

An uncertainty principle for Sturm-Liouville hypergroup

R. Daher and T. Kawazoe

Abstract

As analogue of the classical uncertainty inequality on the Euclidean space, we shall obtain a generalization on the Sturm-Liouville hypergroups $(\mathbb{R}_+, *(\mathcal{A}))$. Especially, we shall obtain a condition on \mathcal{A} under which the discrete part of the Plancherel formula vanishes.

1. Sturm-Liouville hypergroups. Sturm-Liouville hypergroups are a class of one-dimensional hypergroups on $\mathbb{R}_+ = [0, \infty)$ with the convolution structure related to the second order differential operators

$$L = \frac{d^2}{dx^2} + \frac{A'(x)}{A(x)} \frac{d}{dx},$$

where A satisfies the following conditions (see [1], [2]):

- (1) $A > 0$ on $R_+^* = (0, \infty)$, and is in $C^2(\mathbb{R}_+^*)$,
- (2) on a neighbourhood of 0, $\frac{A'(x)}{A(x)} = \frac{2\alpha + 1}{x} + B(x)$, $\alpha \geq -\frac{1}{2}$ and
 - (a) if $\alpha > 0$, B and B' are integrable,
 - (b) if $\alpha = 0$, $\log xB$ and $x \log xB'$ are integrable,
 - (c) if $-\frac{1}{2} < \alpha < 0$, $x^{2\alpha}B$ and $x^{2\alpha+1}B'$ are integrable,
 - (d) if $\alpha = -\frac{1}{2}$, B' is integrable,
- (3) $\frac{A'}{A} \geq 0$ on \mathbb{R}_+^* and $\lim_{x \rightarrow \infty} \frac{A'(x)}{A(x)} = 2\rho$,
- (4) $\frac{1}{2} \left(\frac{A'}{A} \right)' + \frac{1}{4} \left(\frac{A'}{A} \right)^2 - \rho^2$ is integrable at ∞ .

Since $A'/A = (\log A)'$, (3) implies that A is increasing, and thus, $A(0) < \infty$. Under the conditions (1) to (3), the second order differential equation: $Lu + (\lambda^2 + \rho^2) = 0$, $\lambda \in \mathbb{C}$, has a unique solution satisfying $u(0) = 1$, $u'(0) = 0$, which we denote by ϕ_λ . Furthermore, under (4), if $\Im \lambda \geq 0$, then there exists another solution $\psi_\lambda(x)$, which behaves as $\sqrt{\pi/2} \sqrt{\lambda} x H_\alpha^{(1)}$ at ∞ , where $H_\alpha^{(1)}$ is

the Hankel function. Similarly, we have $\psi_\lambda^-(x)$ for $\Im\lambda \leq 0$, and for $\lambda \in \mathbb{R}_+^*$, there exists $C(\lambda) \in \mathbb{C}$ such that $\phi_\lambda(x) = C(\lambda)\psi_\lambda(x) + \overline{C(\lambda)}\psi_\lambda^-(x)$.

Let $C_{c,e}^\infty(\mathbb{R})$ denote the set of C^∞ even functions f on \mathbb{R} . For $f \in C_{c,e}^\infty(\mathbb{R})$ the Fourier transform \hat{f} is defined by

$$\hat{f}(\lambda) = \int_0^\infty f(x)\phi_\lambda(x)A(x)dx.$$

Then the inverse transform is given as

$$f(x) = \sum_{\Lambda \in D} \pi_\Lambda \hat{f}(\Lambda)\phi_\Lambda(x) + \frac{1}{2\pi} \int_0^\infty \hat{f}(\lambda)\phi_\lambda(x) \frac{d\lambda}{|C(\lambda)|^2},$$

where D is a finite set in the interval $i(0, \rho)$ and $\pi_\lambda = \|\phi_\lambda\|_{L^2(\mathbb{R}_+, Adx)}^{-2}$. We denote this decomposition as

$$f = {}^\circ f + f_P$$

and we call f_P and ${}^\circ f$ the principal part and the discrete part of f respectively. We denote by $\mathbf{F}(\nu) = (F(\lambda), \{a_\Lambda\})$ a function on $\mathbb{R}_+ \cup D$ defined by

$$\mathbf{F}(\nu) = \begin{cases} F(\lambda) & \text{if } \nu = \lambda \in \mathbb{R}_+ \\ a_\Lambda & \text{if } \nu = \Lambda \in D. \end{cases}$$

We put $\overline{\mathbf{F}}(\nu) = (\overline{F(\lambda)}, \{\overline{a_\Lambda}\})$ and define the product of $\mathbf{F}(\nu) = (F(\lambda), \{a_\Lambda\})$ and $\mathbf{G}(\nu) = (G(\lambda), \{b_\Lambda\})$ as

$$(\mathbf{F}\mathbf{G})(\nu) = (F(\lambda)G(\lambda), \{a_\Lambda b_\Lambda\}).$$

Let $d\nu$ denote the measure on $\mathbb{R}_+ \cup D$ defined by

$$\int_{\mathbb{R}_+ \cup D} \mathbf{F}(\nu) d\nu = \sum_{\Lambda \in D} \pi_\Lambda a_\Lambda + \frac{1}{2\pi} \int_0^\infty F(\lambda) |C(\lambda)|^{-2} d\lambda.$$

For $f \in C_{c,e}^\infty(\mathbb{R})$, we put

$$\hat{\mathbf{f}}(\nu) = (\hat{f}(\lambda), \{\hat{f}(\Lambda)\}).$$

Then the Parseval formula on $C_{c,e}^\infty(\mathbb{R})$ can be stated as follows: For $f, g \in C_{c,e}^\infty(\mathbb{R})$

$$\int_0^\infty f(x) \overline{g(x)} A(x) dx = \int_{\mathbb{R}_+ \cup D} \hat{\mathbf{f}}(\nu) \overline{\hat{\mathbf{g}}(\nu)} d\nu. \quad (5)$$

The map $f \rightarrow \hat{\mathbf{f}}$, $f \in C_{c,e}^\infty(\mathbb{R})$, is extended to an isometry between $L^2(A) = L^2(\mathbb{R}_+, A(x)dx)$ and $L^2(\nu) = L^2(\mathbb{R}_+ \cup D, d\nu)$. Actually, each function f in $L^2(A)$ is of the form

$$\begin{aligned} f(x) &= \sum_{\Lambda \in D} \pi_\Lambda a_\Lambda \phi_\Lambda(x) + \frac{1}{2\pi} \int_0^\infty \hat{f}(\lambda) \phi_\lambda(x) |C(\lambda)|^{-2} d\lambda \\ &= {}^\circ f + f_P \end{aligned}$$

and their L^2 -norms are given as

$$\begin{aligned} \int_0^\infty |{}^\circ f(x)|^2 \Delta(x) dx &= \sum_{\Lambda \in D} \pi_\Lambda |a_\Lambda|^2, \\ \int_0^\infty |f_P(x)|^2 \Delta(x) dx &= \frac{1}{2\pi} \int_0^\infty |\hat{f}_P(\lambda)|^2 |C(\lambda)|^{-2} d\lambda. \end{aligned}$$

Therefore, if we define $\hat{\mathbf{f}}(\nu) = (\hat{f}(\lambda), \{a_\Lambda\})$, then $\|f\|_{L^2(A)} = \|\hat{\mathbf{f}}\|_{L^2(\nu)}$ holds.

2. Uncertainty inequality. We retain the notations in the previous sections. We put for $x \in \mathbb{R}_+$,

$$a(x) = \int_0^x A(t) dt \quad \text{and} \quad v(x) = \frac{a(x)}{A(x)} \quad (6)$$

and for $\lambda \in \mathbb{C}$,

$$w(\lambda) = (\lambda^2 + \rho^2)^{1/2}.$$

Theorem 2.1. *For all $f \in L^1(A) \cap L^2(A)$,*

$$\|fv\|_{L^2(A)}^2 \int_{\mathbb{R}_+ \cup D} |\hat{\mathbf{f}}(\nu)|^2 w(\nu)^2 d\nu \geq \frac{1}{4} \|f\|_{L^2(A)}^4, \quad (7)$$

where the equality holds if and only if f is of the form

$$f(x) = ce^{\gamma \int_0^x v(t) dt}$$

for some $c, \gamma \in \mathbb{C}$ and $\Re \gamma < 0$.

Proof. Without loss of generality we may suppose that $f \in C_{c,e}^\infty(\mathbb{R})$. Since $(-Lf)^\wedge(\lambda) = \hat{f}(\lambda)(\lambda^2 + \rho^2) = \hat{f}(\lambda)w(\lambda)^2$ and $w(\lambda)$ is positive on $\mathbb{R}_+ \cup D$, the Parseval formula (5) yields that

$$\begin{aligned} \int_{\mathbb{R}_+ \cup D} |\hat{f}(\nu)|^2 w(\nu)^2 d\nu &= \int_0^\infty (-Lf)(x) \overline{f(x)} A(x) dx \\ &= \int_0^\infty |f'(x)|^2 A(x) dx. \end{aligned}$$

Hence it follows that

$$\begin{aligned} &\int_0^\infty |f(x)|^2 v(x)^2 A(x) dx \int_{\mathbb{R}_+ \cup D} |\hat{f}(\nu)|^2 w(\nu)^2 d\nu \\ &= \int_0^\infty |f(x)|^2 v(x)^2 A(x) dx \int_0^\infty |f'(x)|^2 A(x) dx \\ &\geq \left(\int_0^\infty \Re(f(x)f'(x)) v(x) A(x) dx \right)^2 \\ &= \frac{1}{4} \left(\int_0^\infty (|f(x)|^2)' A(x) dx \right)^2 = \frac{1}{4} \left(\int_0^\infty |f(x)|^2 A(x) dx \right)^2. \end{aligned}$$

Here we used the fact that $a' = A$ (see (6)). Clearly, the equality holds if and only if $fv = cf'$ for some $c \in \mathbb{C}$, that is, $f'/f = c^{-1}v$. This means that $\log(f) = c^{-1} \int_0^x v(t) dt + C$ and thus, the desired result follows. ■

Remark 2.2. When $(\mathbb{R}_+, \ast(A))$ is the Bessel-Kingman hypergroup, the equality holds for $e^{\gamma x^2}$, $\Re\gamma < 0$. However, when it is the Jacobi hypergroup, each function satisfying the equality has an exponential decay $e^{\gamma x}$.

Since $w^2(\lambda) = \lambda^2 + \rho^2$, (7) can be rewritten as follows.

Corollary 2.3. *Let f be the same as in Theorem 2.1.*

$$\|fv\|_{L^2(A)}^2 \int_{\mathbb{R}_+ \cup D} |\hat{f}(\nu)|^2 \nu^2 d\nu \geq \frac{1}{4} \|f\|_{L^2(A)}^2 \int_0^\infty |f(x)|^2 (1 - 4\rho^2 v(x)^2) A(x) dx. \quad (8)$$

3. Vanishing condition of the discrete part. We shall prove that under the assumption:

$$0 \leq v(x) \leq \frac{1}{2\rho}, \quad (9)$$

it follows that $D = \emptyset$. We suppose that $D \neq \emptyset$ and we take $f = \pi_\Lambda \phi_\Lambda$, $\Lambda \in D$. Then, since $\hat{f}(\nu) = 1$ if $\nu = \Lambda$ and 0 otherwise, it follows from (8) that

$$\|fv\|_{L^2(A)}^2 \pi_\Lambda \Lambda^2 \geq \frac{1}{4} \|f\|_{L^2(A)}^2 \int_0^\infty |f(x)|^2 (1 - 4\rho^2 v(x)^2) A(x) dx.$$

Here we recall that $\Lambda^2 < 0$, because $D \subset i(0, \rho)$ and $1 - 4\rho^2 v(x)^2 \geq 0$ by (9). This is contradiction. Therefore, we obtain the following.

Theorem 3.1. *If $0 \leq v \leq \frac{1}{2\rho}$, then $D = \emptyset$.*

For example, if A satisfies the inequality:

$$a(x) A'(x) = \int_0^x A(x) dx \cdot A'(x) \leq A^2(x), \quad (10)$$

then A satisfies (9). Actually, (10) implies

$$v'(x) = \frac{A^2(x) - a(x)A'(x)}{A^2(x)} \geq 0.$$

Hence v is increasing on \mathbb{R}_+ and $v(x) = a(x)/A(x) \leq A(x)/A'(x)$ because $A/A' > 0$ by (3). Then it follows from (3) that A satisfies (9).

Corollary 3.2. *If A satisfies the inequality (10), then $D = \emptyset$.*

Remark 3.3. It is well-known that $D = \emptyset$ for Chébli-Triméche hypergroups where A'/A is decreasing and (4) is not required (cf. [1]). This fact easily follows from our argument. Since A/A' is increasing and $0 \leq A/A' \leq 1/2\rho$ by (3), we see that $a \leq A/2\rho$ by integration and thus, (9) holds. Hence $D = \emptyset$ by Theorem 3.1.

4. Uncertainty principle. We suppose that $D = \emptyset$. Then (8) is of the form:

$$\begin{aligned} \|fv\|_{L^2(A)}^2 \frac{1}{2\pi} \int_0^\infty |\hat{f}(\lambda)|^2 \lambda^2 \frac{d\lambda}{|C(\lambda)|^2} \\ \geq \frac{1}{4} \|f\|_{L^2(A)}^2 \int_0^\infty |f(x)|^2 (1 - 4\rho^2 v(x)^2) A(x) dx. \end{aligned} \quad (10)$$

Since v is increasing, $v(0) = 0$, and $1 - 4\rho^2 v(x)^2 \geq 0$ by (9), it follows that f and \hat{f} both cannot be concentrated around the origin.

In general, if $D \neq \emptyset$, then we must pay attention to the discrete part of f to consider uncertainty principles. We refer to [3] for the Jacobi hypergroups.

References

- [1] W. Bloom and H. Heyer, Harmonic Analysis of Probability Measures on Hypergroups, Studies in Mathematics 20, Walter de Gruyter, Berlin, 1995.
- [2] O. Bracco, Fonction maximale associée à des opérateurs de Sturm-Liouville singuliers, preprint.
- [3] T. Kawazoe, Uncertainty principles for the Jacobi transforms, to appear in Tokyo J. Math.

Radouan Daher
Département of Mathématiques et Informatique
Faculté des Sciences
Univerity Hassan II
B.P. 5366 Maarif, Casablanca
Morocco

Takeshi Kawazoe
Department of Mathematics
Keio University at Fujisawa
Endo, Fujisawa, Kanagawa252-8520
Japan