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Abstract

The classical Hardy theorem on R was generalized by Miyachi [?]
and Bonami, Demange, and Jaming [?]. In this paper we show that
Miyachi’s theorem and Bonami-Demange-Jaming’ one can be refor-
mulated for the Jacobi transform in terms of the heat kernel.

1. Introduction. For f € L'(R) we define the Fourier transform f()),

AER, of f by
= / fz)e ™ dg,

Let us take two positive numbers a,b which satisfy the relation ab = 1/4.
Miyachi’s theorem in [?] states that if f € L'(R) satisfies

2

e f(z) € L'(R) + L™(R)

and
oS
/Oo |f( g |d)\ < 00

for some C' > 0, then f is a constant multiple of e=%*", where L'(R)+L>(R)
is the set of functions of the form f = f; + fo, fi € L'(R), fo € L*(R),
and logt z = logz if > 1 and log" 2 = 0 if # < 1. On the other hand, one

dimendional case of Bonami-Demange-Jaming’s theorem in [?] states that
f € L*(R) satisfies

DD
// 1+|x|+|y|> Fdedy < 00

for some N > 0 if and only if f is written as f(z) = P(x)e~*", where P is
a polynomial of degree < (N — 1)/2. Both theorems are generalizations of
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the classical Hardy theorem and the Cowling-Price theorem which is an L?
version of the classical Hardy one (see [?] and [?]).

Recently, Hardy’s theorem on Lie groups has been investigated by various
people. As remarked by V.S. Varadarajan some years ago, Hardy’s theorem
can be written in terms of the heat kernel of the Laplacian on the groups.
Then, considerable attention has been paid to discover a connection between
the heat kernel and analogues of Hardy’s theorem and Cowling-Price’s theo-
rem on Lie groups. For this subject we refer to [?], [?], [?], and [?]. Moreover,
N.B. Andersen [?] and the second auther of this article and J. Liu [?] ob-
tained independently an analogue of Hardy’s theorem and its LP version for
the Jacobi transform. The aim of this article is to show that the above two
theorems can be restated for the Jacobi transform in terms of the heat kernel.

2. Notations. We collect relevant material from the harmonic analysis
associated with the Jacobi transform. General references for this section are
(7], [?] and [?]. For «, 3,A € C and = € R, = [0,00), the Jacobi function
ox(x) of order (o, f), a« # —1,—2,--- is the unique solution on Ry of the
differential equation:

Logu=—(\+p*)u, u(0)=1, and v/(0) =0,

where p=a + 4+ 1 and
Los =L 4 (20 +1)coths + (26 + 1) tanh )2
af = = a cothx anh x)—.
By dx

In the following we suppose that a > 3 > —1/2. Then ¢,(x) is estimated as

1 if |IA| < p,
|pa(2)] < € elSA=PT i [N > p, (1)
¢is>\($)

for all z € R, (see [?, Lemma 11]). For a compactly supported C'*° function
f on R, the Jacobi transform f(\), A € C, of f is given by

V= [ 5@ 20, ®)
0
where A, 5(7) = (2sinh z)?¢*1(2 cosh 2)?*T1. We recall that for all A € C,

(Lagf)"(A) = =(W + p) f (). (3)



The Abel transform Fy(z), x € Ry, of f is given as

Fy(x) = /Oof(s)A(x,s)ds, v >0, (4)

where A(z, s) is positive, even with respect to x and moreover, it satisfies

Ao p(8)oa(s) = c/os cos(Ax)A(z, s)dz, s>0. (5)

We refer to [?, (2.16), (3.5)] for the explicit form of A(z,s). We recall that

~

f()‘) :ﬁf(A)7 A e G, (6)

where f and Fy are regarded as even functions on R and the right hand
side ﬁ’f denotes the Euclidean Fourier transform of Fy. We note that the
Jacobi transform is extended to functions for which the right hand side
of (2) is well-defined. For example, if f € L'(Ry, Aqg(x)dz), then f()),
A € R, is well-defined and it has a holomorphic extension on the tube domain
|SA| < p (see (1)). Also the relations (3) and (6) hold for |IA| < p. More-
over, the map f — f extends to an isometry between L2(R., Aq g(z)dx)
and L?*(Ry, |Caps(N)| 2d)), where C,5(N\) denotes the Harish-Chandra C-
function (cf. [?, (2.6)]).

For ¢t > 0 let hy(x), x € R, denote the heat kernel associated to L, g, that
is, the even C'*° function on R such that

~

he(A) = e "+ X e R, (7)
We recall that
hy(z) ~ t 0P e P (L p 4 )2 (1 1), 2 >0, (8)

where “~” means that the ratio of the left side and the right side is bounded
below and above by positive constants (see [?, Corollary 1], cf. [?, Theorem
3.1]). Hence (8) and (1) imply that h;(A) is entire and (7) holds for A € C.

3. Miyachi’s theorem. We shall obtain an extension of Miyachi’s theorem
for the Jacobi transform. We put

dor = (tanh )2 (1 + 2)*"2dz on R,
and

L¥Ry) 4+ L' (Ry,dox) = {fi + f2 5 f1 € L°(Ry), fo € L'(Ry, dox)}.



Theorem 3.1. Let us take positive constants a,b which satisfy ab = 1/4.
Suppose f is a measurable function on R satisfying

(A4) = f@)hiy,(@) € L®(Ry) + L' (Ry, doz)

00 F(\) et
(B) / log™® Lcehl)\ < 0o for some 0 < C' < o0.

Then f is a constant multiple of hij4,.
Proof. The first condition (A) implies that fhl’/14a = u+wv, where u € L*°(R)

and v € L'(Ry,dy) and hence, f = hyjsqu + hyjsqv. As for the first term,
it follows from (1) that for all A = £+ in € C,

(hyjsa) V)] < [lullee /0 10 () () A () i
= Cih/z;a(in) = ce"’.
As for the second term, it follows from (1) and (7) that, if |n| > p, then

|(P1/4av)" (M)

< ¢ / (@) e (1 + 2)*Y2(1 + 2)el1 97 A (2)da
0

< c/oo lv(x)|(tanh 2)** (1 + x)a+1/26_“(‘”_"7|/2“)2dx e’ /a
0

< Pl aane™

and, if |n| < p, since e~ < ce™P" for x > 0, it follows that
2

|(h1/4av) (V)| < ellv]| 1Ry o) < €™

Hence, f()) is entire and it satisfies | f(A\)| < ce?”” for all A € C and (B). We
here recall the lemma which is used in the proof of Miyachi’s theorem (see
[?7, Lemma 4]):

Lemma 3.2. Suppose F(\) is an entire function and there ezist constant
A, B > 0 such that

IF(\)| < APV gnd / log™ [F(\)]d\ < oo.

oo

Then F' is a constant function.



Therefore, applying this lemma to f(\)e ®*/C, we see that f(\) = ce "’
and thus, f(z) = chijsa(z). m

4. Bonami-Demange-Jaming’s theorem. We shall obtain an extension
of Bonami-Demange-Jaming’s theorem for the Jacobi transform.

Theorem 4.1 Let us take a function f € L*(Ry,A,3(z)dz) and a non-
negative integer N. Then the inequality

/ /°° HGlle Pin(1)Aq 5 (x)dzd) < 00

1+ AN

holds if and only if f can be written as

(B) f(z) = P(Lap)ha(z),

where a > 0 and P is a polynomial of deg P < (N — 1)/4.

Proof. First we shall prove that (A) implies (B) by reducing the case to the
original Bonami-Demange-Jaming theorem on R. Since f(\) = F()) (see
(6)), it follows from (4), (5) and (A) that

[ [ B2
S// DA |/01+ L d)dsd)\
I i

_ //oo|f1+”§” 2 (5) A s(s)dsd) < o.

As in the first step of the proof of Proposition 2.2 in [?], F; belongs to
L'(R.,). Hence f = F} is bounded on R. Since F; € L*(Ry, |Cy 5(N)| 2d)\)
and |C, 5(\)| 2 is polynomial growth of order o + 1/2, it easily follows that
Fy € L?(R) and thus, F; € L*(R) as an even function on R. Then F}
satisfies the condition of Theorem 1.1 in [?], which yields that

Fr(A) = Qe ",

where a > 0 and @ is an even polynomial of degree < (N —1)/2. Since @ is
even, this relation can be rewritten as

IN

Fy(0) = P(= (X2 + p))e ),
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where P is a polynomial of deg P < (N — 1)/4. Since the map f — Fj
is bijectiove on L*(Ry, A, g(z)dx), it easily follows from (3) that f(z) =
P(Lag)ha(0).

Next we suppose that f(x) = P(Lsg)ha(x), where a > 0 and P is a
polynomial of degP < (N — 1)/4. Then, f(\) = F;()) is of the form
Q(A)e‘“)‘z, where () is an even polynomial of degree < (N — 1)/2. We note
that, if f > 0, then

/ / o (1 —i—||§ Pix(2)Aq g (z)dzdA

< FEN]f (A QM Q)]
(1+ )N d/\ / + )N

We recall that for © > 0, f(z) = P(Lag)ha(z) ~ U(x)h,, where U(x)
is a polynomial of degree d = 2deg P, because h, = h®® is defined by
het ~ W2, 1/2Wia+[3(e_’”2/4“) as a function of = (cf. [?, §3]) and thus,
dh2P /dx = sinh(2z)W2,(h®P) ~ sinh(2x)hPHLotl ~ zh®8 (see (8)). Here
we may suppose that the coefficient of 2¢ is positive. Since there exists a pos-
itive constant ¢ such that h,(z) > ¢(1 + z)@t1/2e=2*/4a=pr > co=2%/4a=pz fo;
x > 0 (see (8)), there exists a positive constant A such that f(x)+Ah,(x) > 0
for x > 0. Hence, |f(x)| = |f(z)+Ahy(x)— Ahy(z)| < f(x)+2Ahe(z). Then,
replacing | f(z)| with f(z)42Ahe(x) > 0, that is, Q(i)) with Q(i\)+2A4e "
in the above calculation, we have the desired result. m

d)\ < 0.

As an easy consequence of Theorem 4.1, we can deduce the Beurling
theorem for the Jacobi transform.

Theorem 4.2. Suppose that f € L'(Ry, A, 5(z)dx) satisifes

/ / )| f (V)| bin(x) Ag s(z)dzd) < co.

Then f = 0.
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Added in proof. After we have accomplished this paper, we were in-

formed that R. P. Sarkar and J. Sengupta also investigated a generalization
of Beurling’s theorem in the paper titled Beurling’s theorem for Riemaniann
symmetric spaces of noncompact type.
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