UNCERTAINTY PRINCIPLES FOR THE DUNKL TRANSFORM
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ABSTRACT. The Dunkl transform satisfies some uncertainty principles similar to
the Euclidean Fourier transform. A generalization and a variant of Cowling-Price’s
theorem, Beurling’s theorem and Donoho-Stark’s uncertainty principle are ob-

tained for the Dunkl transform.
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1. INTRODUCTION

N O © 00130 bk WwWwwr

There are many theorems known which state that a function and its classical
Fourier transform on R cannot both be sharply localized. That is, it is impossible
for a nonzero function and its Fourier transform to be simultaneously small. Here
a concept of the smallness had taken different interpretations in different contexts.
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Hardy [13], Morgan [21], Cowling and Price [6], Beurling [2], Miyachi [20] for ex-
ample interpreted the smallness as sharp pointwise estimates or integrable decay
of functions. Benedicks [1], Slepian and Pollak [27], Landau and Pollacl [15], and
Donoho and Stark [7] paid attention to the supports of functions and gave qualitative
uncertainty principles for the Fourier transforms.

Hardy’s theorem [13] for the classical Fourier transform F on R asserts that f
and its Fourier transform f = F (f) can not both be very small. More precisely,
let @ and b be positive constants and assume that f is a measurable function on R
such that |f(z)] < Ce *” ae. and |f(y)| < Ce " for some positive constant C'.
Then f =0 a.e. if ab > %, f is a constant multiple of e=** if ab = L, and there are
infinitely many nonzero functions satisfying the assumptions if ab < z. Considerable
attention has been devoted for discovering generalizations to new Contexts for the
Hardy’s theorem. In particular, Cowling and Price [6] have studied an LP version
of Hardy’s theorem which states that for p,q € [1,+00], at least one of them is
finite, if ||e®” f||, < 400 and ||e?’ f||, < +oo, then f = 0 a.e. if ab > <. Another
generalization of Hardy’s theorem is given by Miyachi [20], which states that, if f
is a measurable function on R such that e f € L'(R) + L*(R) and

G &
/R 3 ———df < 0

for some positive constants a and A, then f is a constant multiple of e~ Further-
more, Beurling’s theorem, which was found by Beurling and his proof was published
much later by Hormander [14], says that for any non trivial function f in L*(R), the
product f(z) f (y) is never integrable on R? with respect to the measure e/*l¥ldxdy.
A far reaching generahzamon of this result has been recently proved by Bonami,
Demange and Jaming [3 They proved that, if f € L%(RY) satisfies for an integer N

DNFOWN i
M dxdy < 400,
/]Rd/]Rd (1 + |||+ |[y])N

then f is of the form f(x) = P(a:)e_B”’”” where P is a polynomial of degree strictly
lower than &= = 4 and f3 is a positive constant.

As a generalization of these Euclidean uncertainty principles for the classical
Fourier transform F, recently, Gallardo and Trimeche [12] and Trimeche [31] have
proved Hardy’s theorem, Cowling-Price’s theorem and Beurling’s theorem for the
Dunkl transform Fp. The purpose of this paper is, as further generalizations, to
obtain variants of their results and Donoho-Stark’s uncertainty principles for Fp.

The structure of this paper is the following. In §2, we recall the basic properties
of the Dunkl operators; the Dunkl intertwining operator and its dual, the Dunkl
transform Fp and related harmonic analysis. §3 is devoted to generalize Cowling-
Price’s theorem for Fp. In §4 and §5 we give variants of Cowling-Price’s theorem.
We state Miyachi’s theorem in §6 and we generalize Beurling’s theorem for Fp in
§7. 88 is devoted to Donoho-Stark’s uncertainty principle for Fp.

Throughout this paper, the letter C' indicates a positive constant not necessarily
the same in each occurrence.
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2. PRELIMINARIES

In order to confirm the basic and standard notations we briefly overview the
theory of Dunkl operators and related harmonic analysis. Main references are [8, 9,
10, 11, 16, 17, 22, 23, 28, 29, 30].

2.1. Root system, reflection group, and multiplicity function. Let R? be the
Euclidean space equipped with a scalar product (,) and the norm ||z|| = /(z, z).
For o in R\ {0}, let o, be the reflection in the hyperplane H, C R? orthogonal to
a, i.e. for x € R,

loyz) I>a.

el

A finite set R C R4\ {0} is called a root system if RNRa = {a, —a} and 0, R = R for
all « € R. For a given root system R reflections o,,a € R, generate a finite group
W C O(d), called the reflection group associated with R. We fix a 3 € R*\UqepH,
and define a positive root system R, = {a € R | (a, 3) > 0}. We normalize each
a € Ry as (o, a) = 2. A function k : R — C on R is called a multiplicity function
if it is invariant under the action of W. We introduce the index ~ as

y=9(k) =Y ko).

acERL

oo(T) =2 —2

Throughout this paper, we will assume that k(«) > 0 for all « € R. We denote by
wy, the weight function on R given by

we(@) = ] a2,
a€ER4

which is invariant under the action of W and homogeneous of degree 2, and by ¢
the Mehta-type constant defined by

ck:/ e wi(z)dz.
R4

Let d > 2. For an integrable function f on R? with respect to a measure wy(z)dz
we have

2.1) RERCTS /0 +oo(

where do is the normalized surface measure on the unit sphere S9! of RY. In
particular, if f is radial (i.e. SO(d)-invariant), then there exists a function F' on
[0, 4+00] such that f(z) = F(||z||) = F(r) with ||z|| = r and

F(rB)wn(B)do(3) )r " dr.

gd—1

+o0
(2.2) f(@)wg(x)dx = dk/ F(T)T%er*ldr,
R4 0
where

di= [ w@io(p)
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We denote by LP(R?), 1 < p < +o0o, the space of measurable functions f on R?
with finite LP-norm || ||, with respect to the Lebesgue measure dz and by L7 (R?)
the one with respect to the weighted measure wy(x)dx:

1

s = ([ 1f@Pura)da)” < +o0, i1 <p<-+ox,

[ fllk,00 = ess sup |f(x)] < +o0.
zcRd

In the following we denote by

- C(R%)  the space of continuous functions on R

- CP(R?) the space of functions of class C? on R%.

- CP(R?)  the space of bounded functions of class C?.

- £(R?Y)  the space of C*°-functions on R

- S(R?)  the Schwartz space of rapidly decreasing functions on R¢.

- D(R?)  the space of C*°-functions on R? with compact support.

- 8'(R?)  the space of temperate distributions on R?.

- P(R%)  the set of polynomials on R? and P,,(R%) the one of degree m.

2.2. The Dunkl operators and the Dunkl kernel. The Dunkl operators 7}, j
=1,2,...,d, on R? associated with the positive root system R, and the multiplicity
function k are given by

7 S Ky /D= S0l

<Oz, )

ac€R4

for f € C'(R?). Then each T} satisfies the following:
i) For all f and g in C*(RY), if at least one of them is W-invariant, then

T3(fg) = (T5f)g + f(T39)-
ii) For all f in C}(RY) and g in S(R?),

| Bt@s@ads = [ fe)Taate)is

We define the Dunkl—Laplace operator A\, on R¢ by

Apf(z ZT2
D23 ko ( T (2), ) _f(x)—f(%(x))),

QER+ x> <O[, ‘T>2

where A and V are the usual Euclidean Laplacian and nabla operators on R? re-
spectively. Then for each y € R, the system

T}U(l’,y) = yju(x>y)a .7 = 17 "'7d7
u(0,y) =1
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admits a unique analytic solution K(xz,y), * € RY, called the Dunkl kernel. This
kernel has a holomorphic extension to C? x C? and possesses the following properties

(cf. [22]):

i) For all z,t,\ € C? K(z,t) = K(t,2), K(2,0) =1 and
(2.3) KAz, t) = K(z,\t).

ii) For all v € N, x € R? and 2 € C,
(2.4) DK (2, 2)] < [Jz]|" exp(]|]| [[Rez]]),
where

v
R
0" -+ 0z)"
In particular, | K (z, —iy)| < 1 for all z,y € R%
iii) For all z € R? and z € C¢,

25) K. = [ (),

where 11, is a probability measure on R? with support in the closed ball B(0, ||z||)
of center 0 and radius ||z||.
The Dunkl intertwining operator V; on C'(R?) is defined by

Vif(z) = | fly)dus(y).
R
where dyi, is the same measure in (2.5). Then for all z € R%, z € C?, we have
K(z,2) = Vi(e")(2),
Let 'V denote the operator on D(R?) satisfying for all f € D(R?) and g € C(R?),

/Rd V(N W)g(y)dy = /Rd Vi(g) (@) f (2)wn(x)dx.

Then there exists a positive measure v, on R? with support in the set {z € R?, [|z|| >

l|ly||} for which

(2.6) Vi(F)ly) = y f(@)dvy ().

This operator *V}, is called the dual Dunkl intertwining operator. The operators V,
and 'V} satisfy the following properties (cf. [29]):

i) V} is a topological isomorphism from £(R?) onto itself satisfying the permutation
relations: For all f € £(RY),

and |v|=v1 4+ v,

TVil(f)(x) = Vk(a%jf)(x).

i) 'V}, is a topological isomorphism from D(R?)(resp. S(R?)) onto itself satisfying
the permutation relations: For all f € D(R?),

0

VilT3f)(y) = a—yj%(f)(y)-
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Proposition 1. ([12]) Let (v,),cre be the family of measures defined by (2.6) and
f be in LL(R?). Then for almost all y € R? with respect to Lebesgue measure on
RY, f is v,-integrable and the function

v | Sy @)

which will be also denoted by ‘V,(f), is Lebesgue integrable on R¢. Moreover for all
geCy (Rd),

2.7) / V) W)gly)dy = / Vi(9) (@) f (2w ().

R4

Remark 1. By taking g = 1 in (2.7) we can deduce that for all f € Li(R?),

28) [ Wthwdy = [ fopanla)d.
Rd Rd
2.3. The Dunkl transform. The Dunkl transform Fp on Li(R?) is given by
1 ,
(2.9) Foly) = | F@)E(z, —iy)e(z)dr.
R

Some basic properties of this transform are the following (cf. [10] and [11]):
i) For all f € Li(RY),

(2.10) 10 koe < =111l
ii) For all f € S(R?),

(2.11) Fo(Tif)(y) = iy; Fo(f) ().
iii) For all f € S(R?),

(2.12) Fp(f)=F o "Vi(f),

where F is the classical Fourier transform on R¢.
iv) For all f € LL(RY), if Fp(f) belongs to Li(RY), then

(2.13) fly)= [ Fp(f)(z)K(iz,y)wi(x)dz.

R4
v) For f € S(R?), if we define Fp(f)(y) = Fp(f)(—y), then
(2.14) FpFp = FpFp = Id.

Proposition 2. The Dunkl transform Fp is a topological isomorphism from S(R?)
onto itself and for all f in S(R?),

(2.15) [ Vr@)ata)ds = [ 1Fo(h©O P

In particular, the Dunkl transform f — Fp(f) can be uniquely extended to an
isometric automorphism on L2(R?).
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2.4. The Dunkl convolution. By using the Dunkl kernel in 2.2, we introduce a
generalized translation and an associated convolution structure on R?. For f €
S(RY) and y € R? the Dunkl translation 7, f is defined by

Fo(ryf)(x) = K(iz,y) Fo(f)(x)
(cf. [30]). This transform is related to the usual translation as

(2.16) 7yf (@) = (Vi)a(Vi)y (Vi) " () (@ + ).

Hence, 7, can also be defined for f € ERY). If f € E(RY) is radial, ie. f(z) =
F(||z||), then it follows that

7 f(x) = Ve(F(/TIlP + TyIP +2(z, ) ) (@)

(cf. [23]). For example, for ¢t > 0, we see that

(2.17) 7 (e () = eI+ e (2 ),
We define the Dunkl convolution product f *p g of f,g € S(R?) as
2.18) Frn9(e) = [ mfC-patunidy
R

(cf. [28] and [30]). This convolution is commutative and associative and moreover,
it satisfies the following (cf. [28]):
i) For all f,g € D(R?) (resp. S(R?)), f *p g belongs to D(R?) (resp. S(R?)) and

(2.19) Fo(f *p 9)(y) = Fpo(f)(y)Fp(9)(y).

ii) Let 1 < p,q,r < oo such that % + é —1=1.1If f € L{(RY) and g € LI (R?) is
radial, then f*p g € L7 (RY) and
(2.20) 17 %D gllip < N1y l9leg -

2.5. The Sobolev space Hj(R?). Let s € R. We define the Dunkl-Sobolev space
H;(R?) as the set of distributions u € S'(R?) satisfying (1 + ||¢|[?)2 Fp(u) € L2 (R?),
equipped with the scalar product

(a0 = [ (0l Fo) (T (0T en

and the norm

[l B = Gty )

As shown in [17], if p € N and s € R satisfy s > % + v + p, then the following
embedding is continuous (i.e. the inclusion is in the sense of topology)
(2.21) Hi(RY) — CP(RY).

Lemma 1. Let f € S(RY) and assume that for all n € N, there exist a positive
constant c,, such that
1AKf k2 < cn.
Then for all n € N,
|Af(2)] < Clen + cngm),
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where m = [“222] + 1 and C is independent of n.

Proof. Since [ALf(x)] < Cnl| AL fllzzm by (2.21) and [| AL fllgzm < Con([ A fllk2 +
|ARY™ fllk2) by the definition of H?™(R?), the desired result follows. ]

2.6. Mean value property associate with the Dunkl Laplacian. Let d > 2.
The mean value operator M”  r > 0,z € R?, associated with the Dunkl Laplacian

7,2

/\}, is defined by for u € 5(Rd)

MW =5 [ mulry)aday).

To give a development formula for M7, we define a sequence of functions {v,(t)},>o,

0 <t <r, and a sequence of numbers {b,(r)},>0 as follows. We put

" ds
Uo(t):/t 2yd—1

and inductively, let v,(t), p > 1 denote a unique solution of the differential equation:

L'ergflUP(t) = vp-1(t),
d
up(r) = %Up(r) =0,
where L, 4 is the Bessel operator given by

2 2y+d—14d

L - -
51T g2 * t dt

We put by(r) = 1 and

(2.22) by(r) = /0 ' v, ()L

Then we see that

(2.23) by(r) =

with
27pll(y + 5 +p)
Iy + )

Proposition 3. ([16]) For v € C*"*?(RY) and z € RY, it follows that

dp(7) =

1
M2 = b8 g [ DO (e,
dk B(zo,r)

where B(xg,r) is the closed ball of center xy and radius r.
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2.7. Heat functions related to the Dunkl operators. The heat kernel Ny(z, s),
r € R s > 0, associated with the Dunkl-Laplace operator A\, is given by

1 [Ed]
(2.24) Ne(z,8) = —————e 4|
ce(2s)778
which is a solution of the generalized heat equation:
0

%Nk(x, s) — ApNg(x,s) = 0.

Some basic properties of Ni(z,s) are the following:
. 2
1) Fp (Ng(+,9)) (z) = ie‘s“x” and
1 2
2.29 Ni(o.s) = [ e IR i, ) (w)d.
Ck R4
ii) For all A > 0,
Ni(Azz, As) = A" OFD N (z, ).
i)
(2.26) [Ny 8)ll = 1.
iv) For all s,t > 0,
Ni(-,t) *xp Ni(+, 8)(x) = Ni(z,t + s).
By noting (2.25) and (2.11), we define the heat functions W} (z, s), [ € N¢, as
W/ (x,5) = T'Ny(x, s)
1l
(2.27) =5 [ ot yadte K (i, () dy,
Ck R4
where TV = T o T2 0 --- o T'. Then W¥(z, s) = Ni(z, s) and
"y

(2.28) FoWH,9))(@) = —p" - ydse eI,
k

Proposition 4. ([31]) Let ¢ € P,,(R%) be homogeneous. Then for all § > 0, there
exists a homogeneous Q € P,,(R?) such that

[l]]

(2.29) Fo (e M (z) = Q(z)e 5 .

3. COWLING-PRICE’S THEOREM FOR THE DUNKL TRANSFORM

We shall prove a generalization of Cowling-Price’s theorem for the Dunkl trans-
form Fp.

Theorem 1. Let f be a measurable function on R? such that

P17 | £ () [P
(3.30) /Rd ka(:v)d:p < 00
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and

IS (F)(E)I
331 L S e <o

for some constants a,b >0, n >0, m>1and 1 <p,q < +o0.
i) If ab > i? then f =0 almost everywhere.
it) If ab =1, then f is of the form f(x) = Qy(x)Ny(x,b) where Qy is a polynomial

. : n 2v+d—1 m—d . .
with deg Qp < mln{p + =, }. Especially, if

I
then f =0 almost everywhere. Furthermore, if m €]d,d + q] and n > d + 2, then
f 1s a constant multiple of Ni(.,b).

iii) If ab < %, then for all § €)b, 1|, all functions of the form f(x) = P(x)Ny(z,6),
P e P, satisfy (3.30) and (3.31).

Proof. Clearly (3.30) implies that f belongs to Li(R%) and thus, Fp(f)(€) exists for
all £ € R%. Moreover, it has an entire holomorphic extension on C¢ satisfying for
some s > 0,

M td—1 m—d
n§d+2’y+pmin{ﬁ+ i = }
P

|[tm=|?
(3.32) [Fo(f)(2)] < Ce s (1 + [[Tmz][)°.
Actually, it follows from (2.9) and (2.4) that for all z = £ + in € C%,

FolE+inl < [ F@IK i€ + (s

<ot [ e @ a1, (2,
<o | S e e

Then by using the Holder inequality, (3.30) and (2.2) we can obtain that

1
o

FoDE+iml < O ([ flall) ¥ e V11D, (@)ar)

LIn[2 o° np’ Lot de 1
Ce'h ( (1 4 )% +2d=1gmap/ =132 d7‘>
0

=

IN

2ytd—

W1+ a3

If ab = }L, then

7+

Fo(A)E+in)] < O+ [fl)»*
Therefore, if we let g(z) = e?GT5+20) F1,(f)(2), then

l9(z)] < CeMR (1 4 ||Tme )7
Hence it follows from (3.31) that

NG
/Rd @+ [ =

v+
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Here we use the following lemma.
Lemma 2. ([25]) Let h be an entire function on C¢ such that
[h(2)] < CeMAP(1 4 [|Tm-] )

for some l >0, a >0 and

@I o
L @i <

for some ¢ > 1, m > 1 and Q € Py (R?). Then h is a polynomial with degh <

min{/, m_];[_d} and, if m < q+ M + d, then h is a constant.

Hence by this lemma ¢ is a polynomial, we say P,, with deg P, < min{"?p/ +
—27+‘,1_1,mT_d}. Then Fp(f)(z) = Pb(;zz)e_b”””“2 and thus, f(z) = Qp(x)Ng(z,b) =

p
C’be(:Jc)e*“H"””Q for z € RY, where Q, is a polynomial with deg @, = deg P, (see

(2.29)). Therefore, nonzero f satisfies (3.30) provided that

/
n>d+27+pmin{@+ 27+f1_1,m_d}.
p p q
Furthermore, if m < d + ¢, then g is a constant by Lemma 2 and thus, Fp(f)(x) =
CePlel* and f(x) = CNy(x,b) = Cye I’ When n > d + 2y and m > d, these
functions satisfy (3.31) and (3.30) respectively. This proves ii).

Ifab > ;11, then we can choose positive constants, aq, by such that a > a; = ﬁ > ﬁ.
Then f and Fp(f) also satisfy (3.30) and (3.31) with a and b replaced by a; and b,
respectively. Therefore, it follows that Fp(f)(x) = By, (x)e " 1*I*. But then Fp(f)
cannot satisfy (3.31) unless Py, = 0, which implies f = 0. This proves i).

If ab < %, then for all § €]b, 1, the functions of the form f(z) = P(z)Ny(z,0),
where P € P, satisfy (3.30) and (3.31). This proves iii). ]

The following is an immediate consequence of Theorem 1.
Corollary 1. Let f be a measurable function on R? such that
(3.33) [f(@)] < MemIHIF (1 + [|2]))" a.e.
and for all € € RY,

(3.34) \Fp(f)(€)] < MeYEP

for some constants a,b >0, r >0 and M > 0.
i) Ifab> %, then f =0 almost everywhere.
it) If ab= %, then f is of the form f(x) = CNy(,b).
ii1) If ab < }1, then there are infinity many nonzero f satisfying (3.33) and (3.34).
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4. COWLING-PRICE’S THEOREM VIA THE D-SPHERICAL HARMONICS
COEFFICIENTS

We suppose that d > 2. We replace the assumption (3.31) by the D-spherical
harmonics coefficients of f. For a non-negative integer [, we put

HY = {P € P, | P is homogeneous and AP = 0},

which is called the space of D-spherical harmonics of degree I. We fix a P, € H} and
define the Dunkl coefficients of f € L}(R?) in the angular variable by

(4.35) Jiw(A) = SO Pi(t)wy(t)do (2).

gd—1

Moreover, we define the Dunkl spherical harmonic coefficients of f € Li(RY) by

(4.36) Ful) =3 [ ol D)0 0P 0ot
where
(4.37) ]—“D(f)()\,t):i [ @)K O =ity @)

for t € S%1. The relation between fir and Fjy is given by the following.

Proposition 5. Let notations be as above. Then for z € S4+2m=1

(4.35) Fa) =€ [ fulllelDlial ™ K, —iz)on(e)da
= CFnurlll- IDII-[7H002),

where Fp, and K; are the Dunkl transform and the Dunkl kernel on R respec-
tively.

Proof. From (2.3), (4.37) and (4.36) it follows that

Fia(y) = A2 ( | —i/\x)Pl(t)wk(t)dt> F(@)wp(2)da.

Ck JRrd

Here we recall the formula for the Dunkl coefficients of the Dunkl! kernel.

Lemma 3. ([10]) Let H € HF. Then for all z € R?,

@39 [ K(tin) HOwOdou(t) = Coil (@) rrs (el
where jo, o > —%, 18 the normalized Bessel function defined by
= ()R

Jaz) =T(a+ 1))

n=0

nT(a+1+n)
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Therefore, we see that

FuaN) = Cut | P rg s el fe)on(e)da

R

Then by using (2.1) and (4.39) replaced d by d + 2l, we can obtain that for all z €
Sd+2171’

E,k()\) == Cl,k/ /d j’y—‘rg—‘rl_l<)\T)T2ﬂ/+l+d_1.Pl(t)f(rt)wk<t>dtdr
0 Sd—1
= Cl,k/ fl’k(r)j“/-l-%ﬂ—l()\7“)7”27+l+d*1d74
0
— C’/ </d l Ki(t, _Mrz)wk(t)dadﬂl(t))fl,k(r)r27+l+d—1d7ﬂ
0 gd+21-1

=C/ Fa(leDll=l™ Ko, —idz)wn(@)da.
Rd+21

This established the lemma. ]

Theorem 2. Let p,q € [1,00[, a,b >0, n €]d+ 2v,d + 2y +p|] and m > 1. Let f
be a measurable function on R? such that

e P17 | £ () [P
(440) [Rd W(ﬂk<l’)dl’ < 00
and
(4.41) /R+ WM <0

for all non-negative integer .

i) If ab > %, then f =0 almost everywhere.

it) If ab= 1, then f = CNy(.,b).

ii) If ab < 1, then for all § €]b, t[, all functions of the form f(x) = P(x)Ng(z,d),
where P € P, satisfy (4.40) and (4.41).

Proof. (4.40) implies that f € LL(RY) and thus, each fi}, is well-defined. Moreover,
it follows from (4.35), (2.1) and (4.38) that

oo apr?
I = / e |fl,k(7")|p7427+d71dr
0 (L+r)m

= (/S ( /OOO WW”‘%)‘I’Pl(t)wk(t)dt)p
<C / eI ()P

AT ) wi(x)dxr < 0.

Here we used Holder’s inequality and the compactness of S9! to obtain the last
inequality. Then, by applying this estimate in the polar coordinate (2.2) of (4.38),
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the same argument in the proof of Theorem 1 yields that Fj () has an entire
holomorphic extension on C and there exists N > 0 such that
’112
| By (u+v)| < Ceta (14 |v])™.
If ab > 1, then |F;(u + iv)] < Ce?’ (1 + [v])N. Therefore, if we put Gyi(z) =

Fii(2)e?, then |Gyi(2)] < Ce? (1 + Jo])N and /%dw < oo by (4.41).
R

Hence, Lemma 2 for d = 1 yields that Fj,(\) = Cpre " P()\), where A € R and

P is polynomial whose degree depends on N and [. By noting (4.38) and (2.29),

the injectivity of the Dunkl transform on RY*? implies that for all x € R¥*2

fie(lz]]) = Copllz|['Q(z) Ny g (2, b), where Ny, is the heat kernel on R4T2.

If ab > %, then [; is finite provided f;; = 0 for all . Therefore, f = 0 almost

everywhere. If ab = }1, then [; is finite provided n — (I +degQ)p — (2y+d—1) > 1,

that is, n > d + 2y + (I + deg @Q)p. Therefore, the assumption on n implies that

[ =0 and deg@ = 0. Clearly, f = CNyy(x,b) satisfies (4.40) and (4.41). If ab < 1,

then for a given family of functions, we see that Fp(f)(y) = Q(y)e *I* for some
@ € P. These functions clearly satisfy (4.40) and (4.41) for all § €]b, 1-|. [

5. A VARIANT OF COWLING-PRICE’S THEOREM FOR THE DUNKL TRANSFORM

Let us suppose that d > 2. The aim of this section is to give a d-dimensional
extension of a theorem in [19], which is a variant of Cowling-Price’s theorem for the
Dunkl transform . Our approach is different from [19].

Theorem 3. Let a,b > 0. If f € S(RY) satisfies for all £ € R,
Fp(£)(€)] < Ce eI
and for all n € N,
(5.42) AP Fp(DIE < C(20)!(20) ",
then f =0 whenever ab > 411.
Let m = [df%] + 1. Then Lemma 1 and (5.42) imply that for all z € R?
IALf(2)]? < C(2n + 2m)!(2a) ",
Therefore, Theorem 3 follows from the following.

Theorem 4. Let a,b > 0. If f € S(RY) satisfies for all £ € R,

(5.43) Fo(f)E)] < CeI
and for all n € N,
(5.44) | AL Fp (O < C2n + 2m)!(2a) 7"

with m = [Z2] + 1, then f = 0 whenever ab > 1.

In order to prove Theorem 4 we need the following lemmas.
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Lemma 4. Let a,m be as above. If F € S(R?) satisfies for alln € N and x € R¢,
(5.45) |ARE(2)]? < C(2n + 2m)!(2a) ",

then for all xy € R?, the function r — Mﬁgo(F) extends to C as an entire function,
which satisfies for all z € C,

(5.46) |MP, (F)| < Cel"/Co),

Proof. Tt follows from Proposition 3 that for all r > 0, zo € R? and n € N, M}, (F)
satisfies

n

A1) MEL(F) = S br)AF@0) + o [ walIDAL (P (0

T,Z0
p:O B(07T)

Then from (2.22) and (2.23) we can deduce that

1 n
[ DA POty
k JB(0,r)

_ 7Azn—l-QF(,y_{_ g) (
Td22 P2 (n+ D)I0(y+ £+ n+1)

sup |27 (7, F) (1) ).

teB(0,r)

Furthermore, from (5.45) we have

D5 (7 F)(O)| = [ (BT F) )] < €204+ m + 1)) (20) 2040,

Hence the remainder term of (5.47) tends to zero as n goes to infinity. Therefore,
MP (F) admits the series development

T,T0

o0 2

rt
Zb VAR F(10) ;dnmAkF(zo).
Thus for all zy € R? the function r — M, (F) can be extended to an entire function
on C as
(5.48) M, ( Z o).
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For all z € C and 2y € R?, (5.48) and (5.45) imply that

zmo | <Z|b ||AnF Jio)‘

T8
Z ; | ALF (o)
22\l (n+ v+ 9)

<c Z e Ty
<oy R D up (1P (o) P

neN 22°D(n+~+ %)

< C(Sup (2n + 2m). )e|z‘2/(2a) = C., 1),
T \uen22D(n+y+9) 2

because m = [‘HQV]

+ 1. This completes the proof of the lemma. |

Lemma 5. ([24]). Let ¢,d > 0 and F be an entire function on C satisfying for all
z € C,
|F(2)] < Ceeltmel®
and for all x € R,
|F(z)| < Ce %",
Then F' =0 whenever ¢ < d.

Proof. of Theorem 4.
Let 2y € RY. For z € C, we put

Foo(2) = e 7 /COME, (Fp(f)).

2,20

By Lemma 4 with F' = Fp(f) we see that |[MZ2, (Fp(f))| < C'el’/29) and therefore,
for all z € C,

|[Foo(2)] < Celtmel/e,
On the other hand, the positivity of the mean value M7, (.) and the relation (5.43)
give
M2, (Fo())] < CME,, (11,
Then, using (2.17) and (2.4), we obtain

ME () = [ et

1

~ G 6‘2*’“”“”“”2)K<2bx0, ry)r(y)do(y)
k Sd—1

< Ce~2lzoll=2)" — — O~ 2(lzoll*—2z|lzo||+2%)

Hence, for all x <0,
p(f)) < Ce 2"

(M, (F.
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But, as a function of z, x — MP (Fp(f)) is even, it follows that for all z € R,

Z,T0

M, (Fp())] < Ce™.

Therefore, we see that for z € R,

|Fx0(£€)| < Cef(ﬁ+2b)x2.
Then, for all z € C,

|Fro(2)] < Ceeltmel/e

and for all z € R,

’Fmo(x)| < Cef(i+2b)x2.
By Lemma 5 we can conclude that Fp(f) = 0 and thus, f = 0. [

As an application of Theorem 3, we can obtain the following.

Corollary 2. Let a,b > 0 and p € [1,+oo[. If f € S(R?) satisfies for all ¢ € R,

(5.49) | Fp(£)(§)] < Cem I
and for all n € N,
(5.50) IARFp ()i, < C2n+2m)!(2a) 2"

with m = [22Y) + 1, then f =0 for ab > 1.

Proof. We put F(x) = (Fp(f) *p Nk(.,1/(80)))(x) where Ni(.,t) is the heat kernel
given by (2.24). Then by (2.20), it follows that for all x € RY,

ALF(@)] < ALF () gl Nk 1/ (85)
where p’ is the conjugate exponent of p. (5.50) implies that
|ATF(2)]* < C(2n + 2m)!(2a) ™"
On the other hand, it follows from (2.18) and (2.17) that for all x € R?,
|F(z)| < Ce= el
Therefore, by Theorem 4 we can obtain that F(z) = 0 and thus, Fp(F) = 0. (2.19)
and (2.14) imply that f = 0. [
6. MIYACHI'S THEOREM FOR THE DUNKL TRANSFORM

For the sake of the readers, in this section we state Miyachi’s theorem for the
Dunkl transform, which is obtained in [4] and [5].

Theorem 5. ([4], [5]) Let f be a measurable function on R? such that

(6.51) €a||17H2f e Lz(Rd) + LZGRd)

and

(6.52) / log™ ‘fD(f)f)eblgll e < oo,
Rd

for some constants a,b,\ >0 and 1 < p,q < 4o00.
i) If ab > ;11, then f =0 almost everywhere.
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it) If ab=1, then f = CNy(.,b) with |C| < \.
iti) If ab < %, then for all & €]b, 1={, all functions of the form f(x) = P(x)Ny(z,6),
P € P, satisfy (6.51) and (6.52).

Corollary 3. ([4]) Let f be a measurable function on RY such that

(6.53) ellell’ f € [P(R) + LY(RY)

and

(6.54) Fo (e de < oo,
Rd

for some constants a,b >0, 1 <p,q < 400 and 0 < r < co.

i) If ab > }L, then f =0 almost everywhere.

it) If ab < 5, then for all 6 €]b, =|, all functions of the form f(x) = P(x)Ny(z,6),
P € P, satisfy (6.53) and (6.54).
Remark 2. In (6.51) and (6.53), LL(R?) + L$°(R?) is essential, because L} (R?) +
LI(RY C LLRY) + LE(R?Y). Indeed, for f = fi + fo» € LY(RY) + Li(RY), we
put fi(x) = fi(z) if |fi(x)] < 1 and 0 otherwise, and f;y = fi — fico. Then

f=(fico + fo00) + (fi+ + for) = foo + f+. Since fz+ > L [ fullen < M fuellf, <
1Al and [[fosllka < [[foslliy, < Il f2llf, respectively. Therefore, fo € Li*(R?)

and f € L}L(R?).
7. BEURLING’S THEOREM FOR THE DUNKL TRANSFORM

Beurling’s theorem and Bonami, Demange, and Jaming’s extension are generalized
for the Dunkl transform as follows.

Theorem 6. Let N € N, § > 0 and f € L2(R?) satisfy

f (@) [[Fo ()WL)
7 55 lellivlly, (2 dady <
09 R T T e ety < o
where P is a polynomial of degree m. If N > d + md + 2, then
(7.56) fly) = Z a"Wk(r,y) a.e.,

|S|<N d—md

where v > 0, a® € C and W¥(r,.) is given by (2.27). Otherwise, f(y) = 0 almost
everywhere.

Proof. We start with the following lemma.
Lemma 6. We suppose that f € L3(R?) satisfies (7.55). Then f € Li(R%).

Proof. We may suppose that f # 0 in L2(R?). (7.55) and the Fubini theorem imply
that for almost every y € R?,

\fD(f)(y)HP(y)!‘;/ ( RAC | BRI

(1 +[ly[DY 1L+ [[z[[)¥

wi(z)dr < 400.
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Since Fp(f) # 0, there exist yo € R?, yy # 0, such that Fp(f)(yo)P(yo) # O.
Therefore,

/Rd %ellwllywk(x)da’ < 400,

clallllvol]

Since —— — > 1 for large ||z||, it follows that/ f(@)|wg(x)dr < 4o00. [ ]
AT el [ @)

This lemma and Proposition 1 imply that ‘Vj(f) is well-defined almost everywhere
on R? By the same techniques used in [18], we can deduce that

//@'””''y'|tVz<;(f)(96)|If(tVzc)(f)(y)l|P(y)|‘S
Re JRd (L [l + Tyl DY

dydxr < +o0.

According to Theorem 2.3 in [26], we can deduce that for all z € R,

]|

Vi(f)(z) = Qz)e” T,

where » > 0 and () is a polynomial of degree strictly lower than %"”5. Then it
follows from (2.12) that

2
_ ll=ll

Folf)y) = F o V() = F(Qa)e™ 5 ) () = Rly)e ™",

where R is a polynomial of degree deg(@. Hence, applying (2.28), we can find
constants a such that

Folw =Fo( 3 W) ),

N—-—d—mé
2

[s|<
Then the injectivity of Fp yields the desired result. [ |

As an application of Theorem 6, we can deduce a Gelfand-Shilov type theorem
for the Dunkl transform by using the same techniques in [18],

Corollary 4. Let Nym € N, § >0, a,b > 0 with ab > i, and 1 < p,q < +o00 with
% + % = 1. Let f € L2(R?) satisfy

MWHP

|f(z)|e >
(7.57) /Rd e wi(x)der < +00
and
Fo(H@)le s M Py
(7.58) /Rd TG dy < +o0

for some P € P,,.

i) Ifab> % or (p,q) # (2,2), then f(z) =0 almost everywhere.

i) If ab = % and (p, q) = (2,2), then f is of the form (7.56) whenever N > 041
and r = 2b*. Otherwise, f(x) =0 almost everywhere.
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Proof. Since

(2a)” )

Aabljz[|[lyl] <

— "+ —=—=llyl,

(2b)?
q
it follows from (7.57) and (7.58) that
P
/ / ‘f |fD ( )H ( )| €4abeHHwak(l')dxdy<+OO
Rd JRd

(1 [f]] + [yl )

Then (7.55) is satisfied, because 4ab > 1. Especially, according to the proof of
Theorem 6, we can deduce that

/ / 4‘“’””C””y”VVk( H@INFVHIPW)IP
Rd JRa (L {lf] + Hy[)*
and 'Vj(f) and f are of the forms

dydr < +00,

2
[lz]]

Vi()(@) = Q)™ and Fp(f)(y) = R(y)e "W,

where r > 0 and @), R are polynomials of the same degree strictly lower than
M Therefore, substituting these, we can deduce that

—(Vrllyll—- Q\f\\fﬁl|)26(4ab 1)||x\|||y|||Q( )||R(:E)||P(y)‘5
/uw /]Rd (L+ [zl + [lyl[)*Y

When 4ab > 1, this integral is not finite unless f = 0 almost everywhere. Moreover,
it follows from (7.57) and (7.58) that

2a)P
— 2 llzl? - llell?

|Q(z)|e
/]Rd e wi(x)dr < +o0

dydx < +o00.

and
(20)4

|[R(y)le~e™a | p(y))2
dy < +o00.
/]Rd (1 +lylDY

Hence, one of these integrals is not finite unless (p,q) = (2,2). When 4ab = 1 and
(p,q) = (2,2), the finiteness of above integrals implies that r = 2b* and the rest
follows from Theorem 6. |

8. DONOHO-STARK UNCERTAINTY PRINCIPLE FOR THE DUNKL TRANSFORM

We shall investigate the case where f and Fp(f) are close to zero outside
measurable sets. Here the notion of ”close to zero” is formulated as follows. We say
[ € L3(RY) is e-concentrated on a measurable sets £ C R? if there is a measurable
function g vanishing outside E such that ||f — g||x2 < €||f|lg2. Therefore, if we
introduce a projection operator Pg as

O
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then f is e-concentrated on E if and only if ||f — Prfl|r2 < €/ f|lr2- We define a
projection operator Qg as

Quf(x) = F5' (Pe(Folf)) ().

Then Fp(f) is e-concentrated on W' if and only if || f — Qw fllk2 < €|l f|lx2. We note
that, for measurable sets E, W C R,

QuPuf(a) = [ att.a) f(0jan(t)ie
where

/ K(—it, ) K (ix,)wr(§)de ift e E

0 ift ¢ E.
Indeed, by the Fubini theorem we see that

QuPrf(z / Fo(Pef) (€)K€ iz)wr(€)de
= [ ([ rorte i) Kc.inmoe
- /E () /W K(f,—z’t)K(f,z’:c)wk(g)d§>wk(t)dt.

The Hilbert-Schmidt norm ||Qw Pg|| s is given by

||Qw Pr||rs = (/Rd g Iq(s,t)|2wk(t)dsdt>§.

q(t,x) =

We denote by ||T'||2 the operator norm on L?(R%). Since Pr and Qy are projections,
it is clear that ||Pglls = ||Qw |2 = 1. Moreover, it follows that

(8.59) |1Qw Pellas > [|Qw Pell2-

Lemma 7. If E and W are sets of finite measure, then

| Qw Pel|lns < \/mesk(E)mesk(W).

Proof. For cach t € E, we define ¢:(s) = q(s,t). (2.13) implies that Fp(g:)(w) =
Py (K (—iw,t)). Then by Parseval’s identity (2.15) and (2.4) it follows that

/ lq(s, 1) 2als-/ lg: (s \ds-/ | Fp(g:)(w) Pw(w)dw < mes(W).

Hence, integrating over ¢ € E, we see that ||Qw Pg||%¢ < mesy(E)mes,(W). ]

Proposition 6. Let E, W be measurable sets and suppose that || f|lk2 = [|Fo(f)|lk.2
= 1. Assume that eg + ew < 1, f is eg-concentrated on E and Fp(f) is ew-
concentrated on W. Then

mesy(E)mesy(W) > (1 — e — ew)?
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Proof. Since ||f||k2 = |Fp(f)|lxe = 1 and eg + ew < 1, the measures of E and
W must both be non-zero. Indeed, if not, then the eg-concentration of f implies
that ||f — Pefllk2 = ||f|lke = 1 < eg, which contradicts with e < 1, likewise for
Fp(f). If at least one of mesg(E) and mes,(W) is infinity, then the inequality is
clear. Therefore, it is enough to consider the case where both E and W have finite
positive measures. Since ||Qw||2 = 1, it follows that

1f = QwPefllke <IIf — Qwfllke + 1Qwf — QwPef||k2
<ew + [|Qwll2llf — Pefllk2
<egtew

and thus,
|QwPefllk2 = || fllke = |f — QwPefllee > 1 —cp —cw.

Then ||QwPgl|l2 > 1 —eg — ew. (8.59) and Lemma 7 yield the desired inequality.
]

In the following we shall consider the case of f € LL(R?). As in the L? case,
we say that f € Lj(R?) is e-concentrated to E if ||f — Pefllk1 < €[/ fllk1. Let
By.1 (W) denote the subspace of Li(R?) which consists of all g € Lj.(R?) such that
Py f = f. We say that f is e-bandlimited to W if there is a ¢ € By (W) with
I1f = gllk1 < el f]|x.1- Here we denote by || Pg||; the operator norm of Pg on Li(R?)
and by ||Pglliw the operator norm of Py : BL(W) — Li(RY). Corresponding to
(8.59) and Lemma 7 in the L? case, we can obtain the following.

Lemma 8. ||Pg|liw < mesg(E)mesg(W).

Proof. For f € By, (W) we sce that
/ Fo(NEK (1, i€)wn(€)de
/ K(t, i€) / F@)K (2, ~i€)y(a)n(€)d ) de
= [ 1@ [ KiK. g
Therefore, [|f]loe < mesi(W)[|f|li1 by (24) and thus,

1P fllky = /E | (@)|wr(z)dr < mesp(E)|[f|lkeo < mesi(E)mesi(W)||f][k.1-

Then, for f € By, (W),

[1Pe Sk
[ 1]x.2

which implies the desired inequality. |

= mes(E)mes, (W),
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Proposition 7. Let f € LL(RY). If f is eg-concentrated to E and ey -bandlimited
to W, then
1— EE — W

1+ EwW
Proof. Without loss of generality, we may suppose that || f|[x1 = 1, Since f is ep-
concentrated to F, it follows that ||Pefllx1 > ||fller — [|If — Pefllen > 1 — k.
Moreover, since f is ey-bandlimited, there is a g € By 1 (W) with ||g — f|k1 < ew.
Therefore, it follows that

1Peglles = |[Pefllky — [Pe(g = Pllea =21 —ep —ew

mesg(E)mes(W) >

and ||g|k1 <||fllka +ew =1+ ew. Therefore, for g € By, (W),
|Pegllkn . 1 —cp—ew
gllks = T4ew

which implies that || Pgl|l1w > ?—E_W“:W Lemma 8 yields the desired inequality. =

Proposition 8. Let f € Li(RY) N Li(RY) with || fllxe = 1. If f is eg-concentrated
to E in Li-norm and Fp(f) is ew-concentrated to W in Li-norm, then

mesi(E) > (1—ep)’[Ifllsy  and mese(W)|Ifllky > k(1 —ew)”.

In particular,
mesy(E)mesy(W) > ci(1 —ep)*(1 — ew )™

Proof. Since || fllx2 = | Fp(f)llk2 = 1 and Fp(f) is ew-concentrated to W in L3-

norm, it follows that || Pw (Fp(f))llk2 = | Fp(f)llk2 — IFp(f) = Pw(Fp(f)lk2 >
1 — ey and thus,

(L—ew) < | |Fp(H)E)Pwr(&)de

w
mesg(W
< meseWIFp(DI < ") i,
k

by (2.10). Similarly, || f|lz2 =1 and f is eg-concentrated to F in Lj-norm,

(1 ex)| flls < / (@) ln(@)dz < /mesy(B)

Here we used the Cauchy-Schwarz inequality and the fact that || f||x2 = 1. [
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