第 8 章「行列」の問題

例題 8 - 1

\[
3 \begin{pmatrix} 1 & -3 \\ 2 & -4 \end{pmatrix} - 2 \begin{pmatrix} 5 & 6 \\ 7 & 3 \end{pmatrix}
\]

（例題 8 - 1 の解答）

\[
\begin{align*}
\begin{pmatrix} 3 & -9 \\ 6 & -12 \end{pmatrix} + & \begin{pmatrix} -10 & -12 \\ -14 & -6 \end{pmatrix} \\
= & \begin{pmatrix} 3 - 10 & -9 - 12 \\ 6 - 14 & -12 - 6 \end{pmatrix} \\
= & \begin{pmatrix} -7 & -19 \\ -8 & -18 \end{pmatrix}
\end{align*}
\]

類題 8 - 1

\[
2 \begin{pmatrix} 1 & -2 & -3 \\ 5 & 3 & 2 \\ 2 & 0 & -1 \end{pmatrix} - 3 \begin{pmatrix} 4 & 2 & -3 \\ 5 & 3 & -2 \\ 3 & 4 & 1 \end{pmatrix}
\]

（類題 8 - 1 の解答）

\[
\begin{pmatrix} -10 & -10 & 3 \\ -5 & -3 & 10 \\ -5 & -12 & -5 \end{pmatrix}
\]

例題 8 - 2

(1)

\[
\begin{pmatrix} 1 & 2 \\ 3 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ 2 \end{pmatrix}
\]

(2)

\[
\begin{pmatrix} 1 & 3 \\ 2 & 4 \end{pmatrix} \begin{pmatrix} 4 & 1 \\ 3 & 2 \end{pmatrix}
\]
（例題 8 - 2 の解答）

\[
\begin{pmatrix}
1 & 2 & 1 \\
3 & 1 & 1 \\
2 & 1 & 2 \\
\end{pmatrix}
\begin{pmatrix}
5 \\
5 \\
2 \\
\end{pmatrix}
\]

\[
\begin{pmatrix}
1 & 3 \\
2 & 4 \\
\end{pmatrix}
\begin{pmatrix}
4 & 1 \\
3 & 2 \\
\end{pmatrix}
=\begin{pmatrix}
1 \times 4 + 3 \times 3 & 1 \times 1 + 3 \times 2 \\
2 \times 4 + 4 \times 3 & 2 \times 1 + 4 \times 2 \\
\end{pmatrix}
=\begin{pmatrix}
13 & 7 \\
20 & 10 \\
\end{pmatrix}
\]

類題 8 - 2 以下の計算をしなさい。

(1) \begin{pmatrix}
4 & 1 \\
3 & 2 \\
\end{pmatrix}
\begin{pmatrix}
1 & 3 \\
2 & 4 \\
\end{pmatrix}

(2) \begin{pmatrix}
1 & 0 & 2 \\
2 & 1 & 0 \\
0 & 0 & 2 \\
\end{pmatrix}

(3) \begin{pmatrix}
1 & 0 & 0 \\
-2 & -1 & 0 \\
0 & 1 & 1 \\
\end{pmatrix}

（類題 8 - 2 の解答）

(1) \begin{pmatrix}
6 & 16 \\
7 & 17 \\
\end{pmatrix}

(2) \begin{pmatrix}
1 & 0 & 5 \\
1 & 0 & 0 \\
0 & 1 & 0 \\
-2 & 0 & 1 \\
\end{pmatrix}

例題 8 - 3 次の rank を求めよ。

\[
A = \begin{pmatrix}
-1 & 1 & -1 \\
2 & 0 & 1 \\
1 & -3 & 2 \\
\end{pmatrix}
\]

（例題 8 - 3 の解答）
1列から3列をひく。
\[
\begin{pmatrix}
0 & 1 & -1 \\
1 & 0 & 1 \\
-1 & -3 & 2
\end{pmatrix}
\]

3列から1列をひく。
\[
\begin{pmatrix}
0 & 1 & -1 \\
1 & 0 & 0 \\
-1 & -3 & 3
\end{pmatrix}
\]

2列に1列をたす。
\[
\begin{pmatrix}
0 & 0 & -1 \\
1 & 0 & 0 \\
-1 & 0 & 3
\end{pmatrix}
\]

3行に2行をたす。
\[
\begin{pmatrix}
0 & 0 & -1 \\
1 & 0 & 0 \\
0 & 0 & 3
\end{pmatrix}
\]

3行に1行を3倍したものをたす。
\[
\begin{pmatrix}
0 & 0 & -1 \\
1 & 0 & 0 \\
0 & 0 & 0
\end{pmatrix}
\]

1列と2列を交換。
\[
\begin{pmatrix}
0 & 0 & -1 \\
0 & 1 & 0 \\
0 & 0 & 0
\end{pmatrix}
\]

1列と3列を交換。
\[
\begin{pmatrix}
-1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 0
\end{pmatrix}
\]

1列を−1倍。
\[
\begin{pmatrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 0
\end{pmatrix}
\]

よって rankA = 2
類題 8 - 3 次の rank を求めよ。

\[A = \begin{pmatrix} 1 & 1 & 2 \\ 0 & 1 & 1 \\ 1 & 0 & 2 \end{pmatrix} \]

（類題 8 - 3 の解答） rank \(A = 2 \)

例題 8 - 4 次の逆行列を求めよ。

\[\begin{pmatrix} 1 & -1 & -2 \\ 2 & -1 & 5 \\ 1 & -1 & -1 \end{pmatrix} \]

（例題 8 - 4 の解答）

\[\begin{pmatrix} 1 & -1 & -2 & 1 & 0 & 0 \\ 2 & -1 & 5 & 0 & 1 & 0 \\ 1 & -1 & -1 & 0 & 0 & 1 \end{pmatrix} \]

に行基本変形をする。
1 行から 2 行ひく。

\[\begin{pmatrix} 0 & 0 & -1 & 1 & 0 & -1 \\ 2 & -1 & 5 & 0 & 1 & 0 \\ 1 & -1 & -1 & 0 & 0 & 1 \end{pmatrix} \]

2 行に 3 行の 5 倍をたす。

\[\begin{pmatrix} 0 & 0 & -1 & 1 & 0 & -1 \\ 7 & -6 & 0 & 0 & 1 & 5 \\ 1 & -1 & -1 & 0 & 0 & 1 \end{pmatrix} \]

3 行から 1 行ひく。

\[\begin{pmatrix} 0 & 0 & -1 & 1 & 0 & -1 \\ 7 & -6 & 0 & 0 & 1 & 5 \\ 1 & -1 & 0 & -1 & 0 & 2 \end{pmatrix} \]

2 行から 3 行の 6 倍をひく。

\[\begin{pmatrix} 0 & 0 & -1 & 1 & 0 & -1 \\ 1 & 0 & 0 & 6 & 1 & -7 \\ 1 & -1 & 0 & -1 & 0 & 2 \end{pmatrix} \]
2行から3行をひく。

\[
\begin{pmatrix}
0 & 0 & -1 & 1 & 0 & -1 \\
1 & 0 & 0 & 6 & 1 & -7 \\
0 & -1 & 0 & -7 & -1 & 9 \\
\end{pmatrix}
\]

1行と3行を-1倍する。

\[
\begin{pmatrix}
0 & 0 & 1 & -1 & 0 & 1 \\
1 & 0 & 0 & 6 & 1 & -7 \\
0 & 1 & 0 & 7 & 1 & -9 \\
\end{pmatrix}
\]

1行と3行を入れ替え、2行と3行を入れ替える。

\[
\begin{pmatrix}
1 & 0 & 0 & 6 & 1 & -7 \\
0 & 1 & 0 & 7 & 1 & -9 \\
0 & 0 & 1 & -1 & 0 & 1 \\
\end{pmatrix}
\]

よって求める逆行列は、

\[
\begin{pmatrix}
6 & 1 & -7 \\
7 & 1 & -9 \\
-1 & 0 & 1 \\
\end{pmatrix}
\]

類題 8 - 4 次の逆行列を求めよ。

\[
\begin{pmatrix}
-2 & -3 & -2 \\
1 & 1 & 1 \\
2 & 2 & 1 \\
\end{pmatrix}
\]

（類題 8 - 4 の解答）

\[
\begin{pmatrix}
1 & 1 & 1 \\
-1 & -2 & 0 \\
0 & 2 & -1 \\
\end{pmatrix}
\]

例題 8 - 5 次の行列式を求めよ。

\[
\begin{vmatrix}
-1 & 1 & 3 & -2 \\
-3 & 3 & 5 & -3 \\
3 & -2 & -5 & 3 \\
2 & -1 & -3 & 2 \\
\end{vmatrix}
\]

5
（例題8-5の解答）

$$
\begin{vmatrix}
-1 & 1 & 3 & -2 \\
-3 & 3 & 5 & -3 \\
3 & -2 & -5 & 3 \\
2 & -1 & -3 & 2
\end{vmatrix}
$$

1列に2列を加える。

$$=
\begin{vmatrix}
0 & 1 & 3 & -2 \\
0 & 3 & 5 & -3 \\
1 & -2 & -5 & 3 \\
1 & -1 & -3 & 2
\end{vmatrix}
$$

3行に2行を加える。

$$=
\begin{vmatrix}
0 & 1 & 3 & -2 \\
0 & 3 & 5 & -3 \\
1 & 1 & 0 & 0 \\
1 & -1 & -3 & 2
\end{vmatrix}
$$

4列を$\frac{1}{2}$倍して2列に加える。

$$=
\begin{vmatrix}
0 & 0 & 3 & -2 \\
0 & \frac{3}{4} & 5 & -3 \\
1 & 1 & 0 & 0 \\
1 & 0 & -3 & 2
\end{vmatrix}
$$

4行に1行を加える。

$$=
\begin{vmatrix}
0 & 0 & 3 & -2 \\
0 & \frac{3}{4} & 5 & -3 \\
1 & 1 & 0 & 0 \\
1 & 0 & 0 & 0
\end{vmatrix}
$$

3行から4行をひく。

$$=
\begin{vmatrix}
0 & 0 & 3 & -2 \\
0 & \frac{3}{4} & 5 & -3 \\
0 & 1 & 0 & 0 \\
1 & 0 & 0 & 0
\end{vmatrix}
$$
2行から3行の$\frac{1}{4}$倍をひく。

\[
\begin{vmatrix}
0 & 0 & 3 & -2 \\
0 & 0 & 5 & -3 \\
0 & 1 & 0 & 0 \\
1 & 0 & 0 & 0
\end{vmatrix}
\]

1列で展開。

\[
= (-1)^{(1+4)} \begin{vmatrix} 0 & 3 & -2 \\
0 & 5 & -3 \\
1 & 0 & 0
\end{vmatrix}
\]

1列で展開。

\[
= (-1)^{(1+4)}(-1)^{(3+1)} \begin{vmatrix} 3 & -2 \\
5 & -3
\end{vmatrix} = -1 \times (3 \times 3 - (-2) \times 5) = -1
\]

問題 8 - 5 次の行列式を求めよ。

\[
\begin{pmatrix}
1 & 1 & 2 \\
0 & 1 & 1 \\
1 & 0 & 2
\end{pmatrix}
\]

（問題 8 - 5 の解答）$|A| = 0$

例題 8 - 6 次の連立方程式を解きなさい。

\[
\begin{cases}
x + y + 2z = 2 \\
y - 2z = -3 \\
y - z = -1
\end{cases}
\]

（例題 8 - 6 の解答）

\[
A = \begin{pmatrix}
1 & 1 & 2 \\
0 & -1 & 2 \\
0 & -1 & 1
\end{pmatrix}
\]

とおくと，$|A| = 1$，

\[
A_1 = \begin{pmatrix}
2 & 1 & 2 \\
-3 & -1 & 2 \\
-1 & -1 & 1
\end{pmatrix}
\]

7
に対して，$|A_1| = 7$

\[
A_2 = \begin{pmatrix}
1 & 2 & 2 \\
0 & -3 & 2 \\
0 & -1 & 1 \\
\end{pmatrix}
\]

に対して，$|A_2| = -1$

\[
A_3 = \begin{pmatrix}
1 & 1 & 2 \\
0 & -1 & -3 \\
0 & -1 & -1 \\
\end{pmatrix}
\]

に対して，$A_3 = -2$

よって

\[
\begin{cases}
x = \frac{|A_1|}{|A|} = 7 \\
y = \frac{|A_2|}{|A|} = -1 \\
z = \frac{|A_3|}{|A|} = -2
\end{cases}
\]

例題 8 - 6
次の連立方程式を解きなさい。

\[
\begin{cases}
2x - y = 1 \\
x + y + z = -2 \\
-2y - z = 3
\end{cases}
\]

(例題 8 - 6 の解答)

\[
\begin{cases}
x = 0 \\
y = -1 \\
z = -1
\end{cases}
\]

例題 8 - 7

\[
A = \begin{pmatrix}
1 & 1 & 2 \\
0 & 1 & 1 \\
1 & 0 & 1 \\
\end{pmatrix}
\]

に対して

\[
W_1 = \{x | x \in \mathbb{R}, Ax = 0\}, W_2 = \{Ax | x \in \mathbb{R}^3\}
\]

とおく。
(1) \(\dim W_1 \) と \(W_1 \) の基底のひとつを求めよ.

(2) \(\dim W_2 \) を求めよ.

(例題 8 - 7 の解答)

(1)
\[
\begin{pmatrix}
1 & 1 & 2 \\
0 & 1 & 1 \\
1 & 0 & 1
\end{pmatrix}
\begin{pmatrix}
x \\
y \\
z
\end{pmatrix}
=
\begin{pmatrix}
0 \\
0 \\
0
\end{pmatrix}
\]
\[
\begin{pmatrix}
x + y + 2z \\
y + z \\
x + z
\end{pmatrix}
=
\begin{pmatrix}
0 \\
0 \\
0
\end{pmatrix}
\]
\[x = y = 3\]
\[W_1 = \{c \begin{pmatrix}
1 \\
1 \\
-1
\end{pmatrix} | c \in \mathbb{R} \} \]

よって \(W_1 \) の基底は
\[
\begin{pmatrix}
1 \\
1 \\
-1
\end{pmatrix}
\]
となる。\(\dim W_1 = 1 \)

(2) \(W_2 \ni y \) すると \(y = Ax, x \in \mathbb{R}^3 \) が存在する。

\[
x = \begin{pmatrix}
p \\
q \\
r
\end{pmatrix}, p, q, r \in \mathbb{R}
\]

とすると,
\[
y = p \begin{pmatrix}
1 \\
0 \\
1
\end{pmatrix} + q \begin{pmatrix}
1 \\
1 \\
0
\end{pmatrix} + r \begin{pmatrix}
2 \\
1 \\
1
\end{pmatrix}
\]
\[= p \left\{ \left(\begin{array}{c}
2 \\
1 \\
1
\end{array} \right) \right\} + q \left(\begin{array}{c}
1 \\
1 \\
0
\end{array} \right) + r \left(\begin{array}{c}
2 \\
1 \\
1
\end{array} \right) \]

9
\[
= (-p + q) \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix} + (p + r) \begin{pmatrix} 2 \\ 1 \\ 1 \end{pmatrix}
\]

\[
= C_1 \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix} + C_2 \begin{pmatrix} 2 \\ 1 \\ 1 \end{pmatrix}, \quad C_1, C_2 \in \mathbb{R}
\]

となる。

\[
\begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix} \quad \text{と} \quad \begin{pmatrix} 2 \\ 1 \\ 1 \end{pmatrix}
\]

は一次独立であるので \(\dim W_2 = 2 \)

類題 8 - 7

\[
B = \begin{pmatrix} -4 & -2 & 6 \\ 2 & 1 & -3 \\ 6 & 3 & -9 \end{pmatrix}
\]

に対して

\[W_1 = \{ x | x \in \mathbb{R}, Bx = 0 \}, \quad W_2 = \{ Bx | x \in \mathbb{R}^3 \}\]

とおく。
(1) \(\dim W_1 \) と \(W_1 \) の基底のひとつを求めよ。
(2) \(\dim W_2 \) を求めよ。

(類題 8 - 7 の解答)

(1) \(W_1 \) の基底は

\[
\begin{pmatrix} -1 \\ 2 \\ 0 \end{pmatrix}, \quad \begin{pmatrix} 3 \\ 0 \\ 2 \end{pmatrix}
\]

よって \(\dim W_1 = 2 \). (2) \(\dim W_2 = 1 \).

例題 8 - 8

次の固有値と固有ベクトルを求めよ。

\[
A = \begin{pmatrix} -5 & -8 & 6 \\ 8 & 9 & -4 \\ 7 & 8 & -4 \end{pmatrix}
\]

10
(例題8 - 8の解答)

\[|A - \lambda E| = \begin{vmatrix} -5 - \lambda & -8 & 6 \\ 8 & 9 - \lambda & -4 \\ 7 & 8 & -4 - \lambda \end{vmatrix} = -\lambda(1)(\lambda - 2)(\lambda + 3) \]

よって固有値 \(\lambda = 1, 2, -3 \).

\(\lambda = 1 \) に対する固有ベクトルは

\[
\begin{pmatrix}
-2 \\
3 \\
2
\end{pmatrix}
\]

\(\lambda = 2 \) に対する固有ベクトルは

\[
\begin{pmatrix}
-2 \\
4 \\
3
\end{pmatrix}
\]

\(\lambda = -3 \) に対する固有ベクトルは

\[
\begin{pmatrix}
1 \\
-1 \\
-1
\end{pmatrix}
\]

類題8 - 8 次の固有値と固有ベクトルを求めよ。

\[A = \begin{pmatrix} -13 & 6 & -12 \\ -22 & 10 & -18 \\ 4 & -2 & 5 \end{pmatrix} \]

(類題8 - 8の解答) 固有値は \(\lambda = -1, 1, 2 \).

\(\lambda = 1 \) に対する固有ベクトルは

\[
\begin{pmatrix}
1 \\
2 \\
0
\end{pmatrix}
\]

\(\lambda = 1 \) に対する固有ベクトルは

\[
\begin{pmatrix}
0 \\
2 \\
1
\end{pmatrix}
\]
\(\lambda = 24 \) に対する固有ベクトルは

\[
\begin{pmatrix}
-2 \\
-1 \\
2
\end{pmatrix}
\]

\[\text{類題 8 - 9 } \] 次の固有値と固有ベクトルを求めよ。

\[
A = \begin{pmatrix}
17 & -8 & 16 \\
0 & 1 & 2 \\
-20 & 10 & -18
\end{pmatrix}
\]

（類題 8 - 9 の解答）固有値は \(\lambda = 1, 2, -3 \)。
それぞれに対する固有ベクトルは

\[
\begin{pmatrix}
1 \\
2 \\
0
\end{pmatrix}, \quad
\begin{pmatrix}
0 \\
2 \\
1
\end{pmatrix}, \quad
\begin{pmatrix}
-2 \\
-1 \\
2
\end{pmatrix}
\]

\[\text{例題 8 - 10 } \] 次の行列の固有値・固有ベクトルを求め、対角化しなさい。

\[
A = \begin{pmatrix}
1 & 10 & -2 \\
0 & -2 & 0 \\
4 & 14 & -5
\end{pmatrix}
\]

（例題 8 - 10 の解答）固有値は

\[
|A - \lambda E| = -(\lambda + 1)(\lambda + 2)(\lambda + 3)
\]

より、\(\lambda = -1, -2, -3 \)。
それぞれに対応する固有ベクトルは

\[
\begin{pmatrix}
1 \\
0 \\
1
\end{pmatrix}, \quad
\begin{pmatrix}
-2 \\
1 \\
2
\end{pmatrix}, \quad
\begin{pmatrix}
1 \\
0 \\
2
\end{pmatrix}
\]

となるので

\[
P = \begin{pmatrix}
1 & -2 & 1 \\
0 & 1 & 0 \\
1 & 2 & 2
\end{pmatrix}
\]
とおくと

\[P^{-1} = \begin{pmatrix} 2 & 6 & -1 \\ 0 & 1 & 0 \\ -1 & -4 & 1 \end{pmatrix}. \]

よって

\[P^{-1}AP = \begin{pmatrix} -1 & 0 & 0 \\ 0 & -2 & 0 \\ 0 & 0 & -3 \end{pmatrix} \]

と対角化できる。

【問題 8-10】次の行列を対角化しなさい。

\[P = \begin{pmatrix} -4 & 4 & -2 \\ -4 & 6 & -4 \\ 16 & -8 & 2 \end{pmatrix} \]

（【問題 8-10 の解答】

\[\begin{pmatrix} 2 & 0 & 0 \\ 0 & -2 & 0 \\ 0 & 0 & 4 \end{pmatrix} \]