1 0© ~
([L9) 2Ry A0 g) = \/—2_7r [m fas(A+1i0)g, (A +iv)Co 5(—A — ).

6. Analytic continuation.

6.1. We shall consider analytic continuation of the formula in Corollary
5.2. For 0 € C let WR, be the Weyl type fractional operator on Ry = [0, 00)
(see (13)) and let 0[00,1} (resp. C[%,l)) denote the space of all functions H on

R such that supp(H) C [0,1] (resp. [0,1)), W’ (H) is well-defined, and

sup |WR(H)(w)| < c.

0<w<1

For ¢ > 0,0,n € C let Bg:g(R) denote the space consisting of all even
functions f on R of the form

f(z) = (choz)"H((choz) '), H € C’[%’l]. (32)
We note that, if supp(H) C [0,1], then supp(WR(H)) C [0,1] and thus, if
H e C[%,l], then H € 0[90,,1] for all #' such that R6" < 6. When 6 > 0, if

we put h(t) = H(1/t) as in the form of (24), we see that h satisfies (25) with
m = [f]. Hence, if RO > 0, then

BYY(R) ¢ A7YI(R).

Let Bf”na (R) denote the set of f € Bg:g(R) such that 0 ¢ supp(f), that is f is
identically zero around 0. We may suppose that f € Bﬁ ’7‘79 (R) is of the form

f(z) = (choz)" ' (shox)H((chox)™"), H; € 0[90,1)' (33)

Obviously, we may suppose that f € Bg:g(R) is of the form

f=l+f, fieCPR), fi€B](R). (34)
6.2. For p=0,—1,-2,--- it follows from the definition that
Wy :BY(R) — Bl (R) (35)
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and Bg;f, (R) — BZif,iZ(R) (see Lemma 3.3 (2)). For general ;1 € C we have
the following.

Lemma 6.1. Let p€ C and f € B;”’WH(R).
(1) If Ry > 0 and Hy satisfies

W (s~ =OWE (Hy)) (w) = O(w=""") if R(y—0) <0,

then W[j(f) € Bﬁ’:Jr#(R).
(2) If R <0 and Hy satisfies the above conditions replaced p, 0 and n
with pu — (1], 0+ [u] and 1+ [u] respectively, then W7 (f) € Bﬁf:;[zﬂ] (R).

Proof. Let Rp > 0 and f be of the form (33). Clearly, if f is identically zero
around 0, then W7 (f) is also identically zero around 0. Letting choz = ¢ in
(20), we see that

~ t
WIN@) = e s H (- sy s VE T
1
= el 1 / S H (1) (1) s
1/t
= "™V —1H, (1),

where

Hy(w) = wl SV H (w)s)(1 — )~ ds

= /1 s~ H (ws)(s — 1) 'ds
= w"/ s M (s5) (s — w)* s
= w"Wf(s_(”Jr“)Hf)(w).

Since H; € Cfy,y and WE (Hy(ws)) = s"WE (Hj)(ws), Ry < RP, as a
function of w, it follows that

WR(H) (w) = [ s W (Hy) (ws) (s — 1) s

1

= W 'WR (s~HOWE (Hy)) (w). (36)
Therefore, if ®(n — ) > 0 and WR®(H/) is bounded, then Lemma 3.1 (1)

yields that W (H,) is bounded. On the other hand, if ®(n—0) < 0, then the
assumption on H; also yields that WX (H;) is bounded. Hence, H; € C'[‘%’l)
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and the desired result follows. Let Ry < 0. When ,u =0,-1,-2,---, the

assertion is nothing but (35). Otherwise, since W iy © Wy the

desired result follows from (35) and the first case. n

Corollary 6.2. Let p € C and f € B]/(R).
(1) If Ru <0, then Wg(f) € Bb;;]:i( ).

(2) If Ru=0, then Wg(f) € BITHH(R) for 6 > 0.

N+ B
(3) IfRpu > 0 and WR (Hy)(w) = O(wh=%), then W (f) € BJI " (R),
where 69 > 0; > 0 or 0; = d, = 0.

Proof. (3) Let Ry > 0 and suppose that W& (Hy)(w) = O(w"). Then,
letteing 6 = 7 in (36), it follows that

WER (Hy) = Wt(s™*WE (Hy))
and thus,
WE o (H) (w) = w™WE (Hp) (w). (37)

Hence H; € CT(’)JFI“ follows. When WX (Hy)(w) = O(w*~*), (37) is replaced
with W&, . 5 (H) = Wi (s™*WZE, (Hy)). Therefore, H, € C[’Z)J’rl‘f& pro-
vided do > &;. (1) Let Ry < 0. When y = —1,—2,---, the assertion is
obvious from (35). We may suppose that pu # —1,—2,---. Because of (35)
and W" = W" [u]—1© j (uj+1, W€ may suppose that —1 < Ru < 0. Then it is
easy to see that

~ d
Wi(N) = e (7Gyu(t™)) V-1
= "N —1((n+ )Gyt — TG 0T),
where choxr =t and
Gyp(w) = wWi (s~ Hy)) (w).
Therefore,
Hy(w) = (n+ p)Gyu(w) — UJG;W(U}) = pGypu(w) — Gypa 1 (w). (38)

Let G = GW. As before, WR (G) = WR (s-WDWE (Hy)) and thus,
WR 0 (G) = WR(s 0DWR (H))). Since R(u +1) > 0, supp(Hy)
[0,1) and WR (Hf) is bounded, Lemma 3.1 means that W& (ip (G) 1s

bounded. Let G Gpt1,u—1. Then the same process yields that WRTH# (@)
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= WR(sWRo WR (Hy)). This function is again bounded. Hence, H; €
C[’Zﬂ‘;. (2) The case of Ry = 0 follows from the same process in (1) replaced
n+ p with 7+ p — 0 and W with W s respectively. n

6.3. Now we shall consider analytic continuation of g, g(\) in Corollary

5.2 provided g € Bg:z /o(R) where 6 will be suitably determined. We recall

(34). When g € C§°(R), Lemma 2.1 (2) and the fact that
A, 5(7) = (chz)?(the)?*H!

has zero of order 2« + 1 at x = 0 mean that, if Ra > —1, gos()) is a

holomorphic function on I\ > 0 of exponential type (see §5). Therefore, it

is enough to consider the analytic continuation of §, z(\) for ¢ € Bf,ﬁ/Z (R).

Since g is identically zero around 0, Corollary 4.3 yields that, if Ra > —1,
then g, 5()) is holomorphic on A > R(n+p) and 23@+1/2) g, 5(X) Cy5(—A) "
is the Euclidean Fourier transform of

Wi(aﬂe) (WE(,B+1/2) (984,5))-

In the following, let Ra > —1,¢ > 0 and
f = gAa,,B'

Obviously, f € B>Y (R) and is of the form

b.n/2+p
f(z) = (ch2z)"**7 (sh2x)Hy((ch2z) '), Hy € Cfj ). (39)

We here take 0 as

n
Ons = 5 Tr (40)

and assume that,

if —R(6+1/2) >0, then W, (Hy)(w) = O(w=#+1/2), (41)

n/2+p

Then, by taking n and p in Corollary 6.2 as 67, ; = 1/2 + p and —(3 +1/2)
respectively, it follows that for a sufficiently small ¢, > 0

Wz(ﬁ+1/2)(f) S Bf,,;lll_q(R)a
where 71 = (n+ p+ (o — /3))/2. This means that WE(ﬂH/Z)(f) is of the form
WE(5+I/2)(f)(x) = (ch2x)"1*1(sh2x)H}(Ch712x), H; e Cony
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We here rewrite this function as
W2 5119 (f) (@) = (cha)™ " (sha) Hf(ch?z), Hj e Cf ", (42)
where
Hi(w) =22 —w)"H(w/(2 —w)). (43)
Before applying W}( g to W2 (/3+1/2)(f)’ we prepare the following lemma.
Lemma 6.3. Let p € C,e >0 and f be of the form

f(x) = (cha)*~"(shx)H (ch~*x), H € Cf). (44)

(1) If Ru <0, then Wl}(f) is of the form
WL(f)(x) = (cha)®*#~'(shz) Hy(ch™2z), Hy € Clph*™". (45)

(2) If Ru =0, then (45) holds with H, € Cn+“/2 * ford > e.

(3) If Ru > 0 and WR(WR(M/Q_M)(H)(SZ))(U]) = O(wk %), then (45)

holds with H, € C™M*7%2 where 6y > 6, > 0 or 6, = 6, = 0.
[0,1)

Proof. We repeat the similar arguments in the proof of Corollary 6.2. (3)
Let R > 0 and suppose that WR(WI‘(nﬂ/Z)(H)(s?))(w) = O(w"). From
the proof of Lemma 6.1, letting ch 2z = w, it follows that

Hi(w) = c/\/; s H (w/s?) (1 — s)Pds
— 0/01 21 H(w/s%)(1 — s)*ds
— W ) (),

where H(w) = H(w?). Since WER (H(w/s%)(w) = cs > WE (H)(w/s*),
Ry < Rn, as a function of w, we see that

W () (0) = e [ () (/)1 — s ds
= (W, () (V). (46)

Hence H, € C’E(];rf)‘ﬂ follows. The case of §; > d; > 0 also follows as in (3) of
Corollary 6.2. (1) Let 8 < 0. As before, we may assume that —1 < Rp < 0.
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Then, using (45) replaced p with 1+ 1, we can repeat the proof of Corollary
6.2. Actually, Gy, , is replaced by

wnW:grl ( (2n+ﬂ+1)ﬁ[) (Vw)

and Gpy1,-1 by Gpy1/2,—1. Hence, applying W& (ntif2—e) = WI/QOW (u+1)/2°
Wfinfe) to these functions, the desired result similarly follows as in Corollary
6.2. (2) The case of Ry = 0 also follows from the above argument. u

We apply Wf{( 5 to W2 (5+1/2)(f) (see (42)) under the assumption that,
if —R(a— ) >0, then WR 5 (WF, ., (H})(s*)(w) = O(w™@=5). (47)

Then, by taking 1, u and H in Lemma 6.3 as (n+ p+ (o — f))/2, —(a — 3)
and H]% respectively, it follows that for a sufficiently small €5 > 0,

WL ey W2 511/ () (@) = (cha)™ " (sha) H}(w?),  H} € GBI, (48)

where w = ch™'z and n, = n + p.

Remark 6.4. (1) If —R(3+1/2) < 0 and —R(a — ) < 0, then no
extra conditions on zero of Hy and H} (see (41) and (47)) are required.

(2) If =R(S+1/2) > 0 and —R(a—f) > 0, then the both extra conditions
on zero of Hy and HJ% are required. However, the extra condition on zero of
H? means the one of Hy. First we note that (37) implies that

WER i (Hp)(w) = w CHDWR(H) (w),

where § = —(n+ p + (o — ())/2. Thereby, if Wj*(H}) is bounded, then
WB(U/QJFP)(Hf) has zero of order —(3 4 1/2) at w = 0 and thus, the extra
condition on zero of H; follows. Now, let us suppose the extra condition on
zero of Hy: WE (WRHp 12 (H7) (%) (w) = O(w™*=#)). We denote this
function by h(w ) Then H; =W (W(lzfﬁ)(h)(\/g)) and thus

(n+p)/2
Wyt (H7) = WEa_p) o (Wiap) (W (V5)).
Hence, from Lemma 3.1 (1) it is easy to see that the right hand side is
bounded. Similarly, Wyt s(H7) is bounded for 6 > 0 such that —R(a —
B)/2—6 >0. Let 0 = —n+~v, n =0,1,2,---and 0 < Ry < 1. Since
Hj(w) = G(w)H}(w/(2 —w)) for G € CF (see (43)) and Wt = WRoWR |
it follows that

Wo(Hp) ~ > WHGWE(HY))
k=0

= ZW (GkW Y+6+(n—Fk) OWo J(Hf))
k=0

20
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where Gy € C°. Therefore, since Wy ;(H7) is bounded, Lemma 3.1 (1)
implies that Wy(H}) is bounded as desired.
(3) From (39) and (42) Hy and H7 can be written as

H b w-1)/2 w2+
w) = arccosh w _—
fw) = f(( ) —
(n+p+(a—B))/2
1 _ w
HJ%(U]) - Wz(ﬁ+1/2)(f)(arCCOSh w I/Q)ﬁ

Since 23@+1/2) g, 5()\) Cy3(—A)"! is the Euclidean Fourier transform of
(48), in order to carry out the analytic continuation of g, g(\) Cyg(—\)7",
it is enough to consider F'(\) of

F(z) = (cha) ' (she)H(w?), HeClL*, Ry >0.

For simplicity, put 6§ = /2 — €. Since ** = (chz)™(1 + thx)?, by changing
the variable as w = ch 'z, it follows that for I\ > Ry,

. 1 i Sy s
PO = /H(wQ) (14 VI—w?)” w0 g,
0
= /1 T(w)w ™ = M/2 gy,
0

Here, I € C[%,l). Then, applying Proposition 3.4 with « = # = —1/2 and
(14), we see that

FO) = [ W) () 0w

B D(—i(\ — i7)/2) - s
a F(—z'(A_m)/g)JrgH)/o WE (1) (w)w = O 0240 gy

Since I € Cffy ) and —i(A — i7)/2 + 60 = —i\ — ¢, this integral is bounded if
I\ > —1 + €. Therefore, F(\) has a meromorphic extension in S\ > 0 with
simple poles lie in

and

Resie. (F(V) = m!r(—(;nllme +1) /01 WE(I) (w)yw™™ duw.
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Finally, noting (41), (47) and Remark 6.4 (2), we have the following.

Theorem 6.5. Let o,3,n € C, Ra > —1 and g € BO’Z/§+p(R). We
suppose that there exists a decomposition g = go + g1, go € C{°(R) and

g1 € Bf’://;ﬂ(R), such that f = g1, satisfies that, if —R(a— ) > 0, then

WE o) (WE )2 (HF) (%)) (w) = O(w = ?) and, if —R(e — ) < 0 and
~R(B+1/2) > 0, then WX, (Hf) (w) = O(w ~BH2)) . Then, for all
¢ € Cg*(R),

<¢,9>L2(R+,Aa,5dx) = \/ﬂ/ gaﬂ()‘)caﬂ(_()‘))_ld)‘
—V2mi Z ba,3(VRES = (Fa,5(V)Cap (1)),
Do gUFy+p

where we supposed that (Do gUF,,)NR = 0. All poles appered in the second
sum are simple. If go =0 (resp. g1 = 0), then the second sum corresponding
to Dy g (resp. Fyi,) vanishes.

Remark 6.6. (1) If —R(«a — ) <0 and —R(5 + 1/2) < 0, then there
are no assumptions on f and D, g = (. This case perfectly coincides with
(3) of Theorem 5.1.

(2) In [5] the analytic continuation of g, () is also calculated directly;
the poles of g, (A) lie in Fy;, and if D, 5N E,y, # 0, then g, 5(A)C(=A)*
has double poles. However, in Theorem 6.5, no double poles appear, be-
cause we use the reduction formula in Corollary 4.3 and we assume the extra
conditions on zero of Hy and H3.
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On the Lusin area function and the
Littlewood-Paley ¢ function on real rank 1
semisimple Lie groups

Takeshi KAWAZOE *
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Abstract

Let G be a real rank one connected semisimple Lie group with
finite center. Using the spherical Fourier transform and the classical
one, we shall consider a pull back on G of H'(R) and introduce a real
Hardy space W_(Mc,(H'(R))) on G as a subspace of L'(G//K). We
also define the Lusin area function S (f) and the Littlewood-Paley ¢
function g(f) on G as analogues of the classical theory. We show that
Sy and g are bounded from W_(Mc¢,(H'(R))) to L'(G//K).

1. Notation. Let G be a real rank one connected semisimple Lie group
with finite center and G = KAN = KA+ K respectively an Iwasawa and the
Cartan decompositions of GG. Let a be the Lie algebra of A and F = a* the
dual space of a. Let v be the positive simple root of (G, A) determined by N
and H the unique element in a satisfying v(H) = 1. Let m; and my denote
the multiplicities of v and 2y respectively. We put

_m1+m2—1 _m2—1

- Z . B= = 1.
@ . A= p=a+f+

We parameterize each element in A, a, and F as a, = exp(zH), 2H, and
zvy (x € R) respectively, and identify A, a, and F with R. In this paper we
shall treat only K-bi-invariant functions on G. Since A" = {a,;z > 0}, all
K-bi-invariant functions can be identified with even functions on R.

*Supported by Grant-in-Aid for Scientific Research (C), No. 16540168, Japan Society
for the Promotion of Science
02000 Mathematics Subject Classification. Primary 22E30; Secondary 43A30, 43A80
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Let dg = e***dkdxdn = A(z)dkdzdk' denote the decompositions of a
Haar measure dg on G respectively corresponding to the Iwasawa and Cartan
decompositions of GG, where dk, dx, dn denote Haar measures on K, A, N
respectively, and A(z), z > 0, is explicitly given as

A(z) = 227 (shz)?*! (cha) 21!,

We extend this function on R, as an even function on R. Let LP(G//K) de-
note the space of K-bi-invariant functions on G with finite LP-norm: || f||, =

(57 1f (@) P A(x)dx) Y7 and L. .(G//K) the space of locally integrable, K-
bi-invariant functions on G. Let C2°(G//K) be the space of compactly sup-
ported C*, K-bi-invariant functions on G. We denote by f the spherical
Fourier transform of f and by f x h the convolution of f,h in L'(G//K) (cf.
2], [9, Chap.9]). Similarly, we denote by £ and F @ H the Euclidean Fourier
transform of F and the convolution of F, H in L!'(R) respectively.

2. Real Hardy spaces. We shall introduce a real Hardy space on GG
by using a radial maximal function on GG. Let ¢ be a positive compactly
supported C*°, K-bi-invariant function on G' with ||¢||; = 1. We define the

dilation ¢y, t > 0, of ¢ as

ou(x) = %ﬁA (%) s (%), 1)

Since this dilation has the same properties as in the Euclidean case; ||¢y||; =
|¢||1 and {¢y;t > 0} approximates the identity in LP(G//K), 0 < p < oo, it
is quite natural to introduce a radial maximal function M, f on G as

(Myf)(g) = sup |(f*¢)(9)l, g€G.

0<t<oo

As shown in [3, Theorem 3.4], this maximal operator M, satisfies the so-
called maximal theorem: A/, is bounded on LP(G//K) (1 < p < o0) and
satisfies the weak type L' estimate. Analogously as the definition of the real
Hardy space H'(R) on R, we define the real Hardy space on G by

HY(G//K) ={f € Li,(G//K) ; Myf € L'(G//K)}

loc

and the norm by || f||n1(q) = || My f|l1- Then H'(G//K) C L'(G//K).
For f € C°(G//K), we define the Abel transform F}, s € R, of f as

Fi(z) = e”(Hs)x/ f(azn)dn.
N

For simplicity, we put W, (f) = F } and we denote by W _ the inverse operator
of W. Explicitly forms of W, are given by a composition of the Weyl type

2
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fractional integral transforms (see [6, §6]). We recall (cf. [6, (3.7)]) that both
f and (F7)~ are holomorphic functions on C of exponential type and

fO+isp) = (Fp)~(\), AeC. (2)
Let C()) denote Harish-Chandra’s C-function (cf. [6, (2.6)]) and M, the
Euclidean Fourier multiplier corresponding to C,(\) = C'(—(A+ip)), that is,

M, (F)~(A) = C(= (A +ip))F(X). We define
W_(H'(R)) = {f € L,.(G//K) ; W,(f) € H'(R)}

loc

and the norm by || fllw_ = [[W4(f)||m(w)- We also define W_(M¢, (H'(R)))
by replacing the condition that W, (f) € H'(R) in the above definition with
M(}; oW, (f) € H'(R) and the norm by ||f||W£7p = ||M5; o Wi (f)llm m)-

We note that fx ¢, = W_ (Wi (f*x¢) =W _(F®W,(¢)), where F =
W (f). Hence the H'-norm ||f||g1 () of f on G is related to an L'-norm
of F = W,(f) on R. Actually, let « — 8 = [a— 3] +6 and 3+ 1/2 =
[8+1/2]+ 6", where [ ] is the Gauss symbol, and set n = [ — ]+ [3 — 1/2]
and D = {0,6,0",0 + 0'}. Then it follows from [5, Theorem 4.6] that

Il ~ D D IMGE o WE L (F) (@) (tha)™ ¢ 1w, (3)

m=0¢eD

where VVE{7 is the Weyl type fractional integral transform on R and Mf is
the maximal operator on R defined by

(MGIF)(x) = sup |(F®W,(d)(2)l, =€R.

0<t<oo

From the equivalence (3) it follows that
W_(Mc,(H'(R))) C HY(G//K) c W_(H'(R))

(see [5, Remark 4.7(1) and Corollary 4.3]).

3. Estimate of W_. We retain the previous notations. In the process
to deduce (3) we use a relation between the Weyl type fractional integral
transforms W_ on G and WEY on R;. As shown in [5, Proposition 4.5,
Lemma 4.4], if F' is smooth, then W_(F) is estimated as, for x > 0

W (F)@) <A@ 33 (IWRg(F)@)

m=0£eD

T (P Aelaits), @
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where A, 0(z,s) =0, Ame(r,s) > 0 and there exists a constant ¢ such that

Jy Ame(x, s)dz < ¢ for all s > 0. More precisely, Ap, ¢(z, s) is dominated by
X[0,00) (8 — Z)X[0,11(8) Or By ¢(s — x), where B, ¢(z) is integrable on R . Let
few. (Mcp( '(R))) and put F = W(f). By the definition, M (F)

belongs to H'(R). We note that C(—(\ + ip)) ~ (1 + |A])~(@+/2) (cf. [3,
Theorem 2]) and (i))? /(A +ip)®+1/2, 0 < v < a+1/2, satisfies the Hérmander
condition (cf. [8, p.318]). Therefore, W& (F) belongs to H'(R) (cf. [8,
p.363]). Since m+& <n+0+0" = a+1/2 each WX (m+§)(F) in (3) and (4)
belongs to H'(R), that is,

W) ()l wy < ell 1l (5)

forall0 <m <nand¢ € D.
4. Area and ¢ functions. Let p; denote the Poisson kernel on G, which
is a K-bi-invariant function on G given by

pe(N) = e VAT

We define the Littlewood-Paley ¢ function g(f) on G, f € C*(G//K), as

. 2 1/2
g(f)(fr)z(/o g el Cf) .

As shown in [1], [7] and [8], g satisfies the maximal theorem. We define
the Lusin area function on G as an analogue of the classical theory (cf. [9,
p.314]). Let B(t) denote the ball on G' with radius ¢ centered at the origin
and |B(t)| the volume of the ball. Let x () denote the characteristic function
of B(t) and put

1
xe(r) = B B0 (2).

We define the Lusin area function S(f) on G as

o dt
S()() = (/ o t)

As shown in [7], S is bounded on L?(G//K), 0 < p < oo. We also define the

modified one as
1/2
dt
dy_ )
(/ /{U )>o(z)} ) t)

0
tapt*f()

t—f * py(y)
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where o is the distance function on G (cf. [10, 8.1.2]). Our main theorem is
the following.

Theorem. g and Sy are bounded from W_(Mc,(H'(R))) to L'(G//K).
5. Sketch of the proof. We suppose that f € W_(Mc,(H'(R))) and put

F =W,(f). For simplicity we denote K; = t(0/0t)p;. Since t(0/0t)f * p; =
[ K, =W (W (f*Ky))=W_(FxW,(K;)), it follows from (4) that

<S5 [ (g e wmEY)

m=0 ¢eD
because
1
0o 0o 0o 2 dt /2
H(s,t)A(x,s)ds| — dx
0 0 T 3
00 0o 00 dt 1/2
< /“u/ (/RLH@JM%—> Az, s)dsdz
0 s 0 3
%) %) dt 1/2 s
:!/ </ uﬂ&wF—> /iuasmmm
0 0 t 0
o0 o0 dt 1/2
g§/</|H@mL> ds.
0 0 t
We here put

%0 dt\ V/?
o) = ([T w.mi@Py) L e crm
0
Since each Wf‘(m%) (F) belongs to H'(R) (see (5)), according to the (1, 00, 1)-

atomic decomposition of H'(R), it is enough to show that there exists a
constant C' such that for all (1,00, 1)-atoms A on R,

[ZMM@mga (6)

Obviously, we may suppose that A is centered, that is, A is supported on
(=7, 7], |Alle < (2r)~" and [ A(z)a*dz =0, k = 0, 1. First we shall prove
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that ggr is bounded on L?*(R): For H € L*(R)

o0 dt
mammmJ=L£|W®wmmmaR—
x L dt

= W e T

o . i dt
- A 1) - 1/Ah + 2ip)e VAGTR 2,
_ / ()2 < / t|A(A+27;p)|e—2t%VA<A+2iP>dt) i\

00 0

= / |H(\)|? < /0 trthﬁCOSw/Z)dt> d\

c/ V2N = ¢ H|[,

o0

IN

where we set A(\ + 2ip) = re? and we used the fact that cosf > 0 and

cos(0/2) = /(cosf + 1)/2 > 1/+/2. Hence, by Schwarz’ inequality, we have
2r
/ gr(A) (2)d < e All ey (2r) 2 < C (7)
0

Next we suppose that z > 2r. We recall W, (K;)(x) = te’*(0/0t)F) ()
and F (z) = Ct(t*+2%) 7' /2K, (p(t*+2%)'/?), where K, is the modified Bessel
function (see [1], p. 289). Since K, (z) = O(z~"/2e7%) if  — oo, and O(z™")
ifx —0,and z —y >x —r>rif |y| <r, it follows that

AW ()@ = | [~ AWK~ iy
< c/oo |A(y) |2 (2 + (x — y)2)—3/4—1/2—56_,,@2+(x_y)2)1/zep(x_y)dy
< ct(t* + (v — T)2)73/4 < ct(z — r)*?’/?, )

where e = 0if t* + (x —y)?> > 1, and € = 1/4if752 (x—y) < 1. Actu-
ally, when € = 0, we used the fact that ¢2fe—P(t*+(@— e , ! € R, has the
maximum O((z — y)le @) at t ~ (zv — y)'/2. Thereby, letting ¢ = 1,
we see that t2(t2 + (z — y)Z)*1/2€*P(t2+($fy)2)1/2 < 2z — y)—1efp(thr(anfy)%l/2
< ce Ty, When € = 1/4, we used the fact that t?(t2 + (v — y)?)~3/* <
(2 + (z — y) )~! < 1. Next we note the moment condition of A, which im-
plies that B(z) = [*__ [" _ A(v)dvdu is supported on [—r,r] and || B|| < 2r.
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Since (d/dx)*(K,(z)e*) = O(z~Y27%) if + — oo, and O(z7**) if z — 0, in-
tegration by parts yields that

|A® W, (K;) ()]

C/oo B+t —y) + (2 —y)*)

o0

IN

x(t2 + (z — y)2)—3/4—1/2—2—6e—p(t2+(w—y)2)1/2ep(x—y)dy
< et (r—r)) < er*t P o —r) 2 9)

where ¢ = 0 if t? + (z —y)? > 1, and e = 5/4 if 1 + (v — y)? < 1. Actually,
when € = 0, letting £ = 5/2, we see that *(£2 + (x — y)2?) /4¢P Ha=1))"/?
< e ?@=¥) and when ¢ = 5/4, we have ¢*(t> 4 (z — y)?)™>/2 < 1. Hence, from
(8) and (9) we see that

/0 T A® WL (K)()

VT 00
c(x — r)3/ tdt + er'(x — 7")4/ todt
0

cr(z —r) 2 +er?(o — 7")’4

t

IN

IN

and thus

/200 gr(A)(z)dx < c/oo(rl/Z(x — 7“)73/2 +r(r—r1r) Hdx < C. (10)

r 2r
Then (7) and (10) imply the desired estimate (6).
As for the area function S, (f), it follows from (4) that it is enough to
show that for all centered (1,00, 1)-atoms A on R,

/oo SL(A)(z)dz < C and /oo S2(A)(z)dz < C, (11)

0

<) H @ W (K) )Py D) " A)

where

and

sum@ = ([ [ etaka s

<[ T H o WL () (5)Aly, s)ds| dy™

dy?)l/ZA(m).

7
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Here A(y,s) > 0 and [ A(y, s)dy < c for all s > 0. More precisely, A(y, s)
is dominated by x[o,00)(5 — y)X[ 1)(s) or B(s — y), where B(y) is integrable
on R,. First we shall estimate Sk (A). Since A(y)™! < A(z) ' ify > ||
and [ [ xi(agka, ") dkA(z)dx = [, x:(g9ay)dg = ||x:|ls = 1, it follows that
for H € C*(R),

1SR (H) 122 r)
< / / (/ /Xt azkay " )dkA(z )dx> \H & W, (K,)(y )|dyﬁ
= lgr(H)|72(x,

and thus, Sg is bounded on L*(R). Then f2r Sk (A)(z)dz < C as before. We
suppose that > 2r. We recall that, if y > |x| then A(y)™'A(z)? < A(y)
and |A® W, (K;)(y)| is dominated by t(z —r)~*/? and r?t~2(x — r) 2. Since
Ix¢|li = 1, as in the case of gr, Sk(A)(x) is estimated as r'/?(z — r)=3/2 +
r(z—r)"% and then [ Sk (A)(z)dz < C. Therefore, we can deduce (11) for
Sk. Next we shall estimate Sg. As before, we see that

ISR (H) 12y < II/ gr(H)(s)A(y, s)ds|| 7w,
Y

When A(y,s) is dominated by x0,0)(5 — ¥)X[0,11(5), we see that 0 < |z| <
y < s <1 and thus,

ISy < ([ omUEDEIAC myds) < clon () my

by Schwarz’s inequality. When A(y, s) is dominated by B(s — y), we change
the variable s to s +y and thus,

ISR (H) |72y < ||/0 gr(H)(s +y)B(s)ds| 12w,

0 2
cllgm (H) 132z / B(s)ds )" < cllgr(H) |22z,

IN

suppose that x > 2r. When A(y, s) is domlnated by X, )(s — ¥)X[0,1](5),
we see that 2r < x <y < s <1 and thus, A® W+(Kt)( is estimated as
t(x —r)=32 and r?t~2(x — r)~2. Moreover, A(y)'A(z)? < A(y), ||x|: =1,
and fyoo A(y, s)ds < 1. Therefore, S (A)(x) is dominated by r'/2(z—r)=3/2 +
r(z —r)~% and thereby, [, Sk (A)(z)dz < C as in the case of gr(A). When
A(y, s) is dominated by B(s — y), we change the variable s to s + (y — z).

Hence S% is bounded on L%*(R) and f% SE(A)(z)dx < C as before. We
)

8
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We recall that, since s + (y —x) > s >z > 2r, |[A® W (K;)(s + (y —
x))| is dominated by H(t,s,r) = min{t(s — r)~%/2,r*t=%(s — r)~2}, which is
independent of z,y, and A(y) "A(x)? < A(y). Therefore, noting ||x|[; =1
and A(y,s+ (y — z)) < B(s — z), we can deduce that

t

s < ([

Since [ |H(t,s,r)*dt/t <r(s—7)*+r?(s — r)~* as before, it follows that

2 dt>1/2‘

/:O H(t,s,r)B(s — x)ds

" S2(A) (x)da

IN

/:f)o /;0(7«1/2(5 =) 4 r(s — 1) *)B(s — 2)dsdz
— /Z:O(rl/Q(S — )2 4 (s —1)7?) (/28 B(s — x)@;) ds < C.

T

Therefore, we have (11) for S&. This completes the proof of the theorem.

Remark. We put D, = W_ o (d/dx) o W,. Then the operators ¢’ and
S’ defined by replaced t(d/dt)p, in the definitions of ¢ and S} with tDyp,
are also bounded from W_(M (H'(R))) to L'(G//K). Moreover, in the
definition of S, we may replace x; with ¢, in (1).
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Real Hardy spaces on real rank 1 semisimple
Lie groups

Takeshi KAWAZOE *

Abstract

Let G be a real rank one connected semisimple Lie group with finite
center. We introduce a real Hardy space H'(G//K) on G as the space
consisting of all K-bi-invariant functions f on G whose radial maximal
functions My f are integrable on G. We shall obtain a relation between
H'(G//K) and H'(R), the real Hardy space on the real line R, via
the Abel transform on G and give a characterization of H'(G//K).

1. Introduction. In the study of the classical Hardy spaces on the unit
disk and the upper half plane, real variable characterizations of their bound-
ary values are called the real variable method. In the 1970’s these boundary
values were completely characterized by various maximal functions without
using the complex variable method and their atomic characterizations were
also given at the same time. This was a significant breakthrough in harmonic
analysis. Nowadays, this fruitful theory of real Hardy spaces, which are de-
fined by maximal functions and atoms, has been extended to the spaces of
homogeneous type: A topological space X with measure p and distance d is
of homogeneous type if there exists a constant ¢ > 0 such that for all x € X
and r > 0

p(B(z,2r)) < cp(B(x, 1)),
where B(xz,r) is the ball defined by {y € X | d(z,y) < r} and p(B(z, 7)) the
volume of the ball (cf. [2, §1]).

When the space X is not of homogeneous type, little work on real Hardy
spaces on X has been done. In this paper, looking at the example of a

*Supported by Grant-in-Aid for Scientific Research (C), No. 13640190, Japan Society
for the Promotion of Science. 2000 Mathematics Subject Classification: Primary 22E30;
Secondary 43A30, 43A80
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semisimple Lie group G as a space of non-homogeneous type, we shall con-
sider real Hardy spaces on G. Actually, when X = G, p(B(z,r)) has an
exponential growth order as r goes to infinity and hence G is not of homo-
geneous type. We shall introduce a real Hardy space on GG by using a radial
maximal function on G. Our goal is to give an atomic characterization of
the space and to obtain a relation with the real Hardy space H!(R) on R.
We shall overview some results obtained in the previous papers [7], [8], [9]
and state our main theorem. Let GG be a real rank one connected semisimple
Lie group with finite center and G = KAN = KCL(A")K respectively
an Iwasawa and the Cartan decompositions of G. Let dg = dkdadn =
A(a)dkdadk’ denote the corresponding decompositions of a Haar measure
dg on G. In this paper we shall treat only K-bi-invariant functions on G.
Since A is identified with R as A = {a,;2 € R}, all K-bi-invariant func-
tions can be identified with even functions on R. We also denote A(a,) by
A(z) for z > 0 and extend it as an even function on R. Then the one di-
mensional space R with normal distance and weighted measure A(x)dx is
not of homogeneous type, because A(x) ~ e*?l as |2| — oo, where p is a
positive constant determined by a group structure (see (?7?), (??), (??)). Let
LP(G//K) denote the space of all K-bi-invariant functions on G' with finite

I[P-norm:
1= ([ 1P A " 1)

and L .(G//K) the space of all locally integrable, K-bi-invariant functions
on G.

We shall introduce a real Hardy space on G by using a radial maximal
function. As in the Euclidean case, to define a radial maximal function we
need to define a dilation ¢;, t > 0, of a function ¢ on GG. Let ¢ be a positive

compactly supported C'*°, K-bi-invariant function on G such that

/¢(9)d9:/ d(x)A(x)dx = 1.
G 0
We define the dilation ¢, of ¢ as

1 1 x T
L ()e(t)
Clearly, ¢; has the same L'-norm as ¢: ||é|| = ||¢[|; and, for 1 < p < oo, it
gives an approximate identity in LP(G//K) (see [3, Lemma 16]). Since this

dilation has the same properties as in the Euclidean case, it is quite natural
to introduce a radial maximal function Myf on G as

(Myf)(9) = (f*x¢)(9)l (g€ @)

sup |
0<t<oo
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As shown in [7, Theorem 3.4], this maximal operator M, satisfies the so-
called maximal theorem: A/, is bounded on LP(G//K) (1 < p < o0) and
satisfies the weak type L' estimate. Now we define the real Hardy space
H'(G//K) on G analogously as in the real Hardy space H'(R) on R:

H'(G//K) ={f € Lioo(G//K) ; Myf € L'(G//K)}
and the norm is given by

1F s c) = (1Mo f]1-

The aim of this paper is to characterize H'(G//K).
For a compactly supported C'*°, K-bi-invariant function f on G, we shall
define the Abel transform F}, s € R, of [ as

Fi(z) = e”(H's)’”/ f(agn)dn.
N

This integral over NV is explicitly given by a composition of generalized Weyl
type fractional integrals (see [11, Corollary 3.3] and (?7)). Especially, we
put

W+(f):Ff1

and denote by W_ the inverse operator of W, which is given by a com-
position of Weyl type fractional derivatives (see (??), (??)). Let f denote
the spherical Fourier transform of f on G and F~ the Euclidean Fourier
transform of F on R. Both f and (£7)~ are regarded as functions on the
dual space F of the Lie algebra of A, which is identified with R. Then they
are extended to holomorphic functions on F., the complexification of F, of
exponential type and

F+is) = (F)"(N), A€F,

(cf. [11, (3.17)]). Let C()\) denote Harish-Chandra’s C-function (see (77))
and M¢, the Euclidean Fourier multiplier corresponding to C,(A) = C'(A+ip):

Mc, (F)~(A) = C(A +ip) F~(N).
We here define
W_(H'(R)) = {f € Li,.(G//K) ; W,.(f) € H'(R)}

and also W_(M¢, (H'(R))) by replacing the condition that W, (f) € H'(R)
in the above definition with Mgpl oW, (f) € H'(R).

3
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Theorem A. Let notations be as above.
W_(Mc,(H'(R))) € H'(G//K) c W_(H'(R)).

This is one of the main results in [8]. However, the proof was a little bit

complicated, because to obtain the first inclusion we used the Harish-Chandra
expansion of the zonal spherical function and also the Gangolli expansion (see
(7?), (??)). Thereby, to sum up the estimates of each expanded terms we
required a sharp estimate and a deep theory of H' Fourier multipliers on R.
In this paper we shall give a simple proof based on fractional calculus on G.
Actually, Theorem A follows from the next Theorem B: We define a maximal
operator Mt and a fractional operator W on R by Definition 3.2 and (??)
respectively, and n € N and the set D by (??) and (?7?) respectively.

Theorem B. There exist 0 < ¢; < ¢y such that for all f € H'(G//K)

callfllme < DD IME o WE, o (F)(@)(the)™ || pyry < el £llma),
m=0¢eD
where F' = W, (f).

We next introduce atomic Hardy spaces on GG. In the Euclidean space the
atomic Hardy space HJ, ,(R) coincides with H'(R) (cf. [6, Theorem 3.30],
[15, §2 in Chap.3]). However, it may not be true in our setting, because
the Lebesgue measure dz is replaced by the weighted measure A(x)dz. We
denote the interval [xy — 7,z + 7] by R(xq, ) and set the volume by

Rz, )| = / " A(w)dz.

o—"r

We say that a K-bi-invariant function a on G is a (1,00, 0)-atom on G pro-
vided that there exist xy > 0 and r > 0 such that

(1) supp(a) C R(xo,r),
(i) lalloo < [R(wo,7)|7,

(447) / a(x)A(z)dz = 0.
0
Here a is identified with a function on Ry. Then H ((G//K) is defined by

H),o(G//K)={f=>_ Xa;; a;is (1,00,0)-atom on G and 3, |\;| < oo}
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and the norm is given by
1f Il iy = inf D A,

where the infimum is taken over all such representations f =) . A\ja;. More-
over, we define H;;fo(G//K) (e > 0) and H;B(G//K) by replacing (i7) and
(i) of the above definition of (1, 00, 0)-atom a on G, respectively, with

(i)e Nalloo < |R(zo,m)| ™' (1+1)"°

and -
(i) , / a()A()dz = 0 if r < 1.
0

Clearly, for € > 0,
HW(G/K) € Hyo(G//K) € Hyy(G//K).

We define a truncated maximal operator ]\/[qlf’C on G as

(M f)(g) = sup |(f*d)(9)] (g€ Q).

0<t<1

In [9] we essentially proved that My° is bounded from H;;B(G//K) to
LY(G//K). As for My, we shall prove that M, is bounded from H.J,(G//K)
N W_(H'(R)) to L'(G//K). This means that H%(G//K) n W_(H'(R))
C H'(G//K). Finally, as a refinement, we have the following main theorem.

Theorem C. Let notations be as above. Then
HY(G//K) = H5(G//K)nW_(H'(R)).

Furthermore, H;’f,U(G//K) NW_(H'R)), € > 0, is dense in W_(H'(R))
and especially, H'(G//K) is dense in W_(H'(R)).

This paper is organized as follows. We recall some basic notations in
§2. Then we shall define a radial maximal function Myf on G in §3 and
obtain a key formula which reduces M,f to a Euclidean maximal function
MG (W, (f)) on R (see Proposition 3.3). Theorem B follows from this formula
and fractional calculus on G and R in §4 (see Theorem 4.6). As an easy con-
sequence of Theorem B, we can obtain a simple proof of Theorem A (see Re-
mark 4.7), and moreover, a norm-equivalence between || f[| 1 (¢) and || M f|y
+ [[Wo(f)|lmr(m) (see Theorem 4.9). In §5 we introduce atomic Hardy spaces
on G. Then the inclusion H;C’;B(G//K) NW_(H'(R)) c H'(G//K) follows
from the estimates obtained in §4 and [9] (see Proposition 5.9). Next we

5
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shall consider a (1, 0o, +)-atomic decomposition of functions f in H'(G//K)
(see Proposition 6.2). Then, combining with Theorem A, we can deduce
our main Theorem C (see Theorem 6.5 and Theorem 6.6). In §7 we shall
consider (H', L')-boundedness of other operators on G; singular integrals,
modified heat and the Poisson maximal operators (see Definition 7.2) and
the Riesz transform on G (see Definition 7.8). We summarize some calcula-
tions and make a comment on the dual space of W_(H'(R)) in §8. In §8.A,
we shall obtain a sharp estimate of I';;,(A), meromorphic functions appearing
in the Gangolli expansion of a spherical function (see (??7)), and in §8.B,
we shall obtain a norm-equivalence among some Euclidean maximal opera-
tors. In §8.C, we shall introduce a dual space of W_(H'(R)) as a pull-back
of BMO(R) via the complex Fourier-Jacobi transform on G (see (?7) and
Definition 8.7). In this paper we introduce many real Hardy spaces on G as
subspaces of L'(G//K). We refer the reader to the figure in §8.D for the
understanding of main relationship among them.

2. Notations. Let G be a real rank one connected semisimple Lie
group with finite center and G = K AN an Iwasawa decomposition of G.
Let a be the Lie algebra of A and F = a* the dual space of a. Let v be the
positive simple root of (G, A) determined by N and H the unique element
in a satisfying v(H) = 1. Let m; and my denote the multiplicities of v and
27 respectively. We put

m1+m2—1 m2—1

=T Py

We parameterize each element in A, a, and F as a, = exp(zH), zH, and
zy (x € R) respectively. In what follows we often identify these spaces
A,a,F with R and their complexifications with C. We put A, = {a,;x €
R.}. Then, according to the Cartan decomposition G = KCL(A,)K of G,
every K-bi-invariant functions f on GG are determined by their restrictions to
CL(A,) and hence, they are identified with even functions on R. We denote
them by the same letter, that is, if ¢ € Ka,) K with o(g) € Ry, then

f(9) = flaatg) = fo(g)) = f(=0o(9))- (3)
Let dg denote the Haar measure on G. We denote by L. . (G//K) and

loc
LP(G//K), respectively, the spaces of locally integrable and p-th power in-
tegrable K-bi-invariant functions on G. Let C°(G//K) denote the space
of compactly supported C'*°, K-bi-invariant functions on G. Then for f €

L'(G//K) the Cartan decomposition of G yields that

/Gf(g)dgz/ooof(x)A(x)dx,
6

p=a+3+1. (2)
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where
A(z) = ¢(shx)?*™ (sh2x)? T 2 > 0. (4)
We note that the order of A(x) is given by

gt ifo<zr <1
e?re if 1 <z < oo,

A~ { 5)
where the symbol “ ~ 7 means that the ratio of the left side and the right
side is bounded uniformly below and above by positive constants. We extend
A(x) as an even function on R. By using this weight function A(z) the LP-
norm || f||, of f on G can be rewritten as in (??). We denote the Euclidean
LP-norm on R by || - || z»w)-

Let 2 denote the Laplace-Beltrami operator on G and ¢, (A € F) the
normalized zonal spherical function on G, that is, the K-bi-invariant eigen-
function of ) satisfying

Qor=—(A2+p")pxn and  5(0) = 1.

By restricting ¢, to A, ¢(z), z € R, is a solution of

—2 + ((2a + 1)cthz + (26 + 1)tha) %, (6)

dx?
which satisfies ¢, (0) = 1 and ¢} (0) = 0. Hence, if « ¢ —IN, it is explicitly
given by the Jacobi function of the first kind with order («, 3):
pH+iA p—i)\

2 72 7

ox(z) =F < a4+ 1; —sh2x> .

Clearly, ¢,(z) is even with respect to A,z and it is uniformly bounded on
x € R if X is in the tube domain

Fp) = {A € F; [SA[ < p}

(cf. [5, Lemma 11]). For A\ ¢ —iN, let ®(\, ) denote another solution, which
is given by the Jacobi function of the second kind with order («, 5):

p— 20—\ p—il
2 T2

D\, x) = (e® — e ) PF ( 1 — i) —sh_2x> . (7

Then for A ¢ Z, ¢,(z) has the so-called Harish-Chandra expansion:
pa(z) = e " (B(N, 2)C(N)e™ + B(—A, 2)C(=A)e ™), (8)

7
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where

C(\) = [(a+1) 2T (%) r (1 J;M)

. 9
2\/m r AN+ p r IN+p—203 )
2 2
We denote the Gangolli expansion of ®(\, z), x > 0, as
O\, x) = Z L (N)e™2me, (10)

m=0

For some basic properties of py(z), ®(\, z), and the recursive definition of
[ (A) we refer to [3, §2, §3] and [17, 9.1.4, 9.1.5].

For f € L'(G//K) the spherical Fourier transform f(\), A € F, of f is
defined by

F) = / F(9)er(9)ds. (11)

Then f () is even and continuously extended on F(p), which is holomorphic
in the interior and

SO < Ifll, A e Flp).

For f € C°(G//K) the Paley-Wiener theorem (cf. [3, Theorem 4]) implies
that f(A) is holomorphic on F. of exponential type. Furthermore, it satisfies
the inversion formula

fa) = [ Feala)icm) 2y
and the Plancherel formula
| ir@paws = [T e
0 0

Therefore, the spherical Fourier transform f — f of C>°(G//K) is uniquely
extended to an isometry between L*(G//K) = L*(Ry, A(z)dz) and L*(R.y,
|C(A)|72d) (cf. [3, Proposition 3], [17, Theorem 9.2.2.13]).

For f € C°(G//K) we define the Abel transform F}, s € R, of f as

Fi(r) = e”(Hs)m/ f(azn)dn. (12)
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Then the Euclidean Fourier transform (F7)~(A) is holomorphic on F. of ex-
ponential type, because F}(f) € C2°(R), and coincides with the spherical
Fourier transform:

FO +isp) = (F5)~(\), XeF. (13)

(cf. [11, §3]). Especially, F} is even on R. The integral over N in (??) can
be explicitly rewritten by using a generalized Weyl type fractional integral
operator W7: For o > 0 and p € C, we define W7(f)(y), y > 0, as

W0 = for i | s (o = choy)*d(chos), (1)

where n =0if Ry >0and - n < Ru< —n+1,n=0,12---,if Ru <0
(see [11, (3.11)]). Koornwinder [11, Corollary 3.3] obtains that for x > 0,

F})(x) = W,_ ﬁoWﬁ+1/2(f)( z)
= / f(s)A(z, s)ds, (15)
where A(z, s) is given by
1 1 1 chs — chx
B—1/2 _ a—1/2p (L 4 L.
(sh2s)(chs) (chs — chx) F (2 + 3, 5 B;a+ St >
— (sh2s) / (ch2s — ch2w) /2 (chw — char)*=5" (shw)dw (16)

(see [11, (2.18), (2.19), (3.5)]). We note that for 0 < v < s, and 0 < z < s,
|A(, 5)| < ceP=2%(sh2s)(ths)?*~! < ce(ths)?®. (17)
In the following, for simplicity, we denote W, (f)(x) = Fj(|z]), that is,
Woll)(@) = Wy 0 Wi, o) (al). o € R (18)
and for a function F on R,
W_(F)(x) = W2 (5,179 0 Wiy 5 (e F), x € R,. (19)

Then W_o W, (f) = fand Wy oW (F)=F. For f € L'(G//K), W.(f)
belongs to L'(R), because (?7) and the integral formula for the Iwasawa
decomposition of G yield that

W (Dl < 171 (20)
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(cf. [11, (3.5), (2.20)]). Hence W, (f)~(A), A € F, is well-defined and

FA+ip) = Wo(f)*(), A€F. (21)

For f,g € LY(G//K), since f xg € L'(G//K) and (f * ¢)"(\) = f()\)f]()\)
(cf. [3, Theorem 5]), it follows that

Wi(f*g)=Wi(f)*Wi(g), (22)

where the symbol “x” in the left and right hand sides denotes the convolution
on G and on R respectively. We denote them by the same symbol. We
say that a function F' on R is W-smooth if W_(F') is well-defined and
continuous. Then, for W -smooth functions F, G on R with compact support
such that e™”*F and e ”*( are even, it follows that

W_(F «G) = W_(F) « W_(G).

Let (Xy, || - 1l:), ¢ = 1,2, be normed spaces and T : X; — X, a sublinear
operator. We use the symbol ||z{||; ~ [|T(x1)||2 if there exist constants
0 < ¢ < ¢y such that ¢f|z1]|1 < ||T(x1)||2 < |21y for all z; € X;. We
denote by [-] the Gauss symbol and by f = O(g) the Landau symbol. We
use letters ¢, C', ¢, ¢, - -+ to denote many different constants.

3. Maximal functions and a reduction formula. We shall introduce
a radial maximal function Myf on G and give a reduction formula, which
relates Myf with a maximal function of W, (f) on R. We suppose that ¢
is a positive C'*°, K-bi-invariant function on G such that, after identifying it
with an even function on R, it is supported on [—1, 1],

00 1
| ewnwds =1, [ o@enwis < . (23)
0 0
and furthermore, there exists M € N such that
¢(x) = O(z*M). (24)

For t > 0 we define a dilation ¢; of ¢ as

o) =505 (7) ¢ (3):

As mentioned in §1 this dilation keeps the L'-norm of ¢ and gives an ap-
proximate identity in LP(G//K), 1 < p < co. We here introduce the radial
maximal function My f on G as follows.

10
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Definition 3.1. For f € L} .(G//K),

(Myf)(g) = sup [(f*d)(g)l, g€G.

0<t<oo

As shown in [7, Theorem 3.4 and Theorem 3.5], M, satisfies the maximal
theorem and || f||, < |[Myf||p, if the both sides exist, for 1 < p < co. Next,
by using W, (¢;), we define a maximal function on R as follows.

Definition 3.2. For F € L, .(R),

loc

(MG'F)(x) = sup |(F+W.,(¢))(2)], «€R.

0<t<oo

Since W (f x &) = Wi(f) « Wi(¢) (see (??)) and W, is an integral
operator with a positive kernel (see (??), (?77?)), it follows that

sup [Wo(f) * Wi(o)(z)| = sup [Wi(f*¢)()]
0<t<oo 0<t<oo
< (s 1F+6l) )

This fact and (??) yield a relation between M, and M
Proposition 3.3. For f € L. (G//K),

loc

(MGW.(f))(@) < Wi (Myf)(z), = €R.

In particular,
IMEW(P)llermy < el My flls
if the both sides exist.
In what follows we shall prove that the maximal operator M f‘ character-
izes H'(R), that is, F' € H'(R) if and only if Mj*(F) € L'(R) (see Theorem
3.7 below). We first obtain some properties of W, (¢;)~(\) = ¢:(A +ip) (see

(?77?)), which guarantee that W (¢;) behaves like a dilation on R. Let A be
the same in (??) and N € N.

Lemma 3.4. There exists a constant ¢ such that for all t > 0, A € R,
0<n<Nand 0 <k <M,

‘ <%>nét(A + Zp)‘ <ct"(1+ t)k(l + |t)\|)—2k.

Proof. For simplicity, we denote ¢ = A¢ and vy = ¢, that is

V() = tAl(x)d} (%)

11
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and moreover, we put for u,7 € N
@y = (LY e . 2
o = () vl

We recall that, by identifying a K-bi-invariant function f on G with an
even function on R, the Laplace-Beltrami operator Q acts on f as Q(f) =
-1 (Af,)l -D. f/ + f//, where

D(r) = A'(x)A(x)_l = my(cthx) 4+ 2my(cth2x)
(see (??), (??)). Then it is easy to see that for each k,

u=0

where Q¥ (z) is a polynomial with degree < k of (d/dz)* 'D(z) -2t (1 < ¢ <
k). We note that

d\" . 1+ x| ife=1
‘(%) Diz) -2 50{1 if (> 1.

Since ¢ is supported on [—1, 1], we may suppose that |z| < ¢. Thereby, we
can deduce that |QF(z)| < ¢(1 +¢)*. Then the argument used in the proof
of [8, Lemma 6.5] yields the desired estimate. m

Lemma 3.5. There exists a constant ¢ such that for all t > 1, A € R,
and 0 <n <N,

‘(;ﬁ\) d)t()\+zp)‘ < et™(1+ |tA]|)~BMFatL/2)

Proof. Substituting the Harish-Chandra and Gangolli expansions of ¢
(see (??7) and (?7?) respectively) with (??), we can expand ¢;(\) as

Qgt(A):%/OOOA< >¢>< e dﬂC—/A z)p(tr)dz

/0 1 A()p(z)e ™ (BN, tz)C (M) + B(—\, tz)C(=N)e ) dx
= I(A) +1(=X),

12
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where

1

I\ = A(z)p(x)e "D\, to)C(N) e dx
) eIy /0 A(2)(x)ePme2mtz M g
= > TuNCNIn(N). (25)

In order to obtain the desired estimate of ¢,(\ +ip), we first estimate I, (),
& = £(A+1ip), in (??) and combine it with estimates for I',,,(§) and C(£).
Then we sum up these estimates of I',,, (€)C/(€) 1, (€) with respect to m.

As for I,,,(A+1ip), since (pA)(z) = O(x?MF22FL) (see (?7), (?7)), integra-
tion by parts yields that for 0 <[ < 2M,

@00 (1) 1+ i)
= ) [ A @ e
= @ [ oneeneon (L) o,
= @0 [ (L) (@A)t e

and it is dominated by

l

Y (o))" [

p=0 0

() (62

e~ 2mEo)te gy (26)

Let 0 < §d < 1 and set B5(p) = (I —p) +2a+1+0 (0 < p <1). We
take a constant C such that |z|%®e™ < C for allz € Ry and 0 < p < I.
Then, since 2(m + p) > 1 for all m, (d/dx)P((pA)(x)z") - e"Hm+Ptw in (?77)
is estimated for 0 < z < 1 as

() (@)@

Cc|x|2M+2a+1+nfp7ﬂ5(p)((m + p)t)*ﬁs(P)
cClz| = ((m + p)t)~H),

- C|2(m + p)ta| @)

IA A

13
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Therefore, the integral over [0, 1] is finite and (??) is dominated by ¢"~(2a+1+9)
(m + p)~ (22149 Hence, we have

d n
‘(ﬁ) Im()\+ip)‘ < Ctn—(2a+1+6)(m_|_p)—(2a+1+6)(1 + |t)\|)_2M

As for I,,(—(A+ip)), we can repeat the exactly same process after replac-
ing e=2(mto)tr by e=2mtz - However, when m = 0, we have no exponential term
in (??) and thus, we cannot take 3;(p) for Iy(—(\+ip)) as before. In this case
we note that Io(—(\ + ip)) is nothing but the Euclidean Fourier transform
(@A)~ (tA) of (¢pA)(z) and thus, it is rapidly decreasing with respect to [tA].
Hence, we have for arbitrary n' > 0,

d n
— ) I, (+ ]
(45) T+ i)
i 4—(20+149) (m + p)—(2a+1+5)(1+|t)\|)—2M ifm>0

On the other hand, for £ = £(A+ip), I',,(£) and C'(€) satisfy the following
estimates (see Proposition 8.2 in §8 and [3, Theorem 2]): For each n € N

a nf‘m(:i:()\+ip)) < ¢(1 4 m)2+o/2, (28)
() \

4 nC’(;I:()\—i—ip)) < (14 |\|)lart/zn), (29)
() \

Therefore, letting n' = 2M + a + 1/2 and substituting (??), (??) and (?7?)
into (?7), we see that for ¢ > 1

d\" ) n (2M+a+1/2) - (1+6/2)

‘<ﬁ> I(i()\Jrzp))‘ < et™(1+[tA])” mzo (1+m)”
< et™(1 4 |tA]) "M FatL/2)

This completes the proof of the lemma. m

Lemma 3.6. Let notations be as above.

(1) ¢(A+ip) =1 as|tA| =0,
(2) |p(A+ip)| >1/2 if 0 < [tA] < 2.

14
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1
Proof. (1) We note that ¢, (A\+ip) = / A(x)Patip(tr)A(zr)dr and ¢;, = 1.
0
Hence ¢,(ip) = 1 by (??) and it follows from [3, Lemma 11, Lemma 14] that

bin+in) =11 = | [ 6)AE) (prvilts) — pi(e)) da
A [ o@a@)| (55) ervantnhos

< 0 /0 b(2)2A () da.

IN

dz, 0< N < A

(2) We note that the last term is dominated by [tA[/4 (see (77)). Therefore,
if 0 < [tA] < 2, then [¢:(A+ip)| = [(pe(A+1p) = 1) +1] > —-1/2+1=1/2.m

We here put £(t,\) = ¢;(\ +ip) = W (¢;)~(\) and refer to §8.B. Then
Lemmas 3.4, 3.5, and 3.6 imply that ¢(¢,\) belongs to the class Ay oy for
all N € N (see Definition 8.4) and, furthermore, Lemma 3.6 (2) implies that
£(t, \) satisfies the assumption (??) in Theorem 8.6. Since M, = MJ (see
Definitions 3.2 and 8.5), Theorem 8.6 yields the following,.

Theorem 3.7. Let ¢ be as above and suppose that M > 2. Then F €
H*(R) if and only if MJ}F € L'(R):

1F |l ry = |MGF || (w)-

4. Real Hardy spaces on G. Let ¢ be the same as in the previous
section (see (?7),(??)) and My, MGt the corresponding radial maximal oper-
ators on G and R respectively (see Definitions 3.1 and 3.2). In this section
we shall define two real Hardy spaces Hj(G//K) and W_(H'(R)) on G and
give a relation between them. Especially, we shall give a simple proof of
Theorem A based on fractional calculus.

We introduce the real Hardy space Hj(G//K) on G as follows.

Definition 4.1. We define
HY(G//K) = {f € LL(G//K) ; Myf € LNG//K)}

loc
and |1f ) = 1Mo s
Since ||f||l1 < ||Myf||1, it follows that

HYG//K) C LNG//K).

15
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Let My, s > 0, denote the Euclidean Fourier multiplier corresponding to
(A +ip)*:

M (F)*(0) = (A+ip) F~ ().

We introduce a pull-back of H'(R) to G via W, (see (??)) and M:
Definition 4.2. For s > 0, we define

W_(M_(H'(R))) = {f € Li.o(G//K) ; My o W,.(f) € H'(R)}

and give the norm by |[My o Wo.(f)|lnrw). We denote W_(Mo(H'(R))) by
W_(H'(R)).
An easy consequence of Proposition 3.3 and Theorem 3.7 is the following.

Corollary 4.3. Let M > 2. There exists a positive constant ¢ such that
W () mwy < cllfllaye) for all f € Hy(G//K) and thus,

H,(G//K) c W_(H'(R)).

We shall conversely control the Hj-norm of f by using W (f). Before
starting the argument we shall obtain some basic properties of the Eucliden
fractional integral operators W and W:‘ on R, which correspond to the
case of « = f = —1/2 and 0 = 1 in (?7?) and (??) respectively: For p € C
and y > 0,

(="

R

dxm

F(M + n) (iU - y)ﬂJrn*ldx (30)

and

W,f‘(f)(y)— Tt ) dy / flx y) e, (31)

where n = 0if Ry >0and —n < Ry < —n+1,n=0,1,2,---, if Ru <
0. Let 0 < p < 1 and let f be an integrable function on R,. Then, by
changing the order of integration and by using integration by parts, we see
that Wt o WR (f) = fif f'(x)z~* is integrable, and W&, o WR(f) = f if
f(x)z#~! is integrable. Moreover, if f, g are integrable functions on R.; such
that f(x)z#~1, ¢’ are integrable and ¢(0) = lim g'(x) =0, then

Lemma 4.4 Let f, f' be integrable on x > 0 and 0 < p < 1.

16
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(1) Fory <0,

|5 s = R )@+ [ WD) )8 (s

T

where B (x,s) is smooth on 0 < x < s and there exists a constant ¢ > 0 such
that

|B,(z,s)] <cx’' forall0 <z <s. (33)

2) For v >0,

/ e s =) #ds = oo (W) + [ 6)C(@s)as ).

where C'(x,s) is smooth on 0 < x < s and there exists a constant ¢ > 0 such
that

/ |C(z, s)|dx < ¢ for all s > 0. (34)
0
(3) Let g be a smooth function.

WR(f - g)(x) = WR(f / \D,(, 5)ds,

where Dy(x, s) is smooth on 0 < x < s and there ezxists a constant ¢ > 0 such
that

|Dy(z,8)| < c¢sup |¢g'(t)] forall0 <z <s.
z<t<s

Especially, if g is supported on [0,1] or g is constant on [1,00), then Dy(x, s)
=0forl<x<s.
(4) For v >0,

WE (A (e) = oo (WA + [ 1009 )

where C(x, s) is smooth on 0 < x < s and satisfies (77).
Proof. We note that

/00 f'(s)s7(s —x)Hds
= [ e P ) (5 - )t

oo

= WE (f)(z)2” - F(s) ((57 = a7)(s — 2)™) ds
cWi(f)(x)anL 00Wf{#(f)(s)B (x,8)ds
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where

B,(z,s) = —W:{ (((87 — ") (s — m)‘”)’x[x,oo» (s)

- /s(<,)/t'7—1(t — x)—ﬂ _ M(t’Y _ x’y)(t _ 1‘)_“_1) (S . t)“_ldt.

T

Since y — 1 <0 and (7 —27)/(t —x) < ~yz" ! for 0 < z < t, it follows that

1B, (z, 5)| < caﬂl/ (F— 2) (s — £)" 2t ~ 271,

x

(2): We note that

/ f'(s (s —x) *ds

= / f'(s)e” (e7(=2) 1)) (s — ) "ds

— (Wﬁ(f)(x) + [T s ),

where
Clz,s) = (7 = 1)(s — 2) ™) Xa00)(5)-
Therefore,
/s IC(z,s)|dz = c/s| (e —1)(t — 2)™) |dt
0 < csgilp (e —1)(t—2)*| < ¢
z<t<s
(3): Since

(f(s)g(s))

it follows that

WE(f - 9)(o)
- / () (s ) ds
= +/L/ f(s N (s —x)"* tds
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where
Dy(x,5) = Wi ((g(t) — g(x)) (t = 2) " Xfaoo) (1)) (5)
— c/s <M> (t— 2) (s — t)dt

t—x

< csup |¢'(¢ |/ (t — )" (s — )" dt.
z<t<s

Then the desired result follows.
(4): We put C(z,s) = e™®(e™* — e %) (s —z)~%1 in (?7). Since

/ |, s)|da = / e 7" — 1z * lds < / (1— e ")z " 1dz,
0 0 0

C(x, s) satisfies (77). m
We shall deduce the local and global forms of the Weyl type fractional
operator W_ in (??). In what follows, for simplicity, we put

a—0F =n+9, n=|a—pf,

BH1/2 =48, w=[F—1/2 (36)
Furthermore, we denote
n=n+n', =040, sa=a+1/2=n+4 (37)
and
D ={0,6,0",6+0}. (38)

Clearly, from the explicit values of a, 3 (cf. [5, Table 1 in p.265]), we may
suppose that § = 0. However, for the sake of the Fourier-Jacobi analysis (cf.
[4]) we dare not take 6 = 0.

Proposition 4.5. (1) If F is W, -smooth and supported on 0 < x < 1,

then
(W_(F)()]
< CZ <$_23“+m+§WR(m+f)(F)($) + / |WP(m+§)(F)(S)|A:n,§(J;7S)d8> ,
m,& z

where the sum is taken over 0 < m < n and § € D, and A}, o(x,s) =0 and
A, (x,5) satisfies

0< AL e(x,s) <a 2t forall 0 <z <. (39)
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(2) If F is W -smooth, supported on x> 1 and F, F' are integrable, then

[W_(F)(z)|
< cz ((x—25a+m+§WRm+§)(F)(x)+/ |Wﬁ(m+§)(F)(8)|A,2n7§(x,s)ds
m,€ T

w2 [T ()6 () o o)
re (W ()4 [0 (P9 AL 0,5 () )

where Af;l,o(x, s) =0 and Afn (z,s) >0 for j =2,3,4, and Amg(x, s) satis-
fies (??) and there exists a posztwe constant ¢ such that for j = 3,4,

/0 A‘Z;n’g(a:, s)dx < c  for all s > 0. (40)

Proof. We shall consider the case of 0 < 6,0" < 1. Other cases easily
follows from the same argument. In the following we use the same letters
B,(z,s) and C(z,s) to denote different functions satisfying (??) and (??)
respectively.

(1): Let F be differentiable and supported on [0,1]. For o > 0, Lemma
4.4 (1) yields

< dF
o (F - hos — chox)sh
W2s(F)(z) C/:v T hon (s)(chos — chox) ’shosds

~ /00 F'(s)(s — 2)™(s + 2)ds

= cx "WR(F / WER(F _s(x, 8)ds

and for p € N, Lemma 4.4 (3) gives
WR(zPF)(z) = co PWE(F)(x) + /00 WR(F)(5)Dy»(z,5)ds.
Therefore, combining these equations, we have
Wz PF)(z) ~ z PPOWR(F)(z) +27° / N WR(F)(8)Dyv(z, 5)ds
+/oo s PWER(F)(s)B_s(x, s)ds

+/:° (/oo WR(F)(£)Dy (s, t)dt> B_y(x, 5)ds.
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Since [D,-»(z, 5)| < co 7!, [B_s(r,s)| < cr 01 and

¢
|/ D,»(s,t)B_s(x,s)ds| < ca:_5_1/ sP s ~ g~ PHO-1
for 0 < x < s, it follows that
Ws(zPF)(z) ~ 2z~ PO WR(F / WE(F)(s)B_(p1)(x, s)ds. (41)

We here apply W7 (o’ > 0) to (??). Repeating the above argument, we see
that
W (2= PHOWR F)(z)

= Ccx (p+5+5l)W 5+5/ / WR5+5’ ( )Bx_(p+5+5') (1‘7 S)dS

and
5' (/ WE(F p+6)($a3)d5>
— / WR(F W“5,B p+5)) (x,8)ds
= [ W (P (W By 30
Since

‘Wéfli (Wf;ny(pM)) (a:, S)‘ < cp~ (PHO)—1-20"+0" _ . —(p++0")—1
for 0 <z < s (see [10, Lemma 3.1, Lemma 3.4]), it follows that
Wy o Wy F)a) ~ a WH,)WR(H,)(F)@
[ W (Y B s (o 5)ds. (42)
Now let v = —(a— ) = —(n+46) and ' = —(B+1/2) = —(n' +
(m

d') (see (?7?)). Since W7,(F)(z) = dF/d(choz) ~ F'(x)/z, it follows that
W (F)(z) ~ > e~ @=m) Fm)(2) and thus

W (e " F)(x) ~ > > emx @M FO(2), (43)
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W2, (@ PF) (@) ~ > ) e @ FO(2), (44)

m=0 {=0
Here we note that
Wy o We = W7, 0 (W7 o W) o W7, (45)

Then, combining (??), (??) and (??) in this order, we finally obtain that

WS o WS (e " F)(x)

i

~ZZZZGW””W%mmw

m=0m/=0 ¢=0 ¢'=0

(=) / W15 (F)(8) B2 +8) (2, S)ds)

! ’

m

~ZZZZ@MWW%wwm

m=0m'=0 =0 ¢'=0
—|—/ WE{(£+§)(F)(5)Bf2sa+§+m (ZU, S)dS) . (46)

Since 0 < x < 1, we can replace 2™ and B_ss 5:m by 7 and B_o, 5.0
respectively, the desired result follows.

(2) Let F be differentiable and supported on [1,00). We keep the nota-
tions in (1). It follows from Lemma 4.4 (2) that

< dF
’ = hos — chox) sh
Ws(F)(x) C/a: Thon (s)(chos — chox) °shosds

- / P (@) (14 (s — 2)~0)ds

= ce <W55(F)(8) + /:o F(s)C(x,s)ds + F(x)) .

Then, by substituting F' with e $*F, Lemma 4.4 (4) yields that for £ > 0,
WZs(e™5 F)(x)
= el (ng(p)(x) + / F()C(x, 5)ds

4 e / T R()em S (a, 5)ds + F(m))
= e (EH0o)e <W55(F)(x)—|— / N F(s)C(x,s)ds+F(x)>. (47)
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Let ®(z) be an even C* function on R such that 0 < ®(z) <1, ®(z) =1
if |x] <1/2, and ®(z) =0 if || > 1. We put

Wo(e™F) = Wo(e S F)(1 — ®) + W5(e*°F)®. (48)
We apply W7, to each term in (??). We first substitute (??) into (??) and,

to each resultant term we apply Lemma 4.4 (3) and (??) with o, J,  replaced
by o', ¢, & + do:

!

W (e” ERDTWE(F)(1 - @)) ~v e EF07H070 (WR(5+5’)(F )(@)

+ /OO WR(F)(s)C(z, s)ds + WRé(F)(x)) (1—®)+ Ky (x)  (49)
~ e (SRR (W%M,)(F)(x)

o [ R E @) C s>ds+wR§<F><x>>,

where, if we denote the first term in the right hand side of (??) by I, (z)(1—®),
then Ki(z) is given by K;(z) = / I, (s)Dy_o(x, s)ds. Here, to deduce the

T

¢
last line, we used Lemma 4.4 (3) and the fact that / C(s,t)Dy_o(x,s)ds

satisfies (?7). Similarly, we have

WU; <6—(§+50)x /:o F(s)C(z, s)ds - (1 — q,)> ~ o= (€048 0 )z
X (/oo F(s) (WE,C) (z,s)ds + /;o (/oo F(t)C(s,t)dt> C(z,s)ds
+ /:O F(s)C(x, s)ds> (1—®) + Ky(z) (50)

~ e (Tt (/OO WER,(F)(s)C(x,s)ds + /:) F(s)C(x, s)ds> ,

where, if we denote the first term in the right hand side of (??) by L(z)(1—®),
then Ky () is given by Ky (z) = / I,(8)Dy_¢(x, s)ds. In this case, to deduce

T

the last line, we used Lemma 4.4 (3), (??) and the facts that WRoWR, (C) ~
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¢
C (see [10, Lemma 3.1]) and / C(s,t)C(x, s)ds satisfies (?7). Therefore,

we see that
W (Wo5(e & F)(1 — @)

o~ o (EHOotS o) (WP(5+5,)(F) (z) + WR(F)(x) + W, (F)(z) (51)
+ /oo (WE(F)(s) + WE(F)(s) + WE(F)(s) + F(s)) C(x, s)ds> .

As for W7, (W(e $*F)®), we use (??) and note that W7, (e *F)® is
supported on [0, 1]. Hence, (?7?) with =, p replaced by 0, + do respectively
yields that

W (W5(e S F)®)

!

. <e +5”(WR(F)( )+/OOF(S)C(x,S)ds+F(a:))d>>

N (m Iy / WR(F)(s) By (, 5)ds

e / F(s) (WR,C) (2, )ds
+/:o </OOF( ) (WE,.C) (s, t)dt> B_s(x,5)ds
TWR(F / WE,(F)(s)B_s(, s)ds)q>

~ z 7 (W?/(F)(x) + WE(F)(z) + / WE,(F)(s)C(x, s)ds)CI)

—|—/oo (WPQ(F) + WPI(F)) (S)B,(;/ (:L‘, S)dS ) (I)7 (53)

where, if we denote the first term in the right hand side of (??) by I3(z)®,
then K3(z) is given by K3(z) = /s I3(s)Dg(x, s)ds. Here, to deduce the
last line, we used Lemma 4.4 (3), wW(SI,‘ o WR,(C) ~ C and the fact that
/5 C(s,t)B_g(x,s)ds

< ¢z~ "', Combining (??) and (??), we can finally

24

57



deduce that
W o W(e S F)(x)

o~ o (EHI04 ) ( F(z) + WR(F)(2) + WR,(F)(2) + WE(F)(z)

+ / " (F(s) + WR(F)(s) + WE (F)(s) + WR(F)(5)) Cla, s)ds>
= (Wi‘, (F)(x) + WE(F)(x) + / TR (F)(5)C s)ds) o
+/;O (WR(F) + WE(F)) (s)B_g (, s)ds - .
We substitute this formula to (??) and note that
W (e P"F)(x) ~ e (motrle zn: e (™)

for x > 1. Then desired result follows from the same argument used in the
previous case. ®

Now let f € W_(M_, H'(R)), where s, = a+1/2=mn+4 (see (77)).
Since the Fourier multiplier M__ satisfies the Hormander condition (cf. [16
§5 in Chap.11]), it is bounded on H'(R) (cf. [16, Theorem 4.4 in Chap.14]).
In particular, F = W, (f) belongs to H'(R). We note that

WE (F)~(N) = (iA)"F~()) (54)

(cf [13, (4.39")]) and thus, M;' o WR, 0 < v < s,, is the the Fourier
multiplier corresponding to (iA)?/(A+ip)*~. Since it satisfies the Hérmander
condition, M 'oWE® is bounded on H'(R). Hence, each W (F') also belongs
to H'(R). Therefore, the condition that f € W_ (I\/I_saHl(R)) guarantees
that for 0 < v < s,,

IWE (F)lmwy = IMEVE (F)lriwy < ellMs, (F)l]

Comparing MZH(WE (F)) with My f, we have the following inequalities.
Theorem 4.6 Let ¢ be as in §3 and M > 2. For f € W_(M_, H'(R))

—Sa

we put F =W, (f). Then there exist c1,co such that for all 0 < v < s,

c|| Mgt o WE (F)(2)(th) |2y < [1fllmye

Z Z 105} 0 WE 6 (F) (@) (tha) ™€ 11 )
§eD

25

58



Especially,

Hf“Hdl)(G) ~ ZZ |M¢ OWRm+§)(F)(x)(thx)m+§||Ll(R)
¢eD

< Z IWE o (Pl w)

£ebD
< M (F)l )

and thus, W_(M_, H'(R)) C H (G//K).

Proof. We denote 1), = W, (¢;), where 1); is not a dilation of ¢, however, as
shown in the previous section, W, (¢;) has the same properties as a dilation.
Therefore, we use this notation to abbrebiate W (¢;). Let ®(x) be the same
as in the proof of Proposition 4.5. We decompose f * ¢, as

frode = W (Wi(fxr)) =W _(F xy)
= W_(Fxtp- @)+ W_(F*¢y- (1- D))

(see (??7)). We apply Proposition 4.5 (1) to F x 1, - ®. Then Lemma 4.4 (3)
and the same argument used in the proof of Proposition 4.5 yield that

sup |W_(F %1 - ® ) <c¢ ZZ( m+§M¢ OWRer,g (£) ()

0<t<oo m—=0¢€D
+ / Mf o WE{(erg)(F)(S)A}mg(x, s)dsA(x))
Similarly, applying Proposition 4.5 (2) to F x ¢ - (1 — ®), we have
sup |[W_(F %y - (1 —®))(x)|A(x)

0<t<oo

S (M o W (F))

m=0¢€D

+ / Mf o WP(m+§)(F)(s)Afn,§(x, s)dsA(x)

IN

e / MZ o WE, . o(F)(s) A, ¢, 5)d5> Xio.1(@)
* CZ Z (M;’L © WE{(er.g)(F)(fU)
m=0&eD

b7 W (7)) Al 515 s )
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We recall that Afn’g(x, s), j = 3,4, satisfy (??), and for j = 1,2 and 0 < = <
s <1, Afn’g(x, $)A(z) < cx™He L (see (27), (7?)) and thus,

/ Afn,g(x, $)A(z)dx < c/ "N < o™ 0<s< 1.
0 0
Therefore, we can deduce that

e = Moflh = [ sup W (P i) @A)

< SN IMEOWER, L (F)(tha) ™| wy.

m=0¢eD

As for the first inequality in the theorem we recall that

Fxopy(z) = Wi(f*ai)(2)
e "Wo_g 0 Wiy jo(f * ¢0)(2)

= ce’”/ f* d(s)A(z, s)ds
and for 0 <y <s,and 0 <z < s,
R —2)s 2a—1— S 20—
W= Az, s)| < ce?~2% (sh2s)(ths) 7 < e (ths) ™7

(see (?7), (??7)). Hence,

WEF) xa(w)] = [WE(F x ) ()] < ce” / " 1f x uls) e (ths) ds.

x

We take the supremum over 0 < t < co. Since 2a—7vy > 2a—s, =a—1/2 >
—1, we can deduce that,

/0 MR o W (F) (x) (tha)da

IN

c/ e’ </ M¢f(s)eps(ths)2°‘7ds> (thz)7dx

0 T

< o [T s e ds ~ 1 = |l
0

This completes the proof of the theorem. m
Remark 4.7. (1) Since

C(=(A+ip)) ~ (L+[A) @2 A eR
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(see [3, Theorem 2]), Theorem 4.6 means that
W_(Mc,(H'(R))) = W_(M_,, H'(R)) C Hy(G//K).

Theorem A in §1 follows from this relation and the one in Corollary 4.3.

(2) Since (thx)™ is bounded, it is easy to see that Mj* in Theorem
4.6 can be replaced by My, £ € Ayanr (see Definitions 8.4 and 8.5, and cf.
Theorem 8.6). Especially, Hj(G//K) does not depend on an individual ¢.
We shall skip writing ¢ and denote simply as

HYG//K) = Hy(G//K), [Iflm @) = Ifllmye

We keep the notations in the proof of Theorem 4.6 and we shall suppose
that ¢ > 1. Since we can transfer the Fourier multiplier I/Vf{7 as

WE (F s apy) = WE(F) s ahy = F« WE (4y),

it follows from the proof of Theorem 4.6 that for each C' > 0,

/000 sup |f * ¢ (z)|A(x)dx

t>1
< zz/ sup |[F 5 W, o () (@) da
m=0£€D t21
< ¥ / sup [+ (W, o (1) — Cty) () da
mE;m+E£0 t21
+ d/ sup | F * iy (x)|dz,
0 t>1

where d = ¢(1 + (4n — 1)C). We note that

WE @)~ (\) = Wi(d)™ (WA
= d(A+ip)(ith) - 7. (55)

Since ¢ > 1, Lemma 3.5 implies that each WX (1)~(A), 0 < v < 54 =
a + 1/2, belongs to Anan (see Definition 8.4). Moreover, if v > 0, then
WR (¢)~(A) = 0 as [tA| = 0, because it has the term (¢)A)7 in (??). Since
(1)~ (A) = ¢u(\ + ip) satisfies Lemma 3.6 (2), we may suppose that for a
sufficiently large C' > 0, each £, ¢(t,\) = Wft(erg)(i/)t)N()\) — CyY;’(N) also
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belongs to Ay 2y and satisfies the assumption (??) in Theorem 8.6. Hence,
Proposition 3.7 and Theorem 8.6 yield that, if M > 2 in (?7?), then

/OOO sup |f * ¢u(x)|A(x)dx

t>1

IN

c/ ( Z sup |(Me, o e) F) (@)] + MfF(x)) dx

0 mogmre£0 21

< ¢ M, . Fllir) + c||MEF|pim) < c||F||lm (56)

> lye L IILY(R) ¢ L IILHR) = HY(R)
m,&,m+E#£0

(see §8.B for the definitions of Mg, () and Mngrf). We here define a trun-
cated maximal operator M é)oc on G as follows.

Definition 4.8. For f € L} (G//K),

loc

(MY f)(g) = sup |(f*d)(9)l, g€G.

0<t<1

Then (?7) implies that || f[| 1) < [|My°flli+cl|F|lm1w). Hence, Corollary
4.3 yields the following.

Theorem 4.9. Let M > 2. For f € H'(G//K) we put F = W_(f).
Then

111y = 1M Flle+ I E i wy-

5. Atomic Hardy spaces on (. In this section we shall introduce
some K-bi-invariant atoms on G' and define the corresponding atomic Hardy
spaces on G, on which the radial maximal operator M, is bounded to L'(G).

For z € R and r > 0, let R(x,r) denote the interval on R centered at x
with radius r and |R(z,r)| its volume with respect to A(z)dx:

T+r

R(x,r) =[x —r,x+7r] and |R(z,r)|= / A(s)ds. (57)
For z € G and r > 0, we also denote the annulus {y € G;|o(z) — o(y)| < r}
= K{as;s € R(o(x),r)} K on G by the same notation R(z,r). Clearly,
R(z,7) = R(ao(),r) for x € G. We put B(r) = R(e,r) if z = e. Obviously,
if o(x) > r, then the volume |R(z, )| of R(z,r) with respect to dg coincides
with |R(co(z),r)|in (?7). Moreover, if o(x) < r, then R(z,r) = B(o(x) +7).
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Definition 5.1. We say that a K-bi-invariant function a on G is a
(1, 00,0)-atom provided that there exist v € G and 0 < r < o(z) such that

(i) supp(a) C R(z,r)
(i1) Nalloo < [R(z, )| " (58)

(i17) /a(g)dg = 0.
G
For e > 0, we say that a is a (1,00,0, €)-atom if we replace (ii) by
(i0)e Nlalloo < [R(z,r)| 7 (1 +7)7, (59)

and a (1,00, +)-atom if we replace (iii) by

(474) 1 /Ga(g)dg =0 ifr<1. (60)

Moreover, if x = 0, we call a a centered atom.
We introduce atomic Hardy spaces on G as follows.
Definition 5.2. We define

Hyo(G//K) = {f=) Nai;
a; is a (1,00,0)-atom on G and ), |\;| < oo}

and || f||mL
sentations f =Y. Na;. Similarly, replacing (1, 00,0)-atoms by (1,00,0,¢€)-
atoms and (1, 00, +)-atoms, we define H;TO(G//K) and H;B(G//K) respec-

tively.

Definition 5.3. We define the small Hardy space hl, (G//K) on G by
restricting (1,00, 0)-atoms in the above definition of HJ ,(G//K) to ones
with radius < 1.

Clearly, we have

heoo(G//K) C Ho(G//K) C Hyo(G//K) © Hyy(G//K).

(@ = inf ), |\i|, where the infimum is taken over all such repre-

In what follows we shall characterize the difference between hl, ,(G//K)

and H;;jg(G//K), and then we shall obtain a relation between H;B(G//K)ﬂ
W_(H'(R)) and Hi(G//K). For zp € G and r > 0, let x,, denote the
characteristic function of R(zo,7) on G. For z,y € G, we define

I (z,7y) :/ Xmo,r(x’lky)dk. (61)
K
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Then I,,(x,r,y) is K-bi-invariant with respect to x, y and, as a function of v,
it is supported on R(x, o (xy)+7), where R(x, o(x¢)+7r) = B(o(x)+0(xg)+7)
if o(x) < o(zg) + r. For simplicity, when xy = e, we skip writing the suffices
Ty = e

Xr = Xeys  1(x,1,y) = Le(z,7,9).

Lemma 5.4. Let x,y € G and o(x) > r. Then

(1) I(z,r,y) < I(z,r ),
(2) B(r)l|R(z,r)| " < I(z,r,2) < [B@2r)||R(z, 1)
(3) Iy (x,r,y) < |BRr)||R(@, )™ ifr>1, 0(z) > 1, o(xe) > 7+ 1.

Proof. We regard I(x,r,y) as a function on R, x R,. For a fixed z, as
a function of y, it is supported on |r — y| < r and I(x,r,y) is increasing
onz—1r <y <z Hence (1) is obvious. As for (2), let f be an arbitrary
function in L*(G//K). Then

wrfe) = [ xlea )
= /:Hr I(z,r,s)f(s)A(s)ds.

-r

Therefore, letting f = 1, we see from (1) that
Xr* f(x) = |B(r)| < I(z,r,z)|R(x,r)|.
Similarly, letting f be the characteristic function of R(x, |z —y|), we see that

Xr * f(x) 2 (2,1, y)|R(z, |z — y|)]

and thus, I(z,7,y) < [Ixellllflleo| Rz, |2 — yDI™" < |B(r)|R(x, |z — y])|~".
Hence

I(x,r x) I(x —r2r,x—r)
I(x,2r,x —r)

|B@r)[|R(z,r)| .

VANVANRVAN

As for (3), we may suppose that zo,z,y € A, =2 R, and we use the kernel
form of the product of spherical functions:

wwwﬂwzéme%@w@M@Mz
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(see [4, (4.2)]). Since x > 1,29 — r > 1, it follows that

To+T
I (x,ry) = / K(x,y,2)A(z)dz

o—"r

To+r
< Cepwep(mo+mr)/ eP*dz
To—r
< ce e ~ |B(2r)||R(x, 7)) m
We set
0(9) = |B(1)|""xa(9), g€G, (62)

where y; is the characteristic function of B(1), and for each (not necessary
K-bi-invariant) function f on G, we define a K-bi-invariant function f?,
x € G, as

Pg) = /K /K F(a kgh')dkdk' (g € G). (63)

Proposition 5.5. For f € H;:B(G//K) there exist fo € hl, o(G//K)
and x; € G, \; € R such that

where ||f0||héo,0(G) and ), |\;| are both bounded by ||f||H;,$(G).

Proof. By Definitions 5.2 and 5.3, it is enough to obtain the above de-
composition for a (1,00, +)-atom a on G with radius r > 1. Let B(ay(s),7),
x € R,, denote the support of a. We identify K-bi-invariant functions on
G with functions on Ry, so a is supported on R(x,r). Without loss of gen-
erality we may suppose that =, € N. Actually, since r > 1, |R(z,r)| ~
|R([x], [r])| uniformly on z > 0 and r > 1. We decompose R(x,r) as

R(z,r) C | J I, Ir=R(z—r+2k,1),
k=0

and set ay = |I| '|R(z,7)|-a|7,. Then, ay is supported on Iy, ||ag]|oo < |11~

and

2r
a=3" war, m = |Ll|R(z, 7).
k=0

Here >, p1p ~ 1. Let 0, = HZI_TM (0 < k <r), where a, . is the element
in A corresponding to x —r +k € Ry (see (?77), (?7), (?7?)). Clearly, 0 is
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supported on I, / Or(g)dg = / 0(g)dg = 1, and ||0k || < |Ix| "' by Lemma
G G

5.4 (1), (2). Let my = / ax(g)dg and by = (ap — mdy)/2. Then |mg| < 1,
G

by, is supported on Iy, ||bg|ls < [Ix]™", and / br(g)dg = 0. This means that

G
bi is a (1, 00,0)-atom with radius 1. Therefore, letting

2r 2r
a= Z 240y, + Z Oy,
k=0 k=0

we have the desired decomposition of a (1, 00, +)-atom a with r > 1. m
We set
(0) = {Z YU Z |Ai] < o00,2; € G}

Then Proposition 5.5 means that
Hy o(G//K) = hio(G//K) + (0). (64)

Next we shall restrict our attention to centered atoms a and consider a
linear combination of their averaged translations a’,, v € G (see (77?)).

Definition 5.6. We define
HLo(G//E) ={f =) Nal,, ;
a; is a (1,00,0)-centered atom on G, x; € G, and ), |\;| < oo}

and || fllny, (@) =inf 3=, |Ail, where the infimum is taken over all such repre-
sentations f =", )\iaz,mi. Similarly, replacing centered (1, 00,0)-atoms a; by
centered (1, 00,0, €)-atoms, centered (1,00, +)-atoms and centered atoms with
radius < 1 respectively, we define H;’EO(G//K), H});TO(G//K), hio(G//K).

In this definition each atom a; is K-bi-invariant (see Definition 5.1). We
shall consider non-K-bi-invariant cases. Let a; be a centered function on G
satisfying (?7) to (?77?), not necessary K-bi-invariant. Even if a; is not K-bi-
invariant, a; , is K-bi-invariant. Hence, by using such a;, let H ((G//K)?
denote the space of all f = 3", Ajal, with z; € Gand 3, |A;| < co. Similarly,
we define Hi;f,O(G//K)h, H(1>;;:0(G//K')h and hl ((G//K)* respectively as in
Definition 5.6.

Proposition 5.7. Let ¢ > 0. We have the following inclusions:

hieo(G//K)" C HYH(G//K) C Hyo(G//K) C HYlW(G/ /K
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| U U U
hio(G//K) C HYG(G//K) C HY o(G//K) C H}H(G//K)
U U U U
hio(G//K) CHY(G//K) C HY ((G//K) C HH(G//K).

Proof. The horizontal inclusions are clear from the definitions. We first
prove that each space in the first line contains the bottom one in the second
line.

Lemma 5.8. Let a be a K-bi-invariant function on G supported on
R(z,7) and ||al|lee < |R(x,7)|7'. Let o = 2r if r < 1 andrg = r + 1 if
r > 1. Then there exists a constant ¢ > 0 such that

la/I(z,70, )l < el B(r)|

where ¢ is independent of x,r.
Proof. If r < 1, then Lemma 5.4 implies that for |z — y| < r,

I(x,ro,y) > I(x,ro,z—1)
> I(x—r,r,x—r)
> |B(r)||R(z —r,r)["
> |B(r)[|R(x,r)|™".

Similarly, if » > 1, then I(z,7r9,y) > I(x—r,1,z—r) > |B(1)||R(z—r,1)| ' ~
e~ > |B(r)||R(x,r)|~". Thereby, [la/I(z,70,")||lc < ¢[B(r)|”". m

We recall the relation H;;%O(G) = H;éb,o(G) obtained in [9, Theorem 5.5].
Here Hiéb,o(G) is nothing but H(1>;;:0(G//K')u in this paper and H;;%O(G) con-
tains H;OJB(G//K) by Lemma 5.8. Then, it is easy to see that each space in
the first line contains the bottom one in the second line. Furthermore, since
I(z,r,y) < ¢|R(x,r)|" if r < 1 by Lemma 5.4, it follows that hl ,(G//K)
C hoo o(G//K).

Next we shall prove that each space in the second line contains the bottom
one in the third line.

H. o(G//K) C HL ((G//K): Let a be a centered (1,00,0)-atom on G
supported on B(r) and # € G. Then a’, is supported on R(x, ), / a’(g)dg =

G
/a(g)dg =0, and [|la}[lc < [R(z,r)|"" |B(2r)| |B(r)|"" by (??), (??) and
a

Lemma 5.4 (2). Therefore, if r < 1, then ||a’ || < ¢|R(z,7)|7!. This means
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that ¢c'a’, is a (1,00, 0)-atom on G. Let 7 > 1 and o(x) < 2. We may regard
that a” is supported on B(o(z) + r) and we note that ||a’ |l < |B(r)|™' <
c|R(o(x) 4+ r)|~'. Therefore, ¢ 'a’, is a (1,00,0)-atom on G. Let r > 1
and o(x) > 2. In this case, since a is centered, a has an L' non-increasing
denominator |B(r)|™ xp((x) (see [7, 4.4]). Then a can be decomposed as
a =Y. A\a;, where > . |\;| ~ 1 and each q; is a (1, 00, 0)-atom supported on
R(z;,1), x; € N and 0 < x; < r (see the proof of [7, Theorem 4.5]). Hence
az,x is supported on R(z,x;+1) and ||a2795||OO < |R(z;, )| BQ)||R(z,1)| ! <
c|R(x,z; + 1)]~* by (??), (??) and Lemma 5.4 (3). Therefore, each ¢ 'a; .
is a (1,00,0)-atom on G. These observations imply that a € HL ((G//K)
and its norm is bounded by a constant independent of a. Hence the desired
inclusion follows.

hioo(G//K) C bl o(G//K): This is clear from the case of r < 1 in the
above argument.

H;io(G//K) C H;;fo(G//K): Let 7 > 1 and a be a centered (1, 00,0, €)-
atom on . We repeat the above argument. Since ||al|» has an extra decay
77 |a) |l in o(z) < 2 and [|a] |l in o(z) > 2 also have the same extra
decay. Since r ¢ < ¢(o(z) +r) “ino(zx) < 2and r ¢ < z;¢ < ¢(w; +1)°
in o(x) > 2, it follows that a’ and a?m are (1,00,0,¢€)-atoms on G up to a
constant multiplication. Hence the desired inclusion follows.

H;TO(G//K) C H;;B(G//K): Let r > 1 and a be a centered (1,00, +)-
atom on GG. Then Proposition 5.5 means that a is decomposed as a = ) . \;a;,
where ) . |\;| ~ 1 and each g; is a (1,00, +)-atom supported on R(z;,1),
z; € N and |z;| <r. Asin the previous case, since R(z;, 1) has the radius 1,
each a; ., v € G, is also a (1, 00, +)-atom on G up to constant multiplication.
Hence the desired inclusion follows. m

Let ¢ be the K-bi-invariant function on G introduced in §3 and Méoc the

truncated maximal operator in Definition 4.8. Since H;;b,o(G) in [9] coincides
with Hy (G//K)Y, it follows from [9, Theorem 5.3] that

Proposition 5.9. Let M > 2. M, is bounded from H;:%(G//K)ﬁ N
W_(H'(R)) to L'(G//K), that is, there exists a constant ¢ > 0 such that

10l < e (I e + IV (Dl
for all f € HH(G//K)nW_(H'(R)) and thus,

Hlo(G//K)F NW_(H'(R)) € H'(G//K).
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Theorem 5.10. Let M > 2. My is bounded from H;{O(G//K) to
L'(G//K), that is, there exists a constant ¢ > 0 such that

1Ml < el
for all f € H;{O(G//K) and thus,

HW(G//K) C HY(G//K).

Proof. Since H;{O(G//K) C H;:FO(G//K)ﬁ (see Proposition 5.7), it is
enough to prove that H;{O(G//K) C W_(H'(R)) (see Proposition 5.9). We
shall prove that, for all (1,00,0,1)-atoms a on G, [|[W,(a)| g (w) < ¢, where
¢ is independent of a.

Lemma 5.11. Let v € R and 0 > 0. If F is supported on R(xq,r) and
smooth if v < 0, then W (F)(|z|) is also supported on R(xo.7).

Proof. When v = —n, n € N, W7, is a differential operator (d/dchox)”
and thus, the desired result is obvious. Hence, it is enough to consider the
case of v > 0. We denote Fy(z) = F(x + xp). Then it follows from (?7?) that

W (F)(e]) = e / " F(5)(chos — choz)~shsds

= C/oo Fy(s)(cho (s + ) — chox)"'sh(s + xo)ds

T—xo|

= C/OO Fy(s) ((ChO'S — cho(z — zg))chzyg

z—1x0|
0 -
+(shos — sho(z — xo))shxo) (shschxo + Chsshx()) ds
= Go(x — zo)chzy + Gi(x — zp)shxy,

where

o0 -1
Go(z) = c/ Fy(s) ((chas — chox)chzy + (shos — shax)shxo)7 shsds
\

z|

and G (z) is defined by replacing shsds with chsds. Since Fj is supported on
B(r), clearly Gy is also supported on B(r). Therefore, W?,(F') is supported
on R(xp,r). m

Let a be a (1,00,0,1)-atom supported on R(zg,r). By (??) and (?7),

lalloo < |R(x0,7)|7" (1 +7)~" and / a(g)dg = 0. We put A = W, (a). Then
G
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A is supported on R(xg,r) by Lemma 5.11 and

/_00 A(x)dr = A~(0) = a(ip) = / a(g)dg = 0.

9] G

Moreover, we recall that |A(z)] < ce?®th(x +1)%||al|~ (see (?7), (?7) and
cf. [10], Lemma 3.4).
Case I: g — r > 1. Since A is supported on R(xg,r) and

To+r

|R(xq,r)| ~ / e dx ~ e**shr,

To—T

it follows that |A(x)| < ce?(®0+7) (e2Proshyr) =1 (1 4+ 7) "t < er™ L.
Case II: xg —r < 1 and r > 1. Since z¢g +r > 1,

ro+T
|R(xo,7)| > c/ 2P dy ~ ?P(T0tT),
1

Therefore, as in Case I, we have [|Al|oo < cr .
Case IIl: zg —r < 1, r < 1 and ¢ > 2r. Since xy > 2r, it follows that
To + r > 3 and thus

To+r
|R(x,7)| ~ / ¥ dy < c(zg — 1)
To—T
Then, since (zo+7)/(zo—7) < 3, |A(x)| < eth(zg+r)*> ((xo—7)r) ! < er .

Case IV: g —7r < 1, r < 1 and x5 < 2r. Since zo +r < 3r < 3 and
|R(zo,7)| > |B(r)| ~ |B(3r)|, we may suppose that a is a centered atom
supported on B(3r). Then |A(z)| < ¢(th3r)*|B(3r)|~' < er™l.

These four cases imply that cA is a (1,00,0)-atom on R and ¢ is inde-
pendent of a. m

Theorem 5.12. Let M > 2. Then My is bounded from Hl (G //K) to
LY(G//K), that is, there exists a constant ¢ > 0 such that

1Mo flly < ell flln, e
for all f € HY 4(G//K) and thus,
Heoo(G//K) C HY(G//K).

Proof. Since M, is sublinear and ||[Myf2||; < |Myf]|1, in order to obtain
the HY, -L' boundedness of My, it is enough to show that there exists a
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constant ¢ > 0 such that ||[Myal|; < ¢ for all centered (1,00, 0)-atoms a on
G. Let B(r) denote the support of a. Here we recall Theorem 4.5 in [7]
and the proof. Since |B(r)| 'xp()(x) is an L' non-increasing denominator
of a, a has a (1,00,0)-atomic decomposition a = . A\;a; on G such that
> 1Ail < ¢, where each atom @; has radius r; < 1. This means that a; is a
(1,00,0,1)-atom on G. Hence, it follows from Theorem 5.10 that || Mya;|| < ¢
and thus, || Mya||; < ¢, where ¢ is independent of a. m

6. Atomic decomposition of H'(G//K). We shall prove that each
function f in H'(G//K) has a (1,00, +)-atomic decomposition on G. This
means that H'(G//K) C H;B(G//K) and then our main Theorem C in §1
follows. In the following, first we shall introduce a space W_(H ;:B(R)a) and
give a (1, 00, +)-atomic decomposition on G for this space. Then, we shall
prove that H'(G//K) C W_(Hy}(R)a) and obtain the desired (1,00, +)-
atomic decomposition for H'(G//K).

We set

To+r
(0, 7) = / tha|* da (65)

0o—"r

and define H;B(R)a as the space of all F'= )", \;A; such that ) . |\;] < o0
and each A; satisfies

(1) supp(A;) C R(x;,r;)

(i) NWE, (Ai)lloo < dalwi, 7)™ (66)
(1ii) / Aij(x)dx =0 if r; < 1.

Definition 6.1. We define

W_(Hyy(R)a) = {f € Lino(G//K) 5 Wo(f) € Hp(R)a}-

Proposition 6.2. Functions in W,(H;B(R)a) have (1, 00, +)-atomic de-
compositions, that is, W_(HH(R)a) C HY o(G//K).

Proof. Let f € W,(H;;;B(R)a) and F = W, (f) = >, \iA; the decom-
position of F' given by (??). By using the same argument as in the proof
of Proposition 5.5 (see (?7)), we may suppose that r; < 1 in (??). More
precisely, when r; > 1, we decompose the support of A; by using a smooth

decomposition of 1, where each piece is supported in the interval with ra-
dius < 1. Then A4; = Ej A;; and each A;; satisfies (??) with radius < 1 by
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Lemma 6.3 below and Lemma 4.4 (3). Hence, we may suppose r; < 1 to
begin with.

When |z;| < 2r;, A; is supported on B(r}), ri = |z;| + r; < 3r;, and
satisfies (i7) and (i77) with r; < 3, because

do (i, i) > do(0,7;) ~ Tf““ ~ da (0, 3r;).

Hence, we may suppose that xz; = 0 with r; < 3 or |z;| > 2r;. We recall that
e "W, (f)(x) = F}(x) is an even function on R (cf. [9, (3.6)]). Therefore, in
the decomposition e™”F = . \je ?*A;, the counterparts e”*A;(—x) must
appear in the decomposition. When z; = 0 with r; < 3, we may suppose
that e *"A;(x) is even. Actually, we let

(7 A;(x) + e’ Ai(—z)) = 2(1 + €*") - e " B;(x).
Then B; is supported on B(r;) and e #*B;(x) is even. Moreover, if r; <

1, then /Bi(a;)dx = 0, because A; satisfies (7ii) originally and the even

property of e ”*F(x) implies that / e** A;(—z)dr = 0. Since r; < 3, B;

—o0
also satisfies (i¢) and 2(1 + €*"¢) ~ 1. Therefore, replacing the left hand side
with the right one, we may suppose that e ?*A;(x) is even if x; = 0 with
r; < 3. Thereby, we can rearrange the decomposition of F' as

F = Z NA; + Z/Lij + Z’YkEka
i j k

where each A; satisfies (i), (ii) with z; =0, r; < 3, /Ai(x)dx = 0; each B,

satisfies (i) to (ii7) with |z;| > 2r;, r; < 1; each Ej satisfies (i), (i7) with
|wk| > 2rg, rp > 1, and moreover, >, [Ai| + > |15 + > [7k| < oo. Since F'
is W, -smooth, finally, we have

= Z Aiai + Zﬂjbj + Z’Y‘fk, (67)
i i k

where a; = W_(A4;), b; = W_(B;) and e, = W_(Ej). Lemma 5.11 implies
that each a;, b;, e, have the same supports as A;, B}, Ej, respectively.

Now we apply fractional calculus in [10] to estimate each a;,b;,e;. For
simplicity, we skip writing the suffices 4, j, k£ and denote the supports of a, b, e
by R(zo, 7). Without loss of generality, we may suppose that z, > 0.

As for e, since e is supported on R(zp,1) and xy > 2, it follows that
g — 1 > 1 and thus, d,(zg,1) ~ 1. Thereby, (:7) and [10, Lemma 3.3] !

If f(z) = O(2®7) around @ = 0, then W7 ,(f)(z) = O(a*" "), However, under the
assumption (i) of (??), it follows that W7, (f)(x) = O(z="#).
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imply that on the support of e
le(z)| < c(th) =@/ =208 < pe=20% < ¢|R(2,1)|7!

This means that ¢ 'e is a (1, 00, +)-atom on G.

As for b, we recall that o = 0 or zy > 2r.
Case I. zg — r > 1: Since xy —r > 1, du(xg,r) ~ r. Thereby, (i7) and [10
Lemma 3.3] imply that on the support of b

b(z)] < c(thx)’(o‘“/z) 2l <eem Pt < e|R(x, )|t

This means that ¢='b is a (1, 0o, 0)-atom on G.

Case II. xog — r < 1: Since r < 1 and xy > 2r, it follows that zqg <r+1 < 2,
o — 1 > x9/2, and xo + r < 3x9/2 < 3. Therefore, dy(xo,7) < e(xg — 1)%7
and thus, on the support of b

b(z)| < e(tha)~OFD =202 =1 (g0 — )75 < ¢z — )~ 2Dt
Since (zg +r)/(zg —r) < 3, it follows that
|R(x0,7)| < e(zo + 1) r < c(xo — 1) 7,
Therefore, |b(z)| < ¢|R(xo,7)| ' on the support. This means that ¢~ 'b is a
(1,00,0)-atom on G.
As for a, since 7o = 0 and r < 1, it follows that d,(0,7) ~ r*=! and
la(z)| < c(thx)~@F/2e=200p—Lp=(sat) < oA ()L, (68)

We put
ay(z) = cAlx)"'r X (2), > 0.

Clearly, |a(z)| < a4 (z) and ay is a non-increasing function on R, with finite
L'-norm:

sl = [ ar@A@dr < o
0
Since a is supported on B(r) and / a(g)dg = / A(z)dz = 0, it follows
G —00

that |B(s )|1/ a(z)A(z)dr is also supported on B(r) and

|/ dx— |/ r)dr < cA(s) 't (69)
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Here we used (??7) and |B(s)| ~ A(s)sif s <r <1 (see (?7)). Hence,

|B 7). z)dzr < a,(s). (70)
This means that ca, is an L' non-increasing denominator of a satisfying
(??). Then [7, Theorem 4.5] yields that a has a centered (1,00, 0)-atomic
decomposition a = ). v;a; on G such that 3, |v| < cllay|rra) < cco.
Especially, a € H! (G//K) and [lallg (@) < cco.

These three cases imply that all a;, bj, ek in (?7?), and thus f also, belong
to H;B(G//K). This completes the proof of the proposition. m

Theorem 6.4. Let notations be as above. Then

HYG//K) = HIo(G//KFnW_(H'(R))
H(G//K) nW_(H'(R)).

Proof. Because of Proposition 5.9 and Corollary 4.3, it is enough to prove
that H'(G//K) C H;’:B(G//K). First we shall consider the case that 6 =
¢' = 0, that is, s, is an integer (see (77)).

Let f € H'(G//K) and put F = W,(f). Then it follows from Theorem
4.6 that |[MJ o WE_(F)(z)(thz)* || L1 &) < oo. We here recall the construc-
tive proof of the atomic decomposition of H'(R): For example, we refer to
[12]. Then, measuring the volume of the dyadic cubes (intervals in the one-
dimensional case) Q? appeared in the Whitney decomposition theorem by
(?77) and keeping the convolution and the dilation, we can easily deduce that
WE (F) has a (1,00, s4)-atomic decomposition with respect to |thz|*dz:

wER ( Z)\ B,

where B; is supported on R(z;,1;), / Bi(z)z"dz = 0, < k < 54, || Bil|so <
do(zi, )7t and >, | N| < 0o, We set

F=) \N\WXB NA;.
Z

Since s, is an integer and each B; satisfies the s,-th moment condition, it
o0

follows that A; is supported on R(x;,r;) and / A;(z)dx = 0. Moreover,

I 75(1( Moo = | Billoo < da(zs, ;)" L. Therefore, A; satisfies (?7?7) and thus,

F € HH(R)a. Hence Proposition 6.2 implies that f € H;H(G//K).

41

74



We shall remove the assumption that 6 = ¢’ = 0 and consider a general
case of 0 < 40,0 < 1. We recall the Fourier-Jacobi analysis (cf. [4]) and
note that all results obtained in the previous sections can be extended to the
Fourier-Jacobi analysis, that is, for arbitrary «, 5 > —1/2. Especially, we
may denote Wy = W and replace “G//K” as “(o, 3)” such as

HY(G//K) = H'(a, ).

For f € H'(a, 3), we set

F= Wf’ﬁ(f) W, 8° W,@+1/2(f)

"Wy o Wy o W2 o Wi (f)
= Wf’"’(Sg,y(f)),

where p=a + [+ 1 and
Ssar(f) = W™ o WE(f).

We note that Theorem 4.6 means that

Z M3 o WE (F)|lriry < 00

and thus, Ssg(f) belongs to H'(n,n'). Then, since n,n’ are integers (see
(7)), Ss.e(f) belongs to H;;jf)(n, n') and it has a (1, 0o, +)-atomic decompo-
sition with respect to (n,n’):

Sso(f) = Z i,
where > . |\;| < co. Here

F= Z )\zAza Al = Wf’n’(ai)

and each A; satisfies (??) with respect to (n,n’). We here recall that F' is
originally W -smooth. Hence, from a constructive proof of atomic decom-

positions WR(nJrn, (F) = >, \iB; (cf. [4, B in Chap. 3]) it follows that A;

satisfies (??) with respect to (o, 3). We let b; = W_(Wf’”,(ai)). Each b; has
the same support as a; by Lemma 5.11 and / bi(g)dg = A7 (0) =0ifr; < 1.

G
Moreover, we see from [8, Lemma 3.4] (or the same arguments in the case of
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6 =8 =0) that ||b;]|oc < ¢|R(z;,7;)| ' Thereby, we see that f =", \b; is
a (1,00, +)-atomic decomposition of f. m

Theorem 6.5. Let € > 0. Then H;;fo(G//K) NW_(H'(R)) is dense in
W_(H'(R)). Especially, H'(G//K) is dense in W_(H'(R)).

Proof. Let f € W_(H'(R)). We approximate f with a rapidly decreasing
function in W_(H'(R)). For example, let us take f; = f x ¢, (see §3).
Since Wi (f1) = Wi(f) * W, (¢:) and W, (¢,) satisfies Lemma 3.6, it is easy
to see that Fy = Wi (fi) € H'(R) and ||f — fillmie) = |F — Fillm®w) =
|F' = FxWy(o)|lmmy — 0ast — 0 (cf. [15, Chap. 3, 5.1 (d)). We fix
a sufficiently small £ > 0 and let Fy = W, (f * ¢;) = > ,.; AiA; denote a
(1,00, 0)-atomic decomposition of Fj. For a sufficiently small £ > 0 and a
finite large index set J C I, we put

Fy=) NA;, Jy={j € J;iri >k}, (71)
1€Jo
where we take x and J for which e ?*F,(z) is even. We here recall a con-
structive proof of the atomic decomposition of H'(R) (cf. [12] and [6, B in
Chap. 3]). Since F} is smooth, each A; is also smooth and if i € Jy,r; < 1,
then
[IWE (Ao < cr; Bt < pgmsap st

and if ¢ € Jy,r; > 1, then
IWE Ailloo < eri . (72)

In particular, |[WR Al < R(x;,r;)~" if supp(4;) = R(xz;,r;). Hence,
each A;, i € Jy,r; < 1, satisfies (??) and thus, Fy € H;;B(R)a. Then, by
Proposition 6.2, we can define f, € H;OJB(G//K) such that W (fy) = Fo.
Since Fy € HY(R), it follows that fo € H%(G//K) N W_(H'(R)) and
11 = follmey = |Fy — Follmmy — 0if & — 0 and J — I. This means that
HW(G//K) N W_(H'(R)) is dense in W_(H*(R)). Since

Ho(G//K)nW_(H'(R)) ¢ H'(G//K) c W_(H'(R))

(see Proposition 5.9 and Corollary 4.3), in order to obtain the desired density
it is enough to show that f, belongs to H;;TO(G//K).

We keep the atomic decomposition of Fyy in (??). Let I; = R(x;, ;) denote
the support of A;. As in the proof of Proposition 6.2, we may suppose that
z; = 0 or x; > 2r;. We recall that e ™ Fy is even and I; N —1; = 0 if 0 ¢ I;.
When x; = 0, we put

(e P Ay(x) + e Aj(—x)) = 2(1 + ") - e " By(x).
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Then B, is a (1, 00, 0)-atom on R and e #*B;(x) is even. Since the index set .Jy
is finite, changing the coefficient )\; by 2\;e?*" and replacing the left hand side
with the right one, we may suppose that e ?*A;(x) is even if x; = 0. Since

each A; is piecewise W, -smooth, we can define a K-bi-invariant function
a; = W_(A;) on G such that

fo= Z Ail;.
icJo

Case 1. z; > 2r; and r; < 1: As in the proof of Proposition 6.2, each a; is a
(1,00, 0)-atom on G up to a constant multiplication.
Case II. x; > 2r; and r; > 1: Since x; > 2r;, it follows that z; +r; > 3 and
x;—1; > 1. Thereby, |R(z;, ;)| ~ €?@*7i)_ Since .J; is finite, we may replace
A\ia; as

)\iai == )\i€4pri7"f . bi; bz == 6_4pri7"i_eai.

Then, similarly as for (??), we can deduce from (??) that
|billoo < ce™ir7 Am; — 1) "'rit < e|R(wg, mi) |7 h e

This means that a is a (1, 00, 0, €)-atom on G up to a constant multiplication.
Case III. z; = 0 and r; < 1: As in the proof of Proposition 6.2, each a; has a
(1, 00, 0)-atomic decomposition.

Case IV. z; = 0 and r; > 1: Since .J; is finite, we may replace \;a; as

)\Z'Cli = )\ﬁ”i . bi, bz = r;lai.
Then, similarly as for (??), we can deduce from (?7?) that
|b;()| < c(thx) CotDe 200p 2 < cA(z)r, 2. (73)

We set by (1) = A(z)~'r; 1. As in (?7?), using the moment condition, we see
that

1
|B(s)|

S 2

/s W) A)dr < i <y (). 0< s < (74)

Therefore, b, is an L' non-increasing denominator of b; satisfying (?7).
Hence, b; has a (1, 00, 0)-atomic decomposition (see [7, Theorem 4.5]).
These four cases yield that f, € H;fO(G//K). u

Remark 6.6. As in the proof of Theorem 6.4, we set

Sy (f) = W o W7 ()

44

717



for 0 <y <a+1/2,0<+ <p+1/2. Clearly, Sp, is the identity operator
and Soi1/2,841/2 = Wf’ﬁ. Then it follows that

Hl(aaﬁ) - Sfyi,i/’ (Hl(a - 776 - 7,)>

When v = a +1/2 and ' = 3 + 1/2, this relation is nothing but the one in
Corollary 4.3, because H'(—1/2,-1/2) = H'(R).

7. Other operators. We shall consider (H', L')-boundedness of sin-
gular integrals, heat and Poisson maximal operators My and Mp, and the
Riesz transform R on G.

Let TR = M,, be a Fourier multiplier corresponding to a bounded function
m and K the distribution kernel of M,,, that is, K~ (\) = m(\) and M,,,(F) =
K % F in a distribution sense (cf. [15, Chapter 1, §6]). We put £k = W_(K)
and define an operator T¢ on G as TS (f) = k * f. Then it is easy to see
from (??), Definition 4.2, Theorem 4.6 that ||T5(f)|lw_r®)) = [|[W4(k *
Al = [TV (D)l and TS ) < el Mo, W (TSP ey
= M, o TR(W.(f))|l a2 (w)- Therefore, we have the following.

Theorem 7.1. Let notation be as above. If TR is bounded on H'(R),
then TS is bounded on W_(H'(R)). Moreover, if M, o TR is bounded on
HY(R), then TS is bounded from W_(H'(R)) to H*(G//K), especially, it is
boundend on H'(G//K).

Let hy(g) and pi(g), g € G,t > 0, denote the heat and Poisson kernels on
G. They are K-bi-invariant functions on G whose spherical Fourier trans-
forms are respectively given by

~

hi(\) = e ) and p(N) = e VA

Definition 7.2. For e > 0 we define the modified heat and Poisson max-
imal operators Mg and Mp on G as follows.

(Mg f)(g) = 053500(1 + 1) (f * he)(9)],
(Mpf)(g) = sup (1+1t)°|(f *p)(9)|-

0<t<oo
For simplicity, we denote MY and MY by My and Mp respectively.

It is well-known that Mg and Mp satisfy the maximal theorem (see [14,
p.73 and p.48], [1, §3 and §6]). Moreover, if we define their truncated max-
imal operators My¢ and MP° by restricting the range of the supremum as
0 <t <1 (cf. Definition 4.8), then they are bounded from H}Q’FO(G//K)n to
L'(G//K) (see [8, Theorem 6.1, Remark 6.5]).
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We here introduce a modified atomic Hardy space H;TN(R), e>0,N=
0,1,2,---, on R by replacing the norm condition ||A]| < 7! ofa (1,00, N)-
atom A on R with

[Alle < 7M1 +7)" (75)

(cf. Definition 5.1 on G).
Definition 7.3. We define

W_(L'(R)) = {f € Li,e(G//K) s W.(f) € L'(R)}

and
W_(Hn(R)) = {f € Lioo(G//K) s We(f) € Hy(R)}.
We give their norms by [|W,(f)||lrrw) and ||Wi(f)||a1w) respectively.
Clearly,
Ho(G//K)' C L'(G//K) C W_(L'(R))
(see (18) and Definition 5.6). Since H.\y(R) € HL y(R) = H'(R) (cf.
16, (3.30)]), it follows that W_ (1% (R)) C W_(H'(R)) € W_(L'(R)) and
hence, Proposition 5.7 and Theorem 6.4 imply that

HI(G//K)HW (H v (R))
= Ho(G//K) N W_(H y(R)) (76)
= H”(G//K)ﬁﬂW (H n(R))-

Theorem 7.4. Let notations be as above. Then Mg s bounded from

HL b (G//K)! ife>1/2
Hl(G//K) NW_(HZT(R))  if0<e<1/2
HYG//K)NW_(HY 3/2(R)) if e=0

to L'(G//K).
Proof. Since M$¢ is bounded from Hclx’;ro(G//K)n to L'(G//K), we may

suppose that ¢ > 1 in the definition of Mg. Let Mﬁg, v € R, denote the
maximal operator on R associated to the Fourier multiplier corresponding
to thy (A +ip)(iN)7:

1 [ _
Mﬁ%(F) = SUPE/ hi(A —|—Z‘p)(i)\)7F’V()\)61)\md}\‘
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For f € LY(G//K) we put F = W, (f). Then the same argument as that
used in the proof of Theorem 4.6 and (??) yield that

n
€ R
IMaflloe < e ) IMGS oW, o (Pl

m=0 £€D

S MR ()l (77)

m=0 (€D

if the both sides exist. Let H; denote the heat kernel on R:
Hy(x) = (2t) Ve o"/4, (78)
Since H,(\) = e~ it follows that
hi(\+ip) = cK;*(\),  Ki(x) = Hy(x — 2pt). (79)
Hence, (?77) can be rewritten as
[ Mz fllr CZZIISUW Bmee) (Ke) * Pl gy (80)
m=0 £D

Lemma 7.5. Lett > 1 and x,u > 0. Then for each v > 0, there exists
a constant ¢ such that

WRHN) < = (14 2) o 1)

and ,
R ¢ X 2
144 < — S “iz,
[WZL (K ()] < i (1 + ‘ " Qp‘) t

Proof. Let 0 < § <1 and x > 0. We note that

WEH) @) = 2 [ e s

< \/%exz/‘lt/ e 2/4tSJ;xs Fds
0

c 2 T
< —e T/ (1 + —> tH/2,
TV Vi

Then the desired result for H; follows. Since ¢t > 1, by replacing z/v/t by x/t
n (7?), the one for K; follows from (77). m
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We return to the proof of the theorem:.

Case I: € > 1/2. Since t > 1, Lemma 7.5 with v = 1/2 + ¢ means
that, for 0 < m < n, and & € D |t WE o (Ko (2)] < et (H/2(1 +
el /¢ — 20])=1/2+9. When |5L“|/t > dp, 2L+ ]/t — 2p) 7Y <
et~ (1 + || /t]) =D < e(1 + |2])~+Y2) ] because t > 1, and when
2|/t < 4p, (D1 + ||$|/t— 20])~(H/D < et~ (D) < oL+ [af) 12,
Hence, t—“[WR 5 \(K/)*F| < c®*|F|, where ®(z) = (1+]z])” (1/249) " Since
® belongs to Ll(R) the right hand side of (??) is dominated by ||F||.1(r)
This means that Mg, ¢ > 1 and € > 1/2, is bounded from W_(L'(R)) to
LY(G//K). Since H\,(G//K)* C W_(LY(R)) (see (??)), the desired resuls
follows.

Case II: 0 < € < 1/2. Since t~ EVVR(erg)(Kt) is a convolution operator, to

obtain the desired L'-boundedness on W_(H;g{o_e(R)), it is enough to prove

that there exists a constant C' > 0 such that for each centered (1, 00,0, 1—¢)-
atom Aon R, 0<m <n,and £ € D,

sup =W (K2 + Alll ) < €
>

Let [—r, r] denote the support of A and, for simplicity, we put

K pye(w) = t7WE o (K ().

First, we shall prove that

Kt€m+§( ) < C(l + |x|1/2_6)\1}t(x)7

where ¥, is a Euclidean dilation of ¥(z) = (1 + |z — 2p|)"2. Actually, if
pt > 2|z|, then (|z| — 2pt)? = |z|* + 4pt(pt — |z|) > |x|* + 2p°t* and thus,
it follows from (??), (??) that K;(z) < e —(aP+20°2)/4t < = (lel/1 =r"t/2 <
ct=! (1 + |z|/t)~2, because t > 1. Thereby, the above estimate is clear. If
pt < 2|z, then, by letting v = 2 in Lemma 7.5, it follows that |Kf,,, ()] <
et~ D (14 |||/t —2p)) 2 < et~ VDV 1+ ||z| /t — 2p|) 2 < ca™ (/D!
(14 ||z]/t —2p|)~2 for all 0 < m < n and £ € D. Hence we have the desired
estimate. By using this estimate, we see that

| K e * Al2)]

IN

C/M(l + [y ) T(y) |Alz — y)|dy

c(L+ |z +r[27) W, = | Al (2)
c(1+ | + 7|27 ) M (|A]) (@),

ININ
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where MX(F) = sup |¥, x F(z)|. Since ME is bounded on L>(R) and
0<t<oo
|Alloe < 7711 +7)~(=9 it follows that, on |z| < 2r,

IN

[ sl Awlde < e [ ME(A s
|

z|<2r t>1 |z|<2r
c(1+ 77l Al
c(1 4771 4+r)" 079 <0, (82)

IA N

On the other hand, on |z| > 2r, it follows from the moment condition of A
that

Kimse Alw) = [ Kiuelw)Ale - )y

_ /::T(Kf,m%)'(y) (/io Az — s)ds> dy.

Lemma 7.5 with v = 1 +¢, € > 0, and p = 1 yields that [(Kf,, ) (v)]
ot~ 0FI(L + lyl/t = 2p) "9 < e(L + [y[)""+9. Since [|Alln < 7|l
(1 +7)~(0=9) it follows that

SUD [ v # A()| < 1+ [ = r) o (L4)7070 (8)
t>1

Therefore,

1 €
/ sup | K, ¢ % A(z)|dr < / (1+7) dr < C.
\ |z|>2r

x|>2r t>1 (1 + |aj o T|)1+E B

Hence we see that || sup K, ¢ * Al|pyr) < C.
t>1

Case III: € = 0. Let A be a centered (1,00,1,3/2)-atom on R. On |z| <
2r, similarly as for (?7), we see that

/ sup | K}, e % A(z)]|de < C.
\

x‘SQr t>1

y
Moreover, the moment condition of A yields that / A(x—s)ds is supported

—00

/Z (/;A(I—s)ds> dt = 0.
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Then

KO ox Alr) = / x—:r(Kfmﬁ)"(y) ( / 1 ( / : Az — s)ds> dt> dy.

Since [[Alloo < 7711 +7)7%2 Lemma 7.5 with v = 3/2 and p = 2 similarly
yields that

|K,2erg x Ax)| < e(l+ |z — T|)73/27” cre (1+ 7“)73/2. (84)

Therefore, on || > 2r, it follows that

1 1/2
| swil @i < [ Urr)”  w<c
| |z|>2r

z|>2r t>1 L+ |z —r[)3/?

Hence we see that ||sup K7, . * Al r) < C. m
t>1

Remark 7.6. Let ¢ = 1/2. Then M;I/Q is bounded from H;:FO(G//K)ﬁ N
W_(HY'*(R)) to LY(G//K) by Theorem 7.4 (2). In the proof we use a

00,0

(1,00,0,1/2)-atom A, whose L>®-norm has a decay r—'(1+47)~/2. This extra
decay (14 7)~"/? is only used to deduce (??). Clearly, if the first derivative
of K, creates a decay t~!, same as the one for ¥, of a Euclidean dilation of U,
then we do not need use the extra decay. Actually, we may apply a common
argument used to prove that a radial maximal operator M¢ on R is bounded
from HL, (R) to L'(R) (cf. [4, §3]). However, as shown in Lemma 7.5 (2),
the first derivative of K, creates only ¢ /2 decay. Therefore, we need the
modification of the L*-norm of A. This situation is the same in the case of
¢ = 0. The second derivative of K; creates a decay t~', not ¢~ (see Lemma
7.5 (2)) and thus, we need an extra decay (1 +7)7%/2 (see (?77)).

Theorem 7.7. Mp is bounded from H'(G//K) to L'(G//K).

Proof. Since M° is bounded from HY' (G//K)* to L'(G//K), we may
suppose that ¢ > 1 in the definition of Mp (see Theorem 6.4). Let MII,‘N,
v € R, denote the maximal operator on R associated to the Fourier multiplier
corresponding to py(A +ip)(iN)T = Wi (py)~(A)(IN)7:

Mg (F) =sup| [ pu(A+ip)(id) F~(X)e?"dA].

t>1 — 00

Then for f € H'(G//K), we have

[Mp fllie < ZHMpooVV tmro)(F)llo1m
EeD

IN

ﬁMm HM@

Z 1Mp. e (F) |11 m
¢eD
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where F = W, (f). Since F € W_(H'(R)) (see Theorem 6.4), F' has a
(1,00, 1)-atomic decomposition F' = 3. \;A;. Hence, it is enough to show
that || Mg, ¢(A)]|Liw) < ¢forall (1,00,2)-atom A. Clearly, we may suppose
that A is centered, that is, supported in [—r,r]. We recall that

t
o Kilo( + a?) e,

A t1p) = KO, Kila) = ooy

where K; is the modified Bessel function (see [1, §6]).

Lemma 7.8. Let notations be as above and MY, be the Hardy-Littlewood
mazimal function on R. Then for all F € L*(R) and v > 0,

Mg, (F)(w) < eMyy,(F)(2).

In particular, Mrf,‘ﬁ satisfies the mazximal theorem.
Proof. We note that |W}K,(z)| < cKy(x) (see [1, p.289]) and Ky(z) <

c|z|~1/% e7!*|, Hence we see that
> t (2 (=22 pla—
Mo, (F)la) < C/ )l (2 + (z — y)2)P° P ) eple vl gy,

Here we divide the integral as / + Z/ , where Iy = {y; |z —y| < t*} and
I o/

Iy = {y: 22 < |z —y| < 254142} |k =1,2,---. Since 3¢ +2)"* hag the
maximum at ¢ ~ (¢2 4+ 22)1/4, it follows that

o P(E+(z—y)*)/? erle=vl gy

t
. |F(y)] (& + (z — y)2)*/4
1

¢ |F(y)|dy < cMpy (F)(x).

= 2
t |l —y| <t

Moreover,

t 42 _.0\2\1/2 _
F P+ (@=y)*) = cplz—yl g
W P e —

t
c F —d
/I o O

1
F(y)ld
ok+142 /|my|<2k+1t2| (y)|dy

< c2‘k/2MII}L(F)(x).

IN

S C2—k/2

Hence, the desired result follows. m
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Lemma 7.9. Let A be a (1,00, 2)-atom on R supported on [—r,r]. Then
for x> 2r,

R /2 r
Mp (A)(z) < cmax <7|x — P) .

Proof. Since ||A||pyry < 1 and |z —y| > |z —r|if [y| < r, it follows that

. o0 t t
MP,y(A)(UU) < C/OO |A(y)| 2 (z — y)2)3/4dy < Cm-
Especially,
R ri/? . 2
MP,’Y(A)(‘/B) S Cm lf r Z te.
On the other hand, we note that
Ax WR(E,)(2) = / B + ip) AN,

Since A(A+2ip) = |A||A+2ip|e?, tan @ = 2p/ ), and thus, R((A+ip)%+p?))!/?
= |M"2|X 4 2ip|'/2 cos(0/2) > ¢|A|'/? with ¢ > 0, it is easy to see that

1
IDs(A +ip)| < ce M

1
d. . : L+[A[\2 N
- < L | c

d .. . 51+ || 1 /14| e et}
— A <cl|t t— ctiAlZ
|(d)\) De( +2p)|_c< B + 5 B e

Since A is a (1, 00, 2)-atom on R supported on [—r, ], it follows that |(d/d\)"
AN < " (n € N) and |(d/dN\)"A(N)| < r"TH)|, n = 0,1,2, by the mo-
ment condition of A. Moreover, since (d/d\)" *A()) is the k-fold integral
of (d/d\)"A(N) over [0,)], it follows that |(d/d\)""FAN)| < AR,
0<k<n=0,1,2. Therefore,

2% A * WWR(Kt)(x)|
00 d2 . . _ S
= ¢ / s (A + i) A)XT) e

00 142 1 /14 A2 s
T e )

T2

s ¢ 242y

IN
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This means that
ror
12 $2+277

A« WR(K) ()] < o

and thus, since t > 1, it follows that
R roo. 2
Mg (A)(z) < ¢ if r < t°.

This completes the proof of the lemma. m

We return to the proof of Theorem 7.7. Since ]\/[g”’7 is bounded on L?(R)
(see Lemma 7.8) and ||Al|; < r='/2, it follows that

M&W(A)(x)dx <2 A, < e

|lz|<2r

Moreover, it follows from Lemma 7.9 that

R ri/2 r
MP,v(A)(x)dx S /x>2,« (7|IL' — T|3/2 + P) dx S C.
Hence we obtain that || Mg, (A)[|L1r) < ¢ for all (1,00,2)-atom A. m

We last treat the Riesz transform R on GG. Under the standard notation
in [14] we denote the covariant differentiation on G by V: |[V[*(f) = Q(f?)
=2Qf - f for f € C*(G). Then the Riesz transform R on G is defined as
follows.

Definition 7.10. For f € C°(G//K)

(Rf)(9) =1IV]o (=) 2(f)(9) (g€ G).

|x|>2r

This operator R also satisfies the maximal theorem (see [1, Corollary
5.2]). We recall that [Vf*(g) = > _ |Xif|?(9) (g € G), here {X;;1 <
i < n} is denoted as an orthonormal basis of the Lie algebra g of G and
each X; is regarded as a left (or right) invariant differential operator on G.
Especially, since f is K-bi-invariant on G, |V f[*(g) is simply expressed as
c|(d/dx) f(az)|? provided o(g) = z (cf. [2, §2]).

Now let £(A\) = iN/\/A(X+ 2ip) and M, the corresponding Fourier mul-
tiplier. Then, since (—)~'/2 is the Fourier multiplier corresponding to
(A2 + p?)~'/2 applying the similar argument used in the proof of Theorem
4.6, we can deduce that

IRFlesicy < e 32D IMeo Wiy (Pl .

m=0¢eD
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Since £()\) satisfies the Hormander condition and m + £ < o+ 1/2, Remark
4.7 yields the following.

Theorem 7.11. R is bounded from W_(M¢,(H'(R))) to L'(G//K).

8. Appendix. A. Estimate of I';,,: In [8, Proposition 8.3] we estimate
derivatives of ', (A) when A > p and show that T',, (£ +ip) (€ € R) satisfies
Hormander’s condition. Here we shall obtain an estimate of T',, () for A >
—p. We refer to the notations and the proof in [3, Lemma 7] and we denote
Lom by Ty Then the recursive definition of T, () yields that

L] < 2220 H( =) (85)

Here
ce(N) = 4k|k — i\ and () = 4|2k — X+ p),

where k =a — fif k=m +1 (mod 2) and k = p if £ =m (mod 2).

Lemma 8.1. For each 6 > 0, there exists a positive constant ¢ such that
forallm e N and A =& —ip (€ € R),

T, (N)] < em®t,

Proof. For each € > 0 we take ng € N such that 4(p+ng)?/n2 < 4(1+¢)%
We first estimate each k20721, (A\)2cp(N) ™2 = |2k — X + p|?/|k — A%
If £ > p+nyp, then
2k +p—iA?  4k* 4+ &2 < 4k? - 4(p + nyg)?
k—iAP (k= pP+& " (k—p? " 0}
If k < p+mnpand p ¢ N, then

e 2 2
|2k+p. iA| < 4k <4(p—|—n0) ‘e

k—id> T (k=p? 7~ (1/2)> ~

< 4(1+¢€)? (86)

If k<p+ng, pe N, and k # p, then

|2k—|—p—i)\|2< 4k*
k=2 (k= p)?

< 4(p—|— 7’L0)2 <ec.

If k< p+nyand k = p, then

2k +p—iA? _ 49 +€ _ (14’
|k —iAl? & - €] '
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Therefore, substituting these estimates into (??), we have the following.
Case L. p ¢ N: Since

(krk()\)>2§{ 2L +6)8)?  ifk>p+ng

(M) c if k < p+ny,

it follows that, if p +no < m — 1, then

VAN
o)
X
=
RS
= 3
1M
= —
o=
= =
==
N—
I
o)
W
T
B
+
3
o
L
o=
= =
Rl
+
M
L
o=
= =
Rl
N~

k=1 k=p+no
< exp (c(p+n0 —1)+p Z 2(1 + )k
1311:?271
+ (a—p) Z 2(1+€)k ™t
12%211%1

< cexp((14€)(p+a— B)logm) < emIF9Ra+D)

Therefore, we see that

T (V)] < bn() < e L8 asaeasy ¢ g 0saan-1
m |m — p[+[¢]|
Clearly, if p+ng > m — 1, then |I';,(N)] < c.
Case II. p € N: In this case there is a possibility that the term correspond-
ing to k = p will appear in the product HZL:_II when p < m — 1. Therefore,
the above estimate is changed as

D) < 2 4 .<1 n 1+ |§|> o (1HO@aAD)—1 o (14e) (20t 1)-1
m |m — p| + [¢] €l

In both cases, letting € sufficiently small so as to satisfy (1 +¢€)(2a+1) — 1
< 2a+ §, we can obtain the desired estimate. m

Let k € N and k& # p if p € N. Applying the above argument for
A= ¢ —ik (£ € R), we see that each [',,(\), & < m — 1, has a pole at
A = —ik. On the other hand, if 3\ # —k, we can deduce the same estimate.
Therefore, the estimate obtained in Lemma 8.1 also holds on the tube domain
F(a,b) = {\ € C;a < I\ < b} where [a,b] does not contain —k (k € N)
except —p if p € N. Hence, Cauchy’s integral formula yields the following.

%)

88



Proposition 8.2. Suppose that the real interval [a,b] does not contain
—k (k € N) except —p if p € N. Then for each 6 > 0 and n € N, there
exists a positive constant ¢ such that for allm € N and X € F(a,b),

()

Remark 8.3. When I\ > p, we can replace 4(1 + €)? in (?7) by 4.
Thereby, we can replace the power 2a.+ 6 in (7?7) by 2« (see [7, Proposition
8.3]).

B. Maximal Functions on R: In this section ¢ denotes a compactly

supported C'* function on R with / é(x)dr = 1, and ¢; a Euclidean

dilation:
1, /x
tula) =56 (). t>0. (88)
We define the radial maximal function My(F') on R as
(MyF)(xz) = sup |F x¢y(z)]. (89)
0<t<oo

Then F € L (R) belongs to H'(R), by the definition, if MzF belongs

loc

to L'(R) (cf. [15, p. 87]). We shall consider another characterization of
H'(R) by using a maximal function associated to a Fourier multiplier My, .,
corresponding to a function m(¢, ) on Ry x R:

Mo,y (F)7(A) = m(t, ) F~(N).

Definition 8.4. We say that m(t, \) is in the class Axr (N, M € N) if
there exists a constant ¢ such that

‘(%)nm(t, A)‘ <c"(L+[tA)™ (0 <n < N).

We define related maximal operators M,, M, ,,, M, (L > 0) and M,
on R as follows.

Definition 8.5. Let N, M,L € N and suppose that M > 1. For F €

56

89



Ll

loc

(R) and m(t,\) € Ay, we define

MpF() = sup [Myq)F(@)],

0<t<oo
MAN,MF(:U) = sup MmF(aj),

meAN

—L

M F(x) = sup sup|F xm(z —y)| (1 + M) :

’ 0<t<oo ycR t
M!F(x) = sup |Fxmy(y)l,

lz—y|<t

where my(x) is the inverse Fourier transform of m(t, \).
Clearly, since M > 1, my(z) is well-defined and M,,F(z) < M} F(zx) <
2L M F(z) holds pointwise.

Theorem 8.6. Let M, N > 4. Let ((t,\) € Ay and suppose that there
exists ¢ > 0 such that

6@, )] = cltA] (0 < [EA] < 2). (90)

Then ||F||H1(R) ~ ||MZF||L1(R)-

Proof. ||M¢F|| 1) < ¢||F||m(r): By using the atomic characterization of
H'(R), it is enough to show that [|M;Al/,1 gy < C for all (1,00,0)-atom A
on R. We may suppose that A is supported on [—r,r]. We first note that,
since £(t, \) € Axs with M > 4, the inverse Fourier transform of £(¢, \) is
dominated by t~'(1 + |z/t|?)~" and hence, M, satisfies the maximal theorem
(cf. [8, Lemma 5.1]). Next we note that the Fourier transform A™(\) satisfies

() o

/0 Y 4(9)ds

because A~(0) = 0 by the moment condition. Therefore, it follows that

<r' (LeN).

and

A~ = < cr|Al,

122 My (A)] = ‘ /_ Z AL - (%Yemw
(&) )

ot 4 |\t

¢| Mg,y (a* A)| + C/ ch\

cr,

dA

IN

IN
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because || M,y (2%A)||s < ¢||z?Alle < cr. This means that |Mq ) (A)(z)] <
rlz|72. Finally, we can deduce that

) iy < [

|z|<2r

| Al|sodx + c/ —dzx < C.
|z|>2r |IL'|
|Fllmw) < c||MeF|[11(r): The proof is quite similar as the one for [15,
Theorem 1 i 1n Chap. 3]. We shall give an outline for a necessary modification
of the proof.

Step 1. [|F|lmm) < ¢||May o F o1 r): Let 1 € C°(R) and / Y(x)dx =

1. Since Ay contains a function m(t, \) = 1,(A) = 1(t)), the desired result
follows from [15, Theorem 1 in Chap. 3.

Step 2. Ma, ,, F(z) < My} F(x): We refer to [15, Lemma 2 in p.93 and
1.4 in p.95]. We take L € N such that M,N > L+ 1 and L > 1. Let
Yo € S(R) satisfy ¢y(A) = 1if [\ < 1 and ¢)g(A) = 0 if |A| > 2. Then
there exists a decomposition of 1 of the form: 1 = 32 4, ()), where each
Ui (k> 0) is supported on 251 < |A| < 281 and |(d/d\)"p(N)] < 2 Fn.
For each m(t,\) € Ay y we let

m(t,\) = Zq/ik(m)mm
_ T/Jk t)‘ —k
= Z = A 5(2 t,\)

= Z me(t, ) E(27FE, N).

By the assumption (??) it follows that £(27%t, \) > c27F|tA| > 271 if t) €
[2E=1 241 and moreover, |(d/d\)™0(t, )] < ct™ (0 < n < N). Thereby, we
easily see that

d n
— A <et"(1 4+ tA)™Y
(35) (e < e o)

and, if we denote the inverse Fourier transform of 7 (¢, ) by 7.(y), then

2"/t d\" iA
t,A) | — AN
/le/t 77k( ) ) (d}\) e

2k+1 /¢
ct”/ (14 [EA)~MdA
2

k:—l/t
S Ct’l’L*lQ*k(M*l)

Y " ee(y)] <

IN
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Since N, M > L + 1, it follows that

(MuF)(2) < sup ) |(F # 1y # b))

>0 =
< s Y [P e = )0l
t>0 k=0 Y —®
< eM;;F(z)- sup i":/oo <1+M>L <1+M>_N
- bL 0<t<oo —00 27kt t

k=0
Xt*l . 27k(M71)dy

< M) [ )Ny 3 e

—00 k=0

o0

< ML F(z).

Step 3. [|M;LF||Lr) < c| My F||L1(w): See [15, Lemma 1 in p.93].

Step 4. || M; F|lpmy < || MeF || w): We refer to [15, 1.5 in p.95]. We
put f(x,t) = F *{,(x) where £;(x) is the inverse Fourier transform of £(¢, \).
Then, for |z' — y| < rt, there exists 2/ < z < y such that

()]

We here note that t(d/dx)f = F * (t(d/dx)¢;) and (¢t(d/dz)l;)"(N) = £(t, N)
- (it)A). Therefore, (t(d/dx) £;)" belongs to Ay 1. The rest of the proof is
same as in [15] if we replace F by Ay, .

These four steps complete the proof of the desired inequality. m

f (1) = fly, )] < rt

C. Dual Spaces of W_(H'(R)): We shall introduce a dual space of
W_(H'(R)). For f € C*(G//K) we define the complex Fourier-Jacobi
transform f as

) = / " H @)\, 1)) dr (91)

(see (77), [10, (2)]). Then for real valued functions f,g € C*(G//K), we
can deduce the following Plancherel formula (cf. [10, Theorem 5.1)):

(f, ) 2®y,Ade) = C/_ f()\ +ip)g(A +ip)C (=X —ip) 'dA.

We suppose that f € W_(H'(R)). Since f(\+ip) = W, (f)~(\) (see (7))
and W, (f) € H'(R) by the definition, a dual space of W_(H'(R)) should
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be defined as the space consisting of ¢ such that g\ + ip)C'(=\ — ip)~!
is the Fourier transform of a function in the dual space of H*(R), that is,
BMO(R) (cf. [15, Chap.4]). We shall paraphrase this definition by using
fractional calculus on GG. First we introduce a generalized Riemann-Liouville
type fractional integral operator W;{: For ¢ > 0 and pu € C, W;(F)(y),
y > 0, is defined by

W0 = oy ity | 10)(choy = chra)##~dshor. (92)

['(u+ n)d(cho

where n =0if Ry >0and —n <Ru < —n+1,n=0,1,2,---, if Ru <0.
Similarly as in (16), if we set

Wi (f) = W§+1/z © Wiiﬂ(eﬂmf),
then we see from [11, §3] and [10, Theorem 5.1] that
(f, 92wy ade) = Wi (F), WiH9A)) 2R an)

(cf. (?7?) for R, ) and equivalently,
GO +ip)C(=A—ip) ™ = e (W' (gA)) (=),

where the symbol “~” in the left (resp. right) hand side denotes the complex
Fourier-Jacobi (resp. the Euclidean Fourier) transform. Hence the following
definition of a dual space of W_(H'(R)) is quite natural.

Definition 8.7. We define
W_(H'(R))" = {f € Li,(G//K) ; W;'(fA) € BMO(R)}.

and || fllw_qrwyy- = W (FA) | saom)-
In this definition f € W_(H'(R))* is required to be W -smooth.

Proposition 8.8. Let notation be as above.
(1) For f e W_(H"(R)) and h € W_(H"(R))*,

/Gf(g)h(g)dg‘ < cl| fllw_ @y I1Pllw_r my)- -

(2) All K-bi-invariant W, -smooth bounded functions belong to W_(H'(R))*.

Proof. (1) is clear from the above observation and the dual inequality
between H'(R) and BMO(R) (see [15. p.146]). As for (2), let f be a K-bi-
invariant W, -smooth bounded function on G. Then W, !(fA) € L*(R) by
(10, Lemma 3.3]. Since L*(R) C BMO(R), f belongs to W_(H'(R))*. m
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D. Real Hardy Spaces: In Definition 7.2 we introduced W_(H;fo(R))
as a subspace of W_(H'(R)). Here we shall define a subspace W_(H})gio(R))

of W_(H_,(R)), which corresponds to Hy o(G//K). Let A be a centered
(1,00,0,¢€)-atom on R and suppose that A is even. For 25 > 0, we define

Agy(2) = Wy (A(w = 9)) (w0) Azo) ™', = >0, (93)

where W, acts on s and W (F)(zo)A(ze)! = F if 20 = 0. Then, it fol-
lows from [10, Lemma 3.4] that A,, is also a (1,00,0,€)-atom on R. We
introduce a modified atomic Hardy space H};’O(R) on R as the space of all
Y i Ai(Ai g (x) + Az, (—2)) such that Y |A\;| < 0o, z; > 0 and each A; is an
even centered (1,00, 0, ¢)-atom on R. Moreover, we define H;E’O(R)a if each
A; furthermore satisfies

IWE,

—Sa

(Dl <ML +1)7" (94)
Since each A, ,, is a (1, 00,0, €)-atom on R, it follows that
Hifo(R)a C Hyp(R) € H(R) € HY(R).
Definition 8.9. We define
W_(H5(R) = {f € Lin(G//K) ; Wi(f) € HZ,(R)}

loc

and give their norms by |W(f)||miw). Similarly, we define W,(H;gfo(R)a).

Proposition 8.10. Let notation be as above. Then

Hoo(G//K) € W_(Hy o (R)).

Proof. Let a be a centered (1, 00,0, 1)-atom on G supported on B(r). We
put A = Wy (a). Since A is also supported on B(r) (see Lemma 5.11), it
follows that

We(A) (@) < ce™(thr)*[|all

<
< e (thr)*|B(r)|"' (1 +7)" < e

Moreover, A satisifies the moment condition, because A~ (0) = a(ip) = 0.
Therefore, A is a (1,00, 0)-atom on R. We here note the following.

Lemma 8.11. W, (a) ) = Wy (a),, on Ry, that is,
Wi (a,)(2) = Wi (Wi (a)(y — s)) (w0)A(z0) *, @ >0,

T
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where W, acts on s.
Proof. Let B =W, (a’, ). Since e " A(y), e " B(y) are even, we see that

(eB(y))” (\) = g ()
= a(M)ea(wo)
= (7" A(y))” (W)W (e77 cos As) () Awo) ™!
= Wi((e™™A(y — 5))™ (M) (z0) Alzo)

Hence, e " B(y) = W, (e ™ A(y — s))(20)A(zo)~" and the desired relation
follows. m

Lemma 8.11 and the fact shown before the lemma yield that each a
belongs to W_(H}, ;(R)) and the norm is bounded by a constant independent
of a, zy. Hence, the desired result follows. m

Proposition 8.12. Let notation be as above. Then

W_(Ho(R)a) € Hi o(G//E).

Proof. Let A be an even centered (1,00,0,1)-atom on R supported on
B(r) and moreover, satisfying (??7). Let a = W_(A). Then Lemma 8.11
implies that A, (z) + Az (—z) = Wyi(a) )(z). Therefore, it is enough to
show that a has a decomposition a = ), A;a; such that >, |\;| < ¢ and each
a; is a centered (1,00,0)-atom on G, where ¢ is independent of A. Since A
is a (1, 00,0, 1)-atom supported on B(r) and satisfying (??), as in the proof
of Proposition 6.2, it follows that

la(z)] < eAz) 'r (1 +r)7!

We put
ai(z) = cA(x) " r " xp(z), > 0.
Then |a(x)| < a4 (x) and ay is a non-increasing function on R, with finite
o

L'-norm. Since a is supported on B(r), |B(s)|_1/ ap(x)A(x)dz is also

supported on B(r). For 0 < s < r, it follows from the moment condition
that

r)de = z)dx < c|B srt(1+r) L
Gt moA@ds = s [ Ade < B st
Since |B(s)| ~ A(s)s if s <1 and |B(s)| ~ A(s) if s > 1, it follows that

5 / a0(@)A)dr < ay(s). (95)
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This means that a, is an L' non-increasing denominator of a satisfying
(??). Then [7, Theorem 4.5] yields that a has a centered (1,00, 0)-atomic
decomposition @ = ), A\ja; on G such that Y. |Ai| < [|ag||r1(adz). ®

Main relationship among real Hardy spaces defined in this paper (see
Definitions 4.1, 4.2, 5.2, 5.3, 5.8, 7.2, and 8.9) are summarized in the fol-
lowing diagram, where we abbreviate “G//K” as G. The relation between
H'(G//K) and HL, ((G//K) is still open.

Figure 1: Real Hardy Spaces
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Real Hardy spaces on real rank 1 semisimple
Lie groups

Takeshi KAWAZOE *
March 3, 2008

Abstract

Let G be a real rank one connected semisimple Lie group with finite
center. We introduce a real Hardy space H'(G//K) on G as the space
consisting of all K-bi-invariant functions f on G whose radial maximal
functions My f are integrable on G. We shall obtain a relation between
H'(G//K) and H'(R), the real Hardy space on the real line R, via
the Abel transform on G and give a characterization of H'(G//K).

1 Introduction

The study of the classical Hardy spaces on the unit disk and the upper
half plane was originated during the 1910’s by the complex variable
method. In the 1970’s, considering their boundary values, the Hardy
spaces were completely characterized by various maximal functions
and also by atoms, without using the complex variable method. This is
a significant breakthrough in harmonic analysis. Nowadays, the spaces
defined by the real variable method — maximal functions and atoms
— called real Hardy spaces and a fruitful theory of real Hardy spaces
has been extended to the spaces of homogeneous type: A topological
space X with measure 4 and distance d is of homogeneous type if
there exists a constant ¢ > 0 such that for all z € X and r > 0

u(B(z,2r)) < ep(B(z,r)),

where B(z,r) is the ball defined by {y € X | d(z,y) < r} and
pu(B(x,r)) the volume of the ball (cf. [1, §1]). However, when the

*Supported by Grant-in-Aid for Scientific Research (C), No. 13640190, Japan Society
for the Promotion of Science



space X is not of homogeneous type, little work on real Hardy spaces
on X has been done. Hence, looking at the example of a semisimple
Lie group G as a space of non-homogeneous type, we shall introduce a
real Hardy space H'(G//K) by using a radial maximal function on G.
In this article we shall overview some results obtained in the previous
papers [5], [6], [7] and announce a new characterization of H'(G//K),
which gives a relation between H'(G//K) and the real Hardy space
H'(R) on R via the Abel transform on G.

2 Notation

Let G be a real rank one connected semisimple Lie group with finite
center, G = KAN = KAK Iwasawa and Cartan decompositions of
G. Let dg = dkdadn = A(a)dkdadk' denote the corresponding de-
compositions of a Haar measure dg on G. In what follows we shall
treat only K-bi-invariant functions on . Since A is identified with
R as A = {ay;z € R}, all K-bi-invariant functions can be identified
with even functions on R as

and Af(ag) is given by
A(z) = ¢(shz)?* ! (sh2z)?P+! (1)

where a = (m; +mg — 1)/2, f = (mg — 1)/2 and my, my the mul-
tiplicities of a simple root v of (G, A) and 2y respectively. We note
that the one dimensional space R with normal distance and weighted
measure A(z)dr is not of homogeneous type, because A(z) ~ e?®
with p=a+F+1>0as x — oo. Let LP(G//K) denote the space of
all K-bi-invariant functions on G with finite L”-norm and L. .(G//K)
the space of all locally integrable, K-bi-invariant functions on G.

Let F be the dual space of the Lie algebra of A and for A € F, )
the normalized zonal spherical function on G which is explicitly given
by

oa(x) = 2F1 ((p+1iX) /2, (p — iA) /20 + 15 —sh’z) ,

where o F is the Gauss hypergeometric function. We recall that, if
A ¢ Z, then @, (z) has the so-called Harish-Chandra expansion:

or(z) = e P ((IJ(/\,x)C()\)eMI n (I)(—/\,x)(](—/\)e’“f”) . O

where C'()) is Harish-Chandra’s C-function. For some basic properties
of pa(x), ®(A, x), and C(N) we refer to [2, §2, §3] and [12, 9.1.4, 9.1.5].
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For f € L'(G//K) the spherical Fourier transform f()), A € F, of
f is defined by

) = /G F(9)oa(g)dg = /0 " F(@)oa(2) Alr)de.

Since @y () is even with respect to A,  and uniformly bounded on z if
A is in the tube domain F(p) = {\ € F¢;|SA| < p}, it follows that f()\)
is even, continuously extended on F(p), holomorphic in the interior,
and

< Iflls - A € Flp).

For f € C2°(G//K) the Paley-Wiener theorem (cf. [2, Theorem 4])
implies that f(A) is holomorphic on F. of exponential type. Further-
more, it satisfies the inversion formula

fo = [ T F (@) [C)] 2
and the Plancherel formula
| 1t@Pa@ds = [T IF0Rc) 2
0 0

Therefore, the spherical Fourier transform f — f of C®(G//K)
is uniquely extended to an isometry between L?(G//K) = L*(R.,
A(x)dr) and L2(Ry, |C(N)| 2d\) (cf. [2, Proposition 3], [12, Theo-
rem 9.2.2.13]).

For f € C°(G//K) we define the Abel transform F}, s € R, of f
as

Fi(z) = en1o)7 /N F(agn)dn. (3)

Then the Euclidean Fourier transform (F7)~(}) is holomorphic on F.
of exponential type, because F}(f) € C°(R), and it coincides with
the spherical Fourier transform of f:

~

Fr+isp) = (F})*(N), A€Fe. (4)
(cf. [9, §3]). Especially, F}) is even on R. The integral over N in (3)
can be explicitly rewritten by using a generalized Weyl type fractional

integral operator W7: For o > 0 and p € C, we define W7 (f)(y),
y >0, as
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where n = 0if Ry > 0and —n < Rp < —n+1,n=0,1,2,---, if
Ru <0 (see [9, (3.11)]). Koornwinder obtains that for x > 0,

F})(x) = Woll,ﬂ © W52+1/2(f)(x)'

(see [9, (2.18), (2.19), (3.5)]). In the following, for simplicity, we
denote W, (f)(x) = F}(|x|), that is,

W (f)(@) = "Wy o Wiy pn(H)(lal), = €R (6)
and for a function F' on Ry,
W_(F)(z) = W2 (5,19 0 Wei_g(e "F), = € Ry. (7)

Then W_ oW, (f)=fand Wy oW_(F)=F.
For f € LY(G//K), W, (f) belongs to L' (R), because W, (f)(z) =

62”"”/ flazn)dn, x > 0 (see (3)) and thus, the integral formula for
the Iwasawa decomposition of G yields that
IWe(Nllrwy < 1f1 (8)

(cf. [9, (3.5), (2.20)]). Hence W, (f)~(X\), A € F, is well-defined and
by (4)

~

fA+ip) =W (f)~(A), AeF. (9)

For f,g € LY(G//K), since f x g € L'(G//K) and (f * g)"(\) =
F(N)G(N) (cf. [2, Theorem 5], [3, §5]), it follows that

Wi (f xg) = Wi(f)*Wi(g), (10)

We say that a function F on R is W, -smooth if W_(F) is well-defined
and continuous. Then, for W, -smooth functions F, G on R with com-
pact support such that e ”*F and e ?*( are even, it follows that

W_(F«+G)=W_(F)xW_(Q).

3 Radial maximal functions

As in the Euclidean case, to define a radial maximal function we need
to define a dilation ¢, t > 0, of a function ¢ on G. Let ¢ be a positive
compactly supported C*°, K-bi-invariant function on G such that

[ otarts = [ o)A@ =1 (11)
G 0

4
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and furthermore, there exists M € N such that
¢(x) = O(z*M). (12)
We define the dilation ¢; of ¢ as

) = 7572 (7) (7):

Clearly, ¢; has the same L'-norm of ¢: |é¢||1 = ||¢[|1 and, for 1 <
p < oo, it gives an approximate identity in LP(G//K) (see [2, Lemma
16]). We here introduce the radial maximal function Myf on G as
follows.

Definition 3.1. For f € L. (G//K),

loc

(Myf)(g) = sup [(f*¢e)(g)l, g€C.
0<t<

o0

As shown in [5, Theorem 3.4 and Theorem 3.5], M satisfies the
maximal theorem and, for 1 < p < oo, ||fll, < [[Myf]|p if the both
sides exist. By using W, (¢;), we shall define a maximal function on
R as follows.

Definition 3.2. For F € L} (R),

loc

(MEF)(2) = sup |(F+Wyi(¢)(@), z€R
0<t<oo

Since Wi (f x ¢r) = Wi(f) *x Wi(é) (see (10)) and W, is an
integral operator with a positive kernel (see (6)), it follows that

sleMﬂ*WAW@HSW+Q$&U*@0@)

0<t<oo

Therefore, from (8) we have a relation between M, and Mf:
Proposition 3.3. For f € L .(G//K),

loc

(MZEWL(f) () < Wi (Myf)(z), «€R.

In particular,
1MW () lpry < ell Mo flh
if the both sides exist.

We note that W (¢¢)~(A) = ¢¢(A +ip) (see (9)) has similar prop-
erties of the Euclidean Fourier transform of a Euclidean dilation: Let
M be the same as (12).

(1) There ezists ¢ such that for allt >0, A€ R and 0 <k < M,
d\" »
‘<5> dr(\ + 71,0)‘ < et™(1+t)F (1 +|tA|) 2.

5
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(2) There ezists ¢ such that for allt > 1 and A € R,

d\" -
‘ (5) d0r+ z'p>\ < (14 [eA]) "M a2,
(3) (A +ip) =1 as|tA| = 0.
(4) |ds(A+ip)| >1/2 if0 < |tA] < 2.
These properties mean that Wy (¢) behaves like a Euclidean dilation
on R. Hence, we can deduce that the maximal operator M;} can

characterize H'(R), that is, F € H'(R) if and only if M;}(F) €
L'(R):

Theorem 3.4. Let ¢ be as above and suppose that M > 2. Then
F € H'(R) if and only if MPF € L'(R):

IF iy = |MEF|| (R,

4 Real Hardy spaces

Let ¢ be the same as in the previous section (see (11), (12)) and
M¢,M£{ the corresponding radial maximal operators on G and R
respectively (see Definitions 3.1 and 3.2). In this section we shall
define two real Hardy spaces Hé(G//K) and W_(H'(R)) on G and
give a relation between them.

Definition 4.1. We define
HYG//K) = {f € Lho(G//K) 5 Myf € LNG//K)}

and |l = 1Mo 1.
Clearly, since || f|[1 < |[Myf]|1, it follows that
Hi(G//K) c L(G//K).

Next we shall introduce a pull-back of the real Hardy space H'(R) on
R to G via W (see (6)). Let Mg, s > 0, denote the Euclidean Fourier
multiplier given by

My ()™ (A) = (A + i) F™(3).
Definition 4.2. For s > 0, we define

W_(M_s(H'(R))) = {f € Lj,(G//K) ; Mso W.(f) € H'(R)}

loc

and give the norm by |MsoW, (f)|| g1 (r)- We denote W_(My(H(R)))
by W_(H'(R)) for simplicity.
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Obviously, Proposition 3.3 and Theorem 3.4 yield the following.

Corollary 4.3. Let M > 2. There exists a positive constant ¢ such
that [W-.(£) gy < ellf gy for all f € HY(G//K) and thus,

Hi(G//K) Cc W_(H'(R)).
Let s = @+ 1/2. Then we see that
W_(M_,, (H'(R))) C W_(H'(R)). (13)

Actually, if we put F = W, (f) for f € W_(M_;,_ (H*(R))), then
M, (F) belongs to H!'(R). Since the Fourier multiplier M_;,, satisfies
the Hormander condition (cf. [11, §5 in Chap.11]), it is bounded on
H'(R) (cf. [11, Theorem 4.4 in Chap.14]). Thereby, F € H!(R) and
the desired inclusion follows. Similarly, since the Fourier multipliers
M, to WE{V, 0 < v < sq, which correspond to (i\)? /(X +ip)>, satisfy
the Hérmander condition, they are bounded on H'(R). Hence, each
WEY(F) also belongs to H'(R): For 0 < 7 < s,

IWE ()l my = 1MGWVE(E)i(my < elMsy (F)lli1 (-

Now we shall characterize the Hé—norm of f € quﬁ(G//K) and

show that H;)(G//K) locates between W_(M_;_(H'(R))) and W_(H'(R))

(see (13)). We recall that

froe=W_(Wi(f)x Wi(dt)) = W_(F * Wi(r)).

Therefore, roughly speaking, the Hé—norm of f, that is, the L'-norm
of Myf on G (see Definition 4.1) can be characterized in terms of the
L'-norm of qu{(W_ (F')) (see Definition 3.1). Let § = (a— ) —[av— (3]
and &' = (8 —1/2) — [ — 1/2], where [ - ] is the Gauss symbol, and
put n = [sq], d =04+ ¢ and D = {4,0’,0 + ¢'}. Then the local and
global forms of the operator W_ in (7) can be rewritten by using the
Weyl type fractional operator W;{ on R:

W (E)(y) = FE;BT;) /°° dndifzx) (z — )" d,
Yy

which corresponds to the case of f(z) = F(chz) and « = = 1/2 in
(5)-

(1) If F is Wy-smooth and supported on 0 < x < 1, then

[W_(F)(x)]

< Cz <m25a+é+MWR(m+§)(F)(m) + /:0 WE{(erg) (F)(S)A}n(m,s)ds> ,

m,§
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where the sum is taken over 0 < m < n and ¢ € D, and Al (x,s)
satisfies

0 <AL (z,s) <z7Zttm=1 for 4l 0 < z < s. (14)

(2) If F is W-smooth and supported on x > 1, then
(W (F)(z)]
o3 (o e P+ [T W (P64 51
m.§ v

| 20+8tm /:o Wftmﬁ)(F)(s)Af’n(a:, s)ds) X[0,1](7)
4o 20 (I/VR(eré / WRm+§ )(s )A (z, s)ds) X[1 00)(£)>,

where A2 (z,s) satisfies (14) and for j = 3,4, Al (x,s) > 0 and there
exists a positive constant ¢ such that

s .
/ Al (z,s)dx < ¢ for all s > 0.
0

This means that the L'-norm of Myf on G can be characterized in
terms of qu{(WEY(F)) on R. Finally, we have the following.

Theorem 4.4 Let M > 2 and F = W, (f) for f € W_(M_,_(H'(R))).
Then there exist c1,co such that for all 0 < v < sq,

e | Mgt o WE (F)(@)(tha) [ir) < If o

Z Z IME o WR Lo (F) () (tha) ™2 1 g
£eD

Especially,
ey ~ 3 S IME o WR, o (F)@)(tha)™ ] 1y
m=0¢€D
n
< e Y X IR L)l
m=0¢eD
< of|Ms, (F) |l (m)
and thus,

W_(M_,, (H'(R))) C Hy(G//K) C W_(H'(R)).

8
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Remark 4.5. Let C(\) be Harish-Chandra’s C-function (see (2)) and
Mc, the Euclidean Fourier multiplier corresponding to C,(A) = C(A+
ip):

Mg, (F)™(A) = C(A+1p) F™(A).

If we define

W_(Mc,(H'(R))) = {f € Li,o(G//K) ; M¢, o W.(f) € H'(R)},

loc

then it easily follows from Theorem 4.4 that
W_(Mc, (H'(R))) C Hy(G//K) C W_(H'(R)).

This is one of main results in [6]. However, the proof was a little bit
complicated, because to obtain the first inclusion we used the Harish-
Chandra expansion of the zonal spherical function ¢y and also the
Gangolli expansion of @) (see (2), [2, §3]). Thereby, to sum up the
estimates of each expanded terms we required a sharp estimate and
a deep theory of H'! Fourier multipliers on R. We here obtain the
desired inclusion as an easy consequence of Theorem 4.4.

5 Atomic Hardy spaces

We introduce atomic Hardy spaces on G. In the Euclidean space the
atomic Hardy space H, ;o,o(R) coincides with H'(R) (cf. [4, Theorem
3.30], [10, §2 in Chap.3]). However, it may be not true in our setting,
because the Lebesgue measure dx is replaced by the weighted measure
A(z)dz (see (1)). We denote the interval [zg — r, 29 + r] by R(zg,r)
and set the volume by

xo+7r
RGao.r)| = [ Al
To—T

We say that a K-bi-invariant function a on G is a (1, 00,0)-atom on
G provided that there exist zp > 0 and r > 0 such that

(¢)  supp(a) C R(xo,7),
(i) llalloo < [R(zo,m)| ", (15)

(i) /0 " a(x)Aw)dz = 0.

Here a is identified with a function on R. Then the (1, 00, 0)-atomic
Hardy space H ;070(G //K) is defined as follows.
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Definition 5.1. Let notations be as above. We define

H;O,O(G//K) ={f= Z)\iai ; a; 1s (1,00,0)-atom on G and ), |\;| < oo}

2

and denote the norm by
1l o) = infz |Ail,
(3

where the infimum is taken over all such representations f =) . A\ia;.
We also define H;GO(G//K) (e > 0) and H;OJB(G//K) by replacing
(73) and (iii) of the ‘above definition of (1,00,05—at0m a on G, respec-
tively, with

(i)e llalloo < |R(zo,r)| (1 +7)"¢ (16)

and

Gm /Oooa(m)A(m)dm =0 ifr <1

Moreover, we define the small Hardy space héo,O(G//K) on G by re-
stricting (1, 00, 0)-atoms in the definition of Héoyo(G//K) to ones with
radius < 1.

Clearly, for € > 0,
hioo(G//K) C Hyy(G//K) C Hio(G//K) C Hyo(G//K).
Let y1 denote the characteristic function of B(1) = R(0,1) and set

0(9) = [B(1)| 'xi(9), g€G.

Moreover, for each (not necessary K-bi-invariant) function f on G, we
define a K-bi-invariant function fab;, x € @, as

filo) = | [ s kgyarar, g ec.
K JK
Then the difference between héoyo(G//K) and H;%(G//K) is given

as follows.

Proposition 5.2. For f € H;:B(G//K) there exist fo € héo,U(G//K)
and x; € G, \; € R such that

f=rfo+Y X\,
[

where ||f0HHi(,)1,%C(G) and ). |\i| are respectively bounded by “f“Hifo(G)

10
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As in the Euclidean case, the truncated maximal operator Mé)oc on
G defined by

(MPf)(9) = sup |(f*xd)(9)l, g€,
0<t<1

is bounded from H;:B(G//K) to L'(G//K) (see [7]). As for My, we
see from [7, Theorem 5.3] that M, is bounded from H;C’:E)(G//K) N
W_(H'(R)) to LY(G//K):

Proposition 5.3. Let M > 2. My is bounded from H;’)B(G//K) N

W_(H'(R)) to L*(G//K), that is, there exists a constant ¢ > 0 such
that

1611y < ¢ (11l ) + W (F) L1y )

for all f € HW(G//K) N W_(H"(R)) and thus,

H.H(G//K)nW_(H'(R)) C H)(G//K).

Let a be a (1,00,0,1)-atom on G supported on R(xg,r). (15) and
(16) imply that [|allsc < |R(xo,7)|"1(1 + 7)~! and / a(g)dg = 0.
G
Then we can deduce that A = W, (a) is supported on R(xg,r) and
o
/ A(x)dz = A~(0) = a(ip) = / a(g)dg = 0.
—00 G

Moreover, we see that |A(x)| < ce?’th(zg + r)?**||alls (see (6) and
cf. [8, Lemma 3.4]).
Case I: g — r > 1. Since A is supported on R(xg,7) and

To+T

|R(xo,7)| ~ / P dy ~ P shr,

To—T

it follows that |A(x)| < ce?P(Tot7)(2P%0shr) " 1(1 4 7)1 < er L.
Case II: zg —r < 1l and r > 1. Since g +1 > 1,

To+r
|R(zg,7)| > c/ e2P% dy ~ 2P(T0FT)
1

Therefore, as in Case I, we have ||A|ls < cr .
Case III: zyp —r < 1, r < 1 and xy > 2r. Since xy > 2r, it follows
that zo + r > 3 and thus

To+T
|R(zg,7)| ~ / ¥ de < e(wg — r)*er.
T

o—7T

11

109



Since (xg + 7)/(xo — ) < 3, we have |A(x)| < cth(zg + )%= ((xo —
r)ser) L <er L
Case IV:xg—r <1,r < 1and zy < 2r. Since o +7 < 3r < 3 and
|R(zo,7)| > |B(r)| ~ |B(3r)|, we may suppose that a is a centered
atom supported on B(3r). Then |A(z)| < e(th3r)|B(3r)|~! < er~!.
These four cases imply that cA is a (1,00,0)-atom on R and ¢ is
independent of a. Therefore, we obtain the following.

Theorem 5.4. Let M > 2. Then
H\W(G//K) C HZWG//K) nW_(H'(R)).

Especially, My is bounded from H;{O(G//K) to L'(G//K), that is,
there exists a constant ¢ > 0 such that

1Mol < el gz

for all f € H2(G//K).

6 Characterization of Hj(G//K)

We shall prove that the inclusion in Proposition 5.3 is the equality.
First we shall introduce a subspace of H'(R). Let s, be as above,

|zo|+r
do(zo,7) = / (thx)®>dz,
max{0,|zo|—1}

and we define H;;J,B(R)a as the space of all F' = ). A\;A; such that
> IAil < 0o and each A; satisfies

(1) supp(A;) C R(zi, i)

(i) IR (A5)lo < da(i)! (17)

(idi) / Ai(z)dr = 0if r; < 1.

Definition 6.1. We define

W_(HH(R)a) = {f € Lipo(G//K) 5 Wi(f) € H(R)a}-

00,0

For f € W_(H;%(R)a) we can give a (1,00, +)-atomic decompo-
sition f on G. Let F = Wi(f) = >, Midi be the decomposition of
F given by (17). Here we may suppose that r; < 1. Actually, when
r; > 1, we decompose the support of A; by using a smooth decompo-
sition of 1, where each piece is supported in the interval with radius

12
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< 1 and thus, we have A; = Zj A;; and each A;; satisfies (17) with
radius < 1. Moreover, we may suppose that x; = 0 with r; < 3 or
|z;| > 2r;. Hence, we can rearrange the decomposition of F' as

F=> NAi+Y uBi+> wFk,
i j K

where each A; satisfies (i), (i) with 2; = 0, r; < 3, /Ai(x)dx = 0;

each Bj satisfies (¢) to (i4é) with |z;| > 2r;, r; < 1; each Ej, satisfies
(), (id) with [zg| > 2rg, 7, > 1, and moreover, >, [\i| + > [uj] +
>k el < oo. Since F is W, -smooth, finally, we have

F=Y Xai+Y pibj+> ver, (18)
5 j k

where a; = W_(4;), b; = W_(B;) and e, = W_(E}). Here it is
easy to see that each a;,bj, e, have the same supports of A;, Bj, E},
respectively.

Now we apply fractional calculus in [8] to estimate each a;, bj, ey.
For simplicity, we abbreviate the suffices 7, j, k and denote the supports
of a,b,e by R(xp,r). Without loss of generality, we may suppose that
o Z 0.

As for e, since e is supported on R(xg,1) and zy > 2, it follows
that xg —1 > 1 and thus, dy(x0,1) ~ 1. Thereby, (i7) and [8, Lemma
3.3] imply that on the support of e

le(z)] < e(tha) (@12 =207 < 07207 < ¢|R(x,1)|".

This means that ¢ e is a (1, 00, +)-atom on G.

As for b, we recall that z¢g = 0 or xz¢ > 2r.
Case I. zp — r > 1: Since zg —r > 1, do(xg,7) ~ r. Thereby, (i7) and
[8, Lemma 3.3] imply that on the support of b

b(z)| < e(the)~(@F1/2)e=202p=1 < e=2070=1 < (| R(z,7)| 7.

This means that ¢~'b is a (1, 00, 0)-atom on G.

Case II. zyg — r < 1: Since r < 1 and zg > 2r, it follows that zg <
r+1< 2, 29 —r > x9/2, and zg +r < 3zy/2 < 3. Therefore,
do(zo,7) < ¢(xg — 7)**r and thus, on the support of b

b(z)| < c(thz)OFY2 2021 (1) — Py 750 < (g — r)~FoFDp—L
Since (xg +7)/(xo — 1) < 3, it follows that

IR(z0,7)| < c(mo + )22y < c(zg — )2ty

13
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Therefore, |b(z)| < c|R(zg,7)|~' on the support. This means that
¢ 'bis a (1,00,0)-atom on G.

As for a, since 7o = 0 and r < 1, it follows that d,(0,7) ~ ré=+l
and

la(z)| < c(the)~(@F1/2) =202, =1 =(sat1) < oA (2)~1p~ L (19)

We put
0y () = cA@@) o (@), @ > 0,

Clearly, |a(z)| < ay(x) and a4 is a non-increasing function on Ry
with finite L'-norm:

sl = [ ar@A@dr = .

Since a is supported on B(r) and / a(g)dg = / A(x)dxr = 0, it
G —00

follows that |B(s)| ! / a(z)A(z)dx is also supported on B(r) and

x)dr < cA(s) e L.

B/, (WA il

Here we used (19) and |B(s)| ~ A(s)s if s <7 <1 (see (1)). Hence,

2)de < a(s). (20)

This means that cay is an L' non-increasing denominator of a sat-
isfying (20). Then [5, Theorem 4.5] yields that a has a centered
(1,00, 0)-atomic decomposition a = 3, v;a; on G such that 3, |v;| <
cllay|lr1ay < cco. Especially, a € HL 0(G//K) and ||a||H1 ) < ceo.

These three cases imply that all a;, b;, e in (18), a,nd thus f
belongs to H;OJB(G//K)

Proposition 6.2. Functions in W_(H;;(R)a) have (1, 00, +)-atomic

decompositions, that is, W_(H 't (R)s) C H;:B(G//K)

00,0
We shall prove that H'(G//K) c W_ (HiOJB(R)a) in the case of
So = a+1/2isinteger. Let f € H'(G//K) and put F = W, (f). Then
it follows from Theorem 4.4 that ||MR o WR (F)(z)(thz)se I r) <

co. We note that (thz)® is an Aj-weight. Therefore, W& _(F) has a
(1,00, 84 )-atomic decomposition with respect to this weight:

wR ( Z \iBi,

14
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o0

where B; is supported on R(x;,7;), / Bi(a:)mkda: =0, <k < sq,
— 00

| Billoo < da(zi,ri)~", and > i 1Ai| < oo, We set

F = Z NWER(B;) = Z Xid;.
(3 13

Since s, is integer and each B; satisfies the s,-th moment condition, it

o0
follows that A; is supported on R(x;,7;) and / A;(x)dx = 0. More-

o0
over, |[WE (4))]lc = |Billoo < da(xi,m;) L. Therefore, A; satisfies
(17) and thus, F € H2H(R),.

Furthermore, we can drop the assumption that s, is integer and
we have H'(G//K) C W_(H;;(R)a) in general. This means that
Hé(G//K) C H;C’):'E)(G//K) by Proposition 6.2. Finally, as a refine-
ment of proposition 5.3, we have the following main theorem.

Theorem 6.3. Let notations be as above. Then

HY(G//K) = Hyy(G//K) N\W_(H'(R)).

As an easy consequence of the previous arguments, we have

Theorem 6.4. Let € > 0. Then HY((G//K) NW_(H(R)) is dense
in W_(HY(R)). Especially, H(})(G//K) is dense in W_(H'(R)).
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Generalized Hardy’s theorem
for the Jacobi transform

R. Daher and T. Kawazoe

Abstract

The classical Hardy theorem on R was generalized by Miyachi [?]
and Bonami, Demange, and Jaming [?]. In this paper we show that
Miyachi’s theorem and Bonami-Demange-Jaming’ one can be refor-
mulated for the Jacobi transform in terms of the heat kernel.

1. Introduction. For f € L'(R) we define the Fourier transform f()),

AER, of f by

= /Z fz)e ™ dy,

Let us take two positive numbers a,b which satisfy the relation ab = 1/4.
Miyachi’s theorem in [?] states that if f € L'(R) satisfies

2

e f(z) € L'(R) + L™(R)

and
oS
/Oo |f( g |d)\ < 00

for some C' > 0, then f is a constant multiple of e=%*", where L'(R)+L>(R)
is the set of functions of the form f = f; + fo, fi € L'(R), fo € L*(R),
and logt z = logz if > 1 and log™ 2 = 0 if # < 1. On the other hand, one

dimendional case of Bonami-Demange-Jaming’s theorem in [?] states that
f € L*(R) satisfies

DD
// 1+|x|+|y|> Fdedy < 00

for some N > 0 if and only if f is written as f(z) = P(x)e~*", where P is
a polynomial of degree < (N — 1)/2. Both theorems are generalizations of

1
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the classical Hardy theorem and the Cowling-Price theorem which is an L?
version of the classical Hardy one (see [?] and [?]).

Recently, Hardy’s theorem on Lie groups has been investigated by various
people. As remarked by V.S. Varadarajan some years ago, Hardy’s theorem
can be written in terms of the heat kernel of the Laplacian on the groups.
Then, considerable attention has been paid to discover a connection between
the heat kernel and analogues of Hardy’s theorem and Cowling-Price’s theo-
rem on Lie groups. For this subject we refer to [?], [?], [?], and [?]. Moreover,
N.B. Andersen [?] and the second auther of this article and J. Liu [?] ob-
tained independently an analogue of Hardy’s theorem and its LP version for
the Jacobi transform. The aim of this article is to show that the above two
theorems can be restated for the Jacobi transform in terms of the heat kernel.

2. Notations. We collect relevant material from the harmonic analysis
associated with the Jacobi transform. General references for this section are
(7], [?] and [?]. For «, 3,A € C and = € R, = [0,00), the Jacobi function
ox(x) of order («, f), a« # —1,—2,---, is the unique solution on Ry of the
differential equation:

Logu=—(\+p*)u, u(0)=1, and v/(0) =0,

where p =a + 4+ 1 and
Los =L 4 (20 +1)coths + (26 + 1) tanh )2
af = = a cothx anh x)—.
B 2 dx

In the following we suppose that a > 3 > —1/2. Then ¢,(x) is estimated as

1 if |IA| < p,
|oa(2)] < € elSA=T i [N > p, (1)
¢is>\($)

for all z € Ry (see [?, Lemma 11]). For a compactly supported C'*° function
f on R, the Jacobi transform f(\), A € C, of f is given by

V= [ 5@ 20, ®)
0
where A, 5(7) = (2sinh z)?¢*1(2 cosh 2)?*T1. We recall that for all A € C,

(Lagf)"(A) = =(W + p) f (). (3)
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The Abel transform Fy(z), x € Ry, of f is given as

Fy(x) = /Oof(s)A(x,s)ds, v >0, (4)

where A(z, s) is positive, even with respect to x and moreover, it satisfies

A p(8)oa(s) = c/os cos(Ax)A(z, s)dz, s>0. (5)

We refer to [?, (2.16), (3.5)] for the explicit form of A(z,s). We recall that

~

f()‘) :ﬁf(A)7 A e G, (6)

where f and Fy are regarded as even functions on R and the right hand
side ﬁ’f denotes the Euclidean Fourier transform of Fy. We note that the
Jacobi transform is extended to functions for which the right hand side
of (2) is well-defined. For example, if f € L'(Ry, Aqg(x)dz), then f()),
A € R, is well-defined and it has a holomorphic extension on the tube domain
|SA| < p (see (1)). Also the relations (3) and (6) hold for |IA| < p. More-
over, the map f — f extends to an isometry between L2(R., Aq z(z)dx)
and L?*(Ry, |Caps(N)| 2d)), where Cy5(N\) denotes the Harish-Chandra C-
function (cf. [?, (2.6)]).

For ¢t > 0 let hy(x), x € R, denote the heat kernel associated to L, g, that
is, the even C'*° function on R such that

~

he(A) = e "+ X e R, (7)
We recall that
hy(z) ~ t 0P e P (L p 4 )2 (1 1), 2 >0, (8)

where “~” means that the ratio of the left side and the right side is bounded
below and above by positive constants (see [?, Corollary 1], cf. [?, Theorem
3.1]). Hence (8) and (1) imply that h,(A) is entire and (7) holds for A € C.

3. Miyachi’s theorem. We shall obtain an extension of Miyachi’s theorem
for the Jacobi transform. We put

doz = (tanh )% (1 + 2)°"2dz on R,
and

L¥Ry) 4+ L' (Ry,dox) = {fi + f2 5 f1 € L°(Ry), fo € L'(Ry, dox)}.
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Theorem 3.1. Let us take positive constants a,b which satisfy ab = 1/4.
Suppose f is a measurable function on R satisfying

(A4) = f@)hiy,(@) € L®(Ry) + L' (Ry, doz)

00 F(\) et
(B) / log™® Lcehl)\ < 0o for some 0 < C' < o0.

Then f is a constant multiple of hij4,.
Proof. The first condition (A) implies that fhl’/14a = u+wv, where u € L*°(R)

and v € L'(Ry,dy) and hence, f = hyjsqu + hyjsv. As for the first term,
it follows from (1) that for all A =&+ in € C,

(hyjsan) V)] < [lullee /0 10 () () A () i
= Cih/z;a(in) = ce"’.
As for the second term, it follows from (1) and (7) that, if |n| > p, then

|(P1/4a0)" (M)

< ¢ / (@) e (1 + 2)*Y2(1 + 2)el1 97 A (2)da
0

< c/oo lv(x)|(tanh 2)** (1 + x)a+1/26_“(‘”_"7|/2“)2dx e’ /a
0

< Pl aane™

and, if |n| < p, since e™” < ce™P" for x > 0, it follows that
2

|(h1/4av) (V)| < ellv]| 1Ry o) < €™

Hence, f()) is entire and it satisfies | f(A\)| < ce?”” for all A € C and (B). We
here recall the lemma which is used in the proof of Miyachi’s theorem (see
[?7, Lemma 4]):

Lemma 3.2. Suppose F(\) is an entire function and there ezist constant
A, B > 0 such that

IF(\)| < APV gnd / log™ [F(\)]d\ < oo.

oo

Then F' is a constant function.
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Therefore, applying this lemma to f(\)e " /C, we see that f(\) = ce "’
and thus, f(z) = chijsa(z). m

4. Bonami-Demange-Jaming’s theorem. We shall obtain an extension
of Bonami-Demange-Jaming’s theorem for the Jacobi transform.

Theorem 4.1 Let us take a function f € L*(Ry,A,5(z)dz) and a non-
negative integer N. Then the inequality

/ /°° HGlle Pin(1)Aq 5 (z)dzd) < 00

1+ AN

holds if and only if f can be written as

(B)  f(z) = P(Lap)ha(z),

where a > 0 and P is a polynomial of deg P < (N — 1)/4.

Proof. First we shall prove that (A) implies (B) by reducing the case to the
original Bonami-Demange-Jaming theorem on R. Since f(\) = F(\) (see
(6)), it follows from (4), (5) and (A) that

[ [ B2
S// DA |/01+ L d)dsd)\
I i

_ //oo|f1+”§” 2 (5) A s(s)dsd) < o.

As in the first step of the proof of Proposition 2.2 in [?], F; belongs to
L'(R.). Hence f = F; is bounded on R. Since F; € L*(Ry, |Cy 5(\)| 2d)\)
and |C, 5(\)| 2 is polynomial growth of order o + 1/2, it easily follows that
Fy € L*(R) and thus, F; € L*(R) as an even function on R. Then F}
satisfies the condition of Theorem 1.1 in [?], which yields that

Fr(A) = Qe ",

where a > 0 and @ is an even polynomial of degree < (N —1)/2. Since @ is
even, this relation can be rewritten as

IN

Fy(0) = P(= (2 + p))e ),

5
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where P is a polynomial of deg P < (N —1)/4. Since the map f — Fj
is bijectiove on L*(R, A, g(z)dz), it easily follows from (3) that f(z) =
P(Lag)ha(0).

Next we suppose that f(x) = P(Lsg)hae(x), where a > 0 and P is a
polynomial of degP < (N — 1)/4. Then, f(\) = F;()) is of the form
Q(A)e‘“)‘z, where @) is an even polynomial of degree < (N — 1)/2. We note
that, if f > 0, then

/ / o (1 —i—||§ Pix(2)Aq,g(z)dxd

< FEN]f (A QM Q)]
(1+ )N d/\ / + )N

We recall that for © > 0, f(z) = P(Lag)ha(z) ~ U(x)h,, where U(x)
is a polynomial of degree d = 2deg P, because h, = h®® is defined by
hel ~ W2, 1/2Wia+[3(e_’”2/4“) as a function of = (cf. [?, §3]) and thus,
dh2P /dx = sinh(2z)W2,(h®P) ~ sinh(2x)hPHLetL ~ zh®8 (see (8)). Here
we may suppose that the coefficient of 2¢ is positive. Since there exists a pos-
itive constant ¢ such that h,(z) > ¢(1 + z)@t1/2e=2*/4a=pr > co=2%/4a=pz for
x > 0 (see (8)), there exists a positive constant A such that f(x)+Ah,(x) >0
for x > 0. Hence, |f(x)| = |f(z)+Ahy(x)— Ahy(z)| < f(x)+2Ahe(z). Then,
replacing | f(z)| with f(z)42Ahe(x) > 0, that is, Q(i)) with Q(i)\)+2A4e "
in the above calculation, we have the desired result. m

d)\ < 0.

As an easy consequence of Theorem 4.1, we can deduce the Beurling
theorem for the Jacobi transform.

Theorem 4.2. Suppose that f € L'(Ry, A, 5(z)dx) satisifes

/ / )| f (V)| pin(x) Ag s(z)dzd) < co.

Then f = 0.
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Uncertainty principle for the Fourier-Jacobi
transform

Takeshi KAWAZOE *

Abstract

We obtain a uncertainty principle for the Fourier-Jacobi transform
fa”g(A). When |3] < a+ 1, as in the Euclidean case, an analogues
of the uncertainty principle holds, because there is no discrete part
in the Parseval formula. Moreover, we can obtain a new type of a
uncertainty inequality: the L?-norm of fa,/g()\))\ is estimated below by
the L2-norm of (a+B+1)f(z)(cosh ) L. Otherwise, the discrete part
of f appears in the Parseval formula and it influences the uncertainty
principle.

1. Notation. Let a, 5 € C, Ra > —1 and p = a+ f+ 1. For A € C, let
o (x) denote the Jacobi function of the first kind, that is, the unique solution
of (L+ A2+ p?)f = 0 satisfying f(0) =1 and f’(0) = 0, where

d d
L=A@)'Z (A —) 1
(1) (A) (1)
and A(z) = (2sinh z)?**(2 cosh 2)?#+1. For \ # —i, —2i, —3i,..., let ®y(x)
denote the Jacobi function of the second kind which satisfies

2120 (o + 1) g (x) = C(N)@a(z) + C(=N)D_y (), (2)

where C'()) is Harish-Chandra’s C-function. Then the following estimates
are well-known (cf. [2, 3]): For z > 0 and A € C with |SA| < p

[oa(z)] < 1 (3)

*Supported by Grant-in-Aid for Scientific Research (C), No. 16540168, Japan Society
for the Promotion of Science
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and for ¢ > 0 there exist a positive constant K such that for x >, A € R
A (2)] < Kse™™, (4)

and there exists a positive constant K such that for A € R
C=NTH < KL+ A2 (5)

Let f € OX(R), the space of all even C*° functions on R with compact
support. Then the Fourier-Jacobi transform f()) is defined as

~

71.1/2 0o
) = gy [ f@o@A@a, ©)

This transform f — f satisfies analogous properties of the classical cosine
Fourier transform; the inversion formula, the Paley-Wiener theorem, and the
Plancherel formula are obtained in [2, 3]. For convenience we suppose that
a, # € R in the following. We define

Daﬂ:{i(|ﬁ|—Oé—l—Qm);m:O,l,Q,--- ,|ﬂ|—a—1—2m>0}.
Then the inversion formula is given as follows. For f € C2%(R),

f@) = 5 [ FB@ICNP T S Fweddn)

PED, 5
where d(u) = —iResy—,(C(A\)C(—A)'). We denote this decomposition as
f=r+7f (7)

and we call fp and °f the principal and discrete part of f respectively. We
here recall that for each u € D, g, there exists a positive constant K () such
that

|fu()| < K (p)e™@Hebe, (8)

We denote by F(v) = (F(A),{a,}) a function on Ry U D, g defined by

F() F(\) itr=XeRy
V) =
a, if v=pecD,p.
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We pu

t F(v) = (F()\), {@,}) and define the product of F(v) = (F()), {a,})
and G(v)

= (G(A); {bu}) as
(FG)(v) = (F(NGA), {aubu})-

For a function ~(\) on C, we define F(v)h(v) by regarding h(v) as a function
on D, . Let dv denote the measure on Ry U D, g defined by

/ :—/ )| 72d\ + Z a,d(f).
R+UDQB Hesz,ﬁ

For f € C%(R), we put

Fw)=(FNAFw}).

Then the Parseval formula for the Fourier-Jacobi transform on CZ2(R) can
be stated as follows (see [3, Theorem 2.4]):

/0 " @)@ A@)dr = / g (9)

for f,g € C%(R). This map f — f.fe C2(R), is extended to an isometry
between L*(A) = L*(Ry, A(z)dz) and L*(v) = L*(Ry U D, g, dv). Actually,
each function f in L?*(A) is of the form f = fp + °f (see (7)) and their
L?-norms are given as

/ooo @AW =5 /Ooo FOPICO)I2dA,

| Pr@PAGE = 3 laPdn) if°£0) = Sy, , autulo)io)

wEDG g
Therefore, if we put £(v) = (f(A), {a,}), then ||fl|z2a) = [|fz2) and
1 [~
f(fv)=§/0 FO@ICNPdA+ Y auulz)d(p). (10)
nEDG g

We define
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and put

f(x) = and O(\) = (\2 + p»)Y/2,

2. Main theorem. We keep the notation in §1 and prove the following.

Theorem 2.1. Let « > —1, f € R For f € L?(A), we suppose that
f0 € L*(A) and fO© € L*(v). Then

A 1
||f9||%m)/ [FWPOW)dr = 21l a), (12)
R+UDQ,B
where the equality holds if and only iof f is of the form

o 7/0x9(t)dt

for some ¢,y € C.

Proof. Without loss of generality we may supppose that f € CZ%(R) and f
is real valued. Since X
Fw) =N ().

(f
and (—Lf)"(A) = fFA) (X2 +p?) = fF(A)O(N)?, the Parseval formula (9) yields

that
/RUD fW))PO)kdy = /0 f(@)(—Lf)(z)A(z)dx

-/ (@) A@)d.

0
Hence it follows that

T
- /Oof (2)°0(@)*A(x)da /Ooo(f’(x))ZA(x)dx

> /f )dx)
- ([ vy SHUNE
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Here we used the fact that B’ = A (see (11)). Clearly, the equality holds if
and only if f = cf’ for some ¢ € R, that is, f'/f = ¢~'0. This means that

log(f) = c_l/ 6(t)dt + C and thus, the desired result follows. m
0

We recall that ©2(\) = A\? + p?. Then (12) and the Parseval formula
imply the following.

Corollary 2.2. Let f be the same as in Theorem 2.1.

~ 1 o0
16220, / 0o > / F@)P(1L— 420 A(x)dr. (13)

+UDQ’B
We shall estimate § and 1 — 4p%6%. Since o > —1, it follows that
B(z) = / (2sinh 5)?**1(2 cosh 5)**1ds
0
sinh
= ?P/m 2T (1 + ¢%)A at
0
1
_ meﬂnhxfaﬁi/ 2041 (] 4 (sinh 2)22)P dt
0
1
— 221 (5inh 2)22 (cosh 1) / (1— $)%(1 — (tanh 2)2s) ds
0
1
= 2% !(sinh x)**"*(cosh x)w?F(l, —83,2 + a; (tanh )?)
o
and thus,
1

f(x) = mF(l, —3,2 + «a; (tanh 2)?) tanh . (14)

Lemma 2.3. Let k= 0,1,2,--- and 0 < x < 1. We suppose that k—(a+1) <
B<k+(2k+1Da. Then * ' F(k+1,k— B,k + 2+ «, 2?) is increasing and

L(k+2+a)l(p—k)
Fl+a)l(p+1) °

0< s F(k4+1,k—B,k+2+a;2%) <
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Proof. When k— (a+1) < 3 < k, it follows that F(k+1,k—§,k+2+ ;) is
increasing on 0 < z < 1. Hence H(z) = Hi(a, B3,2) = 2?* ' F(k+1, k-, k+
2+ a; 2?) is dominated by H(1) = T(k+2+ a)(p— k)/T (1 + a)L(p+ 1).
Let £ < 8 < k + (2k + 1)a. We shall prove that H(x) is increasing and
H(z) < H(1) as before. In order to prove that H(z) is increasing, we shall
show that its derivative is positive. We note that

2(1 4+ k)(k — B)a™!
24+ k4«

H'(z) = (1+2k)r "Hy(o, B,2) + Hii1 (o, 3, xf15)
= (14 2k)a ' Hy(a, 3, 7)
+2(1 4+ k+a)z ! ( Hy(a — 1, 8,7) — Hp(a, ﬁ,x))
.
where K (z) = (1+2k)F(1+k, k—3,2+k+o;2)+2(1+k+a)(F(1+k, k—
B, 1+k+a;2)— F(1+kk— 3,24+ k+ «,z)). Then

k
K@) = 1Rk pae e (L2 g6 g0
Hk—l—l(a - 17571‘) Hk+1(aa5,$)
+2(1+k+a)( l+k+a 2+k+a ))

Since 3 > k, 2 H, (0, B,2) = FQ+k,1+k— 3,3+ k +a;7) <
F+kl+k—B2+k+a;2)=a"H  (a—1,06,z)and 1/(1+k +
a)—1/(2+k+a) > 0, it follows that K'(z) < 0 and thus, K (z) is decreasing.
Therefore, H'(x) is decreasing and

F2+k+a)l(a+p—k) >0

H'(x) > H'(1) = (k+ 2k + 1)a — ) NCES T I

under the assumption on 3. Hence H(x) is increasing. m

Lemma 2.4. Let notation be as above and p > 0. If —(a+1) < 3 < a, then
0<0(x)<1/2p
and if a < 3 and k is an integer such that k—14+(2k—1)a < B < k+(2k+1)a,

then
1 @K DB+ D(p—k)
0<0() < o DTGk T i) ~ V)

6
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Proof. Clearly, 8(x) > 0 from Euler’s integral expression of hypergeometric
functions. The first assertion follows from (9) and Lemma 2.3 with £ = 0.
We suppose that a < § < 1 + 3a, that is, the case of £ = 1 in Lemma
2.3. Since ( is out of the range when k£ = 0, we couldn’t conclude that
H(z) = xF(1,—(3,2 + a;z?) is increasing on 0 < x < 1. Let = zy be the
maximaum point of H(x). Since

20
24+«

H,(l‘) = <F(1a_6ao‘+27x2) - $2F(2,1—ﬂ,a—|—3,$2))

and H'(xy) = 0, it follows that

2
Hlw) = 5o —afF(2,1 - B0+ 3,23)

Since a < # < 1+ 3a, applying Lemma 2.3 with £ = 1, we see that

H(z) < 1 26 TB+a)'(p—1)
20+1) = 2a+D)24+al(1+a)l(p+1)
12T+ AL 1)
210 T(B)(p)

When 1 + 3a < 8 < 2 4 5a, we couldn’t apply Lemma 2.3 in the above
argument to conclude that 23F (2,1 — 8, a+ 3, 2?) is increasing on 0 < z < 1.
Hence, we shall consider its derivative and the maximum point again. Then
we can apply Lemma 2.3 with £ = 2 to the derivative. Generally, when
(k—1)+Q2k—1)a< B <k+2k+1Da, H(a,B,z) = 22T F(I+1,1- 3,1+
2+ a;2%), 0 <[ < k-1, are not increasing and Hy(«, 3,z) is increasing.
Then it follows from (9) that

f(x) <

2(8 —1+1)
@ - D1+ +a)

Hlfl(aaﬁaxlfl) = Hl(aaﬂaxlfl)a

where x; 1 is the maximum point of H; 1(«, 3, x) and thus,

1 ﬁ( A(B—1+1) TDk+2+a)T(p—k)

= e+ M@= ni+ita) Ta+arp+1)
1 (2K T(B+1)(p—k)
20 (2k — DIT(B—k+ 1)T(p)

b(z)

7
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The asymptotic behavior of 6(x) follows from Wallis’ formula. =

Lemma 2.5. Let T(z) = 1 — 4p*0(z)?. If —(a+1) < 3 <0, then T(z) >
(coshz)~2. Generally,

coshx ) if x — oo,
ifx—0

and if < «, then () >0

Proof. Since F(1,—(,24+ «;0) =1 and F(1,—f3,2 4+ ;1) = (v + 1) /p, the
asymptotic behaviour easily follows. If —(a+1) < # <0, then F(1,—03,2+
«; ) is increasing with respect to z. Hence 0(z) < F/(1,—3,2+4 «; 1) tanhx
/2(a+ 1) < (1/2p) tanh z and thus, T(z) > (coshz)™2. If 0 < 8 < a, then
Y(z) > 0 from Lemma 2.4. m

We put

o0 ) = 2k — )IT(B -k + 1)T(p)
EA k)" T(B+ 1) (p—k)

Lemma 2.4 implies that, if £ — 1+ (2k — 1)a < § < k + (2k + 1)c, then
0(x) < (2pe) ™" (17)

The following assertion follows from Theorem 2.1, Corollary 2.2, Lemma 2.4
and Lemma 2.5.

(16)

Corollary 2.6. Let p > 0 and f be the same as in Theorem 2.1. If —(a+1) <
/8 S a, then f = fP;

AmMuW@uﬂcuwﬂﬂzpwm;m)
and
AﬂﬂwwwmwwzfﬂﬂﬂmwwNmm

where T(x) =1—4p*0(x)? > 0, and if k—1+ (2k—1)a < S < k+(2k+1)q,
then

[ lfwPewd = el
R+ UD, B

8
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and
[ fwprar> 2 1@ Pr@A@. (18)
R+UDQ,B 0

The shapes of 0(t) with 1/2p and Y'(t), t = tanh x, are respectively given as
follows.

1/2p and 6 (x) Y (x)

1 ' 1

Figure 1: The case of g < a.

1/2p and 6(x) Y (x)

1

Figure 2: The case of 3 > «.

3. Uncertainty. We shall apply the inequalities obtained in the previous
section to deduce some information on the concentration of f and f . Let f
be a non-zero function in L?(A) satisfying f0 € L?(A) and fO € L?(v). We
recall that

f=rf+°f °flx)= Z a,Bu(2)d(p)

and f(v) = (f(V), {a,})-

Definition 3.1. Let 0 < ¢ < 1/4p® and M > 0.

9
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(1) We say that a function f(x) on Ry is (0,€)-concentrated at x = 0 if

1Ol z2a) < €ll fllr2(a

and is (0, €)-nonconcentrated at x = 0 if the reverse holds.
(2) We say that a function f(X) on Ry is (A, €)-concentrated at A = 0 if

/0 FOVRXICON 2N < e f[aga,

and is (X, €)-nonconcentrated at X = 0 if the reverse holds.
(8) We say that a function f(x) on Ry is (u, €)-concentrated at x =0 if

Y lauPluldn) < el fll7aa)-

“eDa,B

(4) We say that a function f(z) on Ry is (T, €)-nonconcentrated at x = 0
if
[ U@ @A @] < dili,
(5) We say that a function f(x) on Ry is (o, €)-bounded if

|f(@)] < ellflle2ay if © > xo.

Now we suppose that f(z) is (6, €)-concentrated at = 0. Since
[N CICOR
R+UDQ,B
= /0 FOOPXICN)72 AN =Y lauPlufd(n) + 0211 f1IZ2a)-
Da s
it follows from (12) that

/0 [FOVPNICN) AN = N ul’d(p) > (1/4€ = o)1 f 1172 (a)-
Da s

Therefore, f(v) is (A, 1/4e — p*)-nonconcentrated at A = 0.

10
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Conversely, we suppose that f(l/) is (v, €)-concentrated at A = 0. Then it
follows from (17) that, if k — 14 (2k — 1)a < f < k + (2k + 1)c, then

/ @) PY@A@Y > (1— )| ol

0

Here we recall that 1 — ;> < 0. Moreover, letting A = / |fp(2))?Y (2)|
0
A(x)dx and B = ||fp||%2(A), we see from (13) for f = fp that

(B— A)eB > p*AB

and thus,

B
A< 2 < °p (19)
p2 + € p2
Therefore, fp(x) is (7, 0)-nonconcentrated at = = 0, where
§ = max{e;*> — 1, p %¢}.

Moreover, let xy = 1. Then it follows from (2), (3), and (4) that for x > 1,
@l < | [ Fovewon iy

< i / NICENT D+ [ FOlIoEN )

NG
< e Ry (P fp sy

RN 1/2 o0 1/2
([ iopwieorzan) ([ aran™)
Ve Ve
< 2e K€ frlliza
Hence we have the following.

Theorem 3.2 Let p > 0 and f € L2(A) satisfy f0 € L*(A) and fO € L*(v).
Let k be an integer such that k—1+(2k—1)a < f < k+(2k+1)a, where k = 0
if B < a. We define g, by (16) where e = 1. If f(x) is (0, €)-concentrated
at x = 0, then f()\) is (X, 1/4e — p?)-nonconcentrated at X = 0. Conversely,
if f(\) is (X, €)-concentrated at X = 0, then fp(z) is (T, )-nonconcentrated

11
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at v = 0, where § = rnaux{e,;2 —1,p7%¢}, and there exists a positive constant
c such that fp(z) is (1, ce'/*)-bounded.

When 5 < «, we recall that f = fp and g9 = 1 (k = 0). Hence, the
above theorem implies that f(z) is (7, p~?¢)-nonconcentrated at r = 0 and
(1, ce'/*)-bounded. Therefore, f(x) is spread if ¢ goes to 0. However, when
[ > a, then g, < 1 and it is not clear that f(x) is spread if € goes to 0. This
implies that the discrete part of f influences the uncertaintity.

We now suppose that § > «, f()\) is (A, €)-concentrated at A = 0 and
f(x) is (u, €4)-concentrated at x = 0. We shall prove that f(z) is spread if

o0

e and ¢4 go to 0. As in the previous argument, let A = / |f(2)]*7 (2)]
0
A(z)dz and B = | f||72(a)- Then it follows from (13) that
(B— A)(e+eq)B > p*AB

and thus, A < p~?(e + ¢4)B. Let zy > 0 the point such that ¥’(x¢) = 0 and
x > 9. As before, it follows that

|fp(2)] < e P K ||l r2(a)-
On the other hand, it follows from (8) that

Pr@) < Y laullgu(@)ld(n)

l"‘esz,ﬁ

1/2
< e (O30 el ) e s

“eDa,B

Hence, for x > x4, we see that there exist a positive constant ¢ such that
F@)er ] < el + eI llzxa):

Therefore, it follows that

| @Pr@A@a = o [ if@e T

Zo

> NP PI ey [ T

Zo

= cr(e/ + e PIfIn)-

12
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Here ¢y < 0, because / Y(z)dz < 0.

zo

Theorem 3.3 Let 3 > a and o > —1. Let f € L*(A) satisfy f0 € L*(A) and
fO € L*(v). We suppose that f()\) is (X, €)-concentrated at X = 0 and f(z)
is (u, €4)-concentrated at x = 0. Then there ezists constants cy < 0,¢ > 0
such that f(x) is (T, 0)-nonconcentrated at x = 0, where § = max{—cy(e'/* +
6(11/2), p~2(e +eq)}, and is (xo, c(e/* + 6(11/2))—b0unded.

We suppose that f is supported on [R,00). Then there exists a constant
0 < e(R) < 1 such that

1
0<blo) < 2pz(R)

and £(R) — 1 if R — oo. Then it follows from (13) that

[ e ¢ [T @R em? - s
R+UDQ’5 0
Then we obtain the following.

Proposition 3.4. Let p > 0 and suppose that f € L*(A) satisfies f0 € L*(A)
and fO € L*(v). We suppose that [ is supported on [R,00). Then

> lauPluld(n) S/Ooo|f(A)|2A2|C(A)|‘2dA+p2(1—S(R)Z)HfH%z(A)-

l"‘esz,ﬁ

Remark 3.5. When § = 0, we can calculate more precisely. In this case
6 = (2p) 'tanhz and 1 — 4p*0? = (coshz) 2. Therefore, (12) and (13)
became

1f () t3”1}133”%2@)||f()\)()\2 + :02)1/2”%200\72) > p2||f||4L2(A)7

where the equality holds if and only if f is of the form ¢(cosh x)?, and

1f () tanh 2|20 L DA Z2 -2y = 22112 l1F () (cosh ) T[T

Since the Jacobi transform of (cosh A)? is explicitly calcurated in [1], we can
directly check the equality condition for these inequalities.

13
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Hardy’s theorem on SU(1,1)

Takeshi KAWAZOE *and Jianming Liu

1. Introduction. The classical Hardy’s theorem [6] asserts f and its
Fourier transform f can not both be ”very rapidly decreasing”. More pre-
cisely, suppose a measurable function f on R and its Fourier transform f on
R satisfing

f(2)] < Ae™  and |f(N)] < Be™™ (1)

for some positive constants A, B, a and b. If ab > 1/4, then f = 0, and
if ab = 1/4, then f is a constant multiple of emae?, Recently, an analogue
of Hardy’s theorem was established for some Lie Groups; for the case of
ab > 1/4 see [2], [3], [4], [5], [7], [11], [13], [14], [15], [19] and for the case
of ab = 1/4 see [10], [17], [20], [21], [22]. In the last case the heat kernel
on Lie groups plays an essential role to control the decay of f. Moreover,
Hardy’s theorem is generalized for the Fourier-Jacobi transform (see [1] and
[8]) and for the Heckman-Opdam transform (see [16]). However, as pointed
in [1], Hardy’s theorem on SU(1,1) does not hold if no assumption on the
K-types of f is imposed: Let G = SU(1,1), and for g € G let g = kyaky,
0<x 0<¢,9 <4m, denote the Cartan decomposition of ¢g. Let h; denote
the heat kernel on GG and for integrabl functions f on G let fn,m, n,m € 7,
the spherical Fourier transform of f corresponding to the K-type (n,m) (see
(6)). We suppose that a measurable function f on G and its spherical Fourier
transform fn,m on R satisfing

1£(9)] < Ahyjaalg) and | frm(N)| < Be ™™ for all n,m € Z (2)

*Supported by Grant-in-Aid for Scientific Research (C), No. 16540168, Japan Society
for the Promotion of Science
tSupported by National Natural Science Foundation of China, Project No. 10001002.
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for some positive constants A, B, a and b. Then, f = 0if ab > 1/4, however,
there are infinitely many linearly independent functions on G satisfying the
above condition if ab = 1/4 (see Theorem 3.2).

In this paper, we will show that the condition (2) under ab = 1/4 deter-
mines a function on G uniquely in the following sense: In the classical case
the condition (1) under ab = 1/4 guarantees the limit

lim ¢ f(z) = ¢
T—00

and then f is uniquely determined as f(z) = ce *’. On SU(1,1), similary,
the condition (2) under ab = 1/4 guarantees the limit

lim (h1/4a(1'))_1f(k¢a:v) = F(¢)

T—>00

and then f is uniquely determined by using the Fourier coefficient of F' (see
Theorem 5.1).

2. Notation. Let G = SU(1,1) and A, K the subgroups of G of the
matrices
el?/2
0 e 19/2

_( chz/2 shz/2

a$_(shx/2 (:h35/2>’x€]R and k¢:(

), 0<¢<dr

respectively. According to the Cartan decomposition of GG, each g € GG can
be written uniquely as g = kga,ky where 0 < z, 0 < ¢, < 4w, Let 7,
(j = 0,1/2, A € R) denote the principal series representation of G. In the
following, we shall consider functions f on G satisfying

flag) = fla—s), z€R

and we shall identify f with an even function on R, which is denoted by the
same letter f. Under this restriction the (vector-valued) spherical Fourier
transform [, f(f)7;(A)dg, dg a Haar measureon G, is supported on j = 0
and A > 0 (cf. [18, §8]).

Before introducing the explicit form of the spherical Fourier transform of
f on G, we shall define the Jacobi transform of f on R. Let a, 3, A € C and
x € R. We shall consider the differential equation

(Las + A+ p%) f(2) =0, (3)

2
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where p =a + #+ 1 and

2

L + ((2a + 1)cthz + (26 + 1)thx)%

a,,ﬁ - d 2
Then, for « ¢ —IN, the Jacobi function of the first kind with order («, 3)

A pmid
;“ﬂ(x)zp(p“ P2 o4 1;—sh’ ) (4)

2 72
is a unique solution of (3) satisfying ¢’(0) = 1 and d¢$"’/dx(0) = 0. Then

for an even function f on R the Jacobi transform f, 3(A) is given by

Fus() /f )67 (2) A p(2)de (5)

where A, 5(r) = (2shz)?*! (2chz)? .

Let n,m € Z and ¥\ (g) (A € R, g € G) the matrix coefficient of 7 »(g)
with the K-type (m,n). Then the (scalar-valued) spherical Fourier transform
fnym of type (n,m) is defined as

We recall the explicit form of T/);L’m(g)
U (g) = () (tha) ", (W) I (@),

where g = kya,ky and

Oum(\) = < —1/2—75)\:Fm)‘ )

n —m|

Here Fm is equal to —m if m > n and m if m < n (see [12, (3.4.10)]). Hence
from (5) and (6) we see that

Frm(X) = Qun(N)(f () (shar) 7" (char) =) o (M), (8)

Let hf’ﬂ denote the heat kernel for the Jacobi transform, that is, an even
function on R satisfying

(h)h 5(A) = e "X+t A e R.
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Then, it follows from (8) that

(B @) (sha) " eha)™ ) () = QunNe L (9)

n,m

3. Hardy’s theorem. We keep the notations in the previous section.
As an application of the Hardy’s theorem for the Jacobi transform (see [1],
[8]), we have the following.

Theorem 3.1. Let [ be a mesurable function on G of the K-type (n,m)
and satisfy

() £() = O (Rl (@) (sha) " (cha)™ )

(i3) Fam() = O (Qum(N)e ™) .
If ab > 1/4, then f = 0, and if ab = 1/4, then f is a constant multiple of
PP () (shar)Im ol (chu ),

Proof. Let g(x) = f(z)(shz)~™~™(chz)~("*™)  Then

g(x) = O (R, " ()
and ) 2
G- maem(N) = Fam(NQ, k() = O ()

By Hardy’s theorem for the Jacobi transform (see [1], [8]), it follows that,
if ab > 1/4, then g = 0 almost everywhere, and if ab = 1/4, then g is a

constant multiple of h" ™™™ (z) and thus, f is the desired form. W

We here recall the asymptotic behaviour of the heat kernel:

hf’ﬁ(x) ~ t_o‘_le_”%e_p’”e_’ﬂ/“(l +t+ x)o‘_l/z(l + ) (10)
(cf. [8, Theorem 3.1]). Then, as functions of z,
heP () (sha)® (cha)? ~ hY%(z)(1 + )%, 2 — oco. (11)

Theorem 3.2. Let f be a mesurable function on G and satisfy
() @) =0 (W7 ()
(i) fom(N) =0 (e_b)‘2> for all n,m € Z.

4
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If ab > 1/4, then f =0, and if ab = 1/4, then f is of the form

fl9) =Y anhy™ () (cha)> @),

nel

where g = kyazky and a, € C .

Proof. Let f = Zn,mEZ fn,m be the K-type decomposition of f. Clearly
fam(T) = O(h(f’/(;a(ff)) — O(h'f};f"”m(x) (sha) "=l (cha) ™ (1 + )~ Te—ml)
(see (11)) and frm(N) = O(e™) = O(Qum(N)e™™) (see (7)). Hence
Theorem 3.1 implies that, if ab > 1/4, then f,,, = 0, for all n,m €
Z, and thus f = 0. If ab = 1/4, then f,,, is a constant multiple of

PP () (sha)=ml (cha) . Since fom(z) = O(h(l)’/ia(x)), it follows
that [n —m| = 0. Therefore, f must be of the desired form. B

4. Asymptotic behavior. We fix ¢ > 0 and we shall consider an
asymptotic behavior of h,?’Q”(:c) when x — oo. For an even function f on
R let W7 (f), n € C, o > 0, denote the Weyl type fractional integral of f,
which is defined by

o)) =T [ f)(ehon — oy dichor)  (12)

for i > 0 and is extended to an entire function in p (see [9, (3,10), (3.11)]).
We recall

@, « a, 2 )2
(hy ﬁ)g,ﬁ()‘) =F (23 +3/2W;_5 © W,6‘2+1/2(ht ﬁ)) =e e )

where F denotes the Euclidean Fourier transform (see [9, (3.12)]). Therefore,
letting o = 0 and § = 2n, e HEHD* WL o W22n+1/2(h,?’2”) does not depend
on n. Hence, it follows that

pO* = e U D2 o W2, 0 W, 0 W2, (hY). (13)

Lemma 4.1. Forn=0,1,2,---,

n—1

W2, o Wa(f)(x) =) ¢ (cha) "W} (f)(x)
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and ¢§ =272 |t < | | <272 =3 (0< 1 <n—1).

Proof. Since
, 1 d 1,

W= 9sh2z dz  4chz W
it follows from the induction on n that

W2, o W (F)(@) = 3 e chr) W (f) )

and ¢ = X(c)7" = (n+1—2)c/7"). Since ¢f = 1" and || < |cr | <

1
(2"4_3) |c"~}|, the desired estimates on ¢} follow. W

Lemma 4.2. Let a,b,c,0,l >0 and f(z) = O (e"”"’bwz(l + x)c) Then
fora=n+pu>0wheren € Nand 0 < pu <1

() WE(F)(@) = O (eemm=m=te (1 4 )e=(r4D)

(it) Wa ((cha) ™' f(x)) = (cha) "W (f)(x)
+0 (e(aa—l)x—ax—bxz(l + x)c—(n-i—l)) .

Proof. We may suppose that z is sufficiently large and n = 0. As for (i),
we need to estimate the integral of the form

o 2
/ e(a—a)s—bs s%ds
T

(see (12)). Since el@=)s=bs* g¢  g=b(s=(2=a)/20)* (5 _ (o, — ) /2b)s°~", the above
integral behaves as ela—a)z—ba® =1 Then the desired estimate follows from
integration by parts. As for (i7), it is clear from (). W

Now we shall estimate I(z) = W?, , 0 W2,, 0 W,, o Wf/Q(h?’O)(x) (see
(13)). Applying Lemma 4.1, we see that

2n—1

I(x) = WZ,o (Z C?"(Chw)_@"“)ml) o Wi (h?)(2)
=0
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2n—1

= W12/2 oWZ o (Z ¢ (cha) =W} > © W1/2(h0 ") (x)

=0
2n—1
" 2n + [ n
= (= W ((cha) O o WL () (2)
=0

+ Wy ((cha) W2, 0 W o WL ()0)) ()

2n—1

. 2n+l —(on
= (= W, ((cha) GO 0 WL () (2)
=0
2n—1
+ Y (W ((cha) CHOWE oW o W, (1)) (2)
=1
W ((eha) W2,y (W)0)) (), (14)

We recall that by (z) ~ e*=%" /% (1 + z)"/? (see (10)). Then Lemma 4.2 (i)
implies that each term in the first sum in (14) behaves as ¢Ze~2n+o=2*/4(1 4
)27 ~ by (x) (cha)=2*(1 + 2)~7, v > 1. Similarly, since W?, o W =
(2chz)'WE, each term in the second sum in (14) has the same behaviour.
On the other hand, it follows from Lemma 4.2 (i7) that the last term in (14)
behaves as ¢2*hy’(z)(chz)2*(1 + O((1 + x)7)), v > 1. Therefore, we see
that

I(z) = &*h)° (z)(chz) ™" <1+0<(1+4 < i" Y1 +3)” ))

0

Since e (21" ~Dp(4n — 3)11 < O, it follows that
h{?™(x) = h{ () (chz) ™" (2—2%—“(2”“)2—1) +0((1+ x)—l)) . (13)

5. Main theorem. Let ab = 1/4 and f be an L? function on G satisfying
the assumptions in Theorem 3.2. Then Theorem 3.2 and (15) imply that f
is of the form

Flo) = 3 anhy™(z)(cha)?em@+v)

nez

_ Zanhoo (2 2n,~b((2n+1)?-1) +O(( )" 1)) ein(é+).

neZ
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where g = kya,k, and a, € C. Since f € L*(G), the Plancherel formula on
G and (9) imply that

_ 2
2 :|an|26 2b((2n+1) < 00.
nez

Therefore, it easily follows that, as an L? function on K,

lim (hy®(2)) 7" f(koas) = ap2 e (D" 1eine, (16)
T—>00
neZ

Finally, we have the following.

Theorem 5.1 Let ab = 1/4 and let f be an L? function on SU(1,1)
satisying

() @) =0 (W)
(i) fum(N) =0 (e_b)‘2> for all n,m € Z.

Then, as an L? function on K, lim, . (hy° ()~ f(ksas) evists;

lim (b, () " f(kpa.) = F (o)

Tr—r0o0

and moreover, f is uniquely determined as

Flg) = ca27me D =002 () (cha) et (@)
nez

where g = kyazky and {c,} the Fourier coefficients of F.
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An uncertainty principle on Sturm-Liouville
hypergroups

R. Daher and T. Kawazoe

Abstract

As an analogue of the classical uncertainty inequality on the Eu-
clidean space, we shall obtain a generalization on the Sturm-Liouville
hypergroups (Ry,*(A)). Especially, we shall obtain a condition on A
under which the discrete part of the Plancherel formula vanishes.

1. Sturm-Liouville hypergroups. Sturm-Liouville hypergroups are a
class of one-dimensional hypergroups on R, = [0, 00) with the convolution
structure related to the second order differential operators

> Alx) d
L=t 2w av

where A satisfies the following conditions (see [1], [2]):

(1) A>0on R% = (0,00), and is in C*(R?),
!/
(2) on a neighborhood of 0, i((xx)) = 2a$—|— ! + B(z), a > —1 and
a) if @ >0, B and B’ are integrable,
b) if « =0, logzB and xlogzB' are integrable,
¢) if =3 <a <0, 2B and 2" B’ are integrable,
d) ifa= —%, B' is integrable,

Al _ Al(x)
—_ > * _— =

(3) T2 0 on R and lim,_, ) 2p,
LA\ 1 /AN\2

(4) 3 <Z> + 1 <Z) — p? is integrable at co.

Since A'/A = (log A)’, (3) implies that A is increasing, and thus, A(0) <
oo. Under the conditions (1) to (3), the second order differential equation:
Lu+(A?+p?) = 0, A € C, has a unique solution satisfying u(0) = 1, u/(0) = 0,
which we denote by ¢,. Furthermore, under (4), if A > 0, then there exists
another solution ¢, (x), which behaves as \/7r/2\/ﬂHé1) at 0o, where H{" is

147



the Hankel function. Similarly, we have ¢} (z) for X <0, and for A € R,
there exists C'(\) € C such that ¢x(z) = C(\)x(z) + C(\)5 (o).

Let C2%(R) denote the set of C'™° even functions f on R. For f € C2%(R)
the Fourier transform f is defined by

- [ s@on)awis

Then the inverse transform is given as
Zﬂ-/\f ¢A +_/ f ¢)\ ( )|27
AeD

where D is a finite set in the interval (0, p) and m\ = ||¢al|, We

2
: v ||L2(R+,Ad:n)'
denote this decomposition as

f=°f+1fp

and we call fp and °f the principal part and the discrete part of f respec-
tively. We denote by F(v) = (F(A),{ax}) a function on Ry U D defined
by

F(v) = F(\) ifv=XeR,
V1= aa ifr=AeD.

We put F(v) = (F()\), {ax}) and define the product of F(v) = (F()\), {ax})
and G(v) = (G(X), {br}) as

(FG)(v) = (FA)G(A), {aaba})-

Let dv denote the measure on Ry U D defined by

v)dv = TAG +—/ 2d\.
/R+UD Z ATA |

AeD

For f € Cg5(R), we put

Fw) = (FN) AW

Then the Parseval formula on CZ%(R) can be stated as follows: For f, g €
Coe(R)

AmﬂwaaAquzégmfwmme (5)
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The map f — f, f € C2%(R), is extended to an isometry between L*(A) =
L*(R,, A(z)dx) and L?(v) = L*(R, U D,dv). Actually, each function f in
L*(A) is of the form

f@) = Y mabale) + o /0 T )b (2)[C O [2dA

AeD

= °f+fp

and their L?-norms are given as

/0 Tl F@PA@dr = 3wl

AeD

[ i@raw = 5 [T iRIeo) o

0 0

Therefore, if we define f(v) = (f(\), {fa}), then | fllr2cay = ||f||Lz(,,) holds.
In particular, if f € CZ%(R), then fa=f(A) forall A € D.

2. Uncertainty inequality. We retain the notations in the previous sec-
tions. We put for z € Ry,

o(z) = /0 CAWdt and () = Z((?) (6)
and for A € C,
w(X) = (A2 + p?)Y2,
Theorem 2.1. For all f € L'(A) N L*(A),
. 1
ollsen [ 10 P00y 2 L, 7

where the equality holds if and only if f is of the form

Flz) = Cey/:v(t)dt

for some ¢,y € C and Ry < 0.
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Proof. Without loss of generality we may suppose that f € CZ%(R). Since

(=LAHMN) = FNOA2 +p%) = fF(N)w(N)? and w()) is positive on R, U D,
the Parseval formula (5) yields that

/RUD|J$(1/)|2w(V)2dV _ /000(_Lf)(x) (2) A(x)dx

— [ Ir@raw
0
Hence it follows that

/Ooo |f(x)|2v(x)2A(x)dx/R B | () 2w (v)2dv
~ [ r@Pierawis [ 1r@P G
= / R(f o) Aa)dr)

_ 4(/ (1 (@) ()d:v) :i(/oﬂf(x)m(x)dx)z.

Here we used the fact that ' = A (see (6)). Clearly, the equality holds if
and only if fv = cf’ for some ¢ € C, that is, f'/f = ¢ 'v. This means that

log(f) = cl/ v(t)dt + C and thus, the desired result follows. m
0

Remark 2.2. When (R,,*(A)) is the Bessel-Kingman hypergroup, the
equality holds for e’ R~y < 0. However, when it is the Jacobi hypergroup,
each function satisfying the equality has an exponential decay e7*.

Since w?(A\) = A + p?, (7) can be rewritten as follows.

Corollary 2.3. Let f be the same as in Theorem 2.1.

IfollZee [ 1F@)PrPdy> _||f||L2 /If ‘(1 —4p%(2)*)A(z)dz. (8)

RyUD

3. Vanishing condition of the discrete part. We shall prove that under
the assumption:

0<w(z) < —, (9)

DO
s

150



it follows that D = ). We suppose that D # ) and we take f = ma¢a,
A € D. Then, since f(v) =1 if v = A and 0 otherwise, it follows from (8)
that

1 o
1F0llZ2 4y ma A > Z“f”%?(A)/U |f(@)*(1 = 4pv(2)*) A(w)da.

Here we recall that A? < 0, because D C i(0, p) and 1 — 4p?v(z)? > 0 by (9).
This is contradiction. Therefore, we obtain the following

1
Theorem 3.1. If 0 < v < 7 then D = ().
p
For example, if A satisfies the inequality:
a(z)A'(z) = / A(x)dx - A'(x) < A*(x), (10)
0

then A satisfies (9). Actually, (10) implies

o) - 2@ ),

Hence v is increasing on R, and v(z) = a(z)/A(x) < A(x)/A'(x) because
AJA"> 0 by (3). Then it follows from (3) that A satisfies (9).

Corollary 3.2. If A satisfies the inequality (10), then D = ().

Remark 3.3. It is well-known that D = () for Chébli-Triméche hypergroups
where A'/A is decreasing and (4) is not required (cf. [1]). This fact easily
follows from our argument. Since A/A’is increasing and 0 < A/A" < 1/2p by
(3), we see that a < A/2p by integration and thus, (9) holds. Hnece D = )
by Theomre 3.1.

4. Uncertainty principle. We suppose that D = (). Then (8) is of the
form:

1 RO d\
Iollrngs [ OV
1 [oe]
> Y71 / F@)P(L - 4p%u(2)’) Ale)da.

Since v is increasing, v(0) = 0, and 1 — 4p*v(z)? > 0 by (9), it follows that
f and f both cannot be concentrated around the origin.

In general, if D # (), then we must pay attention to the discrete part of f
to consider uncertainty principles. We refer to [3] for the Jacobi hypergroups.
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H'-estimates of the Littlewood-Paley
and Lusin functions on real rank 1
semisimple Lie groups

Takeshi KAWAZOE

1. Introduction.

Let G be a connected semisimple Lie group with finite center. On
G the Littlewood-Paley g-function and the Lusin area function S(f)
are introduced as

o) = ([ gt 5"
St = ([ frgms s )"

Here * denotes the convolution on GG, p; the Poisson kernel on G, and
xi(z) = |B(t)|""xBw(z), where xp) is the characteristic function of
the ball B(t) on G with radius ¢ centered at the origin and |B(t)| the
volume of B(t). As shown in [1], [5], [6], these operators satisfy the
maximal theorem: Let LP(G/K) denote the space of all p-th integrable
right K-invariant functions on G. Then g and S are bounded from
LP(G/K) to LP’(G/K) for 1 < p < co and satisfy a weak type L' esti-
mate on GG. As well-known, in the Euclidean space R these operators

1
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are bounded from H'(R) to L'(R). Our aim is to introduce H' space
on G and obtain an analogous result on G when p = 1.

In the following, we restrict our attention to real rank one semisim-
ple Lie groups G and we treat K-bi-invariant functions on G. Since
G has the Cartan decomposition G = KA+TK, we can identify K-bi-
invariant functions on GG with even functions on R. Therefore, un-
der the restriction, harmonic analysis for K-bi-invariant functions on
(G,dg), dg a Haar measure on G, is reduced to one on (R, A(z)dx)
where A(x) is a weight function on R, . Here the space (R, A(x)dx)
is not of homogeneous type, because A has a exponential growth order
(see (1)).

In §3 we introduce H'-real Hardy spaces on G as
H,(G//K) C H,(G//K) c H'(G//K) C L'(G//K)

and give their characterizations (see (7)). In §4 we shall consider the
H'-estimate of the Littlewood-Paley g-function on G' and show that
g is bounded from H'(G//K) to L'(G//K) (see Theorem 4.5). In §5
we treat a modified Lusin area function S, (f) on G-
dty1/2
)
Y 7 )

sin) = ([ [etupetar™|e s« mi)|

where O(z,y) > 1 if o(y) > o(r) and O(z,y) < 1 otherwise (see
(14)). We obtain that Sy is bounded from H}(G//K) to L'(G//K)
(see Theorem 5.1).

2. Notations.

We suppose that G is of real rank one, that is, dimA =1 and A
is identified with R. Let a be the Lie algebra of A and F = a* the
dual space of a. Let 7 be a positive simple root of (G, A) and H the
unique element in a satisfying 7(H) = 1. Then we can parameterize
each element in A, a, and F as a, = exp(zH), 2H, and z7v (z € R)

2
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respectively. Let m; and msy denote the multiplicities of v and 2~
respectively and let

m1+m2—1 m2—1
=R g T

2
According to the classification of G, these numbers belong to Z /2. All
K-bi-invariant functions f on G are identified with even functions on
R, which we denoted by the same symbol: f(g) = f(as)) = f(o(9)),
where 0 : G — R, is the distance function on G (cf. [9, 8.1.2]).
Conversely, for a function F on R, we define F, (g) = F(o(g)), g € G,
that is, F(x) = F(|z|), z € R. When F is even, we abbreviate F; as
F.

Let dg = A(x)dkdxdk’ denote the decomposition of a Haar mea-
sure dg on (G according to the Cartan decomposition of G, where
dk, dz denote Haar measures on K, A respectively. We normalize A(x),
xz >0, as

,p=a+3+1 yo=a+1/2.

A(z) = 2% (shz)?+! (chz)?6+! (1)

and extend it as an even function on R. We note A(x) ~ €% as x goes
to co. Let LP(G//K) denote the space of K-bi- invariant functions on

G with finite LP-norm: || f||ro) = (5 |f(2)[PA(2)d ) . We denote
by Li..(G//K) the space of locally integrable, K-bi-invariant functions
on G and by C®(G//K) the space of compactly supported C*, K-
bi-invariant functions on G.

The spherical Fourier transform f for f € C®(G//K) is defined
by

~ [ 100t = [ f@n@ain ek @

where ¢, (g) denotes the zonal spherical function on G (cf. [10,Chap.9]).
We refer to [4] for some basic properties of f. Themap f — fisa

3
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bijection of C°(G//K) onto the space of entire holomorphic functions
of exponential type, and the inverse transform is given as

f(x) = / T e @)|CO)[ A, £ e R

where C'(A) is Harish-Chandra’s C-function (cf. [4, (2.6)]). Further-
more, the map f — f extends to an isometry of L*(G//K) onto
LRy, [C(A)[72dN).

For f € CX(G//K) we define the Abel transform F}, s € R, as
Fi(x) = er07 [ f(agn)dn, © € R, where N is a maximal nilpotent
subgroup of G. We put W;(f) = F? and W? the inverse operator of
W3. These operators are explicitly given by using generalized Weyl
type fractional operators on G (see [4, §6]):

Wi (f) ZGSmeifﬂOW,BZHQ(f)a WE(f) :Wz(ﬁ+1/2)OWE(aﬂe)(eispmf),

where W7 (f), p, 0 > 0, is the fractional integral on G defined by

WL =T [ f)(chon = choy)~dicho)

and W7 (f), p < 0, the fractional derivative on G, is defined by the
analytic continuation on p. Clearly, F}? € C°(R) and the Euclidean

Fourier transform (F7)~ is related with f as follows (cf. [4, (3.7)]):

~

fO+isp) = (F)™(\), AeC. (3)

We suppose that f € LP(G//K), 1 < p < 2. We recall (cf. [2,
Lemma 13]) that there exists a positive constant ¢ such that for all
A€ Candz >0, |px(2)| < c(l +2)eC P2 Hence |y (2)|P' A(x) is
dominated by (1 4 z)?' e@PISA+@E=2)0)2/=1) (see (1)). Then, applying
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Horder’s inequality to (2), we see that f(\) has a bounded holomorphic
extension on the tube domain:

Fo={AeC; [SA[ < (2/p -1}
and (3) holds for 0 < s <2/p— 1.

3. Real Hardy spaces.

We shall introduce real Hardy spaces on G. As shown in [3, Propo-
sition 4.5, Lemma 4.4] the Weyl type fractional derivative W' on
(Ry, A(z)dz) is related to the classical Weyl type derivative W% on
(R, dz) as follows. For a smooth function F' on Ry,

(WLF) (@) < CA(fr)_IZ((thx)”lWﬂ(F)(frH

+(tha)7! /oo W (F)(3)|4, (2, 5)ds), ()

where I' is a finite set of real numbers v such that 0 < v < 7,,
A (x,s)=0if vy =0, A (z,s) > 0, and there exists a constant ¢ such
that

/ (thz)""' A, (z, s)dx < c(ths)” for all s > 0. (5)
0

More precisely, if & — 3 and 3 + 1/2 are both integer, then -, and
all v € T' are integers and no integral terms appear in (4). In other
cases, 7, and all v € I are half-integer, and A, (x, s) is dominated by
X[0,00) (8 =) X[0,11 () or B, (s —x), where B,(x) is a bounded integrable
function on R, . We note that, if 7, is half-integer, then 1/2 < v < ~,
and each integral term in (4) can be rewritten as

(thz)” 1 /00 |W&(F)(s) |A,(x, s)ds
A (w, 5)

- (thx)7—1/2 /OO|WE(F)(5)| NG

ds, (6)

5
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where AT (x,s) satisfy the same property of A(z,s) (see (5)). We
suppose that f € L'(G//K) and put F' = Wi(f). Since f = Wl o
Wi(f) = WZX(F), the argument used in the proof of [3, Theorem 4.6]
with (4) and (5) yields that

1 ey ~ D MWE E)lns, ),

y€er

where W% (F) is regarded as an even function on R, w,(z) = (th;z)
and L,, (R) is the w,-weighted L'-space on R.

Let ¢ be a smooth K-bi-invariant function on G satisfying fG o(g)
dg # 0 and M, the corresponding radial maximal operator on G (see
[3, §3]). As in the Euclidean space, for p > 1 we put

HY(G/[K) ={[ € Lioo(G//K) ; My(f) € L"(G//K)}
and || f|lm1(e) = [|Mg(f)||r(c)- Then it follows from [3, §4] that
HY'(G//K)cC L'(G//K), HP(G//K)=LP(G//K) for 1 < p < oo.

Moreover, [3, Theorem 4.6] yields that

I ey ~ D0 IWE (F) i, e, (7)

yel

where F' = W (f) and H, (R) is the w,-weighted H'-space on R. We
recall that, if v, is a half-integer, then (6) holds. Hence we introduce

Il = 3 IWE (Bl

y€er

and H}(G//K) as the space of all f € L} (G//K) with finite H!(G)-
norm. Clearly (7) implies that H}(G//K) Cc H'(G//K).
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Let s = 2/p—1for 1 < p < 2 and Mg, the Euclidean Fourier
multiplier corresponding to a C-function Cs(\) = C'(—(\ +isp)). We
define

HY(G//K) ={f € Li,(G//K) ; Mgl o W3 (f) € H"(R)}

and ||f||H§)(G) = ||M531 o W2(f)|lurry. Here, when 1 < p < 2, f
is in Hf(G//K) implies that f()) has a holomorphic extension on

Fo, WI(f)~(N) = F(\ + isp) is well-defined as a locally integrable
function on the boundary of F, and

fep(x) = OWs(f)()
= / fA+isp)C(—(N+isp)) 'ed), z € R

is well-defined as an HP-function on R. When p = 2, the Plancherel
formula on G implies that H}(G//K) = L*(G//K). We recall that
C(—=(A+ip)) ~ (14]|A]) " (cf. [2, Theorem 2]). Since (i\)?(A+ip) 7=,
0 < v < 7, satisfies the Hormander condition (cf. [9, p.318]), it
follows from [9, p.363] that, if H € H'(R), then WX (Mc, (H)) belongs
to H'(R) and ||[WE (M¢, (H))|miz) < cl|H|m @) In particular, if
f € H{(G//K), then M;'(F), F = W(f), belongs to H'(R) and
|||\/|511(F)||H1 = ||f||H1 by the definition and ||VVR (F )||H1 (® <

||W&(I\/ICI(I\/I YF D w) < c||f||H1 for 0 < 7,9 < Ya. Flnally, it
follows that

Hy(G//K) C H)(G//K) c H'(G//K) C L'(G//K).
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4. Littlewood-Paley g-function.

As an application of the real Hardy space H'(G//K), we shall
consider an (H', L') bound on G for the Littelwood-Paley g-function
g(f) on G (see §1). For simplicity, we put K; = t(0/0t)p;. Since
t(0/0t) f x pr = WEWL(f) ® WL(K,)) = WHF ® W, (K;)), where
F =W}(f) and @ is the convolution on R, g(f) can be rewritten as

o)) = ([~ e wiepe| )" ©)

t
Proposition 4.1. We define an operator gr on Ry by

@) = ([ e m(m)(@ﬁ%)m.

0

Then
||g HL1 < CZ“QR ||L1 (R)-

yel’

Proof. We substitute (4) to (8) and take the integration over Ry with
respect to A(z)dz. Since WE (F @ Wi(K,)) = WE (F) @ Wi(K,),
the A(x)dz-integration of the first term in the right hand side of (4)
is clearly dominated by ||gR(W§(F))||L%M (®)- As for the integral term

in (4), we denote H(s,t) = WE (F) ® W(K;)(s) and A(z,s) =
(thz)? A, (z,s) for simplicity. Then by (5) the A(z)dz-integration is

estimated as
/OO / ‘ / H (s, t)A(z, s)ds Cit)l/zA(:r)dx
/ / / )|2dt> A(z, s)dsdx
= (/0 |H (s, )|2dt 1/2 / Az, s dl“)ds

< o[ ([ e nr) ensyds = a0V (Pl -

8

IN
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Now we suppose that f € H'(G//K), that is, each W= (F) be-
longs to H,, (R) (see (7)). Therefore, Proposition 4.1 implies that
the (H',L') bound on G for g is reduced to an (H,, , L, ) bound
on R for gg. Actually, if gg is bounded from H, (R) to L,, (R) for
v € I, it follows that [lg(f)llLi@) < € er ||9R(W&(F))||L,1M(R) <
e WE (F)lmy, ) =1 Il c)-

We shall prove that gg is bounded form H&H (R) to L}U7 (R). Let
H e H&H and H = )", \,;A,; denote a (1,00, 1)-atomic decomposi-
tion of H, where \,; > 0, A, ; is a (1,00, 1)-atom on R supported on
B,; = B(z,,,7;) and

1D Aarsixe,lle, @ < I1Hllm, @ (9)
7

(see [8, Chap. 8]). In what follows we shall determine a shape of
gr(A)(x) for each (1,00,1)-atom A on R. We may suppose that A
is centered, that is, A is supported on [—7,7], ||Allec < (2r)"! and
[, A(z)aFde = 0 for k=0,1.

Proposition 4.2. gg is L? bounded on R.

Proof. We recall that p,(\) = e "VA*+° and W (K,)~ = t(0/0t)p,.
Hence

g (H) 122 =) (10)

o dt
= [ e W K T

dt

= MW e
0

_ / ()2 < / t|A(A+2¢p)|e—2t%VA<A+2iP>dt> i\
- 0

o0

— / |I:I()\)|2 </ tT€—2t\/7"cos(0/2)dt) d)\ < C“HH%Q(R)v

00 0

9
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where we set A(A + 2ip) = re? and we used the fact that cos® > 0

and cos(0/2) = y/(cos@ +1)/2>1/y/2. m

In particular, we have
/0 92 (A2 (@) < | AlZage < e . (11)

Next we suppose that |z| > 2r. We recall the asymptotic behavior
of Wi (K;) (cf. [1], p. 289):

Wi (Kp)(x) = e’ (0/0)W.(py) () = te’(0/0t) F, (x)
= Cter(0/01) (H(E +2%) 12K (p(t2 + 2%)'7%)

2, .2\1/2 (42 2Y1/2
w PEF+T)V2 | = p(t+a?) )

b

where K, is the modified Bessel function, which satisfies (d/dz)*K, ()
= O(27 /> k=) if £ — oo, and O(x~7*) if z — 0. Moreover, as a
function t € R, t2e=##+2'? | ¢ R has the maximum O(|z['e=#7)
at t ~ |z|'/2. Hence we can deduce the following estimates.

Lemma 4.3. Let notation be as above.

() 0 Wo(K)(x) < ct(t® + 23 if 2 422 > 1,

(L) : Wo(K)(z) <ct(t®+2*)ift2 +22 <1,

(g2) : (d/dx)* (W (K))(z) < ct(t®> +22) 7 if 2 + 22 > 1,
() : (d/dx)* (Wi (Ky))(x) < ct(t® +2°) 2 if t2 + 22 < 1,
(g3) :  (d/dx)* (W, (K))(z) < et 2 +2%) 1 if 2 + 2% > 1.

Applying this lemma, we can estimate |A ® W, (K;)(x)| as follows.

10
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Lemma 4.4. Suppose |x| > 2r. Then |A® W, (K;)(x)| is dominated

by
t(t + |2])73/2 ift+ ]z >1 (G1)
Golta) = J 1D it < (L)
TN (4 o)) it ] > 1 (G3)
N+ |2)72 ift+ |x] < 1 (Ly)

Proof. Let |y| < r. Since |z| > 2r, |z — y| < |z| +r < 3|z|/2 and
|z —y| > |z| —r > |z|/2, that is, |x—y| |z| and t + | —y| ~ t + |z].
Therefore, since A ® W, (K;)(z) = [Z A(y)W,(K;)(z — y)dy and
Al iwy = 1, (G1) and (L) follow from (gl) and (/1) in Lemma
4.3 respectively. Since A satisfies the moment conditions, B(x) =
[ [ A(v)dvdu is supported on [—r,7], ||B|ls < 2r and thereby
|B||L1my < 47%. Integration by parts implies that A ® W, (K;)(x) =
[, B(y)(d/dy)*(Ki(x — y))dy. Then (Gs3) and (Ls) follow from (gs)
and (l3) in Lemma 4.3 respectively. m

We return to the estimate of gg(A)(z) for |z| > 2r. Since

1/2
(ot
it follows that: Case I: » > 1. Since |z| > 2, (G;) and (G3) in
Lemma 4.4 imply that gg(A4)*(z) < ¢|z|™3 0\/77 tdt + crt|z|™ f;’; t=odt
< crlz] 3 + er?|z|™* < er|z| 3. Case II: r < 1. When |z| > 2, the
same argument in Case I yields gr(A)?(z) < cr|z|™3. When |z| < 2,
we can use (L1) and (Ly) if t < 1, and (G3) if t > 1. Hence, gr(A)*(z)
is dominated by clz|™* [T tdt + cr*|z|~* [T #73dt + ertx|~t [ 0dt <
cr?|x|™* < er|x|73. Therefore, in both cases we can deduce that

gr(A)(z) < etz 32 if |2| > 2r. (12)

11
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Finally, combining (11) and (12), we see that
ge(A)(2) < gr(A)(@)xBoz2n (@) +er'la] P xpo2n: ()

< ca(zr) +c Z 7"*12*3'“/2)(3(0,21»‘,«)(33), (13)
k=2

where a > 0, a is supported on B(0,2r) and ||a||r2r®) < r V2.
Applying (13) to gr(H), H = >_; A, ;A i, we see that

gR(H) (1‘) S c Z )\771 <a77 Z 12 3k/2 m’y,iaZkr‘y,i) (x)> Y

where a,; > 0 is supported on B(z,,,2r,;) and ||a,;||r2@) < r_l/z.

Therefore, it follows from [8, Lemmas 4 and 5 in Chap. 8] and (9)
that

l9e(H)ly, @) < IIZZAM’IQ X B 200
)

< C“ZZ)\’WT 12 k/2XB(:v., i3Ty,i) ||L1

< C“ j :)\%ir%i XB(+,i,+,i)
i

N

Ll

L (®)

i, ® <l Hllmy @)

Wy

This completes the proof that gg is bounded form H,, (R) to L, (R).
Hence we can obtain the following.

Theorem 4.5. g is bounded from H'(G//K) to L'(G//K).

5. Lusin area function.
We introduce a modified area function S, (f) as

/ /@xyxtfcy Y

12

)1/2

t—f pt( )
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where O(x,y) is the bi-K-bi-invariant function on G x G defined by

@(IL’,y) = ﬁEng

Clearly, O(z,y) > 1 if o(y) > o(z) and O(x,y) < 1 if o(y) > o(x)
and moreover, for 0 < v < v,, it follows that

2) <th+x)2(7a—7) if o(y) > o(2)

. A(z)? rthiy\2 thyy
o) A(y) (th+$) A(?J)(E?i)% Holy) < olz)
< min{A(z), A(y)}. (14)

We shall consider an (H', L") or an (H}, L')-bound on G for S..

Case of G = SOy(n,1), n odd: Here « = n/2—1and # = —1/2 are
both half-integer and no integral terms appear in (4), because a — 3
and 3+ 1/2 are both integer. Since t(9/0t)f xp, = WH(F @ W, (K,)),
if we introduce Sg on R as

SL(H / / O, 1) /Xt(axka Yk (15)

< (hy) M) H @ W () () Py ) (1hr) A ),

then we have ||S¢(f)llLi) < ¢X 0 er ISR(WE, (F Dlzy, ) As in the
case of gg, the (H', L") bound on G for S, is reduced to an (H,, , L,, )
bound on R for Si. Then it is enough to prove that S} is L? bounded
on R, which yields (10) for S}, and it satisfies (11) for each centered
(1,00, 1)-atom on R. As before, these estimates yield the (H,, , L, )
bound on R for S.

13
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We shall consider L? bound on R for S. First we apply (14)
to (15) and then, we use the fact that [ [, xi(aska,')dkA(x)dz =
Joxi(ga, M) dg = [|x:|li = 1. Then it follows from Proposition 4.2 that

ISLE ey < / / 1 @ W () (o) Py

— o[ oty < o (10)

Let A be a (1,00, 1)-atom on R supported on [—r,r]. We suppose
that |z| > 2r. In (15) replaced H by A, it follows that |z — y| < t,
A@ Wi (K)(y) = [Z A(z)Wi(Ky)(y — z)dz, and |z] < r. Since
T = (x—y)—l—(y—z)+z | <t+ly—2[+r <t+|y—2[+|z|/2
and thus, |z| < 2(t + |y — z]). Moreover, |y — z| < |y|+ |2| < t +
lz| + r < t + 3|z|/2. Hence it follows that t + |z| ~ ¢ + |y — 2|.
Then, applying the arguments used in Lemmas 4.3 and 4.4, we can
deduce that |A ® W, (K;)(y)| < ¢G,(t,z). Hence (14) and the fact
that [ [ xe(agka,')dkA(y)dy = 1 yield that

00 1/2
z) <c¢ G?(t,x @ §cr1/2x_3/2 if |x| > 2r. (17
" t
0

As said before, (16) and (17) implies the (H,, ,L,, ) bound on R for
Sk. Therefore, S, is bounded form H'(G//K) to L'(G//K).

Case of G # SOqy(n,1), n odd: Here §+1/2=0,a— 3 € Z+1/2
or 0+1/2 € Z+1/2,a— 3 € Z. Hence , is half-integer and integral
terms appear in (4). Therefore, noting (6), we introduce S? on R as

2= ([ [ 0 [ xlahay k(e a0 (1)

> A(lyl, s)
H® W, (K)(s ds
W ()

14

(thz) O~V A(z).

)"
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Then it follows that

ERGIP
< e (ISEOVE (P)lay, e + IS2OVE (F))las,, )-

y€er

We shall prove that S, is bounded from H}(G//K) to L'(G//K).
Since L, , ,(R) C L, (R), the (H,, L") bound on G for S, is reduced
to an (H1 _1j L, —172) bound on R for Sy and SZ. Clearly, by the
previous argument, St is bounded form H&Wl/z(R) to Ly, _y/(R).
Therefore, to obtain the (H}, L') bound on G for S, it is enough to
prove that S2 is L? bounded on R and it satisfies (11) for each centered
(1,00,1)-atom A on R.

First we shall consider the case that A(y, s) is of the form A(y, s) =
X[0,00) (8 = ¥) X10,1)(8) It follows form (14), [ [5 x¢(azka, " )dkA(z)dx
= 1 and Proposition 4.2 that for H € L*(R),

ds dt

| st < / HeW, (K)(s) 2

< / / gu(H / dsdy
Yy

< cllge (H)[am) / log ydy < c| Bl 12,
0

Let |z| > 2r. We estimate A ® W, (K;)(s) in (17) replaced H by
A. When s > |z|, it follows that s > 2r and |A ® W, (K;)(s)| <
G.(t,s) < G, (t |z]) by Lemma 4.4, When s < |z|, we note that
A®WL(K)(s) = [T A(z) Wi (K,)(s —2)dz and t+|s — z| ~ t + |z].
Actually, we may suppose that [z] <7, |z—y| <t,and 0 <y < s < x.
Since x = (x—y)+(y—s)+(s—z)+z, we see that x < 2t + |s —
z|+7r <2t+|s —z| +2/2 and thus, t + © < 4(t + |s — z|). Moreover,

15
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t+|s—z| <t+s+|z| <t+3x/2 < 3(t+ x)/2. Therefore, it follows
from the arguments used in Lemmas 4.3 and 4.4 that A®@ W, (K;)(s) <
cG,(t,|z|) again. Hence f‘; AW (Ky)(s)A(ly|, s)//sds < cG.(t,|z])
and thus, (14) and [° [, xi(azka, ' )dkA(y)dy =1 imply that

S NG
S2 o(4)(x) < c(/ Gt ™) " < Pl i) > 2
0

Next we shall consider the case of A(y,s) = B(s — y), where B is
bounded integrable on R, . As before, it follows that for H € L*(R),

/0 " S2(H)(w)da

00 oo 00 B(s) 2t
< ‘/ Ho W, (K)(s+ ds| dyZ

< c/_oo (/0 gR(H)(s+y)B\/(§)ds>2dy

B(s) 2
< H)|? (/ —=d ) < c||H||72(r).
< cllgr( )“L?(R) o Vs s <c||H|L (R)

Let || > 2r. Since |[A ® W, (K})(s + y)| < c¢G,(t,|z]), s,y > 0, as
before, it follows that, if |z| > 2r, then

% diN1/2 [ B(s) _
2 < 2 < orl/2| |32,
Sgo(A)(r) < C(/o G (t,x) , ) /0 Nz ds < er/?|x|

In both cases we can obtain that SZ is L? bounded on R and
satisfies (12). Hence the (H;, L') bound on G for Sy follows. Finally,
we can obtain the following.

Theorem 5.1. When G = SOy(n,1), n odd, S, is bounded from
HY(G//K) to L*(G//K), and otherwise, bounded from H}(G//K) to
L'(G//K). Especially, S is bounded from H,(G//K) to L'(G//K).

16
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Uncertainty principles for the Jacobi transform

Takeshi KAWAZOE *

Abstract

We obtain some uncertainty inequalities for the Jacobi transform
fa,g()\), where we suppose o, € Rand p = a4+ +1 > 0. As
in the Euclidean case, analogues of the local and global uncertainty
principles hold for fa,/g. In this paper, we shall obtain a new type of
an uncertainty inequality and its equality condition: When 8 < 0 or
B < a, the L?-norm of fa,g(A))\ is estimated below by the L?-norm
of pf(x)(coshz)~!. Otherwise, a similar inequality holds. Especially,
when 3 > « + 1, the discrete part of f appears in the Parseval for-
mula and it influences the inequality. We also apply these uncertainty
principles to the spherical Fourier transform on SU(1,1). Then the
corresponding uncertainty principle depends, not uniformly on the K-

types of f.

1. Introduction. The uncertainty principle on R says that if a function
f(z) is concentrated around z = 0, then its Fourier transform f()\) cannot
be concentrated around A = 0 unless f is identically zero. As surveyed in [7]
and [9], there are various generalizations of this principle on locally compact
groups G; the Heisenberg group, motion groups, and semisimple Lie groups,
and so on. In this paper we shall obtain a generalization of this principle for
the Jacobi transform fa g()) (see (7)).

On semisimple Lie groups G the local and global uncertainty principles
for the spherical Fourier transform of K-finite functions are obtained in [7].
When the real rank of GG equals to one, these inequalities correspond to the
ones for the Jacobi transforms with specialized . and (3. Hence, the results

*Supported by Grant-in-Aid for Scientific Research (C), No. 16540168, Japan Society
for the Promotion of Science
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in [7] are easily generalized for the Jacobi transform f, 3()\). However, it is
not clear how the constants appeared in the inequalities depend on «, (3, and
moreover, how the discrete part of f (see (10)) contributes the uncertainty
principles. Hence in §2 and §3, arguing exactly as in the Euclidean case,
we shall give the proofs of local and global uncertainty inequalities for the
Jacobi transform (see Theorems 3.1, 3.2, 4.2 and 4.3).

On the Euclidean space R, to figure a concentration of f(z) around z =
0, we consider a multiplication of z; f(x)z, and similarly, for the Fourier
transform side, we do a multiplication of \; f()\))\. On the other hand, for
the global uncertainty inequality for f, 5(\) (see Theorem 4.1) these z and
A are respectively replaced by

V(x):/oxA(t)dt and W()\):/D(A) d,

where A(t) is the weight function on R, (see (2)), D(\) = {z € C;|z| <
|A|}, and dv the Plancherel measure for the Jacobi transform (see (13)). In
Theorem 4.2 we modify V' (z) and W (\) respectively as

Vs(x) = min(V(z),57") and we(\) = (A2 + p*)**!

for > 0. Furthermore, in §5 we shall give a refinement of Theorem 4.2 by
replacing V() as
V(z)
v(x) = AG)

We shall obtain a global uncertainty inequality, which figures concentrations
of f and f, 5 by the multiplications of v(z) and w_,/5(\) respectively. Es-
pecially, we can obtain the equality condition (see Theorem 5.1). We note
that functions satisfy the equality condition are neither Gaussian nor heat
kernels for the Jacobi transform (see (21b)). In §6, using these inequalities,
we shall consider some uncertainty principles for f and fa,g.

In §7 we shall apply these global uncertainty inequalities for the Jacobi
transform fo g()) to the spherical Fourier transform f(\) on G = SU(1,1).
Then we can deduce a uncertainty principle for general functions, not K-
finite, on G. As in the Euclidean case, to deduce a non-concentration of
f(\) around X = 0, a concentration of f(g) around g = e is sufficient (see
Theorem 7.1). In particular, we see that this sufficient condition depends on
the K-types of f and is not uniform on the K-types (see Remark 7.2).
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2. Notation. Let a, f € C, Ra > —1 and p = a+[+1. For A € C, let ¢,(x)
denote the Jacobi function of the first kind, that is, the unique solution of

(L+X+p)f=0 (1)
satisfying f(0) =1 and f'(0) = 0, where L = A(x)li(A(x)i) and
Yins B - B dx dx
A(z) = (2sinh 2)***! (2 cosh z)* . (2)

For A\ # —i, —2i,—3i,..., let ®)(z) denote the Jacobi function of the second
kind which satisfies

2120 (a+ 1) oa(x) = C(A)a(x) + C(=N)P-a(2), (3)

where C'(A) is Harish-Chandra’s C-function (cf. [3, §2]). For convenience,
we suppose that a, 5 € R and p > 0 in the following. Then the following
estimates are well-known (cf. [3, 4]): For x > 0 and A € C with |SA| < p

[oa(2)] < 1, (4)

and for each 6 > 0 there exist a positive constant K such that for all z > ¢
and A € C with S\ >0

[@(2)] < Kgem A0, (5)

where Kj is independent of «, 3, and for each r > 0 there exist positive
constants K, K7, such that if A\ € C with I\ > 0 is at distance larger

r,o

than r from the poles of C(—\)"! then
K27 (p+ )2 < [C(=N)[ T < K227 (p + [A) 2, (6)

where Kﬁﬂ, 1 = 1,2, are independent of (3.
Let LP(A), 1 < p < oo, denote the space of all p-th integrable functions

on Ry with respect to A(z)dz and C2%(R) the space of all even C* functions

on R with compact support. For f € C2%(R), the Jacobi transform f()\) is
defined as

=iy [ @ems . "
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Clearly (1) and (4) imply that for A € C,
(L)) = =W+ ) () (8)

and for |I\| < p,

1< 1 s o)

This transform f — f satisfies analogous properties of the classical cosine
Fourier transform; the inversion formula, the Paley-Wiener theorem, and the
Plancherel formula were obtained in [3, 4]: We set

Dos={i(f—a—=1-2m);m=0,1,2,--- ,—a—1-2m > 0}.
Then the inversion formula is given as follows: For f € CZ2(R),

10 = ol ([ iswienr a3 asw)

F(a+1) Wit
= fr(x)+°f(2), (10)

where a, = f(u) and d(p) = —27iC (1) "Resy—,C (=)', We call fp and
°f the principal part and the discrete part of f respectively. We note that
since p > 0, |3] < a+1if § <0 and hence D, 3 = 0 if 3 < 0. Moreover,
there exists a positive constant K, such that

6u(@)] < Kye 012 5> 0 (11)
and thereby
2 [o¢]
A)™ = gy | ou@PAE)d >0 (12)

We denote by F(v) = (F(A),{a,}) a function on R, U D, s defined by

F(v) F(\) ifr=XeRy
V) =
a, if v=pecD,p.

F(v) = (m, {@,}) and define a product of F(v) = (F(\),{a.})
) = (G(A), {bu}) as

(FG)(v) = (F(NGA), {aubu})-

4

We put
and G(v
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Moreover, for a function h(\) on C, we define a multiplication of h as
h(v)F(v) = (h(A)F(X), {h(p)a,}). Let dv denote the measure on Ry U D, g
defined by

/RUD F(y)du:/OOOF()\)|C()\)|2d)\+ S aud(p). (13)

“eDa,B

For f € C%(R), we put

Fw)=(FNAFw}).

Then the Parseval formula for the Jacobi transform on Cg%(R) can be stated
as follows (see [4, Theorem 2.4] and cf. [2]): For f,g € C2(R)

/0 " F@)g (D) A () dr = / W) (14)

Themap f — f, f € C22(R), can be extended to an isometry between L*(A)
and L*(v) = L*(R; U D, g, dv). Actually, each function f in L?(A) is of the
form f = fp +°f (see (10)) and their L?>-norms are given as

[ ewra@d = [Cl0reo) . a5

0 0

/0 Tl f@PA@ = S Ja,Pd(y). (15b)

l"‘esz,ﬁ

Therefore, if we define f(v) = (f(\), {a,}), (14) implies that

1flle2a) = [1Fllz2w)-

3. Local uncertainty principles. We define a function V' (z) on R, by

Vi) = /:A(t)dt (16)

and for a measurable subset £/ of R, U D, 3 we put

o(E) = /E dv.

5
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Then as in the Euclidean case, we can deduce the local uncertainty principle
(see [5, §3] for semisimple Lie groups and motion groups).

Theorem 3.1. Let 0 < 0 < 1/2. Then there exists a constant Cy, such that
for all f € LY(A) N L*(A) and E C Ry U Dy 5 with o(E) < oo,

[E |f () Pdv < Cy o (E)? /000 £ (@)*V (2)* A(x)dz.

In order to clear the fact that Cy, is independent of 3 we shall give a
sketch of the proof. Let x,, » > 0, denote the characteristic function of the
interval [0,7]. We set g = fx, and h = f — g. Then

[ 1goPar <2( [ law)Par [ 1hPar)

It follows from (9) and Schwarz’ inequality that

/Wg )|*dv

WHQ“Z} yo(E)

2 0 o(E) /OTV(x)_QgA(x)dx /07" |g(x)|2V(x)20A(x)dx

L
- Da+1)?

_ 2 L (B2 /0 0@V (2) A () da.

Fla+1)2-20+1
On the other hand,

[ihwkar < ["nepsws

< V) / " h(@) 2V (2)2 A () d.

Here we take an r such that o(E) = V(r)~!. Then

/E F0)[2dv < Cpac(B)? /0 T @)V (@) A () de,

IN

2 |
here Cy, = 2 ( J)
where Cy, max ToT171-20

6
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We shall modify the above local uncertainty inequality. For each > 0
we denote by x; the point satisfying V(z;) = 6~ and we let

V(x) if 0 <z < xy,
% = 17
() {(5—1 if x > xs. (17)

Theorem 3.2. Let 6 > 0 and 0 < 0 < 1/2. Then there exists a constant
Cp.o such that for all f € L*(A)NL*(A) and E C Ry UDgy g with o(E) > 9,

/E|f(l/)|2dz/ < Cyao(E)* /000 | (2)PVs(2)?P A(z)d.

Proof. Since o(E) > ¢ and § is the minimum value of Vs(x)™!, we can take
an 7 such that o(F) = V(r)~!. Therefore, we can repeat the above sketch of
the proof replacing V' by Vs. m

4. global uncertainty principles. As in the Euclidean case, we can deduce
the global uncertainty principles from the local ones. We denote

W(r)=o({AeCGlA <r}).

Then the following global uncertainty inequality follows from Theorem 3.1
(see [5, §4] for symmetric spaces).

Theorem 4.1. Let 0 < 6 < 1/2. Then there exists a constant Cy o such that
for all f € L'(A) N L*(A)

114 a) < Coa / @)V (@) Ax)da / F)PW ()2 dv.

+UDa,B

We now deduce a global uncertainty inequality from Theorem 3.2. We set

B, = {\€ G|\ <12+ p2}. Since o(E,NR,) = / ()| ~2dA, sub-

0
stituting the estimate of C'(—)\)~! (see (6)), we see that there exist positive
constants C? i = 1,2, such that for A € R

Cl2720 (2 4 )t < (B, NR,) < C22720(r2 4 p?)(a+D), (18)
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Therefore, if we take § > 0 as § = C1272°p2(@+1) then ¢(E, NR.) > 6. For
v > 0, we define the fractional power of —L as

(=LY F)N) = (W + )7 ()
(cf. (8)). Then we have the following.

Theorem 4.2. Let 0, Vs be as above and let 0 < 0 < 1/2. Then there exists
a positive constant Cy,, such that for all f = fp € L'(A) N L*(A)

sy < Coa2 [ @RV Az (=LY (@) PA )
0 0

Proof. Let v = 2(a+1)0 and f = fp. By using the Plancherel formula (16a),
we obtain that

£y = /R(Vﬂ)z)7(A2er2)7|f(A)IZIC(A)I2dA

< o / (=LY F(@)PA (@) da. (19)

Moreover, if f()\) is supported on E¢ N Ry, then p=27 can be replaced by
(r? + p?) 77, because A\? + p? > \? > r? + p? for A € ESNR,. Then it follows
from Theorem 3.2 and (18) that for each r > 0

1Fss) = [E R / F Py

EcnRy

< Opao(B R [ @ PV @) A da

0

+(r* + ") /Ooo (L) f(2) PA(z)dz (20)

IN

(2 + )72 0y (C [ 17 PVala) A )ds
0

02+ )7 [ UL P @A
4 2 (R, (4 ) s
Especially, since Cy, > 2 and C} < C?, it follows that
172y < 02+ p°)27 0 Coa(CR* I + (7 + p°) 7 Coa(Ca/CR) 'y

= (P +p")A+(r*+p*) "B

8
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As a function of x on R, , 27 A + 277 B attains the minimum value 2/ AB at
zo = (B/A)Y/?'. Therefore, it follows from (17) with § = C'}272°p?(@+1) and
(19) that

Tp = (09:04(0014/02)_291—2)1/27 > 2
0— 274,;900,0[(002()29[1 =

Hence we can take an r such that zy = r? + p? and therefore,
1£122(a) < 2747F2CF (C2)*(Co/CR) 7 1.
This completes the proof. m

For a general f € L'(A) N L?(A) we must pay attention to the discrete
part °f of f. Let °f # 0 and thus, D, g # 0 and £ > 0. In (19) R, must be
replaced by Ry U D, 3 and when v € D, 3, we see that

(7477 < (0~ (B—a— 1)) = (4f(a+1)7.

Since f — a — 1 < p, it follows that ES N D, = (. Moreover, in (20)
o(E, NR;) must be replaced by o(E,) = o(E, "Ry ) + 0(D,3). We note
that

2 vat1  0(Days) 2 2va+10(Days)
0(Da,p) < (r" 4 p7) 2 1 p2)ort < (r"+p%) D)

Hence, applying the same argument, we can deduce the following.

Theorem 4.3. Let 6 > 0 and 0 < 0 < 1/2. Then there exists a positive
constant Cy o 5 such that for all f € L*(A) N L*(A)

1£1121a) < Cﬂ,a,ﬁ/ If(x)IQVIs(x)Q(’A(x)dw/ [(=L) @ f () PA()da.
0 0

5. Main theorem. We retain the notations in the previous sections. We
shall obtain a refinement of Theorem 4.3 with § = 1/2(a+1). For x > 0 we
put
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and for A € C
w(X) = (A2 + p?)2,
Theorem 5.1. For all f € L'(A) N L*(A),

5 1
ol [ 1F@PeE 2 (212)
R+UD0¢,B

where the equality holds iof and only if f is of the form

flz) = 067/0 v (21b)

for some ¢,y € C and Ry < 0.

Proof. Without loss of generality we may suppose that f € Cg%(R). Since

(=LA = FNO2 + p?) = F(N)w(N)? (see (8)) and w(N) is positive on
R, U D, g, the Parseval formula (14) yields that

/RUD |f(l/)|2w(z/)2dy = /Ow(—Lf)(x) (z)A(z)dw

S CRNETE
0
Hence it follows that

/000 £ (@)Po(@)*Aw)de / S 0few)
B /000 (@) Po(e)*Ax)da /000 (@) PA()d
> ([ RU@r @)@

_ 4(/ (1 () ()dx) :i(/o""v(gj)m(x)dx)z.

Here we used the fact that V' = A (see (16)). Clearly, the equality holds if

and only if fv = cf’ for some ¢ € C, that is, f'/f = ¢ 'v. This means that
log(f) = cl/ v(t)dt + C and thus, the desired result follows. m
0

10
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Since w?(\) = A? + p?, (21) and the Parseval formula (15) yield the
following.

Corollary 5.2. Let f be the same as in Theorem 5.1.

. 1 o0
ollseny | £z 1l [ 1F@E0 = 0@ Ale)de

+UDq 3

We shall estimate v and 1 — 4p?v2. Since o > —1, it follows that
Vi) = / (2sinh )27+ (2 cosh 5+ ds
0
sinh z
0
1
= 2% (sinh x)2a+2/ 271 (1 + (sinh 2)*#%)A dt
0
1
— 9% 1(5inh 2)2*2 (cosh 1) / (1= $)*(1 — (tanh 2)%s)°ds
0
1
= 2%7!(sinh z)?*"?(cosh 2)* ——F (1, — 3,2 + o; (tanh x)?)
a+1
and thus,
1

v(x) = mF(l, —3,2 + «a; (tanh 2)?) tanh . (22)

Lemma 5.3. Let notation be as above. If 3 <0 or 3 < «, then

0< v(z) < —
v(r) < —
< =3,
and if 3> 0, then
1
<
0s0le) < 57y
and if 3 > 0,a > 0, then
1
0 <wv(x)
2p—1

11
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Proof. We recall Euler’s integral expression of the hypergeometric function:
1

F(1,—8,2+ a,22) = (a + 1)/ (1= 1)°(1 — t2)Pdt. (23)
0

Thereby, v(z) > 0. If <0, then it is easy to see that F(1,—3,2 + «;x) is
increasing on 0 < x < 1. Hence H(z) = zF (1, —f3,2+a; z%) is dominated by
H(1)=T2+a)'(p)/T(14+a)l(p+1) = (a+1)/pand thus v(z) < 1/2p. Let
0 < # < a. We shall prove that H(x) is also increasing and H(z) < H(1)
as before. In order to prove that H(x) is increasing, we shall show that its
derivative is positive. We put Hy(o, 8,2) = 2?* ' F(k+ 1,k — 3,k +2+a; 2?)
and we note that

2
- 9 fax_lHl(aaﬁax)

= o 'Hy(a, B,2) +2(1 +a)z™! <H0(a —1,0,x) — Hy(v, 53, a:))
= K(x),

H'(z) = 27'Hy(a,B,2)

where K(.’L’) = F(]_,—,8,2+Ol,$2)+2(1+0l)(F(1,—/8,1+O[,.'L'2)—F(1,—ﬁ,2—|—
«,z?)). Then

K’(l") = _25372(2_’_%]?1(05,5,1')
N )

Since 8 > 0, Hy (o, 3,2) = 23F (2,1 — 3,3+ a;2) < 2*F(2,1— 3,2+ a;x) =
Hi(a—1,8,z) and 1/(1 +a) —1/(2+ «) > 0, it follows that K'(z) < 0.
Therefore, H'(z) = K(z) is decreasing and

a—fB)(a+1)
pla+ ) =0

under the assumption on 3. Hence H(z) is increasing.
Next let § > 0. Then it follows from (23) that

() > H'(1) =

1
2(+1)

1 N 1
/0 (1= 0dt = g,

2F(1,—f3,24 a;2%) <

N | =

12
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Last let 3 > 0 and a > 0. Then it follows from (23) that

1 z !
—aF(1,-03,2 ) < = 1 — 2%t)* Pt

1
= —(1—(1-2%").
(1= (1=
We suppose that the last function takes the maximum at x = xy. Then 2p(1—
z3)Pta2 =1 — (1 —22)” and thereby, the last function is dominated by ( 1 —

xO)O‘J’ﬁxO Since (1 — 22)**Pz takes the maximum at x = 1//2(a + ) +

and a + 3 > 0, we see that (1 — 2%)**z is dominated by

( 2(a+ ) )a+ﬂ 1 < 1
2(a+ ) +1 V2@ +68)+1 " V2 -1

Hence the desired estimate follows. m

Lemma 5.4. Let T(z) = 1 — 4p®v(z)?. If 3 < 0 or 8 < «, then T(z) >
(coshz)™2. Generally,

[ O((coshz)™?) if x — oo,
n@_{om ﬁx:Q

Proof. Since F(1,—(3,2 + «;0) = 1 and F(1,-3,2 + ;1) = (a + 1)/p,
the asymptotic behavior easily follows. As in the proof of Lemma 5.3, if
B <0orf < a, then F(1,—03,2 + «;x) is increasing with respect to z.
Hence v(z) < F(1,—03,2+ a;1) tanhz /2(a+ 1) < (1/2p) tanh z and thus,
Y(z) > (coshz) 2 m

We put
1 if 6<0orfg<a,
Tap = a‘j—l ; " ?fﬂ>0anda<0, (24)
m1n<a+1,\/2p7_1> if 3>a>0.

Lemma 5.3 implies that

0<u(r) < 22, (25)
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The following assertion follows from Theorem 5.1, Corollary 5.2, Lemma 5.3
and Lemma 5.4.

Corollary 5.5. Let p > 0 and f be the same as in Theorem 5.1.
[ 1P 2 B e, (26)
R+UDQ,B
and if f = fp, then

/0 T OPRICN A 2 / @) PY (@) A ) de

The shapes of v(t) and Y'(t), t = arctanhy/z, z > 0, are respectively given
as follows.

1/2p 1

0 17 0 17

1/2p 1

0 17 0 17

Figure 2: The case of § > 0 and > a.

In (26) we set

V2 (F(a—i—l)

£ =0ul0) = s (T g A0 )aulodle)

14
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for 4 € Dy g. Then it follows from (12) that

1
160122y (=11 + 07) = <l PullZ2(c-

Especially,

/0 16,(0) PY (@) A @) < —4]} 60|21l < 0.

Moreover, if we denote the maximum value of v by vpay, then for p € D, g,

9 1

v >
T A~ |p2 + p?)

and hence
9 1

>
Ymax = 16500 + 1)

6. Uncertainty principles. We shall apply the inequalities obtained in the
previous section to deduce some information on the concentration of f and
f. Let f be a non-zero function in L?*(A). We recall that

F= el @) = g 2 )

#€Da g

and f(v) = (f(N), {au}) (see (10)).

Definition 6.1. Let 0 < e < 1/2p and M > 0.
(1) We say that a function f(z) on Ry is (v, €)-concentrated at x = 0 if

1 follzeay < el fllz2ea) (27a)

and is (v, M)-nonconcentrated at x =0 if the reverse replaced € by M holds.
(2) We say that a function f(X) on Ry is (A, €)-concentrated at A = 0 if

/0 FOIPRIC)2dA < @[1f o) (27b)

and is (A, M)-nonconcentrated at A = 0 if the reverse replaced € by M holds.

15
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(3) We say that a function f(x) on Ry has an e-small discrete part if

IPFIF < ell fllzca)- (27¢)

(4) We say that a function f(z) on Ry is (T, €)-nonconcentrated at x = 0
if

[ @ PT@aw)ds] <
(5) We say that a function f(x) on Ry is (o, €)-bounded if

|f(@)] < ee” || flleeca) if © = wo.

Now we suppose that f(z) is (v, €)-concentrated at z = 0. Since

JRNECRTCR
R4+UD, 5

= / FOPNICNT2 AN = laulPlul’d(1) + o1 £ 1172
Da.g

0

(see (15)), it follows from (21) and (27a)

/0 T IFOOPRIC()

> [T IFOPRC] - Y o luPdin)
0 Da.g
= [ If@Pee)d - 2y
R4+UD, g
> (1/4¢ = ) ooy 29

Therefore, f(v) is (A, (1/4€2 — p?)}/*)-nonconcentrated at A = 0.
Conversely, we suppose that f(v) is (A, €)-concentrated at A = 0. Since
Y(z) =1—4p’v(x)* > 1 — 724 (see (25)), it follows that

[ U@ PT@AEE > 0= )l 29

0

16
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We recall that 1 — 72 5 < 0. Moreover, letting A = / \fp(2)*T(2) A(x)dz
0
and B = |[fp|7(a), We see from Corollary 5.2 for f = fp and (27b) that

(B— A)’B > p*AB

2 2
B € .
< — B, that is,

pPPt+e T p

/0 @)Y (@) A da ;—ufanz (30)

and thus, A <

Therefore, (29) and (30) imply that fp(z) is (2, §)-nonconcentrated at x = 0,
where

6 = max{(72 5 — D2 p7lel.
Moreover, letting § = 1 in (5), we see from (10), (3) and (27b) that for x > 1,

el < o [T FB@e0) iy
< i [ HwleEnr s [TFoeEpan)

S A G TR TN
> 1/2 o0 1/2
([ imeienra) ([ aa) ")
< 2k frll g 31

Hence we have the following.

Theorem 6.2 Let p > 0 and f € L*(A). If f(x) is (v,€)-concentrated at
x =0, then f(\) is (\, (1/4€2— p?)/?)-nonconcentrated at X = 0. Conversely,
if f(\) is (X, €)-concentrated at X = 0, then fp(z) is (T, )-nonconcentrated
at © = 0, where § = max{(r2, — 1)"/2,p7'€}, and there exists a positive
constant ¢ = co g such that fp(z) is (1, ce'/?)-bounded.

When 3 < «, we recall that D,3 = 0, f = fp and 7,3 = 1. Hence,
the above theorem implies that, if f()) is (), €)-concentrated at A = 0, then
f(z) is (7, p~'€)-nonconcentrated at x = 0 and (1, ce'/2)-bounded. Therefore,
f(z) is spread if € goes to 0.

17
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When > a, then 7, 3 > 1 and it is not clear that f(z) is spread if € goes
to 0. We must pay attention to the discrete part of f. We suppose that f()\)
is (A, €)-concentrated at A = 0 and moreover, f(x) has an eg-small discrete
part. Of course, if § < « + 1, then we can take ¢; = 0, because D, 5 = 0.
We shall prove that f(z) is spread if € and €4 go to 0. First we note that (30)
replaced fp by f holds as before:

2

/0 @)Y @)A@)dr < sy (32)

Let 25 > 0 be the point such that 7(zo) = 0 (see Fig. 2). In (31), replacing
d =11in (5) by § = zg, we see that for z > z,

p(x)] < cKuoePe || frllr2a)-

On the other hand, it follows from (11), (15b) and (27¢) that

Pr@) < e Y laullgu(@)ld(p)

l"‘esz,ﬁ

1/2
< ce_p’”( S e—?\u\wod(u)) 1°Fll 2y < ceae™||Fllz2ca).

n€D,, 3

Hence, for x > z, we see that there exists a positive constant ¢y such that

1f(@)] < coe P (e + eq) | fllz2a)- (33)

Since 1'(x) < 0 if x > xy, it follows that

[ r@rr@aw = o[ if@epre

zo

> e+ eIy | T

Zo

= —cr(e”’+ Gd)2||f||%2(A)7 (34)

where ¢y > 0. Then (32), (33) and (34) imply the following.

Theorem 6.3 Let p > 0, B > o and f € L*(A). We suppose that f()\) is
(A, €)-concentrated at A =0 and f(x) has an €4-small discrete part. We take
a sufficiently small € such that 6% = cy(€'/? + €4)> > p~2¢2. Then f(x) is

18
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(Y, 6)-nonconcentrated at x = 0 and there exists a positive constant ¢ = cqp
such that f(x) is (xg,cd)-bounded.

We suppose that f is supported on [R,00). Then there exists a constant
0 < §(R) <1 such that

1
< < — >
0 v(x)_2p5(R),x_R

and 6(R) — 1 if R — oo. Since 1 — 4p?v(z)? > 1 — §(R)7?, it follows from
Corollary 5.2 that

/ F0)P2dy > PER? — 1)|If 2aa,
R+UDQ,B
Then we obtain the following.

Proposition 6.4. Let p > 0 and suppose that f € L*(A) is supported on
[R,00). Then

S JauPluld() < / Fr ) EAZICO) [ 2dA + 721 = S(RY)|f 2aca.

“eDa,B

Remark 6.5. When § = 0 and o > 0, it follows from (22) that v(z) =
(2p)~'tanhx and 1 — 4p®v(z)? = (coshz)™2. Therefore, the inequalities in
Theorem 5.1 and Corollary 5.2 became

1f () t3”1}133”%2@)||f()\)()\2 + :02)1/2”%200\72) > p2||f||4L2(A)7

where the equality holds if and only if f is of the form ¢(cosh z)?, ¢,y € C,
Ry < 0, and

1f () tanh 2|20 L DA Z2 -2y = 221121 F () (cosh ) T[T -

Since the Jacobi transform of (cosh \)7 is explicitly calculated in [1], we can
directly check the above equality condition for these inequalities.

7. Uncertainty principles on SU(1,1). We briefly give some basic nota-
tions to introduce the spherical Fourier transform on G = SU(1,1). For the
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precise definitions we refer to [6] and [8]. We denote ¢, A(z) and C(A) in
§1 respectively by qﬁi"ﬁ, Ay p(z) and C,5(N).
Let A, K denote the subgroups of G of the matrices

coshz/2 sinhx/2 e 0
Ay = and l{f¢ =
sinhz/2 coshz/2 0 e/

where z € R and 0 < ¢ < 4n respectively. According to the Cartan de-
composition of GG, each g € G can be written uniquely as g = kya,ky where
0<z0<¢,¢<d4m Let m;\ (j =0,1/2, X € R) denote the principal series
representation of G. Then the (operator-valued) spherical Fourier transform

mix(f) of f on G is defined as 7 \(f) = / f(9)mjx(g)dg, where dg a Haar

measure on G. In the following, we normglize dg as dg = Ago(x)drdpdy
and we treat only functions f on G whose K-types are supported on Z x Z.
Under this restriction, m;(f) is supported on j = 0 and A > 0 (cf. [6] and
[8, §8]) and

flag) = fla—z), z€R

Let n,m € N and )" (g) (A € R, g € G) denote the matrix coefficient of
mo(g) with K-type (n,m). Let f be a compactly supported C'* function on
G whose K-typeis (n,m). Then the scalar-valued spherical Fourier transform
Fam(N) of type (n,m) is defined by

Frm() = / F(9)6$™™ (g)dg. (35)

Since the K-type of 1)} (g) is of (n, m), this integral is determined on A, =
R, . We recall that the explicit form of ¢)}""(a,) is given by using the Jacobi
function (cf. [4, (4.17)] and [6, (3.4.10)]): For g = kya,ky € G,

27(g) = (cosha)™ ™ (sink ) " Qu (V@) T (@) e, (36)

where

Qum(N) = <—1/2 A2 F m)

n —m|
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and Fm is equal to —m if n > m and m if n < m. Hence, compared with
(7) and (35), we see from (36) that

fn’m()\) — 27(|n7m|+n+m)71/2F(|n - m| + 1)Qn,m()\)
X (f(:v) (2sinh )~ "~™(2 cosh x)’(””")) ' (N).

[n—m|,n+m

We here fix the K-type of f as (n, m) and we define a compactly supported
C* even function F' on R as

F(z) = f(z)(2sinhz) 1" ™(2 cosh z) "+,

Then it follows that

||f||%2(G) = /0 |f($)|2A0,0($)dl" = ||F||L2(A‘n_m|,n+m)
and
fn,m()\) — 2*(|nfm|+n+m)*1/2r(|n . m| + 1)Qn,m()\)ﬁ1\n—m\,n+m()\)-
Therefore, since
Qnan(N) 7 |Clampnsm(A) |72 = 272D (I, — | 4 1)2|Co (M) 72,

the Plamcherel formula for the Jacobi transform for F' (see (10) and (15))
implies that

e =2( [ VonWFICN 200+ 3 Fumli P (),

’ueDn,m

where D™™ = D, i nim in §1 and dv™(p) = 22(n=mindmP(|n — m| +
1)72Qunm (1) "?djpn—m|n+m(p). This is nothing but the Plancherel formula for
the spherical Fourier transform of type (n,m) on G (see [4, (4.21)] and [8,
Theorem 8.2]). As before, this transform can be extended to the one for
L?-functions on G with K-type (n,m). According to the decomposition (10)
for F', each L*-function f on G with K-type (n,m) is of the form

f = fP + ofa
where °f(g) =2 Y a,)p™(g)d"™(u), and then £ = (fom, {a,}). We call

MeDn,m
fp and °f the principal part and the discrete part of f respectively. We here
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introduce vy, Wy m and pp ., respectively corresponding to v, w and p with
a=|n—m|,B=n+min§l. Then for f = (fom, {a.}) it follows that

- 0o |
/H€+UDn,m f(l/)dm,nl/ = /_oof()\)|00’0()\)|2d)‘+ 5 Z aud”’m(u)_

MeDn,m

Hence the inequality in Theorem 5.1 can be rewritten as
fnllioe [ AFO) P o > 71
R UDm™

We now suppose that f(g) is concentrated at ¢ = e: There exists a
positive constant €, ,, such that

| (37)
As in the same argument in §5 (see (28)), it follows that
PN CoaWI A > (= g2 ) I (38)
; n,m 0,0 = e, Pr,m L2(G)-

In particular, if €, ,, is of the form

€
802 m

En,m =

for 0 < e < 1, then

and thus,

Therefore, (37) and (38) are respectively rewritten as

€
||fpn,mvn,m||%2(G) < g”f“%?(G)

and
R _ 1
| VanWENICoa0] a3 2 L1
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Let f = Zn,meN f™™ denote the K-type decomposition of an L2-function
f on G whose K-types are supported on N x N. Since

e = D 1"z

n,meN

and the Hilbert-Schmidt norm of o, (f) = (( f”’m)A()\)> is given by

n,meN
Imoa(F)llEs = D 1F~™(Y)

n,meN

we can obtain the following.

Theorem 7.1. Let € > 0 and [ = Zn’meN f™™ be an L*-function on
SU(1,1). We suppose that each f™™ is concentrated at x = 0 such as

n,m € n,m
1™ prmVnm |72y < g”f’ 172)- (39)

Then
o 1
/0 1m0 () IFfisA%|Coo(A)|2dA > E||f||i2(G)

where || ||lus is the Hilbert-Schmid norm. In particular, ||mox(f)||las does not
concentrate at A = 0.

Remark 7.2. It easily follows from (24) and (25) that

. n—m|+n+m
pn,mvn’,h,l:O(mln(| |n—|m|+1 ,\/|n—m|+n—|—m>>.

Therefore, if the right or left K-types of f are finite, then {py, ,Unm} in (39)
are uniformly bounded. However, for example, if n = m, then {p,, ,v,,,} are
not uniformly bounded.
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