
フーリエ級数の例題と問題

例題１（フーリエ級数の計算問題） 鋸（のこぎり）関数

���� �

���
��

� � �� � � � � のとき �

� � それ以外のとき �

を 区間 �� � � � � の周期関数としてフーリエ展開せよ。すなわち、各フーリエ係数
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を計算し、次にフーリエ級数
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を求めればよい。

（例題１の解答） まず、関数 ���� の各フーリエ係数は
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よって、関数 ���� のフーリエ級数は
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問題１（フーリエ級数の計算問題） ヘビサイド関数
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を 区間 �� � � � � の周期関数としてフーリエ展開せよ。すなわち、各フーリエ係数
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を計算し、次にフーリエ級数
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を求めればよい。

（問題１の解答） まず、関数 ���� の各フーリエ係数は
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よって、関数 ���� のフーリエ級数は
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例題２（フーリエ級数のギブス現象） 鋸関数 ���� について、そのフーリエ級数の部

分和は
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となる。このとき、
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となることを示せ。すなわち、��� のとき �� � � � � において 
���	 �� は ���� に

一様収束しない。

（例題２の解答）
���	 �� に � � �� 	
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を代入し、��� の極限において定積分の定

義により

���
���


���	 � � 	
�

�
� � � ���

���

��
���

�������

�
���

�
��� 	

��

�

	

� �� ���
���

��
���

�

�
���

��

�
� �� ���

���

�

�

��
���

��� �

�
�

�

�
�

� ��
� �

�

��� �

�
�� � �� � �����

問題２（フーリエ級数のギブス現象） ヘビサイド関数���� について、そのフーリエ

級数の部分和は
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となる。このとき、
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となることを示せ。すなわち、� � � のとき �� � � � � において 
���	 �� は ����

に一様収束しない。

（問題２の解答）
���	 �� に � �
�
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を代入し、��� の極限において定積分の定義に
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例題３（フェイェールの定理） 関数 ���� は �� � � � � の周期関数とする。このと

き、���� のチェザロ和
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およびフェイェール核
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について以下の事項を示せ。
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（例題３の解答）
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なることより明らか。

��� ���� が連続ならば �� � � � � において一様連続でもあるから、任意の � 
 � に対

しこれのみに依存する定数 Æ� 
 � が存在し、��� � Æ� ならば、すべての �� � � � �

に対して
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び �
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となるようにもできる。したがって、� � �� ならば、すべての �� � � � � に対

して
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となる。したがって一様収束の意味で ���
���

����	 �� � ���� が成立する。

問題３（ポアソンの定理） 関数 ���� は �� � � � � の周期関数とする。このとき、

� � � � � なるパラメーターに対して、���� のアーベル－ポアソン和
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について以下の事項を示せ。
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（問題３の解答）
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なることより明らか。

��� ���� が連続ならば �� � � � � において一様連続でもあるから、任意の � 
 � に対

しこれのみに依存する定数 Æ� 
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となるようにもできる。したがって、� 
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となる。したがって一様収束の意味で ���
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