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Let G be a real rank one connected semisimple Lie group with finite center. We
introduce a real Hardy space H'(G//K) on G as the space consisting of all K-
bi-invariant functions f on G whose radial maximal functions My f are integrable
on G. We shall obtain a relation between H'(G//K) and H'(R), the real Hardy
space on the real line R, via the Abel transform on G and give a characterization
of HY(G//K).

1. Introduction

The study of the classical Hardy spaces on the unit disk and the upper half
plane was originated during the 1910’s by the complex variable method.
In the 1970’s the Hardy spaces were completely characterized by various
maximal functions of their boundary values and also by atomic decompo-
sitions, without using the complex variable method. This is a significant
breakthrough in harmonic analysis. Nowadays, the spaces defined by the
real variable method — maximal functions and atoms — called real Hardy
spaces and a fruitful theory of real Hardy spaces has been extended to the
spaces of homogeneous type: A topological space X with measure p and
distance d is of homogeneous type if there exists a constant ¢ > 0 such that
forallz € X and r > 0

w(B(z,2r)) < cu(B(z,7)),

where B(xz,r) is the ball defined by {y € X | d(z,y) < r} and u(B(z,r))
the volume of the ball (cf. [1, §1]). However, when the space X is not of
homogeneous type, little work on real Hardy spaces on X has been done.
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Hence, looking at the example of a semisimple Lie group G as a space of
non-homogeneous type, we shall introduce a real Hardy space H!'(G//K)
by using radial maximal functions on G. In this article we shall overview
some results obtained in the previous papers [5], [6], [7] and announce a new
characterization of H'(G//K), which gives a relation between H'(G//K)
and the real Hardy space H*(R) on R via the Abel transform on G.

2. Notation

Let G be a real rank one connected semisimple Lie group with finite cen-
ter, G = KAN = KAK Iwasawa and Cartan decompositions of G. Let
dg = dkdadn = A(a)dkdadk’ denote the corresponding decompositions of
a Haar measure dg on G. In what follows we shall treat only K-bi-invariant
functions on G. Since A is identified with R as A = {a.;z € R}, all K-bi-
invariant functions can be identified with even functions on R denoted by
the same letter as

f(9) = flao(g) = fo(g)) = f(=o(g)).
We may regard the weight A(a.) as an even function given by
A(z) = e(shlz])?** (sh2z])**, (1)

where a = (my + ma — 1)/2, 8 = (m2 —1)/2 and m;, mo the multiplicities
of a simple root 7y of (G, A) and 2y respectively. We note that the one
dimensional space R with normal distance and weighted measure A(z)dz
is not of homogeneous type, because A(z) ~ €2°* with p = a+3+1 > 0 as
x — 00. Let LP(G//K) denote the space of all K-bi-invariant functions on
G with finite LP-norm and L{ (G//K) the space of all locally integrable,
K-bi-invariant functions on G.

Let F be the dual space of the Lie algebra of A and for A € F, ¢, the

normalized zonal spherical function on G:
(@) = 2F1 ((p+iN)/2, (p — iN) /20 + 1;—sh?z)

where 5 F} is the Gauss hypergeometric function. We recall that, if A ¢ Z,
then @y (z) has the so-called Harish-Chandra expansion:

oa(z) =e= " ((P(A,x)C'()\)eD‘z + <I>(—>\,:U)C(—)\)e_i>“”) , (2)

where C'()\) is Harish-Chandra’s C-function. For some basic properties of
or(z), ®(\, ), and C(X) we refer to [2, §2, §3] and [12, 9.1.4, 9.1.5].
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For f € L'(G//K) the spherical Fourier transform f(\), A € F, of f is
defined by

FfN) =/Gf(g)m(g)dg=/0°o f(@)ox(2)A(z)dz.

Since p(x) is even with respect to A, z and uniformly bounded on z if X is
in the tube domain F(p) = {\ € F.;|SA| < p}, it follows that f()) is even,
continuously extended on F(p), holomorphic in the interior, and

IFO < [Ifll, A€ F(p).

For f € C2°(G//K) the Paley-Wiener theorem (cf. [2, Theorem 4]) implies
that f()) is holomorphic on F, of exponential type. Furthermore, it satisfies
the inversion formula

f(z) = / T Ve @O
and the Plancherel formula
/ @) A)de = / FORICO)] 2dA.
0 0

Therefore, the spherical Fourier transform f — f of C*(G//K) is uniquely
extended to an isometry between L*(G//K) = L?*(R4, A(z)dz) and
L*(Ry, |C(N)|7%d)) (cf. [2, Proposition 3], [12, Theorem 9.2.2.13)).

For f € C2°(G//K) we define the Abel transform F}, s € R, of f as

Fi(z) = er(i+s)e /Nf(awn)dn. (3)

Here the Euclidean Fourier transform (F7)~(A) is holomorphic on F. of ex-
ponential type, because F7(f) € C2°(R), and it coincides with the spherical
Fourier transform of f:

~

f+isp) = (Ff)~ (), AeFe (4)

(cf. [9, §3]). Especially, F? is even on R. The integral over N in (3) can
be explicitly rewritten by using a generalized Weyl type fractional integral
operator W7: For 0 >0, p € C and y > 0,

wheren =0if Ry >0and —n<Ru < -n+1,n=0,1,2,---, if Ru <0
(see [9, (3.11)]). Then Koornwinder obtains that for z > 0,

F(x) = Wi_go Wi, ()
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(see [9, (2.18), (2.19), (3.5)]). In the following, for simplicity, we denote
W, (f)(x) = F}(|z]), that is,

Wi (f)(z) = e Wo 5o Wi p(H)lz)), z€R (6)
and for a smooth function F on R,
W_(F)(z) = Wz(ﬁ+1/2) ° Wi(afﬂ) (e™""F), z € Ry. (7)

Clearly, W_o W, (f) = f and Wy o W_(F) = F.
For f € LY(G//K), W4(f) belongs to L'(R), because the integral
formula for the Iwasawa decomposition of G yields that
W+ (Hllrwy < NflL (8)
(cf. [9, (3.5), (2.20)]). Hence W4 (f)~(N\), A € F, is well-defined and it
follows from (4) that
FO+ip) =W (f)™(N), AeF. 9)
Let f,g € L'(G//K).
(cf. [2, Theorem 5], [3, §5]), it follows that
Wi (fxg) = Wi (f) * Wi(g). (10)

We say that a function F' on R is W,-smooth if W_(F) is well-defined
and continuous. Then, for W -smooth functions F,G on R with compact
support such that e7?*F and e”?*G are even, it follows that

W_(FxG)=W_(F)*W_(Q).

3. Radial maximal functions

As in the Euclidean case, to define a radial maximal function we need to
define a dilation ¢, t > 0, of a function ¢ on G. Let ¢ be a positive
compactly supported C*°, K-bi-invariant function on G such that

[ os= [ o@awi =1 (1)
0
and furthermore, there exists M € N such that
¢(x) = O(z*M). (12)

We define the dilation ¢; of ¢ as

o) = 3572 (1) (3):
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Clearly, ¢; has the same L'-norm of ¢: ||¢||1 = ||¢]|; and, for 1 < p < oo,
it gives an approximate identity in LP(G//K) (see [2, Lemma 16]). We
here introduce the radial maximal function My f on G as follows.

Definition 3.1. For f € L} _(G//K),

loc

(M¢f)(g)=0<sup [(Fxd)(9)l, 9€@.

<oo

As shown in [5, Theorem 3.4 and Theorem 3.5], M satisfies the maximal
theorem and, for 1 < p < oo, ||fllp < ¢||Myf]|p if the both sides exist. By
using W, (¢;), we shall define a maximal function on R as follows.

Definition 3.2. For F € L. (R),

loc

(MEF)@) = swp |(F+Wi(6)@), = €R.

Since W4 (f * ¢1) = Wi (f) * Wi (¢:) (see (10)) and Wy is an integral
operator with a positive kernel (see (5), (6)), it follows that

sup_ W (1) < Wel@n)@)] < W sup 1 +61]) (o).
0<t<oo 0<t<oo

Therefore, from (8) we have a relation between M, and Mf:
Proposition 3.3. For f € L} _(G//K),

loc
(MEW, (£))(@) < Wy (Mof)(a), € R.

In particular,

IMEWL ()l ry < el My flh
if the both sides ezist.

Now we note that W, (¢;)~(A) = ¢¢(X +ip) (see (9)) has similar prop-
erties of the Euclidean Fourier transform of a Euclidean dilation:

(1) There exists ¢ such that for allt >0, A€ R and 0 < k < M,

K%) J’t(“"p)‘ < et (140 (L+ 1) 7,

(2) There exists ¢ such that for allt > 1 and A € R,

‘(%) ét(/\*-lp)‘ < Ctn(1+ |t/\|)7(2M+a+1/2),

(3) de(A+ip) = 1 as|tA] =0,
(4) |de(A+ip)| > 1/2 0 < |tA] <2,
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where M is the same as in (12). These properties guarantee that W, (o)
behaves like a Euclidean dilation on R. Hence, the maximal operator Mf
can characterize H'(R), that is, F € H'(R) if and only if MJ*(F) € L'(R):
Theorem 3.4. Let ¢ be as above and suppose that M > 2. Then F €
H'(R) if and only if M}F € L'(R):

1F |l ry ® IMSF| L1 (R)-

4. Real Hardy spaces

Let ¢ be the same as in the previous section (see (11), (12)) and M, Mqlf
the corresponding radial maximal operators on G and R respectively (see
Definitions 3.1 and 3.2). In this section we shall define two real Hardy spaces
H}(G//K) and W_(H"'(R)) on G and give a relation between them.

Definition 4.1. We define
HY(GJ/K) = {f € Lh(G//K) ; Myf € LHG//K)}
and || fllzrs ) = 1Mo flh-
Clearly, since || f|[1 < c||Myf]|1, it follows that
Hi(G//K) c L'(G//K).

Next we shall introduce a pull-back of the real Hardy space H!(R) on
R to G via W, (see (6)). Let My, s > 0, denote the Euclidean Fourier
multiplier defined by

Ms(F)~(A) = (A +ip)°F~(A).
Definition 4.2. For s > 0, we define
W_(M_;(H'(R))) = {f € L{,.(G//K) ; Ms o W.(f) € H'(R)}

and give the norm by [|My o Wi (f)llm1(r).- We denote W_(Mo(H"(R))) by
W_(HY(R)) for simplicity.

Obviously, Proposition 3.3 and Theorem 3.4 yield the following.

Corollary 4.3. Let M > 2. There exists a positive constant ¢ such that
W (Dl < ellfllms ) for all f € HYG//K) and thus,

Hy(G//K) c W_(H'(R)).
Let so = o+ 1/2. Then we see that
W-(M_,, (H'(R))) C W_(H"(R)). (13)
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Actually, let f € W_(M_;_ (H*(R))) and put F = W, (f). By the defini-
tion, Ms_ (F) belongs to H'(R). Since the Fourier multiplier M__ satisfies
the Hormander condition (cf. [11, §5 in Chap.11]), it is bounded on H*(R.)
(cf. [11, Theorem 4.4 in Chap.14]). Thereby, F € H'(R) and the desired
inclusion (13) follows. Similarly, since the Fourier multiplier Ms_: o WFW
0 <7 < sq, which corresponds to (¢A)Y/(A+ip)®>, satisfies the Hormander
condition, it is bounded on H*(R). Hence, each W& (F) also belongs to
H'(R): For 0 < v < 54,

IWE, (F)ll .y = [IMG(WE (F)lpary < clMs, (F)llmw).-

Now we shall characterize the Hj-norm of f € Hj(G//K) and show that
the real Hardy space H}(G//K) is located between W_(M_;_ (H'(R))) and
W_(HY(R)) (see (13)). We recall that

froe=W_(Wi(f)* Wi(pe)) = W_(F x Wi(¢r))

(see (10)). Therefore, roughly speaking, the Hi—norm of f, that is, the
L'-norm of My f on G (see Definition 4.1) can be characterized in terms of
the L'-norm of M;}(W, (F)) (see Definition 3.2). We rewrite W_(F) by
using the Weyl type fractional operator Wf on R:

* d"F(x)
dxm

(x —y)* T .

WR(F)(y) = /

Here WB(F)(chy) =W, (f)(y) if f(x) = F(chz) and o = f =1/2in (5).
Let § = (a —f3) —[a—p] and &' = (B —1/2) — [ — 1/2], where [ ] is
the Gauss symbol, and put n = [sq], d = § + ¢ and D = {4,¢',6 + &'}
respectively. Then the local and global forms of W_(F') can be rewritten
as follows:

(1) If F is Wy-smooth and supported on 0 < x < 1, then
[W_(F)(2)]

< CZ <x2sa+5+mW£{(m+£) (F)(x) + / Wil(m_‘_g) (F)(s)AL(a:,s)ds) ,
83 v

where the sum is taken over 0 < m < n and £ € D and Al (z,s) satisfies

0< Al (z,5) < g 2%ettm=l  forall0 <z <s. (14)



February 14, 2006 16:28 WSPC/Trim Size: 9in x 6in for Proceedings kawazoeGJ

(2) If F is Wy-smooth and supported on x > 1, then
[W_(F)(z)|
<e) (( et e (F)(@) + / WE o) (F) () A2, (z, 5)ds
m,§ T

4y 2atstm / W?m%) (F)(S)Aiz (z, s)ds) X[0,1] (z)

e _gpz(W o / WR o) (F)(s) AN (@, s)ds) X1, oo)(a:)>,

where A2 (z,s) satisfies (14) and for j = 3,4, Al (z,s) > 0 and there ezists
a positive constant ¢ such that

/ Al (z,s)dx < c for all s> 0.
0

By using these local and global forms of W_(F), we can rewrite the
L-norm of Mf(W,(F)) on R in terms of M¢ (WR (F)), 0 <7 < 54, 0n
R.. Finally, we have the following.

Theorem 4.4 Let M > 2 and F = W, (f) for f € W_(M_,_ (H'(R))).
Then there ezist c1,co such that for all 0 < v < 54,

crl| Mgt o WE (F)(2)(tha)|lrwy < Ifllm o)

<o 3O ST IMBoWR, Lo (F) (@) (tha) ™ 1 g,

m=0¢€eD

Especially,

3

1fllmy(c) ~ Z Z ||Mdf>{°WF(erg)(F)(m)(thw)m+£||Ll(R)
€D

m=0¢

IWE o) (Bl (m)

HM‘
5 &M F

and thus,

W_(M_,,(H'(R))) C Hy(G//K) C W_(H'(R)).
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Remark 4.5. Let C'(A) be Harish-Chandra’s C-function (see (2)) and M¢,
the Euclidean Fourier multiplier corresponding to C,(A) = C'(\ + ip):
Mc, (F)~(X) = C(A +ip)F~(N).
We define
W_(Mc, (H'(R))) = {f € Li,(G//K) ; M¢) o W4 (f) € H'(R)}.

loc

Then it easily follows from Theorem 4.4 that
W_(Mc, (H'(R))) C Hy(G//K) C W_(H'(R)).

This is one of the main results in [6]. However, the proof in [6] was a little
bit complicated, because to obtain the first inclusion we used the Harish-
Chandra expansion of the zonal spherical function ¢, and also the Gangolli
expansion of ®, (see (2) and [2, §3]). Thereby, to sum up the estimates
of each expanded terms we required sharp ones. Here we can obtain the
desired inclusion as an easy consequence of Theorem 4.4.

5. Atomic Hardy spaces

We introduce atomic Hardy spaces on GG. In the Euclidean case the atomic
Hardy space H., ,(R) coincides with H'(R) (cf. [4, Theorem 3.30], [10,
§2 in Chap.3]). However, it may be not true in our setting, because the
Lebesgue measure dz is replaced by the weighted measure A(z)dz (see (1)).
We denote the interval [zg — 7, 2o + 7] by R(zo,r) and set the volume by

xo+7r
R(z0,7)] = / A(z)dz.

o—"
We say that a K-bi-invariant function a on G is a (1,00,0)-atom on G
provided that there exist o > 0 and r > 0 such that

(i) supp(a) C R(wo,1),
(i) [lalloo < [R(w0,7)|7", (15)
(i) /0 a(2)A(2)dz = 0.

Here a is identified with a function on Ry. Similarly, we shall define a
(1,00,0,¢)-atom a and a (1,00, +)-atom a by replacing (i) with

(it)e [lalloo < |R(wo,m)| " (1+7)7° (16)
and (i4i) with

(4i1) 4 /000 a(z)A(z)dx =0 ifr <1 (17)
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respectively. Then we shall define atomic Hardy spaces H} ((G//K),
H2(G//K), HH(G//K) and b, o(G//K) as follows.
Definition 5.1. Let notations be as above. We define

Hiop(G//K) ={f= Z/\iai ; a; s (1,00,0)-atom on G and ), || < oo}

and denote the norm by

£l (@ = inf I\l

where the infimum is taken over all such representations f = . X\;a;. We
also define H;OEO(G//K) (e > 0) and HiOJB(G//K) by replacing (1,00,0)-
atoms a on G in the above definition with (1,00,0,€)-atoms and (1,00, +)-
atoms respectively. Moreover, we define the small Hardy space b, o(G//K)
on G by restricting (1,00,0)-atoms in the definition of HY, ,(G//K) to ones
with radius < 1.

Clearly, for € > 0,
hieo(G//K) C Hyo(G//K) C Hi, o(G//K) C Hyo(G//K).
Let x1 denote the characteristic function of B(1) = R(0,1) and set
0(g) = B(1)|"xi(9), 9€G.

Moreover, for each (not necessarily K-bi-invariant) function f on G, we
define a K-bi-invariant function f’, z € G, as

“(g) = Lkgk"dkdk' G.
£(9) /K/Kf(m gk )dkdK', g€

Then the difference between hl, ,(G//K) and HiOJB(G//K) is given as
follows.

Proposition 5.2. For f € HiOJB(G//K) there exist fo € hl, o(G//K) and
z; € G, \; € R such that

F=h+Y \o,

where ||f0||H;1‘%C(G) and ), |\;| are respectively bounded by ||f||H;T0(G).

As in the Euclidean case, we shall introduce the truncated maximal
operator Mé,"c on G as

(Mg“(g) = sup |(f+60)(9)l g €G-
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Then M;)“ is bounded from H;jo(G//K) to LY(G//K) (see [7]). As for
My, we see from [7, Theorem 5.3] that it is bounded from H;‘B(G//K) n
W_(H'(R)) to L'(G//K):

Proposition 5.3. Let M > 2. My is bounded from H;‘B(G//K) n
W_(H'(R)) to L'(G//K), that is, there exists a constant ¢ > 0 such that

1Mol < e (11t gy + W4 (H) Lo ) )
for all f € H'(G//K)NW_(H*(R)) and thus,
HYH(G//K) N W_(H'(R)) C H(G//K).

Let a be a (1,00,0, 1)-atom on G supported on R(zg,r). The conditions
(15) and (16) imply that ||al|eo < |R(wo,7)| 1(1+7)"! and / a(g)dg = 0.
G
Then A = W (a) is supported on R(z,r) and

/ Az)dz = A (0) = a(ip) :/Ga(g)dgzo.

Moreover, it follows from (6) and [8, Lemma 3.4]) that |A(z)] <
ce?P*th(xg + r)?**||al|-. Hence,
Case I: zyp —r > 1. Since A is supported on R(zg,r) and

xo+7r
|R(zg,7)| ~ / e2P*dx ~ e*P*oshr,
To—T
it follows that |A(z)| < ce?/(Fot) (e2P70shy) =1 (1 + )~ < er™'.
Case II: g —r < 1 and r > 1. Since zo + 1 > 1,

xo+7r
|R(zo,7)| > c/ e dy ~ e?r(TotT)
1
Therefore, as in Case I, we have ||A||.o < cr™t.
Case IIl: zo —r < 1, r < 1 and xg > 2r. Since zg > 2r, it follows that
zo + r > 3 and thus

wotr
|R(zo,7)| ~ / w2 dr < c(xg — ).
wo—r
Since (zo+71)/(xo—7) < 3, we have |A(z)| < cth(zo+7)*> ((wg—7r)%r)~t <
er~t.

Case IV: 29 —7r < 1, r < 1 and xg < 2r. Since 2o +r < 3r < 3 and
|R(zo,7)| > |B(r)| ~ |B(3r)|, we may suppose that a is a centered atom
supported on B(3r). Then |A(z)| < ¢(th3r)*=|B(3r)| ™! < crt.
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These four cases imply that cA is a (1,00,0)-atom on R, where ¢ is
independent of a. Therefore, we obtain the following.

Theorem 5.4. Let M > 2. Then
H\(G//K) C H\(G//K)nW_(H'(R)).

FEspecially, My is bounded from H;;{O(G//K) to L'(G//K), that is, there
exists a constant ¢ > 0 such that

1M £l < ellflln

for all f € H2'\(G//K).

6. Characterization of H;)(G//K)

We shall prove that the inclusion in Proposition 5.3 is the equality. Let
Sq = @+ 1/2 as above and put

|@o |47
do(zo,7) = / (thz)*~dz.
max{0,|zo|—r}
We define a subspace H;%(R)a of H'(R) as the space of all F = 3. \;A;
such that ), |A;] < oo and each A; satisfies

(i) supp(A4;) C R(zi,r;)
(i) IWE,_ (Ao < da (i, i)~ (18)

—Sa

(iid) / Ai(z)dz = 0if r; < 1.

Definition 6.1. We define
W_(H5(R)a) = {f € Lio(G//K) ; Wi(f) € HXG(R)a}.

0,0

We can construct a (1,00, +)-atomic decomposition (see (17)) for f €
W_(H;’;"B(R)a). Let FF = W, (f) and F =), A\;A; the decomposition of
F given by the definition, that is, ). |Ai| < oo and each A; satisfies (i) to
(¢i7) in (18). Here we may suppose that r; < 1. Actually, when r; > 1, we
decompose the support of A; by using a smooth decomposition of 1, where
each piece is supported in the interval with radius < 1 and thus, we have
A; = Ej A;; and each A;; satisfies (18) with radius < 1. Moreover, we

may suppose that z; = 0 with r; < 1 or |z;| > 2r;, because, if z; # 0 and
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|z;| < 2r;, then we may regard x; = 0 without loss of generality. Hence, we
can rearrange the decomposition of F' as

F = Z/\iAi + Z,Uij + Z’YkEk;

where each A; satisfies (i), (i4) with z; =0, r; < 1, /Ai(a:)da: = 0; each
B; satisfies (i) to (ii3) with |x;| > 2r;, r; < 1; each Ej satisfies (i), (i7)
with |zg| > 2ry, 1 = 1, and moreover, >, [Ai[ + 32, |ps] + 304 || < oo.
Since F' is W, .-smooth, finally, we have

F=Y Nai+ > ubi+ > yex, (19)
7 7 k

where a; = W_(4;), b; = W_(B;) and e, = W_(E}). Here it is easy to
see that each a;,b;, e, have the same supports of A;, B;, Ej respectively.

Now we apply fractional calculus in [8] to estimate each a;, b;, e. For
simplicity, we abbreviate the suffices 7, j, k and denote the supports of a, b, e
by R(xo,r). Without loss of generality, we may suppose that xg > 0.

As for e, since e is supported on R(xg,1) and xo > 2, it follows that
g —1 > 1 and thus, d4 (20, 1) ~ 1. Thereby, (ii) and [8, Lemma 3.3] imply
that on the support of e

le(z)| < e(thz)~(@+1/2 =20 < ce=20 < ¢|R(z,1)| 71,

This means that c~'e is a (1, 00, +)-atom on G.

As for b, we recall that zg > 2r.
Case I. g — r > 1: Since zg — r > 1, do(zo,r) ~ r. Thereby, (ii) and [8,
Lemma 3.3] imply that on the support of b

|b(£L’)| < c(thm)f(oz+1/2)672pwr71 < ce 2Pyl < C|R(£L‘,T)|71.

This means that ¢ b is a (1,00,0)-atom on G.

Case II. zg —r < 1: Since r < 1 and z¢ > 2r, it follows that zo < r+1 < 2,
xo—71 > x0/2, and xg + 1 < 3x0/2 < 3. Therefore, do(zo, ) < c(xg —1)%r
and thus, on the support of b

b(z)| < e(th)~OFYD =202 (g — )75 < ¢(mg — r)~(Gatbyp—t
Since (zg +r)/(zo —r) < 3, it follows that
|R(z0,7)| < c(xo + )2 e < c(xg — r)2* T

Therefore, |b(z)| < c|R(zg,r)|™" on the support. This means that ¢~ 1b is
a (1, 00,0)-atom on G.
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As for a, since g = 0 and r < 1, it follows that d,(0,7) ~ rf=*1 and
la(z)] < c(the) (T2 =2z =1 p=(satl) < oA (g) 71—t (20)
Hence, if we put
ay(z) = cAz) 'r xp,q(2), >0,

then |a(z)| < ay(x) and a4 is a non-increasing function on R with finite
L'-norm:

ol = [ ar@A@)ds = a.
0

Since a is supported on B(r) and / a(x)A(x)dr = / A(z)dz =0, it
0 —0o0

follows that |B(s)| ™! / a(z)A(z)dz is also supported on B(r) and

1 - ! ) ~1,-1
W/s a(r)A(z)dr = m/o a(z)A(z)dr < cA(s) _

Here we used (20) and |B(s)| ~ A(s)s if s <r <1 (see (1)). Hence,

15)| /00 a(x)A(z)dx < ag(s). (21)

|B

This means that ca, is an L' non-increasing denominator of a satisfying
(21). Then [5, Theorem 4.5] yields that a has a centered (1, oo, 0)-atomic
decomposition a = 7. yja; on G such that >, |v;| < cllay||rr(a) < cco.
Especially, a € H., o(G//K) and |lal|g2, (@) < cco.

These three cases imply that all a;, bj, e in (19), and thus f belongs
to HH(G//K):

Proposition 6.2. All functions in W_ (H;jo(R)a) have (1, 00, +)-atomic
decompositions, that is, W_(H. (R),) C H;;B(G//K)

0,0

Now we shall prove that H}(G//K) C W_(H}%(R)s). We shall give
a sketch of the proof in the case of s, = a + 1/2 is integer. Let f €
H}(G//K) and put F = W, (f). Then it follows from Theorem 4.4 that
||M41)1 o WE (F)(x)(thz)™ |1y < co. We recall that (thz)® is an A;-
weight. Therefore, WX, (F) has a (1,00, sq)-atomic decomposition with
respect to this weight:

WER (F)=>_ B,
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where B; is supported on R(z;,r;), / Bi(z)z*dz = 0, 0 < k < 54,
| Billoo < da(mi,ri)~" and Y-, [Ai] < oco. We set

F = Z/\WR ZAA

Since s, is integer and each B; satisfies the s,-th moment condition, it easily

follows that A; is supported on R(z;,r;) and / A;(xz)dz = 0. Moreover,

IWE (4)llo = |1Billsoc < da(wi,7;)7". Therefore, each A; satisfies (18)
and thus, F € H;%(R)a and f has a (1, 00, +)-atomic decomposition on
G by Proposition 6.2. Furthermore, we can drop the assumption that s, is
integer. Therefore, we have H}(G//K) C H%(G//K) in general. Finally,
as a refinement of Proposition 5.3, we have the following main theorem.

Theorem 6.3. Let notations be as above. Then

HY(G//K) = H,(G//K)NW_(H'(R)).

As an easy consequence of the previous argument, we have

Theorem 6.4. Let ¢ > 0. Then H wo(G//K)NW_(H"(R)) is dense in
W_(H"(R)). Especially, H,(G//K) is dense in W_(H"'(R)).
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