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Abstract

For α ≥ β ≥ −1/2 let ∆(x) = (2shx)2α+1(2chx)2β+1 denote a
weight function on R+ and L1(∆) the space of integrable functions on
R+ with respect to ∆(x)dx, equipped with a convolution structure.
For a suitable ϕ ∈ L1(∆), we put ϕt(x) = t−1∆(x)−1∆(x/t)ϕ(x/t) for
t > 0 and define the radial maximal operator Mϕ as a usual manner.
We introduce a real Hardy space H1(∆) as the set of all locally inte-
grable functions f on R+ whose radial maximal function Mϕ(f) be-
longs to L1(∆). In this paper we shall obtain a relation between H1(∆)
and H1(R). Indeed, we characterize H1(∆) in terms of weighted H1

Hardy spaces on R via the Abel transform of f . As applications of
H1(∆) and its characterization, we shall consider (H1(∆), L1(∆))-
boundedness of some operators associated to the Poisson kernel for
Jacobi analysis; the Poisson maximal operator MP , the Littlewood-
Paley g-function and the Lusin area function S. They are bounded
on Lp(∆) for p > 1, but not true for p = 1. Instead, MP , g and a
modified Sa,γ are bounded form H1(∆) to L1(∆).

1 Introduction

Let α ≥ β ≥ −1/2 and ∆(x) = ∆α,β(x) = (2shx)2α+1(2chx)2β+1 for x ∈
R+ = [0,∞). We define L1(∆) as the space of integrable functions on R+

with respect to ∆(x)dx. Let ϕλ(x) = ϕα,β
λ (x) denote the Jacobi function of

order (α, β), which satisfies a product formula:

ϕλ(x)ϕλ(y) =

∫ ∞

0

ϕλ(z)K(x, y, z)∆(z)dx.
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Then by using the kernel K(x, y, z), the generalized translation is defined as

Txf(y) =

∫ ∞

0

f(z)K(x, y, z)∆(z)dz

and the convolution on L1(∆) is given by

f ∗ g(x) =

∫ ∞

0

f(y)Txg(y)∆(y)dy.

We call harmonic analysis associated to (R+, ∆, ∗) Jacobi analysis. It is not
of homogeneous type, because ∆(x) has an exponential growth order e2ρx

when x goes to ∞ whereas ρ = α + β + 1 > 0. In this paper we treat some
integral operators associated to the Poisson kernel pt (see §5): For a suitable
function f on R+ the Poisson maximal operator is given by

MP (f) = sup
t>0

f ∗ pt(x)

and the Littlewood-Paley g-function g(f) is defined by

g(f)(x) =
( ∫ ∞

0

∣∣∣t ∂

∂t
f ∗ pt(x)

∣∣∣2dt

t

)1/2

.

Then MP and g satisfy the maximal theorem; they are bounded on Lp(∆) for
1 < p < ∞ and satisfy a weak type L1 estimate with respect to ∆(x)dx (see
[1], [5], [6]). The aim of this paper is to find a subspace H1(∆) ⊂ L1(∆), from
which MP and g are strongly bounded to L1(∆). Furthermore, we define a
modified Lusin area function Sa,γ(f), a > 0 and γ ≥ 0, as

Sa,γ(f)(x) =
( ∫ ∞

0

1

|B(t)|
χB(at) ∗

∣∣∣wγ · t
∂

∂t
pt ∗ f

∣∣∣2(x)
dt

t

)1/2

,

where wγ(x) = (thx)γ, B(t) = [0, t], χB(t) is the characteristic function of
B(t) and |B(t)| the volume of B(t) with respect to ∆(x)dx. For p > 1, Lp-
boundedness of Sa,0 was investigated in [5]. Here we show that if a < 1/3,
then Sa,α+1/2 is bounded from H1(∆) to L1(∆).

This paper is organized as follows. Basic notations are given in §2 and the
Abel transform W 1

+(f) is defined by using fractional integral operators for
Jacobi analysis. In §3 we shall obtain a key relation between the fractional
derivatives for Jacobi analysis and the ones for the classical Euclidean anal-
ysis, especially, we can rewrite the inverse operator W 1

− of W 1
+ in terms of

the Euclidean fractional derivatives on R+ (see Theorem 3.5). We recall the
definition of the real Hardy space H1(∆) in §4, which was introduced in [3].
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We characterize H1(∆) by using a Euclidean maximal function of W 1
+(f) via

the key relation obtained in §3. Then it becomes clear that H1(∆) is related
with Euclidean weighted Hardy spaces H1

w(R) (see (19)). In §5 we consider
the H1-estimate of the Poisson maximal operator MP (see Theorem 5.1) and
in §6 the one of the g-function (see Theorem 6.5). In §7 we treat the modified
area function Sa,γ and obtain that Sa,α+1/2, 0 < a < 1/3, is bounded from
H1(∆) to L1(∆) (see Theorem 7.2).

2 Notations

Let α ≥ β ≥ −1/2 and ∆ = ∆α,β be as before. We put

ρ = α + β + 1 and γα = α + 1/2.

Let Lp(∆) denote the space of functions f on R+ with finite Lp-norm:

∥f∥p
Lp(∆) =

∫ ∞

0

|f(x)|p∆(x)dx

and L1
loc(∆) the space of locally integrable functions on R+. We regard often

functions on R+ as even functions on R, which are denoted by the same
symbol. Let C∞

c (∆) be the space of compactly supported C∞ even functions
on R. For f ∈ C∞

c (∆) we define the Jacobi transform f̂(λ), λ ∈ R, of f by

f̂(λ) =

∫ ∞

0

f(x)ϕλ(x)∆(x)dx.

We refer to [4] for some basic properties of f̂ : The map f → f̂ is a bijection
of C∞

c (∆) onto the space of entire holomorphic even functions of exponential
type, and the inverse transform is given as

f(x) =

∫ ∞

0

f̂(λ)ϕλ(x)|C(λ)|−2dλ,

where C(λ) is Harish-Chandra’s C-function (cf. [4, (2.6)]). Furthermore, the
map f → f̂ extends to an isometry of L2(∆) onto L2(R+, |C(λ)|−2dλ). We
recall that, as a function of λ, ϕλ(x) is the Fourier transform of a function
A(x, ·), which is compactly supported on [0, x]:

∆(x)ϕλ(x) =

∫ x

0

cos λyA(x, y)dy.

Then the Abel transform W s
+(f), s ∈ R, is defined by for x ∈ R+,

W s
+(f)(x) = eρ(1+s)x

∫ ∞

x

f(y)A(x, y)dy.
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By the integral formula of A(x, y) (see [4, (2.18)], it follows that for y ≥ x,

A(x, y) ≤ ceρy(thy)(th(y − x))α−1/2(th(x + y))α−1/2 ≤ ceρy(thy)2α (1)

and
∥W 1

+(f)∥L1(R+) ≤ c∥f∥L1(∆).

As shown in [4, §6], W s
+ is explicitly given by a composition of the generalized

Weyl type fractional operators on R+:

W s
+(f)(x) = esρxW 1

α−β ◦ W 2
β+1/2(f)(x) = esρxW 0

+(f),

where for ℜµ > −n, n = 0, 1, 2, · · · ,

W σ
µ (f)(s) =

(−1)n

Γ(1 + n)

∫ ∞

s

( dn

d(chσt)n
f(t)

)
(chσt − chσs)µ+n−1d(chσt). (2)

Hence, the inverse operator W s
− of W s

+ is given by

W s
−(f) = W 2

−(β+1/2) ◦ W 1
−(α−β)(e

−sρxf) = W 0
−(e−sρxf). (3)

We recall (cf. [4, (3.7)]) that W s
+(f) ∈ C∞

c (R) if f ∈ C∞
c (∆) and the Eu-

clidean Fourier transform W s
+(f)∼ on C of W s

+(f) coincides with the Jacobi

transform f̂ on C + isρ of f : For λ ∈ C,

f̂(λ + isρ) = W s
+(f)∼(λ).

Hence, if we put f̌(x) = f(−x), then

W s
−(f) = W 0

−(e−sρxf) = W 0
−(esρxf̌). (4)

3 A key relation

We shall rewrite the fractional differential operator W 1
− on R+ in terms of

Euclidean fractional operators W R
µ on R+ (see (5) below).

First we shall obtain some basic properties of W σ
µ on R+ (see (2)) and

W R
µ on R+, which is defined by

W R
µ (f)(s) =

(−1)n

Γ(1 + n)

∫ ∞

s

f (n)(t)(t − s)µ+n−1dt (5)

for ℜµ > −n, n = 0, 1, 2, · · · . In what follows we denote for x, ν > 0,

∆σ
ν (x) = (shσx)2ν and ∇σ

ν (x) =
(σ−1chσx)ν

∆σ
ν (x)

.
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Lemma 3.1. Let σ > 0 and 0 < µ < 1. For F ∈ C∞
c (R+) and x > 0,

W σ
−µ(F )(x) = ∇σ

µ(x)
(
W R

−µ(F )(x)(thσx)µ +

∫ ∞

x

F (s)Aσ
µ(x, s)ds

)
,

whete Aσ
µ(x, s) is of the form Aσ

µ(x, s) = Qµ(x, s)Zµ(s − x) and

(i) Zµ(x) = e−σxx−µ,

(ii) |Qσ
µ(x, s)| ≤ c

(thσx)2µ

(thσ(s + x))µ+1
for s > x,

(iii)

∫ s

0

Aσ
µ(x, s)dx ≤ c for all s > 0,

(iv)

∫ ∞

x

Aσ
µ(x, s)ds ≤ c for all x > 0.

Proof. Let Kσ
µ (x, s) =

(chσs − chσx

s − x

)−µ

. We note that

W σ
−µ(F )(x) =

∫ ∞

x

F ′(s)(chσs − chσx)−µds

=

∫ ∞

x

F ′(s)(s − x)−µds · Kσ
µ (x, x) +

∫ ∞

x

F ′(s)
Kσ

µ (x, s) − Kσ
µ (x, x)

(s − x)µ
ds

= W R
−µ(F )(x)Kσ

µ (x, x)

+

∫ ∞

x

F (s)
(
−

dKσ
µ

ds
(x, s) +

µ
(
Kσ

µ (x, s) − Kσ
µ (x, x)

)
s − x

) 1

(s − x)µ
ds

= W R
−µ(F )(x)Kσ

µ (x, x) +

∫ ∞

x

F (s)aσ
µ(x, s)ds.

Since Kσ
µ (x, x) = (σshσx)−µ, it follows that ∆σ

µ(x)(σ−1chσx)−µKσ
µ (x, x) =

(thσx)µ. Moreover, since
s − x

chσs − chσx
∼ th(x+s)−1 s − x

th(s − x)
e−σs, it follows

that |aσ
µ(x, s)| ∼ thσ(x + s)−(µ+1) e−σµs (thσ(s − x))−µ. Therefore, if we put

Aσ
µ(x, s) = ∇σ

µ(x)−1aσ
µ(x, s) = Qσ

µ(x, s) · (th(s − x))−µe−σµ(s−x)

= Qσ
µ(x, s)Zσ

µ (s − x),

then we can easily deduce that

|Qσ
µ(x, s)| ≤ c

(thσx)2µ

(thσ(x + s))µ+1
.

In particular, |Qσ
µ(x, s)| ≤ c

(thx)µ

ths
for x < s. Hence (iii) and (iv) are obvious

from the following lemma.
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Lemma 3.2. We suppose that 0 < µ < 1 and for x < s, |g(x, s)| ≤
(thx)µ

ths
th(s − x) · (s − x)−(1+µ). Then it follows that∫ s

0

g(x, s)dx ≤ c and

∫ ∞

x

g(x, s)ds ≤ c.

Proof. As for the integral over x, since |g(x, s)| ≤ (thx)µ−1, it follows that,

when s is small,

∫ s

0

|g(x, s)dx ≤ c

∫ s

0

xµ−1(s − x)−µdx ≤ c, and when s is

large, the integral is dominated by

c

∫ 1

0

xµ−1(s − x)−µdx + c

∫ s−1

1

(s − x)−(µ+1)dx + c

∫ s

s−1

(s − x)−µdx

≤c

∫ 1

0

xµ−1(1 − x)−µdx + c

∫ ∞

1

x−(µ+1)dx + c

∫ 1

0

x−µdx ≤ c.

On the other hand, as for the integral over s, when x ≥ 1,

∫ ∞

x

|g(x, s)|ds ≤

c

∫ ∞

0

ths · s−(1+µ)ds ≤ c, and when 0 < x < 1, the integral is dominated by

cxµ

∫ 2x+1

x

s−1(s − x)−µds + cxµ

∫ ∞

2x+1

(s − x)−(1+µ)ds

≤c

∫ ∞

1

s−1(s − 1)−µ + c

∫ ∞

2

(s − 1)−(1+µ)ds ≤ c.

This completes the proof.

Lemma 3.3. Let 0 < µ < 1. For f ∈ C∞
c (R+) and g ∈ C∞(R+),

W R
−µ(fg)(x) = W R

−µ(f)(x)g(x) +

∫ ∞

x

f(s)Bg,µ(x, s)ds,

where Bg,µ(x, s) = µ(g(x) − g(s))(s − x)−(µ+1). In particular, when g(x) =
gl,m(x) = (thσx)−l(σchx)−m for l,m > 0, it follows that

Bgl,m,µ(x, s) = gl−1,m(x)A1
l,m,µ(x, s) + gl+1,m+2(x)A2

l,m,µ(x, s),

where Ai
l,m,µ(x, s) is of the form Ai

l,m,µ(x, s) = Qi
l,m,µ(x, s)Z1

l,m,µ(s − x) and

(i) Z1
l,m,µ(x) = (thσx)x−(µ+1), |Q1

l,m,µ(x, s)| ≤ c,

(ii) Z2
l,m,µ(x) = e−mσx(thσx)x−(µ+1), |Q2

l,m,µ(x, s)| ≤ c
thσx

thσs
.

In particular, each Ai
l,m,µ(x, s) satisfies (iii) and (iv) in Lemma 3.1. More-

over, (thσx)µ−1A2
l,m,µ(x, s) also satisfies these properties.
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Proof. Since (fg)′(s) = f ′(s)g(x) +
(
f(s)(g(s)− g(x))

)′
, the formula follows

by integrating by parts. Let g = gl,m and σ = 1 without loss of generality.
Then it follows that

Bg̃l,m,µ(x, s) = µ
(
(thx)−l(chx)−m − (thx)−l(chs)−m

+ (thx)−l(chs)−m − (ths)−l(chs)−m
)
(s − x)−(µ+1)

=µ(thx)−l+1(chx)−m · (thx)−1 1 − (chx)m/(chs)m

s − x
(s − x)−µ

+ µ(thx)−l−1(chx)−m−2 · (thx)l+1(chx)2 (thx)−l − (ths)−l

s − x

(chx)m

(chs)m
(s − x)−µ

=gl−1,m(x)A1
l,m,µ(x, s) + gl+1,m+2(x)A2

l,m,µ(x, s)

=gl−1,m(x)
(1 − (chx)m/(chs)m

s − x

s − x

th(s − x)

)
· th(s − x)

s − x
(s − x)−µ

+ gl+1,m+2(x)
(
(thx)l+1(chx)2 (thx)−l − (ths)−l

s − x

(chx)m

(chs)m
em(s−x) s − x

th(s − x)

)
× e−m(s−x) th(s − x)

s − x
(s − x)−µ

=gl−1,m(x) · Q1
l,m,µ(x, s)Z1

l,m,µ(s − x) + gl+1,m+2(x) · Q2
l,m,µ(x, s)Z2

l,m,µ(s − x).

Clearly, Qi
l,m,µ(x) and Zi

l,m,µ(x, s) satisfy the desired properties. Hence, it
follows from Lemma 3.2 that A1

l,m,µ(x, s) satisfies (iii) and (iv) in Lemma

3.1. Moreover, since (thx)µ−1 thx

ths
≤ (thx)µ

ths
for s ≥ x, (thx)µ−1A2

l,m,µ(x, s)

also satisfies (iii) and (iv).

Lemma 3.4. Let σ > 0, 0 < µ < 1. For F ∈ C∞
c (R+) and G ∈ C∞(R+)

W σ
−µ(FG)(x) = W R

−µ(F )(x)SG,µ(x) +

∫ ∞

x

F (s)TG,µ(x, s)ds,

where

SG,µ(x) = ∇σ
µ(x)G(x)(thσx)µ,

TG,µ(x, s) = ∇σ
µ(x)

(
BG,µ(x, s)(thσx)µ + G(s)Aσ

µ(x, s)
)
.
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Proof. It follows from Lemmas 3.1 and 3.3 that W σ
−µ(FG)(x) equals to

∇σ
µ(x)

(
W R

−µ(FG)(x)(thσx)µ +

∫ ∞

x

(FG)(s)Aσ
µ(x, s)ds

)
=∇σ

µ(x)
(
W R

−µ(F )(x)G(x)(thσx)µ +

∫ ∞

x

F (s)BG,µ(x, s)ds · (thσx)µ

+

∫ ∞

x

F (s)G(s)Aσ
µ(x, s)ds

)
.

Now we suppose that ν = n + µ, n = 0, 1, 2, · · · and 0 ≤ µ < 1. We
shall rewrite the fractional derivative W σ

−ν in terms of Euclidean fractional
derivatives W R

−γ, γ ∈ Γ. When µ = 0 and ν = n = 1, 2, · · · , it easily follows
that

W σ
−n(F )(x) =

n∑
k=1

2n−k∑
p=n

cn
k,pg2n−k,p(x)W R

−k(F )(x),

where g2n−k,p = (thσx)−(2n−k)(chσx)−p. Hence, when 0 < µ < 1 and ν =
n + µ, it follows that

W σ
−ν(F )(x) =

n∑
k=1n

2n−k∑
p=n

cn
k,pW

σ
−µ(g2n−k,p · W R

−k(F ))(x),

where 1n = 1 if n ≥ 1 and 1n = 0 if n = 0. Here we apply Lemma 3.4 by
substituting F and G with W R

−k(F ) and g2n−k,p respectively. Then W R
−µ(F )

in Lemma 3.4 corresponds to W R
−(k+µ)(F ) and

Sg2n−k,p,µ(x) = ∇σ
µ(x)g2n−k,p(x)(thσx)µ

= cσ∇σ
ν (x)(thσx)k+µ(chσx)−(p−n).

As for Tg2n−k,p,µ(x, s), s > x, since Bg2n−k,p,µ(x, s) = cg2n−k−1,pA
1
2n−k,p,µ(x, s)+

g2n−k+1,p+2A
2
2n−k,p,µ(x, s) by Lemma 3.3, it follows that the first term of

Tg2n−k,p,µ(x, s) is equal to

∇σ
µ(x)Bg2n−k,pµ(x, s)(thσx)µ =∇σ

ν (x)(thx)k(chx)−(p−n)

×
(
(thx)µ+1A1

2n−k,p,µ(x, s) + (chx)−2(thx)µ−1A2
2n−k,p,µ(x, s)

)
and the second term of Tg2n−k,p,µ(x, s) is equal to

∇σ
µ(x)g2n−k,p(s)A

σ
µ(x, s)

=∇σ
ν (x)(thσx)k · (chx)−(p−n) g2n−k,p(s)

g2n−k,p(x)
Aσ

µ(s, x).
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Here we define Ãi
2n−k,p,µ, Q̃i

2n−k,p,µ and Z̃ i
2n−k,p,µ for i = 0, 1, 2 as

Ã0
2n−k,p,µ(x, s) =

g2n−k,p(s)

g2n−k,p(x)
Aσ

µ(s, x)

=
g2n−k,p(s)

g2n−k,p(x)
Qσ

µ(x, s) · Zσ
µ (s − x)

= Q̃0
2n−k,p,µ(x, s)Z̃0

2n−k,pµ(s − x),

Ã1
2n−k,p,µ(x, s) = (thx)µ+1A1

2n−k,p,µ(x, s)

= (thx)µ+1Q1
2n−k,p,µ(x, s) · Z1

2n−k,p,µ(s − x)

= Q̃1
2n−k,p,µ(x, s)Z̃1

2n−k,p,µ(s − x),

Ã2
2n−k,p,µ(x, s) = (chx)−2(thx)µ−1A2

2n−k,p,µ(x, s)

= (chx)−2(thx)µ−1Q2
2n−k,p,µ(x, s) · Z2

2n−k,p,µ(s − x)

= Q̃2
2n−k,p,µ(x, s)Z̃2

2n−k,p,µ(s − x).

Then, by noting Lemmas 3.1, Lemma 3.2 and 3.4, we can easily deduce that
each Ãi

2n−k,p,µ satisfy the properties (iii) and (iv) in Lemma 3.1 and moreover,

each Z̃i
2n−k,p,µ is dominated by (thσx)x−(µ+1) and

|Q̃0
2n−k,p,µ(x, s)| ≤ c

(thσx)2µ

thσ(s + x)µ+1
,

|Q̃1
2n−k,p,µ(x, s)| ≤ c(thσx)µ−1, (6)

|Q̃2
2n−k,p,µ(x, s)| ≤ c

(thσx)µ

thσs
.

In particular, |Q̃i
2n−k,p,µ(x, s)| ≤ c

(thσx)µ

thσs
holds for all i = 0, 1, 2. Hence,

changing the notations by removing ‘˜’, we can obtain the following.

Proposition 3.5. Let ν = n + µ > 0, n = 0, 1, 2, · · · and 0 ≤ µ < 1. Then
for F ∈ C∞

c (R+) and x > 0,

W σ
ν (F )(x) =∇σ

ν (x)
n∑

k=1n

2n−k∑
p=n

cn
k,p

(
cσ(thσx)k+µ(chσx)−(p−n)W R

−(k+µ)(F )(x)

+(thσx)k(chx)−(p−n)

∫ ∞

x

W R
−k(F )(s)A2n−k,p,µ(x, s)ds (7)

where each A2n−k,p,µ(x, s) is of the form

A2n−k,p,µ(x, s) = Q2n−k,pµ(x, s)Z2n−k,p,µ(s − x)

9



and

(i) Z2n−k,p,µ(x) ≤ c(thσx)x−(µ+1),

(ii) |Q2n−k,p,µ(x, s)| ≤ c
(thσx)µ

(thσs)
for s > x,

(iii)

∫ s

0

A2n−k,p,µ(x, s)dx ≤ c for all s > 0,

(iv)

∫ ∞

x

A2n−k,p,µ(x, s)ds ≤ c for all x > 0.

Next we shall consider a composition of W 2
−ν and W 1

−ν′ . We suppose that
ν = n+µ and ν ′ = µ′ +n′, where n, n′ = 0, 1, 2, · · · and 0 ≤ µ, µ′ < 1. When
one of µ and µ′ is equal to 0, we can easily deduce the final theorem form
Proposition 3.5. Hence we may assume that µ, µ′ > 0 in the following. We

note that W 2
−ν ◦W 1

−ν′ = W 2
−µ ◦ (W 2

−n ◦W 1
−ν′) and W 2

−1 =
1

chx
W 1

−1. Thereby,

it follows from Proposition 3.5 that

W 2
−n ◦ W 1

−ν′(F )(x) =
n∑

l=1n

nCl

(chx)2n−l
W 1

−(ν′+l)(F )(x)

=
n∑

l=1n

nCl

(chx)2n−l
∇1

ν′+l(x)
n′+l∑

k=1n′+l

2(n′+l)−k∑
p=n′+l

(
the right hand side of (7)

changed as σ, µ, n → 1, µ′, n′ + l

)
.

Hence in order to calculate W 2
−ν◦W 1

−ν′ , we first apply W 2
−µ to each term in the

right hand side and then use Lemma 3.4 to rewrite it in terms of Euclidean
fractional derivatives. Therefore, it is enough to estimate the following terms
Iij, i, j = 1, 2: For γ = k + µ′ and v = p − n,

I1(x) = W 2
−µ

( 1

(chx)2n−l
∇1

ν′+l(x)(chx)−v(thx)γW R
−γ(F )(x)

)
= W 2

−µ

(
g2ν′+2l−γ,ν′+2n+vW

R
−γ(F )(x)

)
= W R

−(γ+µ)(F )(x)S(x) +

∫ ∞

x

W R
−γ(F )(s)T (x, s)ds

= I11(x) + I12(x),

where

S(x) = ∇2
µ(x)g2ν′+2l−γ,ν′+2n+v(x)(thx)µ,

T (x, s) = ∇2
µ(x)

(
Bg2ν′+2l−γ,ν′+2n+v ,µ(x, s)(thx)µ

+ (thx)µ−1g2ν′+2l−γ,ν′+2n+v(x)A2
µ(x, s)

)
10



and for γ = k and v = p − n, by substituting A2n−k,p,µ′(x, s) by Aγ,µ′(x, s),

I2(x) = W 2
−µ

( 1

(chx)2n−l
∇1

ν′+l(x)

× (thx)γ(chx)−v

∫ ∞

x

W R
−γ(F )(s)Aγ,µ′(x, s)ds

)
= W 2

−µ

(
g2ν′+2l−γ,ν′+2n+v

∫ ∞

x

W R
−γ(F )(s)Aγ,µ′(x, s)ds

)
= W R

−µ

( ∫ ∞

x

W R
−γ(F )(s)Aγ,µ′(x, s)ds

)
(x)S(x)

+

∫ ∞

x

( ∫ ∞

s

W R
−γ(F )(t)Aγ,µ′(s, t)dt

)
T (x, s)ds

= I21(x) + I22(x).

I11 and I12: By the process which yields Proposition 3.5 from Lemma 3.3, it
follows that

S(x) = ∇2
ν(x)∇1

ν′(x)(thx)2(n−l)+γ+µ(chx)−v (ch2x)n

(chx)2n
, (8)

T (x, s) = ∇2
ν(x)∇1

ν′(x)(thx)2(n−l)+γ(chx)−v (9)

×
(
A0

γ,µ(x, s) + A1
γ,µ(x, s) + A2

γ,µ(x, s)
)
,

where each Ai
γ,µ satisfies the corresponding properties (i)∼ (iv) in Proposition

3.5. Hence, I11 and I12 can be written as

I11(x) = ∇2
ν(x)∇1

ν′(x)(thx)2(n−l)(chx)−v (ch2x)n

(chx)2n
· W R

−(γ+µ)(F )(x)(thx)γ+µ,

I12(x) = ∇2
ν(x)∇1

ν′(x)(thx)γ · (thx)2(n−l)(chx)−v

∫ ∞

x

W R
−γ(F )(s)Aγ,µ(x, s)ds,

where each Aγ,µ(x, s) satisfies the properties (i)∼ (iv).
I21: We define qγ,µ′(x) = Qγ,µ′(x, x)(thx)1−µ′

, which is bounded because of
(6), and we put

Rγ,µ′(x, s) =
(
Qγ,µ′(x, s) − (thx)µ′

ths
qγ,µ′(x)

)
Zγ,µ′(s − x)

=
(
Qγ,µ′(x, s) − Qγ,µ′(x)

ths

)
Zγ,µ′(s − x).

Then

Aγ,µ′(x, s) =
Qγ,µ′(x)

ths
Zγ,µ′(s − x) + Rγ,µ′(x, s). (10)

11



Since |Qγ,µ′(x)

ths
| ≤ c

(thx)µ′

ths
and Rγ(x, x) = 0, it follows that |Rγ,µ′(x, s)| ≤

c
(thx)µ′

ths
(th(s − x))2(s − x)−(1+µ′) and moreover,

d

dx
Rγ,µ′(x, s) ∼(thx)µ′

ths

(
th(s − x)2(s − x)−(µ′+2)

+ (thx)−1th(s − x)2(s − x)−(µ′+1)
)
, (11)

where the second term appears when x is small.
We here define IQZ

21 and IR
21 by replacing Aγ,µ′(x, s) by (ths)−1Qγ,µ′(x)

Zγ,µ(s − x) and Rγ,µ′(x, s) respectively (see (10)). Then I21 = IQZ
21 + IR

21.

As for IQZ
21 , tt follows from Lemma 3.3 that

IQZ
21 (x) = W R

−µ

( ∫ ∞

x

W R
−γ(F )(s)(ths)−1 · Zγ,µ′(s − x)ds · Qγ,µ′(x)

)
(x)S(x)

=W R
−µ

( ∫ ∞

x

W R
−γ(F )(s)(ths)−1 · Zγ,µ′(s − x)ds

)
(x)Qγ,µ′(x)S(x)

+

∫ ∞

x

∫ ∞

s

W R
−γ(F )(t)(tht)−1 · Zγ,µ′(t − s)dt · BQγ,µ′ ,µ(x, s)ds · S(x)

=W R
−µ

( ∫ ∞

x

W R
−γ(F )(s)(ths)−1 · Zγ,µ′(s − x)ds

)
(x)Qγ,µ′(x)S(x)

+

∫ ∞

x

W R
−γ(F )(t)(tht)−1

( ∫ t

x

Zγ,µ′(t − s)BQγ,µ′ ,µ(x, s)ds
)
dt · S(x)

= J1 + J2.

To calculate J1, we take δ > 0 such that W̃ R
δ Zγ(s− x)

∣∣∣
s=x

= 0, where W̃ R
δ is

the Riemann type fractional operator which is defined as

W̃ R
δ (f)(x) =

∫ x

0

f(s)(s − x)δ−1ds. (12)

Then, since
d

dx
W̃ R

δ Zγ,µ((s − x) = − d

ds
W̃ R

δ Zγ,µ′(s − x), it follows that

W R
−µ

( ∫ ∞

x

W R
−γ(F )(s)(ths)−1 · Zγ,µ′(s − x)ds

)
(x)

=W R
−µ

( ∫ ∞

x

W R
−δ

(
W R

−γ(F )(t)(tht)−1
)
(s)W̃ R

δ Zγ,µ′(s − x)ds
)

=

∫ ∞

x

W R
−(µ+δ)

(
W R

−γ(F )(t)(tht)−1
)
(s)W̃ R

δ Zγ,µ′(s − x)ds

=

∫ ∞

x

W R
−µ

(
W R

−γ(F )(t)(tht)−1
)
(s)Zγ,µ′(s − x)ds.

12



Hence, applying Lemma 3.3, the first term J1 of IQZ
21 becomes∫ ∞

x

W R
−(γ+µ)(F )(s)(ths)−1 · Zγ,µ′(s − x)ds · Qγ,µ′(x)S(x)

+

∫ ∞

x

∫ ∞

s

W R
−γ(F )(t)B(tht)−1,µ(s, t)dt · Zγ,µ′(s − x)ds · Qγ,µ′(x)S(x)

=

∫ ∞

x

W R
−(γ+µ)(F )(s)(ths)−1 · Zγ,µ′(s − x)ds · Qγ,µ′(x)S(x)

+

∫ ∞

x

W R
−γ(F )(t)

( ∫ t

x

B(tht)−1,µ(s, t)Zγ,µ′(s − x)ds
)
dt · Qγ,µ′(x)S(x)

= J11 + J12.

For J11, substituting (8) and |Qγ,µ′(x)| ≤ c(thx)µ′
, we see that

(ths)−1Zγ,µ′(s − x) · Qγ,µ′(x)S(x)

≤c∇2
ν(x)∇1

ν′(x)(thx)2(n−l)(chx)−v (thx)µ+µ′

s
Zγ,µ′(s − x).

For J12, we note from Lemma 3.3 with l = 1, m = 0 that |B(tht)−1,µ(s, t)| ≤
1

tht · ths
th(t − s)(t − s)−(µ+1). When t is small, we here take 0 < ϵ <

min{1 − µ′, µ} and let s−1 ≤ x−(µ′+ϵ)(s − x)−1+µ′+ϵ. Then it follows that

L =

∫ t

x

B(tht)−1,µ(s, t)Zγ,µ′(s − x)ds

∼1

t

∫ t

x

1

s
(t − s)−µ(s − x)−µ′

ds

≤ 1

txµ′+ϵ

∫ t−x

0

((t − x) − s)−µs−1+ϵds = c
1

txµ′+ϵ
(t − x)−(µ−ϵ).

When t is large and t − x is small, since x is large, L is dominated by∫ t

x

(t − s)µ(s − x)−µ′
ds = (t − x)−1+(2−µ′−µ) and 2 − µ′ − µ > 0,

and when t is large and t − x is large, L is dominated by∫ t

x

th(t − s) · (t − s)−(1+µ) · th(s − x) · (s − x)−(1+µ′)ds (13)

∼
∫ t

x

( 1

1 + (t − s)

)µ+1(1 + (t − s)

t − s

)µ( 1

1 + (s − x)

)µ′+1(1 + (s − x)

s − x

)µ′

ds

=(t − x)−µ−µ′+1

∫ 1

0

(1 − s)−µ

1 + (t − x)(1 − s)
· s−µ′

1 + (t − x)s
ds.

13



Then, by dividing the last integral as

∫ 1

0

ds =

∫ 1/2

0

ds +

∫ 1

1/2

ds, we see that

L is dominated by (t − x)−(1+µ) + (t − x)−(1+µ′). (t − x)−1−(µ−ϵ). Therefore,
substituting (8) and |Qγ,µ′(x)| ≤ c(thx)µ′

, we can find a ξ > 0 such that( ∫ t

x

B(tht)−1,µ(s, t)Zγ,µ′(s − x)ds
)
· Qγ,µ′(x)S(x)

≤c∇2
ν(x)∇1

ν′(x)(thx)2(n−l)(chx)−v (thx)ξ

t
th(t − x)(t − x)−(1+ξ).

We recall that the properties (iii) and (iv) follows from (i) and (ii). Hence
we can conclude that

J1 =∇2
ν(x)∇1

ν′(x)(thx)2(n−l)(chx)−v

×
(
(thx)γ+µ

∫ ∞

x

W R
−(γ+µ)(F )(s)Aγ,µ(x, s)ds

+ (thx)γ

∫ ∞

x

W R
−γ(F )(s)Aγ(x, s)ds

)
, (14)

where Aγ,µ(x, s) and Aγ(x, s) satisfy the corresponding properties (i)∼(iv) in
Proposition 3.5. To calculate J2 we recall that |Qγ,µ′(x)| ≤ c(thx)µ′

. Since
µ′ < 1, it follows that |BQγ,µ′ ,µ(x, s)| ≤ csµ′−1(s − x)−µ for all small s, and

since γ ≥ 0, it follows that |BQγ,µ′ ,µ(x, s)| ≤ c(s − x)−(µ+1) for all x < s. We
shall estimate the inside integral of J2. When t is small, similarly as above,
we take 0 < ϵ < min{1 − µ′, µ} and let sµ′−1 ≤ x−ϵ(s − x)µ′−1+ϵ. Then the
inside integral of J2 is dominated by x−ϵ(t − x)−(µ−ϵ). When t is large, also
similarly as above, it is dominated by (t − x)−(1+µ) + (t − x)−(1+µ′). Hence,
substituting (8), we can find a ξ such that

(tht)−1
( ∫ t

x

Zγ,µ′(t − s)BQγ,µ′ ,µ(x, s)ds
)
dt · S(x)

∼ ∇2
ν(x)∇1

ν′(x)(thx)2(n−l)(chx)−v (thx)ξ

tht
th(t − x)(t − x)−(1+ξ).

Therefore, J2 can be rewritten as the last term in (14).

14



As for IR
21, we recall that Rγ(x, x) = 0. Then it follows that

IR
21(x) = W R

−µ

( ∫ ∞

x

W R
−γ(F )(s)Rγ(x, s)ds

)
(x)S(x)

=

∫ ∞

x

( ∫ ∞

s

W R
−γ(F )(t)

d

dx
Rγ(s, t)dt

)
(s − x)−µds · S(x)

=

∫ ∞

x

W R
−γ(F )(t)

( ∫ t

x

d

dx
Rγ(s, t)(s − x)−µds

)
dt · S(x)

= ∇2
ν(x)∇1

ν′(x)(thx)2(n−l)+u(chx)−vcn(x) · (thx)γ+µ

×
∫ ∞

x

W R
−γ(F )(t)

( ∫ t

x

d

dx
Rγ(s, t)(s − x)−µds

)
dt.

We shall prove that M = (thx)µ

∫ t

x

d

dx
Rγ(s, t)(s−x)−µds satisfies the prop-

erties (i) and (ii). We recall (11) and we consider separately the cases where
(a) t is small, (b) t is large and t − x is small, (c) t, t − x are large and x is
large, (d) t, t − x are large and x is small.

(a) When t is small, M is dominated by

xµ

t

∫ t

x

(
sµ′

(t − s)−µ′
(s − x)−µ + sµ′−1(t − s)1−µ′

(s − x)−µ
)
ds = M1 + M2.

Then M1 ≤ c
xµ

t

∫ t

x

(t− s)−µ′
(s−x)−µds ≤ c

xµ

t
(t− s)−1+(2−µ−µ′). As for M2,

if µ+µ′ > 1, then M2 ≤ c
xµ+µ′−1

t
(t−x)2−µ−µ′

and µ+µ′−1, 2−µ−µ′ > 0. If

µ+µ′ ≤ 1, we take 0 < ϵ < min{µ, µ′} and let sµ′−1 ≤ x−µ+ϵ(s−x)−1+µ+µ′−ϵ.

Then M2 ≤ c
xϵ

t
(t − x)1−ϵ.

(b) When t is large and t − x is small, since x is large, M ≤ c

∫ t

x

(t −

s)−µ′
(x − s)−µds = c(t − x)−1+(2−µ−µ′).

(c) When t, t − x, x are large, we divide the integral M as

∫ (t+x)/2

x

dx +∫ t

(t+x)/2

ds = M− + M+. Similarly as (13), M− is dominated by

(t − x)−µ−µ′+1

∫ 1/2

0

(1 − s)−µ′
s−µ

(1 + (t − x)(1 − s))2
ds ≤ c(t − x)−1−µ−µ′

.

As for M+, by integration by part, it follows that M+ is dominated by

Rγ,µ′

(t + x

2
, t

)(t − x

2

)−µ

+ µ

∫ t

(t+x)/2

Rγ,µ′(s, t)(s − x)−µ−1ds.

15



Then the last integral is dominated as∫ t

(t+x)/2

(1+ (t− s))−(1+µ′)(s−x)−µ−1ds ≤
(t − x

2

)−(1+µ)
∫ ∞

0

(1+ s)−(1+µ′)ds.

Hence, it is easy to see that M+ is dominated by c(t − x)−(1+µ).
(d) When t, t − x are large and x is small, we divide the integral as∫ 1

x

ds +

∫ t

1

ds. Then the last integral satisfies the same estimate in (c)

because

∫ t

1

ds ≤
∫ t

x

ds. On the other hand, the first one is dominated by

xµ

∫ 1

x

(
sµ′−1(t − s)−(1+µ′)(s − x)−µ + sµ′

(t − s)−(2+µ′)(s − x)−µ
)
ds

=m1 + m2.

As for m1, we replace

∫ 1

x

ds ≤
∫ t

x

ds and apply the same argument as

used for M1 in (a). Then we can deduce that, if µ + µ′ > 1, then m1 ≤
cxµ+µ′−1(t − x)−(µ+µ′) and, if µ + µ′ ≤ 1, then m1 ≤ cxϵ(t − x)−(1+ϵ), where
0 < ϵ < min{µ, µ′}. As for m2, by replacing sµ by 1, m2 is dominated by

xµ(t − x)−1−µ−µ′
∫ (1−x)/(t−x)

0

(1 − s)−(2+µ′)s−µds ≤ cxµ(t − x)−1−µ−µ′
,

because we may suppose that (1 − x)/(t − x) ≤ 1/2.
Hence, in all cases M satisfies the desired properties (i) and (ii). There-

fore, IR
21 can be rewritten as the last term in (14).

I22: Last we shall estimate I22. Substituting (8) and changing the order of
integrations, it follows that

I22(x) =

∫ ∞

x

W R
−γ(F )(t)

( ∫ t

x

Aγ(s, t)T (x, s)ds
)
dt

= ∇2
ν(x)∇1

ν′(x)(thx)γ+µ+µ′−2

× (thx)2(n−l)+u(chx)−v

∫ ∞

x

W R
−γ(F )(t)Aγ,µ(x, t)dt,

where we denote each

∫ t

x

Aγ,µ′(s, t)Ai
γ,µ(x, s)ds by Aγ(x, s). Since Aγ,µ′(s, t)

and Ai
γ,µ(x, s) satisfy the desired properties (i) and (ii), it is easy to see

that Aγ(x, s) also satisfies the same properties. Therefore, I22 also can be
rewritten as the last term in (14).

Finally, we can obtain the following.
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Theorem 3.6. Let ν = n + µ and ν ′ = n′ + µ′, where n, n′ = 0, 1, 2, · · · and
0 ≤ µ, µ′ < 1. Then for F ∈ C∞

c (R+),

W 2
ν ◦ W 1

ν′(F )(x) ∼ (2−1ch2x)ν(chx)ν′

(sh2x)2ν(shx)2ν′

( ∑
γ∈Γ0

(thx)γW R
−γ(F )(x)

+
∑
γ∈Γ1

(thx)γ

∫ ∞

x

W R
−γ(F )(s)Aγ(x, s)ds

)
,

where Γ0 = {k + µ + µ′|1n+n′ ≤ k ≤ n + n′} and Γ1 = {k, k + µ, k +
µ′|1n+n′ ≤ k ≤ n + n′}. For each γ ∈ Γ1, Aγ(x, s) is of the form Aγ(x, s) =
Qγ(x, s)Zγ(s − x) and there exists 0 < ξ < 1 such that

(i) Zγ(x) ≤ c(thx)x−(ξ+1),

(ii) |Qγ(x, s)| ≤ c
(thx)ξ

(ths)
for s > x,

(iii)

∫ s

0

Aγ(x, s)dx ≤ c for all s > 0,

(iv)

∫ ∞

x

Aγ(x, s)ds ≤ c for all x > 0.

Let ν = β + 1/2 and ν ′ = α − β in Theorem 3.6. If we replace F
by e−ρxF (x) and eρxF̌ (x) respectively (see (4)) , then we can obtain the
following.

Corollary 3.7. For F ∈ C∞
c (R+),

W 1
−(F )(x) ∼ 1

∆(x)

( ∑
γ∈Γ0

(thx)γW R
−γ(F )(x) (15)

+
∑
γ∈Γ1

(thx)γ

∫ ∞

x

W R
−γ(F )(s)Aγ(x, s)ds

)
∼ eρx

∆(x)

( ∑
γ∈Γ0

(thx)γeρxW R
−γ(F̌ )(x) (16)

+
∑
γ∈Γ1

(thx)γ

∫ ∞

x

eρsW R
−γ(F̌ )(s)Aγ(x, s)ds

)
where Γi and Aγ(x, s) are same as in Theorem 3.6.
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4 Real Hardy spaces

We keep the notations in the previous section. We put Γ = Γ0 ∪ Γ1 and for
each γ ∈ Γ we define

wγ(x) = (thx)γ, x ∈ R+.

We regard often W R
−γ(F ) and wγ on R+ as even functions on R. We suppose

that f ∈ L1(∆) and put F = W 1
+(f). Since f = W 1

− ◦ W 1
+(f) = W 1

−(F ), it
follows from (15), (16) and the property (iii) of Theorem 3.6 that

∥f∥L1(∆) ≤ c
∑
γ∈Γ

∥W R
−γ(F )∥L1

wγ
(R+) ∼

∑
γ∈Γ

∥e2ρxW R
−γ(F̌ )∥L1

wγ
(R+),

where L1
wγ

(R±) is the wγ-weighted L1-space on R±. Here we recall that

W R
−γ is a Fourier multiplier of an even or an odd function on R. Therefore,

W R
−γ(F̌ )(x) = ±W R

−γ(F )(−x) and thus,

∥e2ρxW R
−γ(F̌ )∥L1

wγ
(R+) = ∥e−2ρxW R

−γ(F )∥L1
wγ

(R−).

Hence, it follows that

∥W R
−γ(F )∥L1

wγ
(R−) ≤ ∥e−2ρxW R

−γ(F )∥L1
wγ

(R−) ∼ ∥W R
−γ(F )∥L1

wγ
(R+).

Then we obtain that

∥f∥L1(∆) ≤ c
∑
γ∈Γ

∥W R
−γ(F )∥L1

wγ
(R).

For the converse, first we note that for 0 ≤ γ ≤ γα, if −n < γ ≤ −n + 1,
then

F (n)(x) =

∫ ∞

x

dn

dxn

(
eρxA(x, y)

)
dy,

because
dk

dxk

(
eρxA(x, y)

)∣∣∣
y=x

= 0 for 0 ≤ k ≤ n − 1 (see (1)) and thereby,

|W R
−γ

(
eρxA(x, y)

)
| ≤ e2ρy(thy)2α−γ. Since e2ρs(ths)2α+1 ∼ ∆(s), we see that∫ ∞

0

|W R
−γ(F )(x)|(thx)γdx ≤ c

∫ ∞

0

|f(s)|
( ∫ s

0

|W R
−γ(e

ρxA(x, s))|(thx)γdx
)
ds

≤ c

∫ ∞

0

|f(s)|∆(s)ds = ∥f∥L1(∆). (17)

Since ∥W R
−γ(F )∥L1

wγ (R−) ≤ c∥W R
−γ(F )∥L1

wγ (R+), the converse follows. Hence

we can obtain the following.
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Theorem 4.1. For f ∈ L1(∆), it follows that

∥f∥L1(∆) ∼
∑
γ∈Γ

∥W R
−γ(F )∥L1

wγ
(R). (18)

We recall that γα = α+1/2 is the maximum in Γ and rewrite W R
−γ(F ) as

W R
γα−γ ◦ W R

−γα
(F ). Since |W R

γα−γ ◦ W R
−γα

(F )| ≤ W R
γα−γ(|W R

−γα
(F )|), we have∫ ∞

0

|W R
−γ(F )(x)|wγ(x)dx ≤

∫ ∞

0

W R
γα−γ(|Wγα(F )|)(x)wγ(x)dx

≤
∫ ∞

0

|Wγα(F )|(x)W̃γα−γ(wγ)(x)dx,

where W̃γα−γ is a fractional integral defined by (12). Since W̃ R
γα−γ((thx)γ) ∼

(thx)γα when x is small, it follows that

∥f∥L1(∆) ∼ ∥W R
−γα

(F )χ1∥L1
wγα

(R) +
∑
γ∈Γ

∥W R
−γ(F )(1 − χ1)∥L1(R),

where χ1(x) is the characteristic function of [0, 1]. In particular, if f(x) is
supported on [0, R], then F = W 1

+(f) is also supported on [0, R] and

∥f∥L1(∆) ∼ cR∥W R
−γα

(F )∥L1
wγα

(R).

We shall introduce a real Hardy spaces Hp(∆), p > 0. For ϕ ∈ C∞
c (∆)

with

∫ ∞

−∞
ϕ(x)∆(x) = 1, we define a dilation ϕt, t > 0, of ϕ as

ϕt(x) =
1

t∆(x)
∆

(x

t

)
ϕ
(x

t

)
,

which keeps the L1(∆)-norm of ϕ, and by using this dilation, we define the
radial maximal operator Mϕ by Mϕ(f)(x) = supt>0 |f ∗ ϕt(x)|. We set

Hp(∆) = {f ∈ L1
loc(∆) ; Mϕ(f) ∈ Lp(∆)}

and ∥f∥H1(∆) = ∥Mϕ(f)∥Lp(∆). Then it follows from [3, §4] that Hp(∆) =
Lp(∆) for 1 < p < ∞ and H1(∆) ⊂ L1(∆). We now apply the formula
(15) to f ∗ ϕt = W 1

−(W 1
+(f ∗ ϕt)) = W 1

−(F ~ W 1
+(ϕt)), where ~ denotes the

convolution on R. Then, since W R
−γ(F ~ W 1

+(ϕt)) = W R
−γ(F ) ~ W 1

+(ϕt) and

the Euclidean Fourier transform W̃ 1
+(ϕt) of W 1

+(ϕt) has the same properties

of the Fourier transform ψ̃(tλ) of a Euclidean dilation ψt with non-vanishing
moment (see [3, §3]). Therefore, by taking the supremum over t > 0 and
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integrating with respect to ∆(x)dx, we see that ∥Mϕ(f)∥L1(∆) is bounded
by

∑
γ∈Γ ∥MR(W R

−γ(F ))∥L1
wγ

(R), where MR is a Euclidean radial maximal

operator. Then it follow from (18) that

∥f∥H1(∆) ≤ c
∑
γ∈Γ

∥W R
−γ(F )∥H1

wγ
(R),

where H1
wγ

(R) is the wγ-weighted H1-space on R (see [8, Chap.6]). For the

converse, we note that ∥W R
−γ(F )∥H1

wγ
(R) ∼ ∥ supt>0 W R

−γ(F ) ~ W 1
+(ϕt)∥L1

wγ
(R)

= ∥ supt>0 W R
−γ(F ~ W 1

+(ϕt))∥L1
wγ

(R) ≤ c∥ supt>0 |f ∗ ϕt|∥L1(∆) = ∥f∥H1(∆)

similarly as in (17). Therefore, we can deduce that

Theorem 4.2. For f ∈ H1(∆), it follows that

∥f∥H1(∆) ∼
∑
γ∈Γ

∥W R
−γ(F )∥H1

wγ (R). (19)

We here define a norm ∥f∥H1
0 (∆) as

∥f∥H1
0 (∆) =

∑
γ∈Γ

∥W R
−γ(F )∥H1(R)

and denote by H1
0 (∆) the set of all f ∈ L1

loc(∆) satisfying |f∥H1
0 (∆) < ∞.

Clearly, it follows that
H1

0 (∆) ⊂ H1(∆)

and moreover, since C(λ + iρ)−1 = O(|λ|α+1/2),

∥f∥H1
0 (∆) ∼ ∥MC(λ+iρ)−1F∥H1(R), (20)

where MC(λ+iρ)−1 is the Fourier multiplier corresponding to C(λ + iρ)−1.

Remark 4.3. The right hand sides of (19) and (20) can be characterized in
terms of Triebel-Lizorkin spaces F s

1,2 on R. Therefore, by taking the inverse
W 1

−, we can pull back some properties of F s
1,2 to Jacobi analysis, such as

atomic decompositions and interpolations, which will be investigated in the
forthcoming papers.

5 Poisson maximal operator

The Poisson kernel pt, t > 0, is a function on R+ whose Jacobi transform is

given as p̂t(λ) = e−t
√

λ2+ρ2
, λ ∈ C. We define the Poisson maximal operator

MP by
MP (f)(x) = sup

t>0
|f ∗ pt(x)|.
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Then MP is bounded on Lp(∆) for 1 < p < ∞ and satisfies the weak type L1

estimate with respect to ∆(x)dx (see [1], [5], [6]). When p = 1, we can prove
that MP is bounded from H1(∆) to L1(∆). Since the proof is essentially
same as in [3, Theorem 7.7], we shall give a sketch of the proof.

For f ∈ H1(∆) we put F = W 1
+(f). In what follows we regard functions

on R+ as even functions on R denoted by the same symbol. Then for each
γ ∈ Γ, W−γ(F ) belongs to H1

wγ
(R). Since f ∗ pt = W 1

− ◦ W 1
+(f ∗ pt) =

W 1
−(F ~W 1

+(pt)), applying (15) and taking the supremum over t > 0, we can
deduce that

∥MP (f)∥L1(∆) ≤ c
∑
γ∈Γ

∥MR(W−γ(F ))∥L1
wγ

(R),

where MR is a maximal operator on R defined by

MR(H)(x) = sup
t>0

|H ~ W+(pt)(x)|.

Therefore, to prove the (H1(∆), L1(∆))-boundedness of MP , it is enough to
show the (H1

wγ
(R), L1

wγ
(R))-boundedness of MR for each γ. Let H ∈ H1

wγ
(R).

We denote a (1,∞, 2)-atomic decomposition of H as

H =
∑

i

λγ,iAγ,i (21)

where λγ,i ≥ 0, Aγ,i is a (1,∞, 2)-atom on R supported on Bγ,i = B(xγ,i, rγ,i)
and

∥
∑

i

λγ,ir
−1
γ,iχBγ,i

∥L1
wγ

(R) ≤ ∥H∥H1
wγ

(R) (22)

(see [8, Chap. 8]). To prove the (H1
wγ

(R), L1
wγ

(R))-boundedness of MR, we
shall determine a shape of MR(A)(x) for each (1,∞, 2)-atom A on R. We
may suppose that A is centered, that is, A is supported on [−r, r]. As in [3,
Lemma 7.8], we see that MR is dominated by the Hardy-Littlewood maximal

operator. Thereby, MR is bounded on L2(R) and

∫
|x|<2r

|MR(A)(x)|2dx ≤

∥MR(A)∥2
2 ≤ c∥A∥2

2 ≤ cr−1. If x ≥ 2r, as in [3, Lemma 7.9], we see that

MR(A) ≤ c
r1/2

|x − r|3/2
. Then, combining these results, we obtain that

MR(A)(x) ≤ MR(A)(x)χB(0,2r)(x) + cr1/2|x|−3/2χB(0,2r)c(x)

≤ ca(x) + c
∞∑

k=2

r−12−3k/2χB(0,2kr)(x), (23)
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where a ≥ 0, a is supported on B(0, 2r) and ∥a∥L2(R) ≤ r−1/2. Especially, it
follows from (21) that

MR(H)(x) ≤ c
∑

i

λγ,i

(
aγ,i(x) +

∞∑
k=2

r−1
γ,i2

−3k/2χB(xγ,i,2krγ,i)(x)
)
, (24)

where aγ,i ≥ 0 is supported on B(xγ,i, 2rγ,i) and ∥aγ,i∥L2(R) ≤ r
−1/2
γ,i . There-

fore, it follows from [8, Lemmas 4 and 5 in Chap. 8] and (22) that

∥MR(H)∥L1
wγ

(R) ≤ ∥
∑

i

∞∑
k=1

λγ,ir
−1
γ,i2

−3k/2χB(xγ,i,2krγ,i)∥L1
wγ

(R)

≤ c∥
∑

i

∞∑
k=1

λγ,ir
−1
γ,i2

−k/2χB(xγ,i,rγ,i)∥L1
wγ

(R) (25)

≤ c∥
∑

i

λγ,ir
−1
γ,iχB(xγ,i,rγ,i)∥L1

wγ
(R)

≤ c∥H∥H1
wγ

(R).

Hence MR is bounded from H1
wγ

(R) to L1
wγ

(R).

Theorem 5.1. MP is bounded from H1(∆) to L1(∆).

6 Littlewood-Paley g-function

The Littelwood-Paley g-function g(f) is defined as

g(f)(x) =
( ∫ ∞

0

∣∣∣t ∂

∂t
f ∗ pt(x)

∣∣∣2dt

t

)1/2

.

Then g is bounded on Lp(∆) for 1 < p < ∞ and satisfies the weak type L1

estimate with respect to ∆(x)dx (see [1], [5], [6]). We put F = W 1
+(f) and

Kt = t(∂/∂t)pt. Since t(∂/∂t)f ∗ pt = W 1
− ◦ W 1

+(f ∗ Kt) = W 1
−(W 1

+(f) ~
W 1

+(Kt)) = W 1
−(F ~ W+(Kt)), it follows that

g(f)(x) =
( ∫ ∞

0

∣∣∣W 1
−(F ~ W 1

+(Kt))(x)
∣∣∣2dt

t

)1/2

. (26)

We here define

gR(H)(x) =
( ∫ ∞

0

|H ~ W+(Kt)(x)|2dt

t

)1/2

. (27)
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Proposition 6.1. Let notation be as above. Then

∥g(f)∥L1(∆) ≤ c
∑
γ∈Γ

∥gR(W R
−γ(F ))∥L1

wγ
(R).

Proof. We apply the formula (15) to (26). Since W R
−γ(F ~ W 1

+(Kt)) =
W R

−γ(F ) ~ W 1
+(Kt), we see that

g(f)(x) ≤ c∆(x)−1
( ∑

γ∈Γ0

(thx)γgR(W R
−γ(F ))(x) (28)

+
∑
γ∈Γ1

(thx)γ

∫ ∞

x

gR(W R
−γ(F ))(s)Aγ(x, s)ds

)
.

We take the integration of the right hand side with respect to ∆(x)dx. Since
Aγ(x, s) satisfies the property (iii) of Theorem 3.6, it follows that the ∆-
integral is dominated by ∥gR(W R

−γ(F ))∥L1
wγ (R).

Now we shall consider the (H1(∆), L1(∆))-boundedness of g. Let f ∈
H1(∆) and put F = W+(f). For each γ ∈ Γ, W R

−γ(F ) belongs to H1
wγ

(R).

Hence, Proposition 6.1 and (18) imply that g is of type (H1(∆), L1(∆))
provided that gR is of type (H1

wγ
(R), L1

wγ
(R)) for each γ ∈ Γ. In what follows

we shall prove that gR is bounded from H1
wγ

(R) to L1
wγ

(R).

Let H ∈ H1
wγ

(R). Then it has a (1,∞, 1)-atomic decomposition: H =∑
i λγ,iAγ,i, which satisfies (22). Similarly as in the case of MP in §5, we

shall determine a shape of gR(A)(x) for each (1,∞, 1)-atom A on R. We may
suppose that A is centered, that is, A is supported on [−r, r], ∥A∥∞ ≤ (2r)−1

and

∫ ∞

−∞
A(x)xkdx = 0 for k = 0, 1.

Proposition 6.2. gR is L2 bounded on R.

Proof. For H ∈ L2(R),

∥gR(H)∥2
L2(R) =

∫ ∞

0

∥H ~ W+(Kt)∥2
L2(R)

dt

t
=

∫ ∞

0

∥H̃ · W+(Kt)
∼∥2

L2(R)

dt

t

=

∫ ∞

0

∥H̃(λ) · t
√

λ(λ + 2iρ)e−t
√

λ(λ+2iρ)∥2
L2(R)

dt

t

=

∫ ∞

−∞
|H̃(λ)|2

(∫ ∞

0

t|λ(λ + 2iρ)|e−2tℜ
√

λ(λ+2iρ)dt

)
dλ

=

∫ ∞

−∞
|H̃(λ)|2

(∫ ∞

0

tre−2t
√

r cos(θ/2)dt

)
dλ

≤ c

∫ ∞

−∞
|H̃(λ)|2dλ = c∥H∥2

L2(R),
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where we set λ(λ + 2iρ) = reiθ and we used the fact that ℜ(λ(λ + 2iρ)) =
r cos θ ≥ 0 and cos(θ/2) =

√
(cos θ + 1)/2 ≥ 1/

√
2.

In particular, we have∫
|x|≤2r

gR(A)2(x)dx ≤ ∥gR(A)∥2
L2(R) ≤ c∥A∥2

L2(R) ≤ cr−1. (29)

Next we shall obtain an estimate of gR(A) for |x| > 2r. We recall that

W+(Kt)(x) = teρx(∂/∂t)W+(pt)(x) = teρx(∂/∂t)F 0
pt

(x)

= Cteρx(∂/∂t)
(
t(t2 + x2)−1/2K1(ρ(t2 + x2)1/2)eρ(t2+x2)1/2 · e−ρ(t2+x2)1/2

)
,

where Kν is the modified Bessel function (see [1, p. 289]), which satisfies
(d/dx)kKν(x) = O(x−1/2−ke−x) if x → ∞, and O(x−ν−k) if x → 0.

Lemma 6.3. Let notation be as above.

(g1) : W+(Kt)(x) ≤ ct(t2 + x2)−3/4 if t2 + x2 ≥ 1,

(l1) : W+(Kt)(x) ≤ ct(t2 + x2)−1 if t2 + x2 ≤ 1,

(g2) : (d/dx)2(W+(Kt))(x) ≤ ct(t2 + x2)−7/4 if t2 + x2 ≥ 1,

(l2) : (d/dx)2(W+(Kt))(x) ≤ ct(t2 + x2)−2 if t2 + x2 ≤ 1,

(g3) : (d/dx)2(W+(Kt))(x) ≤ ct−2(t2 + x2)−1 if t2 + x2 ≥ 1.

Proof. Except (g3), all estimates follow from the asymptotic behavior of

W+(Kt)(x). As for (g3), as a function t ∈ R+, t2le−ρ(t2+x2)1/2
, l ∈ R, has the

maximum O(|x|le−ρx) at t ∼ |x|1/2. Then (g3) follows from (g2).

Lemma 6.4. Let notation be as above and suppose |x| ≥ 2r. Then |A ~
W+(Kt)(x)| is dominated by

Gr(t, x) = c


t(t + |x|)−3/2 if t + |x| ≥ 1 (G1)

t(t + |x|)−2 if t + |x| ≤ 1 (L1)

r2t−2(t + |x|)−2 if t + |x| ≥ 1 (G3)

r2t−1(t + |x|)−2 if t + |x| ≤ 1. (L2)

Proof. Let |y| ≤ r. Since |x| ≥ 2r, |x − y| ≤ |x| + r ≤ 3|x|/2 and |x − y| ≥
|x|− r ≥ |x|/2, that is, |x−y| ∼ |x| and t+ |x−y| ∼ t+ |x|. Therefore, since

A ~ W+(Kt)(x) =

∫ ∞

−∞
A(y)W+(Kt)(x − y)dy and ∥A∥L1(R) = 1, (G1) and

(L1) follow from (g1) and (l1) in Lemma 6.3 respectively. Since A satisfies the
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moment conditions, it follows that B(x) =

∫ x

−∞

∫ u

−∞
A(v)dvdu is supported

on [−r, r], ∥B∥∞ ≤ 2r, and thereby ∥B∥L1(R) ≤ 4r2. Since integration by

parts implies that A ~ W+(Kt)(x) =

∫ ∞

−∞
B(y)(d/dy)2(Kt(x − y))dy, (G3)

and (L2) follow from (g3) and (l2) in Lemma 6.3 respectively.

We return to the estimate of gR(A)(x) for |x| ≥ 2r. Since

gR(A)(x) ≤
( ∫ ∞

0

Gr(t, x)2dt

t

)1/2

(30)

(see (27)), applying Lemma 6.4, we have the following.
Case I: r ≥ 1. Since |x| ≥ 2, we can apply (G1) and (G3) in Lemma 6.4.

Then gR(A)2(x) is dominated by

c|x|−3

∫ √
r

0

tdt + cr4|x|−4

∫ ∞

√
r

t−5dt ≤ cr|x|−3 + cr2|x|−4 ≤ cr|x|−3.

Case II: r < 1. When |x| ≥ 2, we can use the same argument in Case I and
obtain gR(A)2(x) ≤ cr|x|−3. We suppose that |x| ≤ 1. Then, if t ≤ 1, we
can use (L1) and (L2), and if t ≥ 1, we can use (G3). Hence, gR(A)2(x) is
dominated by

c|x|−4

∫ r

0

tdt + cr4|x|−4

∫ 1

r

t−3dt + cr4|x|−4

∫ ∞

1

t−5dt ≤ cr2|x|−4 ≤ cr|x|−3.

Therefore, in both cases we can deduce that( ∫ ∞

0

Gr(t, x)2dt

t

)1/2

≤ cr1/2|x|−3/2 if |x| ≥ 2r. (31)

Finally, combining (29) and (31), we see that

gR(A)(x) ≤ gR(A)(x)χB(0,2r)(x) + cr1/2|x|−3/2χB(0,2r)c(x)

≤ ca(x) + c

∞∑
k=2

r−12−3k/2χB(0,2kr)(x), (32)

where a ≥ 0, a is supported on B(0, 2r) and ∥a∥L2(R) ≤ r−1/2. Hence (23)
also holds for gR(A). Therefore, the same arguments used for MP yields that
gR is bounded from H1

wγ
(R) to L1

wγ
(R) for each γ ∈ Γ.

Theorem 6.5. g is bounded from H1(∆) to L1(∆).
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7 Lusin area function

We retain the notation used in the previous section. We define the Lusin
area function S(f) as an analogue of the classical theory (cf. [5, p.314]). Let
B(t) = [0, t] and χB(t) the characteristic function of B(t). We put |B(t)| =∫ t

0

∆(x)dx. We define the Lusin area function S(f) as

S(f)(x) =
( ∫ ∞

0

1

|B(t)|
χB(t) ∗

∣∣∣f ∗ t
∂

∂t
pt

∣∣∣2(x)
dt

t

)1/2

.

As shown in [5], S is bounded on L2(∆). We also define a modified area
function SΘ(f) as

SΘ(f)(x)=
(∫ ∞

0

1

|B(t)|

∫ ∞

0

Θ(x, y)TxχB(t)(y)
∣∣∣f ∗ t

∂

∂t
pt(y)

∣∣∣2dy
dt

t

)1/2

, (33)

where Θ(x, y) is the even function on R2, which is defined on R+ × R+ as

Θ(x, y) =


∆(y)

∆(x)

(thx

thy

)2γα

if y ≥ x

∆(y)2

∆(x)2
if y < x.

We note that Θ(x, y) ≥ 1 if y ≥ x ≥ 0 and Θ(x, y) < 1 if y ≥ x ≥ 0 and
moreover, for all 0 ≤ ξ ≤ γα, we see that for x, y ∈ R+,

Θ(x, y)
∆(x)2

∆(y)

( thy

thx

)2ξ

≤


∆(x)

(thx

thy

)2(γα−ξ)

∆(y)
( thy

thx

)2ξ
≤ min{∆(x), ∆(y)}. (34)

We shall consider (H1(∆), L1(∆))-boundedness of SΘ. We recall that
t(∂/∂t)f ∗ pt = W 1

−(F ~ W+(Kt)) and we apply the formula (15) to (33).
Here we introduce the operators Sγ,R for γ ∈ Γ as follows; if γ ∈ Γ0, then

Sγ,R(H)(x) =
( ∫ ∞

0

1

|B(t)|

∫ ∞

0

Θ(x, y)TxχB(t)(y) (35)

×(thy)2γ∆(y)−2|H ~ W+(Kt)(y)|2∆(y)dy
dt

t

)1/2

and if γ ∈ Γ1, then

Sγ,R(H)(x) =
( ∫ ∞

0

1

|B(t)|

∫ ∞

0

Θ(x, y)TxχB(t)(y)(thy)2γ∆(y)−2 (36)

×
∣∣∣∣∫ ∞

y

H ~ W+(Kt)(s)Aγ(y, s)ds

∣∣∣∣2 ∆(y)dy
dt

t

)1/2

.
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Then we see that the L1(∆)-norm of SΘ(f) is dominated as∑
γ∈Γ

∥Sγ,R(W R
−γ(F ))∆∥L1(R)

=
∑
γ∈Γ

∥Sγ,R(W R
−γ(F ))(thx)−γ∆∥L1

wγ
(R) =

∑
γ∈Γ

∥Tγ,R(W R
−γ(F ))∥L1

wγ
(R),

where
Tγ,R(H)(x) = Sγ,R(H)(x)(thx)−γ∆(x).

As in the case of gR, SΘ is of type (H1(∆), L1(∆)) provided that Tγ,R is of type
(H1

wγ
(R), L1

wγ
(R)) for each γ ∈ Γ. Therefore, to obtain the (H1(∆), L1(∆))-

boundedness of SΘ, it is enough to prove that each Tγ,R is L2 bounded on
R and it satisfies (30) for each centered (1,∞, 1)-atom A on R. Actually,
these facts yield (23) for Tγ,R as in the case of gR and thereby, Tγ,R is of type
(H1

wγ
(R), L1

wγ
(R)) as before.

Case of γ ∈ Γ0: First we shall prove that Tγ,R is bounded on L2(R).
Let H ∈ L2(R). We apply (34) in the integrand of Tγ,R(H)2 and take the
integration over R+ with respect to ∆(x)dx. Then, since

1

|B(t)|

∫ ∞

0

TxχB(t)(y)∆(x)dx =
1

|B(t)|

∫ ∞

0

χB(t)(x)∆(x)dx = 1, (37)

it follows from Proposition 6.2 that

∥Tγ,R(H)∥2
L2(R) ≤ c

∫ ∞

0

∫ ∞

0

|H ~ W+(Kt)(y)|2dy
dt

t

= c

∫ ∞

0

gR(H)2(y)dy ≤ c∥H∥L2(R).

Next we shall prove that Tγ,R satisfies (30). Let A be a (1,∞, 1)-atom on
R supported on [−r, r] and let H = A in (35). We suppose that |x| ≥ 2r.

A ~ W+(Kt)(y) is given by

∫ ∞

−∞
A(z)W+(Kt)(y − z)dz and it follows that

|x− y| ≤ t and |z| ≤ r. Since x = (x− y)+ (y− z)+ z, |x| ≤ t+ |y− z|+ r ≤
t+ |y−z|+ |x|/2 and thus, |x| ≤ 2(t+ |y−z|). Moreover, |y−z| ≤ |y|+ |z| ≤
t+|x|+r ≤ t+3|x|/2. Hence it follows that t+|x| ∼ t+|y−z|. Then, applying
the arguments used in the proofs of Lemmas 6.3 and 6.4 to A ~ W+(Kt)(y),
we can deduce that |A ~ W+(Kt)(y)| ≤ cGr(t, x). Since (34) and

1

|B(t)|

∫ ∞

0

TxχB(t)(y)∆(y)dy =
1

|B(t)|

∫ ∞

0

χB(t)(y)∆(y)dy = 1, (38)
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it follows that

Tγ,R(A)(x) ≤ c
( ∫ ∞

0

G2
r(t, x)

dt

t

)1/2

.

Case of γ ∈ Γ1: First we shall prove that Tγ,R is bounded on L2(R). As in
the previous case, first we apply (34) and take the integration over R+ with
respect to ∆(x)dx. Since Aγ(x, s) is of the form Aγ(x, s) = Qγ(x, s)Zγ(s−x)
and satisfies the properties (i) and (ii) of Theorem 3.6, it follows that∫ ∞

0

Tγ,R(H)2(x)dx

≤
∫ ∞

0

∫ ∞

0

∣∣∣ ∫ ∞

0

H ~ W+(Kt)(s + y)
(thy)ξ

th(s + y)
(ths)s−(1+ξ)ds

∣∣∣2dy
dt

t
.

When 0 < y < 1 and 0 < s < 1, it becomes∫ ∞

0

∫ 1

0

∣∣∣ ∫ 1

0

H ~ W+(Kt)(s + y)
yξ

(s + y)
s−ξds

∣∣∣2dy
dt

t

=

∫ ∞

0

∫ 1

0

∣∣∣ ∫ 1/y

0

H ~ W+(Kt)((s + 1)y)(s + 1)−1s−ξds
∣∣∣2dy

dt

t

≤c∥gR(H)∥2
L2(R)

( ∫ ∞

0

(s + 1)−2s−ξds
)2

≤ c∥H∥L2(R).

Otherwise, the integral is dominated as

≤c

∫ ∞

−∞

( ∫ ∞

0

gR(H)(s + y)Zγ(s)ds
)2

dy

≤c∥gR(H)∥2
L2(R)

( ∫ ∞

0

Zγ(s)ds
)2

≤ ∥H∥L2(R).

Next we shall prove that Tγ,R satisfies (30) for a (1,∞, 1)-atom A on R
supported on [−r, r]. Let |x| ≥ 2r and let H = A in (36). When s ≥ |x|, it
follows that s ≥ 2r and |A~W+(Kt)(s)| ≤ Gr(t, s) ≤ Gr(t, |x|) by Lemma 6.4.

When s ≤ |x|, we note that A~W+(Kt)(s) is given by

∫ ∞

−∞
A(z)W+(Kt)(s−

z)dz and t + |s − z| ∼ t + |x|. Actually, we may suppose that |z| ≤ r,
|x− y| ≤ t, and 0 ≤ y ≤ s ≤ x. Since x = (x− y) + (y − s) + (s− z) + z, we
see that x ≤ 2t+ |s−z|+r ≤ 2t+ |s−z|+x/2 and thus, t+x ≤ 4(t+ |s−z|).
Moreover, t + |s − z| ≤ t + s + |z| ≤ t + 3x/2 ≤ 3(t + x)/2. Therefore, it
follows from the arguments used in the proofs of Lemmas 6.3 and 6.4 yield
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that A ~ W+(Kt)(s) ≤ cGr(t, |x|) again. Hence it follows from the property
(iv) of Aγ(x, s) (see Theorem 3.6) that∫ ∞

y

A ~ W+(Kt)(s)Aγ(y, s)ds ≤ cGr(t, x)

∫ ∞

y

Aγ(x, s)ds ≤ cGr(t, x).

Then (34) and (38) imply that

Tγ,R(A)(x) ≤ c
( ∫ ∞

0

G2
r(t, x)

dt

t

)1/2

.

We can obtain that Tγ,R, γ ∈ Γ, satisfy the desired properties.

Theorem 7.1. SΘ is bounded from H1(∆) to L1(∆).

Remark 7.2. Since a, b >
ab

a + b
and a + b ≤ (1 + a)(1 + b) for a, b ≥ 0, it

easily follows that Θ(x, y) ≥ (thx)4γα

∆(x)2
· (thy)2γα∆(y). Therefore, the operator

defined by

(thx)2γα

∆(x)

( ∫ ∞

0

1

|B(t)|
χB(at) ∗

∣∣∣wγα

√
∆ · f ∗ t

∂

∂t
pt

∣∣∣2(x)
dt

t

)1/2

is also bounded from H1(∆) to L1(∆).

Now we shall consider a modified operator Sa,γα for a > 0:

Sa,γ0(f)(x) =
( ∫ ∞

0

1

|B(t)|
χB(at) ∗

∣∣∣wγα · f ∗ t
∂

∂t
pt

∣∣∣2(x)
dt

t

)1/2

.

By this modification, Θ(x, y) and TxχB(t) in (33) is changed to (thy)2γα and
TxχB(at) respectively, and thereby, (34) becomes

W (x, y) =(thy)2γα
∆(x)2

∆(y)

( thy

thx

)2γ

=
∆(x)

∆(y)

( thy

thx

)2γα

∆(x)(thy)2γ(thx)2(γα−γ) ≤ ce2ρ(x−y)∆(x).

In the previous arguments for SΘ, which yields Theorem 7.1, the key process
is that (34) yields (37), (38) respectively. Therefore, if we can deduce that

J(y) =
1

|B(t)|

∫
Txy≤at

W (x, y)dx ∼ 1, (34a)

I(x) =
1

|B(t)|

∫
Txy≤at

W (x, y)dy ∼ 1, (34b)
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then we can apply the previous arguments without changes.
In what follows we suppose that 0 < a ≤ 1/3.
Case I. x ≤ y: Since W (x, y) ≤ ∆(x) ≤ ∆(y), it follows that I(x) and

J(y) are dominated by
|B(at)|
|B(t)|

≤ 1.

Case II. x > y: Since a ≤ 1/3, it follows that

J(y) ≤ e2ρat |B(at)|
|B(t)|

∼ e2ρt(2a−1) ≤ 1.

As for I(x), we consider separately the following cases.

Case II(1). x > y, y ≥ 1: Since W (x, y) ≤ ce2ρ(x−y) · ∆(x)

∆(y)
· ∆(y) ≤

ce4ρ(x−y)∆(y), it follows that I(x) ≤ ce4ρat |B(at)|
|B(t)|

∼ e2ρt(3a−1) ≤ 1.

Case II(2). x > y, y < 1, t ≥ 1: Since x − at < y < x + at, it follows that
x < y + at < 1 + at and thus, ∆(x) ≤ ∆(1 + at) ∼ e2ρat. Hence

I(x) ≤ c
∆(x)

|B(t)|

∫ x+at

x−at

e2ρ(x−y)dy = c
e4ρat

|B(t)|
∼ e2ρt(2a−1) ≤ 1.

Case II(3). x > y, y < 1, t ≤ 1, t ≥ x/2: Since W (x, y) ≤ ce2ρ(x−y)∆(x) ≤
ce2ρ(x−y)∆(2t), it follows that

I(x) ≤ ce2ρat ∆(2t)

|B(t)|

∫ x+at

x−at

dy = ce2ρat ∆(2t)t

|B(t)|
∼ 1.

Case II(4). x > y, y < 1, t ≤ 1, t < x/2: Since x/2 ≤ x − t ≤ x − at ≤ y

and x ≤ y + at ≤ y + t < 2, we see that
∆(x)

∆(y)
≤ ∆(x)

∆(x/2)
∼ 1 and W (x, y) ≤

ce2ρ(x−y) · ∆(x)

∆(y)
· ∆(y) ≤ ce2ρat∆(y). Hence I(x) ≤ ce2ρat |B(at)|

|B(t)|
∼ 1.

Thereby, I(x) and J(y) satisfy the desired estimates (34a) and (34b).
Hence, by using the same arguments in the proof of Theorem 7.1, we can
obtain the following.

Theorem 7.3. For 0 < a < 1/3, Sa,γα is bounded from H1(∆) to L1(∆).
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