
UNCERTAINTY PRINCIPLES FOR THE DUNKL TRANSFORM

T. KAWAZOE AND H. MEJJAOLI

Abstract. The Dunkl transform satisfies some uncertainty principles similar to
the Euclidean Fourier transform. A generalization and a variant of Cowling-Price’s
theorem, Beurling’s theorem and Donoho-Stark’s uncertainty principle are ob-
tained for the Dunkl transform.
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1. Introduction

There are many theorems known which state that a function and its classical
Fourier transform on R cannot both be sharply localized. That is, it is impossible
for a nonzero function and its Fourier transform to be simultaneously small. Here
a concept of the smallness had taken different interpretations in different contexts.
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Hardy [13], Morgan [21], Cowling and Price [6], Beurling [2], Miyachi [20] for ex-
ample interpreted the smallness as sharp pointwise estimates or integrable decay
of functions. Benedicks [1], Slepian and Pollak [27], Landau and Pollacl [15], and
Donoho and Stark [7] paid attention to the supports of functions and gave qualitative
uncertainty principles for the Fourier transforms.

Hardy’s theorem [13] for the classical Fourier transform F on R asserts that f

and its Fourier transform f̂ = F(f) can not both be very small. More precisely,
let a and b be positive constants and assume that f is a measurable function on R
such that |f(x)| ≤ Ce−ax2

a.e. and |f̂(y)| ≤ Ce−by2
for some positive constant C.

Then f = 0 a.e. if ab > 1
4
, f is a constant multiple of e−ax2

if ab = 1
4
, and there are

infinitely many nonzero functions satisfying the assumptions if ab < 1
4
. Considerable

attention has been devoted for discovering generalizations to new contexts for the
Hardy’s theorem. In particular, Cowling and Price [6] have studied an Lp version
of Hardy’s theorem which states that for p, q ∈ [1, +∞], at least one of them is

finite, if ||eax2
f ||p < +∞ and ||eby2

f̂ ||q < +∞, then f = 0 a.e. if ab ≥ 1
4
. Another

generalization of Hardy’s theorem is given by Miyachi [20], which states that, if f

is a measurable function on R such that eax2
f ∈ L1(R) + L∞(R) and∫

R
log+ |f̂(ξ)e

ξ2

4a |
λ

dξ < ∞

for some positive constants a and λ, then f is a constant multiple of e−ax2
. Further-

more, Beurling’s theorem, which was found by Beurling and his proof was published
much later by Hörmander [14], says that for any non trivial function f in L2(R), the

product f(x)f̂(y) is never integrable on R2 with respect to the measure e|x||y|dxdy.
A far reaching generalization of this result has been recently proved by Bonami,
Demange and Jaming [3]. They proved that, if f ∈ L2(Rd) satisfies for an integer N∫

Rd

∫
Rd

|f(x)||F(f)(y)|
(1 + ||x|| + ||y||)N

e||x||||y||dxdy < +∞,

then f is of the form f(x) = P (x)e−β||x||2 where P is a polynomial of degree strictly
lower than N−d

2
and β is a positive constant.

As a generalization of these Euclidean uncertainty principles for the classical
Fourier transform F , recently, Gallardo and Trimèche [12] and Trimèche [31] have
proved Hardy’s theorem, Cowling-Price’s theorem and Beurling’s theorem for the
Dunkl transform FD. The purpose of this paper is, as further generalizations, to
obtain variants of their results and Donoho-Stark’s uncertainty principles for FD.

The structure of this paper is the following. In §2, we recall the basic properties
of the Dunkl operators; the Dunkl intertwining operator and its dual, the Dunkl
transform FD and related harmonic analysis. §3 is devoted to generalize Cowling-
Price’s theorem for FD. In §4 and §5 we give variants of Cowling-Price’s theorem.
We state Miyachi’s theorem in §6 and we generalize Beurling’s theorem for FD in
§7. §8 is devoted to Donoho-Stark’s uncertainty principle for FD.

Throughout this paper, the letter C indicates a positive constant not necessarily
the same in each occurrence.
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2. Preliminaries

In order to confirm the basic and standard notations we briefly overview the
theory of Dunkl operators and related harmonic analysis. Main references are [8, 9,
10, 11, 16, 17, 22, 23, 28, 29, 30].

2.1. Root system, reflection group, and multiplicity function. Let Rd be the
Euclidean space equipped with a scalar product ⟨, ⟩ and the norm ||x|| =

√
⟨x, x⟩.

For α in Rd\{0}, let σα be the reflection in the hyperplane Hα ⊂ Rd orthogonal to
α, i.e. for x ∈ Rd,

σα(x) = x − 2
⟨α, x⟩
||α||2

α.

A finite set R ⊂ Rd\{0} is called a root system if R∩Rα = {α,−α} and σαR = R for
all α ∈ R. For a given root system R reflections σα, α ∈ R, generate a finite group
W ⊂ O(d), called the reflection group associated with R. We fix a β ∈ Rd\∪α∈RHα

and define a positive root system R+ = {α ∈ R | ⟨α, β⟩ > 0}. We normalize each
α ∈ R+ as ⟨α, α⟩ = 2. A function k : R −→ C on R is called a multiplicity function
if it is invariant under the action of W . We introduce the index γ as

γ = γ(k) =
∑

α∈R+

k(α).

Throughout this paper, we will assume that k(α) ≥ 0 for all α ∈ R. We denote by
ωk the weight function on Rd given by

ωk(x) =
∏

α∈R+

|⟨α, x⟩|2k(α),

which is invariant under the action of W and homogeneous of degree 2γ, and by ck

the Mehta-type constant defined by

ck =

∫
Rd

e−
||x||2

2 ωk(x)dx.

Let d ≥ 2. For an integrable function f on Rd with respect to a measure ωk(x)dx
we have

(2.1)

∫
Rd

f(x)ωk(x)dx =

∫ +∞

0

( ∫
Sd−1

f(rβ)ωk(β)dσ(β)
)
r2γ+d−1dr,

where dσ is the normalized surface measure on the unit sphere Sd−1 of Rd. In
particular, if f is radial (i.e. SO(d)-invariant), then there exists a function F on
[0, +∞[ such that f(x) = F (||x||) = F (r) with ||x|| = r and

(2.2)

∫
Rd

f(x)ωk(x)dx = dk

∫ +∞

0

F (r)r2γ+d−1dr,

where

dk =

∫
Sd−1

ωk(β)dσ(β).
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We denote by Lp(Rd), 1 ≤ p < +∞, the space of measurable functions f on Rd

with finite Lp-norm ∥ ∥p with respect to the Lebesgue measure dx and by Lp
k(Rd)

the one with respect to the weighted measure ωk(x)dx:

∥f∥k,p =
( ∫

Rd

|f(x)|pωk(x)dx
) 1

p
< +∞, if 1 ≤ p < +∞,

∥f∥k,∞ = ess sup
x∈Rd

|f(x)| < +∞.

In the following we denote by

- C(Rd) the space of continuous functions on Rd.
- Cp(Rd) the space of functions of class Cp on Rd.
- Cp

b (Rd) the space of bounded functions of class Cp.
- E(Rd) the space of C∞-functions on Rd.
- S(Rd) the Schwartz space of rapidly decreasing functions on Rd.
- D(Rd) the space of C∞-functions on Rd with compact support.
- S ′(Rd) the space of temperate distributions on Rd.
- P(Rd) the set of polynomials on Rd and Pm(Rd) the one of degree m.

2.2. The Dunkl operators and the Dunkl kernel. The Dunkl operators Tj, j
= 1, 2, . . . , d, on Rd associated with the positive root system R+ and the multiplicity
function k are given by

Tjf(x) =
∂f

∂xj

(x) +
∑

α∈R+

k(α)αj
f(x) − f(σα(x))

⟨α, x⟩

for f ∈ C1(Rd). Then each Tj satisfies the following:
i) For all f and g in C1(Rd), if at least one of them is W -invariant, then

Tj(fg) = (Tjf)g + f(Tjg).

ii) For all f in C1
b (Rd) and g in S(Rd),∫

Rd

Tjf(x)g(x)ωk(x)dx = −
∫

Rd

f(x)Tjg(x)ωk(x)dx.

We define the Dunkl-Laplace operator △k on Rd by

△kf(x) =
d∑

j=1

T 2
j f(x)

= △f(x) + 2
∑

α∈R+

k(α)
(⟨∇f(x), α⟩

⟨α, x⟩
− f(x) − f(σα(x))

⟨α, x⟩2
)
,

where △ and ∇ are the usual Euclidean Laplacian and nabla operators on Rd re-
spectively. Then for each y ∈ Rd, the system{

Tju(x, y) = yju(x, y), j = 1, ..., d,

u(0, y) = 1
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admits a unique analytic solution K(x, y), x ∈ Rd, called the Dunkl kernel. This
kernel has a holomorphic extension to Cd×Cd and possesses the following properties
(cf. [22]):

i) For all z, t, λ ∈ Cd, K(z, t) = K(t, z), K(z, 0) = 1 and

K(λz, t) = K(z, λt).(2.3)

ii) For all ν ∈ Nd, x ∈ Rd and z ∈ Cd,

(2.4) |Dν
zK(x, z)| ≤ ||x|||ν| exp(||x|| ||Rez||),

where

Dν
z =

∂|ν|

∂zν1
1 · · · ∂zνd

d

and |ν| = ν1 + · · · + νd.

In particular, |K(x,−iy)| ≤ 1 for all x, y ∈ Rd.
iii) For all x ∈ Rd and z ∈ Cd,

(2.5) K(x, z) =

∫
Rd

e⟨y,z⟩dµx(y),

where µx is a probability measure on Rd with support in the closed ball B(0, ||x||)
of center 0 and radius ||x||.

The Dunkl intertwining operator Vk on C(Rd) is defined by

Vkf(x) =

∫
Rd

f(y)dµx(y),

where dµx is the same measure in (2.5). Then for all x ∈ Rd, z ∈ Cd, we have

K(x, z) = Vk(e
⟨.,z⟩)(x).

Let tVk denote the operator on D(Rd) satisfying for all f ∈ D(Rd) and g ∈ C(Rd),∫
Rd

tVk(f)(y)g(y)dy =

∫
Rd

Vk(g)(x)f(x)ωk(x)dx.

Then there exists a positive measure νy on Rd with support in the set {x ∈ Rd, ||x|| ≥
||y||} for which

(2.6) tVk(f)(y) =

∫
Rd

f(x)dνy(x).

This operator tVk is called the dual Dunkl intertwining operator. The operators Vk

and tVk satisfy the following properties (cf. [29]):
i) Vk is a topological isomorphism from E(Rd) onto itself satisfying the permutation

relations: For all f ∈ E(Rd),

TjVk(f)(x) = Vk(
∂

∂yj

f)(x).

ii) tVk is a topological isomorphism from D(Rd)(resp. S(Rd)) onto itself satisfying
the permutation relations: For all f ∈ D(Rd),

tVk(Tjf)(y) =
∂

∂yj

tVk(f)(y).
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Proposition 1. ([12]) Let (νy)y∈Rd be the family of measures defined by (2.6) and
f be in L1

k(Rd). Then for almost all y ∈ Rd with respect to Lebesgue measure on
Rd, f is νy-integrable and the function

y 7→
∫

Rd

f(x)dνy(x),

which will be also denoted by tVk(f), is Lebesgue integrable on Rd. Moreover for all
g ∈ Cb(Rd),

(2.7)

∫
Rd

tVk(f)(y)g(y)dy =

∫
Rd

Vk(g)(x)f(x)ωk(x)dx.

Remark 1. By taking g ≡ 1 in (2.7) we can deduce that for all f ∈ L1
k(Rd),

(2.8)

∫
Rd

tVk(f)(y)dy =

∫
Rd

f(x)ωk(x)dx.

2.3. The Dunkl transform. The Dunkl transform FD on L1
k(Rd) is given by

(2.9) FD(f)(y) =
1

ck

∫
Rd

f(x)K(x,−iy)ωk(x)dx.

Some basic properties of this transform are the following (cf. [10] and [11]):
i) For all f ∈ L1

k(Rd),

(2.10) ||FD(f)||k,∞ ≤ 1

ck

||f ||k,1.

ii) For all f ∈ S(Rd),

(2.11) FD(Tjf)(y) = iyjFD(f)(y).

iii) For all f ∈ S(Rd),

(2.12) FD(f) = F ◦ tVk(f),

where F is the classical Fourier transform on Rd.
iv) For all f ∈ L1

k(Rd), if FD(f) belongs to L1
k(Rd), then

(2.13) f(y) =

∫
Rd

FD(f)(x)K(ix, y)ωk(x)dx.

v) For f ∈ S(Rd), if we define FD(f)(y) = FD(f)(−y), then

FDFD = FDFD = Id.(2.14)

Proposition 2. The Dunkl transform FD is a topological isomorphism from S(Rd)
onto itself and for all f in S(Rd),

(2.15)

∫
Rd

|f(x)|2ωk(x)dx =

∫
Rd

|FD(f)(ξ)|2ωk(ξ)dξ.

In particular, the Dunkl transform f → FD(f) can be uniquely extended to an
isometric automorphism on L2

k(Rd).
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2.4. The Dunkl convolution. By using the Dunkl kernel in 2.2, we introduce a
generalized translation and an associated convolution structure on Rd. For f ∈
S(Rd) and y ∈ Rd the Dunkl translation τyf is defined by

FD(τyf)(x) = K(ix, y)FD(f)(x)

(cf. [30]). This transform is related to the usual translation as

(2.16) τyf(x) = (Vk)x(Vk)y[(Vk)
−1(f)(x + y)].

Hence, τy can also be defined for f ∈ E(Rd). If f ∈ E(Rd) is radial, i.e. f(x) =
F (||x||), then it follows that

τyf(x) = Vk

(
F (

√
||x||2 + ||y||2 + 2⟨x, .⟩)

)
(x)

(cf. [23]). For example, for t > 0, we see that

(2.17) τy(e
−t||ξ||2)(x) = e−t(||x||2+||y||2)K(2ty, x).

We define the Dunkl convolution product f ∗D g of f, g ∈ S(Rd) as

(2.18) f ∗D g(x) =

∫
Rd

τxf(−y)g(y)ωk(y)dy

(cf. [28] and [30]). This convolution is commutative and associative and moreover,
it satisfies the following (cf. [28]):

i) For all f, g ∈ D(Rd) (resp. S(Rd)), f ∗D g belongs to D(Rd) (resp. S(Rd)) and

(2.19) FD(f ∗D g)(y) = FD(f)(y)FD(g)(y).

ii) Let 1 ≤ p, q, r ≤ ∞ such that 1
p

+ 1
q
− 1

r
= 1. If f ∈ Lp

k(Rd) and g ∈ Lq
k(Rd) is

radial, then f ∗D g ∈ Lr
k(Rd) and

(2.20) ∥f ∗D g∥k,r ≤ ∥f∥k,p ∥g∥k,q .

2.5. The Sobolev space Hs
k(Rd). Let s ∈ R. We define the Dunkl-Sobolev space

Hs
k(Rd) as the set of distributions u ∈ S ′(Rd) satisfying (1+ ||ξ||2) s

2FD(u) ∈ L2
k(Rd),

equipped with the scalar product

⟨u, v⟩Hs
k

=

∫
Rd

(1 + ||ξ||2)sFD(u)(ξ)FD(v)(ξ)ωk(ξ)dξ

and the norm
||u||2Hs

k
= ⟨u, u⟩s,k.

As shown in [17], if p ∈ N and s ∈ R satisfy s > d
2

+ γ + p, then the following
embedding is continuous (i.e. the inclusion is in the sense of topology)

Hs
k(Rd) ↪→ Cp(Rd).(2.21)

Lemma 1. Let f ∈ S(Rd) and assume that for all n ∈ N, there exist a positive
constant cn such that

||△n
kf ||k,2 ≤ cn.

Then for all n ∈ N,
|△n

kf(x)| ≤ C(cn + cn+m),
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where m = [d+2γ
4

] + 1 and C is independent of n.

Proof. Since |△n
kf(x)| ≤ Cm∥△n

kf∥H2m
k

by (2.21) and ∥△n
kf∥H2m

k
≤ Cm(∥△n

kf∥k,2 +

∥△n+m
k f∥k,2) by the definition of H2m

k (Rd), the desired result follows.

2.6. Mean value property associate with the Dunkl Laplacian. Let d ≥ 2.
The mean value operator MD

r,x, r > 0, x ∈ Rd, associated with the Dunkl Laplacian

△k is defined by for u ∈ E(Rd),

MD
r,x(u) =

1

dk

∫
Sd−1

τxu(ry)ωk(y)dσ(y).

To give a development formula for MD
r,x, we define a sequence of functions {vp(t)}p≥0,

0 < t ≤ r, and a sequence of numbers {bp(r)}p≥0 as follows. We put

v0(t) =

∫ r

t

ds

s2γ+d−1

and inductively, let vp(t), p ≥ 1 denote a unique solution of the differential equation:Lγ+ d
2
−1vp(t) = vp−1(t),

vp(r) =
d

dr
vp(r) = 0,

where Lγ+ d
2
−1 is the Bessel operator given by

Lγ+ d
2
−1 =

d2

dt2
+

2γ + d − 1

t

d

dt
.

We put b0(r) = 1 and

(2.22) bp(r) =

∫ r

0

vp−1(t)t
2γ+d−1dt.

Then we see that

(2.23) bp(r) =
r2p

dp(γ)

with

dp(γ) =
22pp!Γ(γ + d

2
+ p)

Γ(γ + d
2
)

.

Proposition 3. ([16]) For u ∈ C2n+2(Rd) and x0 ∈ Rd, it follows that

MD
r,x0

(u) =
n∑

p=0

bp(r)△p
ku(x0) +

1

dk

∫
B(x0,r)

vn(||x||)△n+1
k (τx0u)(x)ωk(x)dx,

where B(x0, r) is the closed ball of center x0 and radius r.
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2.7. Heat functions related to the Dunkl operators. The heat kernel Nk(x, s),
x ∈ Rd, s > 0, associated with the Dunkl-Laplace operator △k is given by

(2.24) Nk(x, s) =
1

ck(2s)
γ+ d

2

e−
||x||2

4s ,

which is a solution of the generalized heat equation:

∂

∂s
Nk(x, s) −△kNk(x, s) = 0.

Some basic properties of Nk(x, s) are the following:

i) FD (Nk(·, s)) (x) = 1
ck

e−s||x||2 and

(2.25) Nk(x, s) =
1

c2
k

∫
Rd

e−r||y||2K(ix, y)ωk(y)dy.

ii) For all λ > 0,

Nk(λ
1
2 x, λs) = λ−(γ+ d

2
)Nk(x, s).

iii)

(2.26) ∥Nk(·, s)∥k,1 = 1.

iv) For all s, t > 0,

Nk(·, t) ∗D Nk(·, s)(x) = Nk(x, t + s).

By noting (2.25) and (2.11), we define the heat functions W k
l (x, s), l ∈ Nd, as

W k
l (x, s) = T lNk(x, s)

=
i|l|

c2
k

∫
Rd

y1
l1 · · · yd

lde−r||y||2K(ix, y)ωk(y)dy,(2.27)

where T l = T l1
1 ◦ T l2

2 ◦ · · · ◦ T ld
d . Then W k

0 (x, s) = Nk(x, s) and

(2.28) FD(W k
l (. , s))(x) =

i|l|

ck

y1
l1 · · · yd

lde−s||x||2 .

Proposition 4. ([31]) Let ψ ∈ Pm(Rd) be homogeneous. Then for all δ > 0, there
exists a homogeneous Q ∈ Pm(Rd) such that

(2.29) FD(ψ(·)e−δ||·||2)(x) = Q(x)e−
∥x∥2
4δ .

3. Cowling-Price’s theorem for the Dunkl transform

We shall prove a generalization of Cowling-Price’s theorem for the Dunkl trans-
form FD.

Theorem 1. Let f be a measurable function on Rd such that

(3.30)

∫
Rd

eap||x||2 |f(x)|p

(1 + ||x||)n
ωk(x)dx < ∞
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and

(3.31)

∫
Rd

ebq||ξ||2 |FD(f)(ξ)|q

(1 + ||ξ||)m
dξ < ∞,

for some constants a, b > 0, n > 0, m > 1 and 1 ≤ p, q < +∞.
i) If ab > 1

4
, then f = 0 almost everywhere.

ii) If ab = 1
4
, then f is of the form f(x) = Qb(x)Nk(x, b) where Qb is a polynomial

with deg Qb ≤ min{n
p

+ 2γ+d−1
p′

, m−d
q

}. Especially, if

n ≤ d + 2γ + p min
{n

p
+

2γ + d − 1

p′
,
m − d

q

}
,

then f = 0 almost everywhere. Furthermore, if m ∈]d, d + q] and n > d + 2γ, then
f is a constant multiple of Nk(., b).

iii) If ab < 1
4
, then for all δ ∈]b, 1

4a
[, all functions of the form f(x) = P (x)Nk(x, δ),

P ∈ P, satisfy (3.30) and (3.31).

Proof. Clearly (3.30) implies that f belongs to L1
k(Rd) and thus, FD(f)(ξ) exists for

all ξ ∈ Rd. Moreover, it has an entire holomorphic extension on Cd satisfying for
some s > 0,

(3.32) |FD(f)(z)| ≤ Ce
||Imz||2

4a (1 + ||Imz||)s.

Actually, it follows from (2.9) and (2.4) that for all z = ξ + iη ∈ Cd,

|FD(f)(ξ + iη)| ≤
∫

Rd

|f(x)||K(x,−iξ + η)|ωk(x)dx

≤ e
||η||2
4a

∫
IRd

ea||x||2 |f(x)|
(1 + ||x||)

n
p

(1 + ||x||)
n
p e−a(||x||−|| η

2a
||)2ωk(x)dx.

Then by using the Hölder inequality, (3.30) and (2.2) we can obtain that

|FD(f)(ξ + iη)| ≤ Ce
||η||2
4a

( ∫
Rd

(1 + ||x||)
np′
p e−ap′(||x||−|| η

2a
||)2ωk(x)dx

) 1
p′

≤ Ce
||η||2
4a

( ∫ ∞

0

(1 + r)
np′
p

+2γ+d−1e−ap′(r−|| η
2a

||)2dr
) 1

p′

≤ Ce
||η||2
4a (1 + ||η||)

n
p
+ 2γ+d−1

p′ .

If ab = 1
4
, then

|FD(f)(ξ + iη)| ≤ Ceb||η||2(1 + ||η||)
n
p
+ 2γ+d−1

p′ .

Therefore, if we let g(z) = eb(z2
1+z2

2+···+z2
d)FD(f)(z), then

|g(z)| ≤ Ceb∥Rez∥2

(1 + ||Imz||)
n
p
+ 2γ+d−1

p′ .

Hence it follows from (3.31) that∫
Rd

|g(ξ)|q

(1 + ||ξ||)m
dξ < ∞.
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Here we use the following lemma.

Lemma 2. ([25]) Let h be an entire function on Cd such that

|h(z)| ≤ Cea||Rez||2(1 + ||Imz||)l

for some l > 0, a > 0 and ∫
Rd

|h(x)|q

(1 + ||x||)m
|Q(x)|dx < ∞

for some q ≥ 1, m > 1 and Q ∈ PM(Rd). Then h is a polynomial with deg h ≤
min{l, m−M−d

q
} and, if m ≤ q + M + d, then h is a constant.

Hence by this lemma g is a polynomial, we say Pb, with deg Pb ≤ min{np′

p
+

2γ+d−1
p′

, m−d
q

}. Then FD(f)(x) = Pb(x)e−b∥x∥2
and thus, f(x) = Qb(x)Nk(x, b) =

CbQb(x)e−a∥x∥2
for x ∈ Rd, where Qb is a polynomial with deg Qb = deg Pb (see

(2.29)). Therefore, nonzero f satisfies (3.30) provided that

n > d + 2γ + p min
{np′

p
+

2γ + d − 1

p′
,
m − d

q

}
.

Furthermore, if m ≤ d + q, then g is a constant by Lemma 2 and thus, FD(f)(x) =

Ce−b∥x∥2
and f(x) = CNk(x, b) = Cbe

−a∥x∥2
. When n > d + 2γ and m > d, these

functions satisfy (3.31) and (3.30) respectively. This proves ii).
If ab > 1

4
, then we can choose positive constants, a1, b1 such that a > a1 = 1

4b1
> 1

4b
.

Then f and FD(f) also satisfy (3.30) and (3.31) with a and b replaced by a1 and b1

respectively. Therefore, it follows that FD(f)(x) = Pb1(x)e−b1∥x∥2
. But then FD(f)

cannot satisfy (3.31) unless Pb1 ≡ 0, which implies f ≡ 0. This proves i).
If ab < 1

4
, then for all δ ∈]b, 1

4a
[, the functions of the form f(x) = P (x)Nk(x, δ),

where P ∈ P , satisfy (3.30) and (3.31). This proves iii).

The following is an immediate consequence of Theorem 1.

Corollary 1. Let f be a measurable function on Rd such that

(3.33) |f(x)| ≤ Me−a||x||2(1 + ||x||)r a.e.

and for all ξ ∈ Rd,

(3.34) |FD(f)(ξ)| ≤ Me−b||ξ||2

for some constants a, b > 0, r ≥ 0 and M > 0.
i) If ab > 1

4
, then f = 0 almost everywhere.

ii) If ab = 1
4
, then f is of the form f(x) = CNk(x, b).

iii) If ab < 1
4
, then there are infinity many nonzero f satisfying (3.33) and (3.34).



12 T. Kawazoe and H. Mejjaoli/Uncertainty principles for the Dunkl transform

4. Cowling-Price’s theorem via the D-spherical harmonics
coefficients

We suppose that d ≥ 2. We replace the assumption (3.31) by the D-spherical
harmonics coefficients of f . For a non-negative integer l, we put

Hk
l =

{
P ∈ Pl | P is homogeneous and △kP = 0

}
,

which is called the space of D-spherical harmonics of degree l. We fix a Pl ∈ Hk
l and

define the Dunkl coefficients of f ∈ L1
k(Rd) in the angular variable by

(4.35) fl,k(λ) =

∫
Sd−1

f(λt)Pl(t)ωk(t)dσ(t).

Moreover, we define the Dunkl spherical harmonic coefficients of f ∈ L1
k(Rd) by

(4.36) Fl,k(λ) = λ−l

∫
Sd−1

FD(f)(λ, t)Pl(t)ωk(t)dσ(t),

where

(4.37) FD(f)(λ, t) =
1

ck

∫
Rd

f(x)K(λx,−it)ωk(x)dx

for t ∈ Sd−1. The relation between fl,k and Fl,k is given by the following.

Proposition 5. Let notations be as above. Then for z ∈ Sd+2m−1,

Fl,k(λ) = C

∫
Rd+2l

fl,k(||x||)||x||−lKl(λx,−iz)ωk(x)dx(4.38)

= CFDl
(fl,k(|| · ||)|| · ||−l)(λz),

where FDl
and Kl are the Dunkl transform and the Dunkl kernel on Rd+2l respec-

tively.

Proof. From (2.3), (4.37) and (4.36) it follows that

Fl,k(λ) = λ−l 1

ck

∫
Rd

( ∫
Sd−1

K(t,−iλx)Pl(t)ωk(t)dt
)
f(x)ωk(x)dx.

Here we recall the formula for the Dunkl coefficients of the Dunkl kernel.

Lemma 3. ([10]) Let H ∈ Hk
n. Then for all x ∈ Rd,

(4.39)

∫
Sd−1

K(t, ix)H(t)ωk(t)dσd(t) = Cn,kH(x)jγ+l+ d
2
−1(||x||),

where jα, α ≥ −1
2
, is the normalized Bessel function defined by

jα(z) = Γ(α + 1)
∞∑

n=0

(−1)n( z
2
)2n

n!Γ(α + 1 + n)
.



T. Kawazoe and H. Mejjaoli/Uncertainty principles for the Dunkl transform 13

Therefore, we see that

Fl,k(λ) = Cl,k

∫
Rd

Pl(x)jγ+l+ d
2
−1(λ||x||)f(x)ωk(x)dx.

Then by using (2.1) and (4.39) replaced d by d + 2l, we can obtain that for all z ∈
Sd+2l−1,

Fl,k(λ) = Cl,k

∫ ∞

0

∫
Sd−1

jγ+ d
2
+l−1(λr)r2γ+l+d−1Pl(t)f(rt)ωk(t)dtdr

= Cl,k

∫ ∞

0

fl,k(r)jγ+ d
2
+l−1(λr)r2γ+l+d−1dr

= C

∫ ∞

0

( ∫
Sd+2l−1

Kl(t,−iλrz)ωk(t)dσd+2l(t)
)
fl,k(r)r

2γ+l+d−1dr

= C

∫
Rd+2l

fl,k(||x||)||x||−lKl(x,−iλz)ωk(x)dx.

This established the lemma.

Theorem 2. Let p, q ∈ [1,∞[, a, b > 0, n ∈]d + 2γ, d + 2γ + p] and m > 1. Let f
be a measurable function on Rd such that

(4.40)

∫
Rd

eap||x||2 |f(x)|p

(1 + ||x||)n
ωk(x)dx < ∞

and

(4.41)

∫
R+

ebqλ2 |Fl,k(λ)|q

(1 + λ)m
dλ < ∞

for all non-negative integer l.
i) If ab > 1

4
, then f = 0 almost everywhere.

ii) If ab = 1
4
, then f = CNk(., b).

iii) If ab < 1
4
, then for all δ ∈]b, 1

4a
[, all functions of the form f(x) = P (x)Nk(x, δ),

where P ∈ P, satisfy (4.40) and (4.41).

Proof. (4.40) implies that f ∈ L1
k(Rd) and thus, each fl,k is well-defined. Moreover,

it follows from (4.35), (2.1) and (4.38) that

Il =

∫ ∞

0

eapr2 |fl,k(r)|p

(1 + r)n
r2γ+d−1dr

≤
( ∫

Sd−1

( ∫ ∞

0

eapr2 |f(rt)|p

(1 + r)n
r2γ+d−1dr

) 1
p
Pl(t)ωk(t)dt

)p

≤ C

∫
Rd

eap||x||2 |f(x)|p

(1 + ||x||)n
ωk(x)dx < ∞.

Here we used Hölder’s inequality and the compactness of Sd−1 to obtain the last
inequality. Then, by applying this estimate in the polar coordinate (2.2) of (4.38),
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the same argument in the proof of Theorem 1 yields that Fl,k(λ) has an entire
holomorphic extension on C and there exists N ≥ 0 such that

|Fl,k(u + iv)| ≤ Ce
v2

4a (1 + |v|)N .

If ab ≥ 1
4
, then |Fl,k(u + iv)| ≤ Cebv2

(1 + |v|)N . Therefore, if we put Gl,k(z) =

Fl,k(z)ebz2
, then |Gl,k(z)| ≤ Cebu2

(1 + |v|)N and

∫
R

|Gl,k(x)|q

(1 + |x|)m
dx < ∞ by (4.41).

Hence, Lemma 2 for d = 1 yields that Fl,k(λ) = Cl,ke
−bλ2

P (λ), where λ ∈ R and
P is polynomial whose degree depends on N and l. By noting (4.38) and (2.29),
the injectivity of the Dunkl transform on Rd+2l implies that for all x ∈ Rd+2l,
fl,k(||x||) = Cl,k||x||lQ(x)Nl,k(x, b), where Nl,k is the heat kernel on Rd+2l.

If ab > 1
4
, then Il is finite provided fl,k = 0 for all l. Therefore, f = 0 almost

everywhere. If ab = 1
4
, then Il is finite provided n− (l + deg Q)p− (2γ + d− 1) > 1,

that is, n > d + 2γ + (l + deg Q)p. Therefore, the assumption on n implies that
l = 0 and deg Q = 0. Clearly, f = CN0,k(x, b) satisfies (4.40) and (4.41). If ab < 1

4
,

then for a given family of functions, we see that FD(f)(y) = Q(y)e−δ||y||2 for some
Q ∈ P. These functions clearly satisfy (4.40) and (4.41) for all δ ∈]b, 1

4a
[.

5. A variant of Cowling-Price’s theorem for the Dunkl transform

Let us suppose that d ≥ 2. The aim of this section is to give a d-dimensional
extension of a theorem in [19], which is a variant of Cowling-Price’s theorem for the
Dunkl transform . Our approach is different from [19].

Theorem 3. Let a, b > 0. If f ∈ S(Rd) satisfies for all ξ ∈ Rd,

|FD(f)(ξ)| ≤ Ce−2b||ξ||2

and for all n ∈ N,

||△n
kFD(f)||2k,2 ≤ C(2n)!(2a)−2n,(5.42)

then f = 0 whenever ab > 1
4
.

Let m = [d+2γ
4

] + 1. Then Lemma 1 and (5.42) imply that for all x ∈ Rd,

|△n
kf(x)|2 ≤ C(2n + 2m)!(2a)−2n.

Therefore, Theorem 3 follows from the following.

Theorem 4. Let a, b > 0. If f ∈ S(Rd) satisfies for all ξ ∈ Rd,

(5.43) |FD(f)(ξ)| ≤ Ce−2b||ξ||2

and for all n ∈ N,

(5.44) |△n
kFD(f)(ξ)|2 ≤ C(2n + 2m)!(2a)−2n

with m = [d+2γ
4

] + 1, then f = 0 whenever ab > 1
4
.

In order to prove Theorem 4 we need the following lemmas.
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Lemma 4. Let a, m be as above. If F ∈ S(Rd) satisfies for all n ∈ N and x ∈ Rd,

(5.45) |△n
kF (x)|2 ≤ C(2n + 2m)!(2a)−2n,

then for all x0 ∈ Rd, the function r 7→ MD
r,x0

(F ) extends to C as an entire function,
which satisfies for all z ∈ C,

(5.46) |MD
z,x0

(F )| ≤ Ce|z|
2/(2a).

Proof. It follows from Proposition 3 that for all r ≥ 0, x0 ∈ Rd and n ∈ N, MD
r,x0

(F )
satisfies

(5.47) MD
r,x0

(F ) =
n∑

p=0

bp(r)△p
kF (x0) +

1

dk

∫
B(0,r)

vn(||t||)△n+1
k (τx0F )(t)ωk(t)dt.

Then from (2.22) and (2.23) we can deduce that

∣∣∣ 1

dk

∫
B(0,r)

vn(||t||)△n+1
k (τx0F )(t)ωk(t)dt

∣∣∣
≤

r2n+2Γ(γ + d
2
)

dk22n+2(n + 1)!Γ(γ + d
2

+ n + 1)

(
sup

t∈B(0,r)

|△n+1
k (τx0F )(t)|

)
.

Furthermore, from (5.45) we have

|△n+1
k (τx0F )(t)| = |τx0(△n+1

k F )(t)| ≤ C
√

2(n + m + 1)!(2a)−2(n+1).

Hence the remainder term of (5.47) tends to zero as n goes to infinity. Therefore,
MD

r,x0
(F ) admits the series development

MD
r,x0

(F ) =
∞∑

n=0

bn(r)△n
kF (x0) =

∞∑
n=0

r2n

dn(γ)
△n

kF (x0).

Thus for all x0 ∈ Rd the function r 7→ MD
r,x0

(F ) can be extended to an entire function
on C as

(5.48) MD
z,x0

(F ) =
∞∑

n=0

z2n

dn(γ)
△n

kF (x0).
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For all z ∈ C and x0 ∈ Rd, (5.48) and (5.45) imply that

|MD
z,x0

(F )| ≤
∞∑

n=0

|bn(z)||△n
kF (x0)|

≤
∞∑

n=0

|z|2nΓ(γ + d
2
)

22nn!Γ(n + γ + d
2
)
|△n

kF (x0)|

≤ C
∞∑

n=0

(2a)−n|z|2n

n!
|△n

kF (x0)|
(2a)n

22nΓ(n + γ + d
2
)

≤ C
( ∞∑

n=0

((2a)−1|z|2)n

n!

)
sup
n∈N

(
|△n

kF (x0)|
(2a)n

22nΓ(n + γ + d
2
)

)
≤ C

(
sup
n∈N

√
(2n + 2m)!

22nΓ(n + γ + d
2
)

)
e|z|

2/(2a) = Cγ,ae
|z|2/(2a),

because m = [d+2γ
4

] + 1. This completes the proof of the lemma.

Lemma 5. ([24]). Let c, d > 0 and F be an entire function on C satisfying for all
z ∈ C,

|F (z)| ≤ Cec|Imz|2

and for all x ∈ R,

|F (x)| ≤ Ce−dx2

.

Then F = 0 whenever c < d.

Proof. of Theorem 4.
Let x0 ∈ Rd. For z ∈ C, we put

Fx0(z) = e−z2/(2a)MD
z,x0

(FD(f)).

By Lemma 4 with F = FD(f) we see that |MD
z,x0

(FD(f))| ≤ Ce|z|
2/(2a) and therefore,

for all z ∈ C,

|Fx0(z)| ≤ Ce|Imz|2/a.

On the other hand, the positivity of the mean value MD
x,x0

(.) and the relation (5.43)
give

|MD
x,x0

(FD(f))| ≤ CMD
x,x0

(
e−2b∥·∥2

)
.

Then, using (2.17) and (2.4), we obtain

MD
x,x0

(
e−2b∥·∥2

)
=

1

dk

∫
Sd−1

τx0

(
e−2b∥·∥2

)
(xy)ωk(y)dσ(y)

=
1

dk

∫
Sd−1

e−2b(x2+∥x0∥2)K(2bx0, xy)ωk(y)dσ(y)

≤ Ce−2b(∥x0∥−x)2 = Ce−2b(∥x0∥2−2x∥x0∥+x2).

Hence, for all x ≤ 0,

|MD
x,x0

(FD(f))| ≤ Ce−2bx2

.
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But, as a function of x, x 7→ MD
x,x0

(FD(f)) is even, it follows that for all x ∈ R,

|MD
x,x0

(FD(f))| ≤ Ce−2bx2

.

Therefore, we see that for x ∈ R,

|Fx0(x)| ≤ Ce−( 1
2a

+2b)x2

.

Then, for all z ∈ C,
|Fx0(z)| ≤ Ce|Imz|2/a

and for all x ∈ R,

|Fx0(x)| ≤ Ce−( 1
2a

+2b)x2

.

By Lemma 5 we can conclude that FD(f) = 0 and thus, f = 0.

As an application of Theorem 3, we can obtain the following.

Corollary 2. Let a, b > 0 and p ∈ [1, +∞[. If f ∈ S(Rd) satisfies for all ξ ∈ Rd,

(5.49) |FD(f)(ξ)| ≤ Ce−2b||ξ||2

and for all n ∈ N,

(5.50) ||△n
kFD(f)||2k,p ≤ C(2n + 2m)!(2a)−2n

with m = [d+2γ
4

] + 1, then f = 0 for ab > 1
4
.

Proof. We put F (x) = (FD(f) ∗D Nk(., 1/(8b)))(x) where Nk(., t) is the heat kernel
given by (2.24). Then by (2.20), it follows that for all x ∈ Rd,

|△n
kF (x)| ≤ ||△n

kFD(f)||k,p||Nk(., 1/(8b)||k,p′ ,

where p′ is the conjugate exponent of p. (5.50) implies that

|△n
kF (x)|2 ≤ C(2n + 2m)!(2a)−2n.

On the other hand, it follows from (2.18) and (2.17) that for all x ∈ Rd,

|F (x)| ≤ Ce−2b||x||2 .

Therefore, by Theorem 4 we can obtain that F (x) = 0 and thus, FD(F ) = 0. (2.19)
and (2.14) imply that f = 0.

6. Miyachi’s theorem for the Dunkl transform

For the sake of the readers, in this section we state Miyachi’s theorem for the
Dunkl transform, which is obtained in [4] and [5].

Theorem 5. ([4], [5]) Let f be a measurable function on Rd such that

(6.51) ea||x||2f ∈ Lp
k(R

d) + Lq
k(R

d)

and

(6.52)

∫
Rd

log+ |FD(f)(ξ)eb||ξ||2 |
λ

dξ < ∞,

for some constants a, b, λ > 0 and 1 ≤ p, q ≤ +∞.
i) If ab > 1

4
, then f = 0 almost everywhere.
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ii) If ab = 1
4
, then f = CNk(., b) with |C| ≤ λ.

iii) If ab < 1
4
, then for all δ ∈]b, 1

4a
[, all functions of the form f(x) = P (x)Nk(x, δ),

P ∈ P, satisfy (6.51) and (6.52).

Corollary 3. ([4]) Let f be a measurable function on Rd such that

(6.53) ea||x||2f ∈ Lp
k(R

d) + Lq
k(R

d)

and

(6.54)

∫
Rd

|FD(f)(ξ)|rebr||ξ||2dξ < ∞,

for some constants a, b > 0, 1 ≤ p, q ≤ +∞ and 0 < r ≤ ∞.
i) If ab ≥ 1

4
, then f = 0 almost everywhere.

ii) If ab < 1
4
, then for all δ ∈]b, 1

4a
[, all functions of the form f(x) = P (x)Nk(x, δ),

P ∈ P, satisfy (6.53) and (6.54).

Remark 2. In (6.51) and (6.53), L1
k(Rd) + L∞

k (Rd) is essential, because Lp
k(Rd) +

Lq
k(Rd) ⊂ L1

k(Rd) + L∞
k (Rd). Indeed, for f = f1 + f2 ∈ Lp

k(Rd) + Lq
k(Rd), we

put fi,∞(x) = fi(x) if |fi(x)| ≤ 1 and 0 otherwise, and fi,+ = fi − fi,∞. Then
f = (f1,∞ + f2,∞) + (f1,+ + f2,+) = f∞ + f+. Since fi,+ ≥ 1, ∥f1,+∥k,1 ≤ ∥f1,+∥p

k,p ≤
∥f1∥p

k,p and ∥f2,+∥k,1 ≤ ∥f2,+∥q
k,q ≤ ∥f2∥q

k,q respectively. Therefore, f∞ ∈ L∞
k (Rd)

and f+ ∈ L1
k(Rd).

7. Beurling’s theorem for the Dunkl transform

Beurling’s theorem and Bonami, Demange, and Jaming’s extension are generalized
for the Dunkl transform as follows.

Theorem 6. Let N ∈ N, δ > 0 and f ∈ L2
k(Rd) satisfy

(7.55)

∫
Rd

∫
Rd

|f(x)||FD(f)(y)||P (y)|δ

(1 + ||x|| + ||y||)N
e||x||||y||ωk(x)dxdy < +∞,

where P is a polynomial of degree m. If N ≥ d + mδ + 2, then

f(y) =
∑

|s|< N−d−mδ
2

ak
sW

k
s (r, y) a.e.,(7.56)

where r > 0, ak
s ∈ C and W k

s (r, .) is given by (2.27). Otherwise, f(y) = 0 almost
everywhere.

Proof. We start with the following lemma.

Lemma 6. We suppose that f ∈ L2
k(Rd) satisfies (7.55). Then f ∈ L1

k(Rd).

Proof. We may suppose that f ̸= 0 in L2
k(Rd). (7.55) and the Fubini theorem imply

that for almost every y ∈ Rd,

|FD(f)(y)||P (y)|δ

(1 + ||y||)N

∫
Rd

|f(x)|
(1 + ||x||)N

e||x||||y||ωk(x)dx < +∞.



T. Kawazoe and H. Mejjaoli/Uncertainty principles for the Dunkl transform 19

Since FD(f) ̸= 0, there exist y0 ∈ Rd, y0 ̸= 0, such that FD(f)(y0)P (y0) ̸= 0.
Therefore, ∫

Rd

|f(x)|
(1 + ||x||)N

e||x||||y0||ωk(x)dx < +∞.

Since
e||x||||y0||

(1 + ||x||)N
≥ 1 for large ||x||, it follows that

∫
Rd

|f(x)|ωk(x)dx < +∞.

This lemma and Proposition 1 imply that tVk(f) is well-defined almost everywhere
on Rd. By the same techniques used in [18], we can deduce that∫

Rd

∫
Rd

e||x||||y|||tVk(f)(x)||F(tVk)(f)(y)||P (y)|δ

(1 + ||x|| + ||y||)N
dydx < +∞.

According to Theorem 2.3 in [26], we can deduce that for all x ∈ Rd,

tVk(f)(x) = Q(x)e−
||x||2

4r ,

where r > 0 and Q is a polynomial of degree strictly lower than N−d−mδ
2

. Then it
follows from (2.12) that

FD(f)(y) = F ◦ tVk(f)(y) = F
(
Q(x)e−

||x||2
4r

)
(y) = R(y)e−r||y||2 ,

where R is a polynomial of degree deg Q. Hence, applying (2.28), we can find
constants ak

s such that

FD(f)(y) = FD

( ∑
|s|< N−d−mδ

2

ak
sW

k
s (r, .)

)
(y).

Then the injectivity of FD yields the desired result.

As an application of Theorem 6, we can deduce a Gelfand-Shilov type theorem
for the Dunkl transform by using the same techniques in [18],

Corollary 4. Let N,m ∈ N, δ > 0, a, b > 0 with ab ≥ 1
4
, and 1 < p, q < +∞ with

1
p

+ 1
q

= 1. Let f ∈ L2
k(Rd) satisfy∫

Rd

|f(x)|e
(2a)p

p
||x||p

(1 + ∥x∥)N
ωk(x)dx < +∞(7.57)

and ∫
Rd

|FD(f)(y)|e
(2b)q

q
||y||q |P (y)|δ

(1 + ||y||)N
dy < +∞(7.58)

for some P ∈ Pm.
i) If ab > 1

4
or (p, q) ̸= (2, 2), then f(x) = 0 almost everywhere.

ii) If ab = 1
4

and (p, q) = (2, 2), then f is of the form (7.56) whenever N ≥ d+mδ
2

+1
and r = 2b2. Otherwise, f(x) = 0 almost everywhere.
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Proof. Since

4ab∥x∥∥y∥ ≤ (2a)p

p
∥x∥p +

(2b)q

q
∥y∥q,

it follows from (7.57) and (7.58) that∫
Rd

∫
Rd

|f(x)||FD(f)(y)||P (y)|δ

(1 + ||x|| + ||y||)2N
e4ab||x||||y||ωk(x)dxdy < +∞.

Then (7.55) is satisfied, because 4ab ≥ 1. Especially, according to the proof of
Theorem 6, we can deduce that∫

Rd

∫
Rd

e4ab||x||||y|||tVk(f)(x)||F(tVk)(f)(y)||P (y)|δ

(1 + ||x|| + ||y||)2N
dydx < +∞,

and tVk(f) and f are of the forms

tVk(f)(x) = Q(x)e−
||x||2

4r and FD(f)(y) = R(y)e−r||y||2 ,

where r > 0 and Q,R are polynomials of the same degree strictly lower than
2N−d−mδ

2
. Therefore, substituting these, we can deduce that∫
Rd

∫
Rd

e
−(

√
r∥y∥− 1

2
√

r
∥x∥)2

e(4ab−1)||x||||y|||Q(x)||R(x)||P (y)|δ

(1 + ||x|| + ||y||)2N
dydx < +∞.

When 4ab > 1, this integral is not finite unless f = 0 almost everywhere. Moreover,
it follows from (7.57) and (7.58) that∫

Rd

|Q(x)|e− 1
4r

∥x∥2
e

(2a)p

p
||x||p

(1 + ∥x∥)N
ωk(x)dx < +∞

and ∫
Rd

|R(y)|e−r∥y∥2
e

(2b)q

q
||y||q |P (y)|δ

(1 + ||y||)N
dy < +∞.

Hence, one of these integrals is not finite unless (p, q) = (2, 2). When 4ab = 1 and
(p, q) = (2, 2), the finiteness of above integrals implies that r = 2b2 and the rest
follows from Theorem 6.

8. Donoho-Stark uncertainty principle for the Dunkl transform

We shall investigate the case where f and FD(f) are close to zero outside
measurable sets. Here the notion of ”close to zero” is formulated as follows. We say
f ∈ L2

k(Rd) is ε-concentrated on a measurable sets E ⊂ Rd if there is a measurable
function g vanishing outside E such that ||f − g||k,2 ≤ ε∥f∥k,2. Therefore, if we
introduce a projection operator PE as

PEf(x) =

{
f(x) if x ∈ E

0 if x /∈ E,
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then f is ε-concentrated on E if and only if ||f − PEf ||k,2 ≤ ε∥f∥k,2. We define a
projection operator QE as

QEf(x) = F−1
D

(
PE(FD(f))

)
(x).

Then FD(f) is ε-concentrated on W if and only if ∥f −QW f∥k,2 ≤ ε∥f∥k,2. We note
that, for measurable sets E,W ⊂ Rd,

QW PEf(x) =

∫
Rd

q(t, x)f(t)ωk(t)dt,

where

q(t, x) =


∫

W

K(−it, ξ)K(ix, ξ)ωk(ξ)dξ if t ∈ E

0 if t /∈ E.

Indeed, by the Fubini theorem we see that

QW PEf(x) =

∫
W

FD(PEf)(ξ)K(ξ, ix)ωk(ξ)dξ

=

∫
W

( ∫
E

f(t)K(ξ,−it)ωk(t)dt
)
K(ξ, ix)ωk(ξ)dξ

=

∫
E

f(t)
( ∫

W

K(ξ,−it)K(ξ, ix)ωk(ξ)dξ
)
ωk(t)dt.

The Hilbert-Schmidt norm ∥QW PE∥HS is given by

||QW PE||HS =
( ∫

Rd

∫
Rd

|q(s, t)|2ωk(t)dsdt
) 1

2
.

We denote by ∥T∥2 the operator norm on L2
k(Rd). Since PE and QW are projections,

it is clear that ∥PE∥2 = ∥QW∥2 = 1. Moreover, it follows that

||QW PE||HS ≥ ||QW PE||2.(8.59)

Lemma 7. If E and W are sets of finite measure, then

||QW PE||HS ≤
√

mesk(E)mesk(W ).

Proof. For each t ∈ E, we define gt(s) = q(s, t). (2.13) implies that FD(gt)(w) =
PW (K(−iw, t)). Then by Parseval’s identity (2.15) and (2.4) it follows that∫

Rd

|q(s, t)|2ds =

∫
Rd

|gt(s)|2ds =

∫
Rd

|FD(gt)(w)|2ωk(w)dw ≤ mesk(W ).

Hence, integrating over t ∈ E, we see that ||QW PE||2HS ≤ mesk(E)mesk(W ).

Proposition 6. Let E,W be measurable sets and suppose that ∥f∥k,2 = ∥FD(f)∥k,2

= 1. Assume that εE + εW < 1, f is εE-concentrated on E and FD(f) is εW -
concentrated on W . Then

mesk(E)mesk(W ) ≥ (1 − εE − εW )2.
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Proof. Since ||f ||k,2 = ∥FD(f)∥k,2 = 1 and εE + εW < 1, the measures of E and
W must both be non-zero. Indeed, if not, then the εE-concentration of f implies
that ||f − PEf ||k,2 = ||f ||k,2 = 1 ≤ εE, which contradicts with εE < 1, likewise for
FD(f). If at least one of mesk(E) and mesk(W ) is infinity, then the inequality is
clear. Therefore, it is enough to consider the case where both E and W have finite
positive measures. Since ||QW ||2 = 1, it follows that

||f − QW PEf ||k,2 ≤ ||f − QW f ||k,2 + ||QW f − QW PEf ||k,2

≤ εW + ||QW ||2||f − PEf ||k,2

≤ εE + εW

and thus,

||QW PEf ||k,2 ≥ ||f ||k,2 − ||f − QW PEf ||k,2 ≥ 1 − εE − εW .

Then ||QW PE||2 ≥ 1 − εE − εW . (8.59) and Lemma 7 yield the desired inequality.

In the following we shall consider the case of f ∈ L1
k(Rd). As in the L2

k case,
we say that f ∈ L1

k(Rd) is ε-concentrated to E if ||f − PEf ||k,1 ≤ ε∥f∥k,1. Let
Bk,1(W ) denote the subspace of L1

k(Rd) which consists of all g ∈ L1
k(Rd) such that

PW f = f . We say that f is ε-bandlimited to W if there is a g ∈ Bk,1(W ) with
||f − g||k,1 < ε∥f ||k,1. Here we denote by ∥PE∥1 the operator norm of PE on L1

k(Rd)
and by ∥PE∥1,W the operator norm of PE : B1

k(W ) → L1
k(Rd). Corresponding to

(8.59) and Lemma 7 in the L2
k case, we can obtain the following.

Lemma 8. ∥PE∥1,W ≤ mesk(E)mesk(W ).

Proof. For f ∈ Bk,1(W ) we see that

f(t) =

∫
W

FD(f)(ξ)K(t, iξ)ωk(ξ)dξ

=

∫
W

K(t, iξ)
( ∫

Rd

f(x)K(x,−iξ)ωk(x)ωk(ξ)dx
)
dξ

=

∫
Rd

f(x)
( ∫

W

K(t, iξ)K(x,−iξ)ωk(ξ)dξ
)
ωk(x)dx.

Therefore, ||f ||k,∞ ≤ mesk(W )||f ||k,1 by (2.4) and thus,

||PEf ||k,1 =

∫
E

|f(x)|ωk(x)dx ≤ mesk(E)||f ||k,∞ ≤ mesk(E)mesk(W )||f ||k,1.

Then, for f ∈ Bk,1(W ),

||PEf ||k,1

||f ||k,1

= mesk(E)mesk(W ),

which implies the desired inequality.
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Proposition 7. Let f ∈ L1
k(Rd). If f is εE-concentrated to E and εW -bandlimited

to W , then

mesk(E)mesk(W ) ≥ 1 − εE − εW

1 + εW

.

Proof. Without loss of generality, we may suppose that ∥f∥k,1 = 1, Since f is εE-
concentrated to E, it follows that ∥PEf∥k,1 ≥ ∥f∥k,1 − ∥f − PEf∥k,1 ≥ 1 − εE.
Moreover, since f is εW -bandlimited, there is a g ∈ Bk,1(W ) with ||g − f ||k,1 ≤ εW .
Therefore, it follows that

||PEg||k,1 ≥ ||PEf ||k,1 − ||PE(g − f)||k,1 ≥ 1 − εE − εW

and ||g||k,1 ≤ ||f ||k,1 + εW = 1 + εW . Therefore, for g ∈ Bk,1(W ),

||PEg||k,1

||g||k,1

≥ 1 − εE − εW

1 + εW

,

which implies that ∥PE∥1,W ≥ 1−εE−εW

1+εW
. Lemma 8 yields the desired inequality.

Proposition 8. Let f ∈ L2
k(Rd) ∩ L1

k(Rd) with ∥f∥k,2 = 1. If f is εE-concentrated
to E in L1

k-norm and FD(f) is εW -concentrated to W in L2
k-norm, then

mesk(E) ≥ (1 − εE)2∥f∥2
k,1 and mesk(W )∥f∥2

k,1 ≥ c2
k(1 − εW )2.

In particular,
mesk(E)mesk(W ) ≥ c2

k(1 − εE)2(1 − εW )2.

Proof. Since ∥f∥k,2 = ∥FD(f)∥k,2 = 1 and FD(f) is εW -concentrated to W in L2
k-

norm, it follows that ∥PW (FD(f))∥k,2 ≥ ∥FD(f)∥k,2 − ∥FD(f) − PW (FD(f))∥k,2 ≥
1 − εW and thus,

(1 − εW )2 ≤
∫

W

|FD(f)(ξ)|2ωk(ξ)dξ

≤ mesk(W )||FD(f)||2k,∞ ≤ mesk(W )

c2
k

||f ||2k,1

by (2.10). Similarly, ∥f∥k,2 = 1 and f is εE-concentrated to E in L1
k-norm,

(1 − εE)∥f∥k,1 ≤
∫

E

|f(x)|ωk(x)dx ≤
√

mesk(E)

Here we used the Cauchy-Schwarz inequality and the fact that ∥f∥k,2 = 1.
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[17] H. Mejjaoli and K. Trimèche, Hypoellipticity and hypoanaliticity of the Dunkl Laplacian

operator, Integ. Transf. and Special Funct., 15 (2004), 523-548.
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