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Abstract

As analogue of the classical uncertainty inequality on the Euclidean
space, we shall obtain a generalization on the Sturm-Liouville hyper-
groups (R+, ∗(A)). Especially, we shall obtain a condition on A under
which the discrete part of the Plancherel formula vanishes.

1. Sturm-Liouville hypergroups. Sturm-Liouville hypergroups are a
class of one-dimensional hypergroups on R+ = [0,∞) with the convolution
structure related to the second order differential operators

L =
d2

dx2
+

A′(x)

A(x)

d

dx
,

where A satisfies the following conditions (see [1], [2]):

(1) A > 0 on R∗
+ = (0,∞), and is in C2(R∗

+),

(2) on a neighbourhood of 0,
A′(x)

A(x)
=

2α + 1

x
+ B(x), α ≥ −1

2
and

(a) if α > 0, B and B′ are integrable,
(b) if α = 0, log xB and x log xB′ are integrable,
(c) if −1

2
< α < 0, x2αB and x2α+1B′ are integrable,

(d) if α = −1
2
, B′ is integrable,

(3)
A′

A
≥ 0 on R∗

+ and limx→∞
A′(x)

A(x)
= 2ρ,

(4)
1

2

(A′

A

)′
+

1

4

(A′

A

)2

− ρ2 is integrable at ∞.

Since A′/A = (log A)′, (3) implies that A is increasing, and thus, A(0) <
∞. Under the condtions (1) to (3), the second order differential equation:
Lu+(λ2+ρ2) = 0, λ ∈ C, has a unique solution satisfying u(0) = 1, u′(0) = 0,
which we denote by ϕλ. Furthermore, under (4), if ℑλ ≥ 0, then there exists

another solution ψλ(x), which behaves as
√

π/2
√

λxH
(1)
α at ∞, where H

(1)
α is
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the Hankel function. Similarly, we have ψ−
λ (x) for ℑλ ≤ 0, and for λ ∈ R∗

+,

there exists C(λ) ∈ C such that ϕλ(x) = C(λ)ψλ(x) + C(λ)ψ−
λ (x).

Let C∞
c,e(R) denote the set of C∞ even functions f on R. For f ∈ C∞

c,e(R)

the Fourier transform f̂ is defined by

f̂(λ) =

∫ ∞

0

f(x)ϕλ(x)A(x)dx.

Then the inverse transform is given as

f(x) =
∑
Λ∈D

πΛf̂(Λ)ϕΛ(x) +
1

2π

∫ ∞

0

f̂(λ)ϕλ(x)
dλ

|C(λ)|2
,

where D is a finite set in the interval i(0, ρ) and πλ = ∥ϕΛ∥−2
L2(R+,Adx). We

denote this decomposition as

f = ◦f + fP

and we call fP and ◦f the principal part and the discrete part of f respec-
tively. We denote by F (ν) = (F (λ), {aΛ}) a function on R+ ∪ D defined
by

F (ν) =

{
F (λ) if ν = λ ∈ R+

aΛ if ν = Λ ∈ D.

We put F (ν) = (F (λ), {aΛ}) and define the product of F (ν) = (F (λ), {aΛ})
and G(ν) = (G(λ), {bΛ}) as

(FG)(ν) = (F (λ)G(λ), {aΛbΛ}).

Let dν denote the measure on R+ ∪ D defined by∫
R+∪D

F (ν)dν =
∑
Λ∈D

πΛaΛ +
1

2π

∫ ∞

0

F (λ)|C(λ)|−2dλ.

For f ∈ C∞
c,e(R), we put

f̂(ν) = (f̂(λ), {f̂(Λ)}).

Then the Parseval formula on C∞
c,e(R) can be stated as follows: For f, g ∈

C∞
c,e(R) ∫ ∞

0

f(x)g(x)A(x)dx =

∫
R+∪D

f̂(ν)ĝ(ν)dν. (5)
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The map f → f̂ , f ∈ C∞
c,e(R), is extended to an isometry between L2(A) =

L2(R+, A(x)dx) and L2(ν) = L2(R+ ∪ D, dν). Actually, each function f in
L2(A) is of the form

f(x) =
∑
Λ∈D

πΛaΛϕΛ(x) +
1

2π

∫ ∞

0

f̂(λ)ϕλ(x)|C(λ)|−2dλ

= ◦f + fP

and their L2-norms are given as∫ ∞

0

|◦f(x)|2∆(x)dx =
∑
Λ∈D

πΛ|aΛ|2,

∫ ∞

0

|fP (x)|2∆(x) =
1

2π

∫ ∞

0

|f̂P (λ)|2|C(λ)|−2dλ.

Therefore, if we define f̂(ν) = (f̂(λ), {aΛ}), then ∥f∥L2(A) = ∥f̂∥L2(ν) holds.

2. Uncertainty inequality. We retain the notations in the previous sec-
tions. We put for x ∈ R+,

a(x) =

∫ x

0

A(t)dt and v(x) =
a(x)

A(x)
(6)

and for λ ∈ C,

w(λ) = (λ2 + ρ2)1/2.

Theorem 2.1. For all f ∈ L1(A) ∩ L2(A),

∥fv∥2
L2(A)

∫
R+∪D

|f̂(ν)|2w(ν)2dν ≥ 1

4
∥f∥4

L2(A), (7)

where the equality holds if and only if f is of the form

f(x) = ce
γ

∫ x

0

v(t)dt

for some c, γ ∈ C and ℜγ < 0.
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Proof. Without loss of generality we may suppose that f ∈ C∞
c,e(R). Since

(−Lf)∧(λ) = f̂(λ)(λ2 + ρ2) = f̂(λ)w(λ)2 and w(λ) is positive on R+ ∪ D,
the Parseval formula (5) yields that∫

R+∪D

|f̂(ν)|2w(ν)2dν =

∫ ∞

0

(−Lf)(x)f(x)A(x)dx

=

∫ ∞

0

|f ′(x)|2A(x)dx.

Hence it follows that∫ ∞

0

|f(x)|2v(x)2A(x)dx

∫
R+∪D

|f̂(ν)|2w(ν)2dν

=

∫ ∞

0

|f(x)|2v(x)2A(x)dx

∫ ∞

0

|f ′(x)|2A(x)dx

≥
( ∫ ∞

0

ℜ(f(x)f ′(x))v(x)A(x)dx
)2

=
1

4

( ∫ ∞

0

(|f(x)|2)′a(x)dx
)2

=
1

4

( ∫ ∞

0

|f(x)|2A(x)dx
)2

.

Here we used the fact that a′ = A (see (6)). Clearly, the equality holds if
and only if fv = cf ′ for some c ∈ C, that is, f ′/f = c−1v. This means that

log(f) = c−1

∫ x

0

v(t)dt + C and thus, the desired result follows.

Remark 2.2. When (R+, ∗(A)) is the Bessel-Kingman hypergroup, the
equality holds for eγx2

, ℜγ < 0. However, when it is the Jacobi hypergroup,
each function satisfying the equality has an exponential decay eγx.

Since w2(λ) = λ2 + ρ2, (7) can be rewritten as follows.

Corollary 2.3. Let f be the same as in Theorem 2.1.

∥fv∥2
L2(A)

∫
R+∪D

|f̂(ν)|2ν2dν≥ 1

4
∥f∥2

L2(A)

∫ ∞

0

|f(x)|2(1 − 4ρ2v(x)2)A(x)dx. (8)

3. Vanishing condition of the discrete part. We shall prove that under
the assumption:

0 ≤ v(x) ≤ 1

2ρ
, (9)
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it follows that D = ∅. We suppose that D ̸= ∅ and we take f = πΛϕΛ,
Λ ∈ D. Then, since f̂(ν) = 1 if ν = Λ and 0 otherwise, it follows from (8)
that

∥fv∥2
L2(A)πΛΛ2≥ 1

4
∥f∥2

L2(A)

∫ ∞

0

|f(x)|2(1 − 4ρ2v(x)2)A(x)dx.

Here we recall that Λ2 < 0, because D ⊂ i(0, ρ) and 1− 4ρ2v(x)2 ≥ 0 by (9).
This is contradiction. Therefore, we obtain the following.

Theorem 3.1. If 0 ≤ v ≤ 1

2ρ
, then D = ∅.

For example, if A satisfies the inequality:

a(x)A′(x) =

∫ x

0

A(x)dx · A′(x) ≤ A2(x), (10)

then A satisfies (9). Actually, (10) implies

v′(x) =
A2(x) − a(x)A′(x)

A2(x)
≥ 0.

Hence v is increasing on R+ and v(x) = a(x)/A(x) ≤ A(x)/A′(x) because
A/A′ > 0 by (3). Then it follows from (3) that A satisfies (9).

Corollary 3.2. If A satisfies the inequality (10), then D = ∅.

Remark 3.3. It is well-known that D = ∅ for Chébli-Triméche hypergroups
where A′/A is decreasing and (4) is not required (cf. [1]). This fact easily
follows from our argument. Since A/A′ is increasing and 0 ≤ A/A′ ≤ 1/2ρ by
(3), we see that a ≤ A/2ρ by integration and thus, (9) holds. Hnece D = ∅
by Theomre 3.1.

4. Uncertainty principle. We suppose that D = ∅. Then (8) is of the
form:

∥fv∥2
L2(A)

1

2π

∫ ∞

0

|f̂(λ)|2λ2 dλ

|C(λ)|2

≥ 1

4
∥f∥2

L2(A)

∫ ∞

0

|f(x)|2(1 − 4ρ2v(x)2)A(x)dx. (10)

Since v is increasing, v(0) = 0, and 1 − 4ρ2v(x)2 ≥ 0 by (9), it follows that
f and f̂ both cannot be concentrated around the orign.

In general, if D ̸= ∅, then we must pay attension to the discrete part of f
to consider uncertainty principles. We refer to [3] for the Jacobi hypergroups.
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