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Abstract

As analogue of the classical uncertainty inequality on the Euclidean
space, we shall obtain a generalization on the Sturm-Liouville hyper-
groups (R4, *(A)). Especially, we shall obtain a condition on A under
which the discrete part of the Plancherel formula vanishes.

1. Sturm-Liouville hypergroups. Sturm-Liouville hypergroups are a
class of one-dimensional hypergroups on Ry = [0, 00) with the convolution
structure related to the second order differential operators
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where A satisfies the following conditions (see [1], [2]):
(1) A>0on R =(0,00), and is in C*(R%),
A(z) 2a+1
e =— + B(z), a > —1 and
a) if @« >0, B and B’ are integrable,
b) if « =0, logzB and zlogxz B’ are integrable,
¢) if =2 <a <0, 2?B and 2! B’ are integrable,
d) ifa= —%, B’ is integrable,
A A(x)

(2) on a neighbourhood of 0,

(3) i > 0 on RY and lim, .o A0 = 2p,
LA\ 1 AN .
(4) §<Z) + 1 <Z> — p° is integrable at oo.

Since A'/A = (log A)’, (3) implies that A is increasing, and thus, A(0) <
oo. Under the condtions (1) to (3), the second order differential equation:
Lu+(N2+p?) = 0, A € C, has a unique solution satisfying u(0) = 1, v/(0) = 0,
which we denote by ¢,. Furthermore, under (4), if A > 0, then there exists
another solution vy (z), which behaves as 1/7/2vVAzHY" at co, where HY is



the Hankel function. Similarly, we have 1, () for S\ <0, and for A € R¥,
there exists C'(\) € C such that ¢x(z) = C(A\)a(z) + CN)Y; (2).

Let C22(R) denote the set of C'™° even functions f on R. For f € C23(R)
the Fourier transform f is defined by
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Then the inverse transform is given as
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where D is a finite set in the interval i(0, p) and m\ = ||¢all;. We
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denote this decomposition as

f=°f+1fp

and we call fp and °f the principal part and the discrete part of f respec-
tively. We denote by F(v) = (F(\),{ax}) a function on Ry U D defined
by

Py~ [FO ifv=2eR,
B an ifvr=AeD.

F(v) = (F(\),{ax}) and define the product of F(v) = (F()),{ax})
) = (G(N), {bA}) as

(FG)(v) = (F(A)G(A), {aaba})-

Let dv denote the measure on R, U D defined by

v)dy = maap + —/ 2d)\.
/R+UD Z A |
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We put
and G (v

For f € C(R), we put

Fw)=(F)Af @)

Then the Parseval formula on CZ%(R) can be stated as follows: For f,g €
Coe(R)

/0 " F@)g@ Al = /  fwiatia (5)



The map f — f, f € C(R), is extended to an isometry between L*(A) =
L*(R,, A(x)dx) and L*(v) = L*(R, U D,dv). Actually, each function f in
L?(A) is of the form

fa) = Y main(o)+ 5 [ Fa@IC0)]

AeD

= °f+[p

and their L?-norms are given as

/0 Tl f@PA@ = 3 malaal?

AeD

| @paw = 5 [T 1f0rIco) 2

Therefore, if we define f(v) = (f(A), {aa}), then ||f||z2(a) = [|£]|r2) holds.

2. Uncertainty inequality. We retain the notations in the previous sec-
tions. We put for z € R,

a(x):/:A(t)dt and v(m):A (6)

and for \ € C,

w(h) = (N + )2

Theorem 2.1. For all f € L'(A) N L*(A),
; 1
ol [ 1F@)P0@)dr 2 s, )
R,UD

where the equality holds if and only iof f is of the form

Fa) = Cey /Oxv(t)dt

for some ¢,y € C and Ry < 0.



Proof. Without loss of generality we may suppose that f € Cg%(R). Since
(=LHMN) = FNA2 +p2) = F(Nw(N)? and w(N) is positive on Ry U D,
the Parseval formula (5) yields that

[ ez = [ T (—LN@ @) A)da
= [ Ir@Paw.
Hence it follows that
| i@Peterawis [  FwPu i
= [ @Pierawis [ @R Awds
> / R(f ()A(x)dx)2
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Here we used the fact that a’ = A (see (6)). Clearly, the equality holds if
and only if fv = cf’ for some ¢ € C, that is, f'/f = ¢ 'v. This means that

log(f) = c_l/ v(t)dt + C and thus, the desired result follows. m
0

Remark 2.2. When (R, *(A)) is the Bessel-Kingman hypergroup, the
equality holds for eWQ, R~ < 0. However, when it is the Jacobi hypergroup,
each function satisfying the equality has an exponential decay e7*.

Since w?(\) = A? + p?, (7) can be rewritten as follows.

Corollary 2.3. Let f be the same as in Theorem 2.1.

1£0ll7 ) ; L‘JJ;( v)vidv > - ||fHL2 A)/ [f(@)*(1 = 4p%v(2)*) A(z)dz. (8)

3. Vanishing condition of the discrete part. We shall prove that under
the assumption:

0 <w(zr) <, 9)

[\
s



it follows that D = (). We suppose that D # () and we take f = wady,

A

A € D. Then, since f(v) = 1if v = A and 0 otherwise, it follows from (8)
that
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Here we recall that A? < 0, because D C i(0, p) and 1 —4p?v(z)? > 0 by (9).
This is contradiction. Therefore, we obtain the following.

1
Theorem 3.1. If 0 < v < 5 then D = ().
p

For example, if A satisfies the inequality:
a(x)A'(x) = / A(x)dz - A'(x) < A*(2), (10)
0

then A satisfies (9). Actually, (10) implies
A%(z) — a(z)A'(2)
/
g > .
v(z) A?(x) =0

Hence v is increasing on R, and v(z) = a(z)/A(zx) < A(z)/A'(x) because
AJA" > 0 by (3). Then it follows from (3) that A satisfies (9).

Corollary 3.2. If A satisfies the inequality (10), then D = ().

Remark 3.3. It is well-known that D = () for Chébli-Triméche hypergroups
where A’/A is decreasing and (4) is not required (cf. [1]). This fact easily
follows from our argument. Since A/A’ is increasing and 0 < A/A" < 1/2p by
(3), we see that a < A/2p by integration and thus, (9) holds. Hnece D = ()
by Theomre 3.1.

4. Uncertainty principle. We suppose that D = (). Then (8) is of the
form:

1 [ . d\
Iellrngy [ O o
1 o
> Wl [ UF@P0 = 4Pe@PAtdds. (10

Since v is increasing, v(0) = 0, and 1 — 4p*v(z)? > 0 by (9), it follows that
f and f both cannot be concentrated around the orign.

In general, if D # (), then we must pay attension to the discrete part of f
to consider uncertainty principles. We refer to [3] for the Jacobi hypergroups.
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