

H^1 -estimates of Littlewood-Paley and Lusin functions for Jacobi analysis

Takeshi KAWAZOE *

Abstract

For $\alpha \geq \beta \geq -1/2$ let $\Delta(x) = (2\text{sh}x)^{2\alpha+1}(2\text{ch}x)^{2\beta+1}$ denote a weight function on \mathbb{R}_+ and $L^1(\Delta)$ the space of integrable functions on \mathbb{R}_+ with respect to $\Delta(x)dx$, equipped with a convolution structure. For a suitable $\phi \in L^1(\Delta)$, we put $\phi_t(x) = t^{-1}\Delta(x)^{-1}\Delta(x/t)\phi(x/t)$ for $t > 0$ and define the radial maximal operator M_ϕ as a usual manner. We introduce a real Hardy space $H^1(\Delta)$ as the set of all locally integrable functions f on \mathbb{R}_+ whose radial maximal function $M_\phi(f)$ belongs to $L^1(\Delta)$. In this paper we shall obtain a relation between $H^1(\Delta)$ and $H^1(\mathbb{R})$. Indeed, we characterize $H^1(\Delta)$ in terms of weighted H^1 Hardy spaces on \mathbb{R} via the Abel transform of f . As applications of $H^1(\Delta)$ and its characterization, we shall consider $(H^1(\Delta), L^1(\Delta))$ -boundedness of some operators associated to the Poisson kernel for Jacobi analysis; the Poisson maximal operator M_P , the Littlewood-Paley g -function and the Lusin area function S . They are bounded on $L^p(\Delta)$ for $p > 1$, but not true for $p = 1$. Instead, M_P , g and a modified $S_{a,\gamma}$ are bounded from $H^1(\Delta)$ to $L^1(\Delta)$.

1 Introduction

Let $\alpha \geq \beta \geq -1/2$ and $\Delta(x) = \Delta_{\alpha,\beta}(x) = (2\text{sh}x)^{2\alpha+1}(2\text{ch}x)^{2\beta+1}$ for $x \in \mathbb{R}_+ = [0, \infty)$. We define $L^1(\Delta)$ as the space of integrable functions on \mathbb{R}_+ with respect to $\Delta(x)dx$. Let $\phi_\lambda(x) = \phi_\lambda^{\alpha,\beta}(x)$ denote the Jacobi function of order (α, β) , which satisfies a product formula:

$$\phi_\lambda(x)\phi_\lambda(y) = \int_0^\infty \phi_\lambda(z)K(x, y, z)\Delta(z)dx.$$

*Partly supported by Grant-in-Aid for Scientific Research (C), No. 20540188, Japan Society for the Promotion of Science

2000 Mathematics Subject Classification. Primary 22E30; Secondary 43A30, 43A80

Then by using the kernel $K(x, y, z)$, the generalized translation is defined as

$$T_x f(y) = \int_0^\infty f(z) K(x, y, z) \Delta(z) dz$$

and the convolution on $L^1(\Delta)$ is given by

$$f * g(x) = \int_0^\infty f(y) T_x g(y) \Delta(y) dy.$$

We call harmonic analysis associated to $(\mathbb{R}_+, \Delta, *)$ Jacobi analysis. It is not of homogeneous type, because $\Delta(x)$ has an exponential growth order $e^{2\rho x}$ when x goes to ∞ whereas $\rho = \alpha + \beta + 1 > 0$. In this paper we treat some integral operators associated to the Poisson kernel p_t (see §5): For a suitable function f on \mathbb{R}_+ the Poisson maximal operator is given by

$$M_P(f) = \sup_{t>0} f * p_t(x)$$

and the Littlewood-Paley g -function $g(f)$ is defined by

$$g(f)(x) = \left(\int_0^\infty \left| t \frac{\partial}{\partial t} f * p_t(x) \right|^2 \frac{dt}{t} \right)^{1/2}.$$

Then M_P and g satisfy the maximal theorem; they are bounded on $L^p(\Delta)$ for $1 < p < \infty$ and satisfy a weak type L^1 estimate with respect to $\Delta(x)dx$ (see [1], [5], [6]). The aim of this paper is to find a subspace $H^1(\Delta) \subset L^1(\Delta)$, from which M_P and g are strongly bounded to $L^1(\Delta)$. Furthermore, we define a modified Lusin area function $S_{a,\gamma}(f)$, $a > 0$ and $\gamma \geq 0$, as

$$S_{a,\gamma}(f)(x) = \left(\int_0^\infty \frac{1}{|B(t)|} \chi_{B(at)} * \left| w_\gamma \cdot t \frac{\partial}{\partial t} p_t * f \right|^2(x) \frac{dt}{t} \right)^{1/2},$$

where $w_\gamma(x) = (\text{th}x)^\gamma$, $B(t) = [0, t]$, $\chi_{B(t)}$ is the characteristic function of $B(t)$ and $|B(t)|$ the volume of $B(t)$ with respect to $\Delta(x)dx$. For $p > 1$, L^p -boundedness of $S_{a,0}$ was investigated in [5]. Here we show that if $a < 1/3$, then $S_{a,\alpha+1/2}$ is bounded from $H^1(\Delta)$ to $L^1(\Delta)$.

This paper is organized as follows. Basic notations are given in §2 and the Abel transform $W_+^1(f)$ is defined by using fractional integral operators for Jacobi analysis. In §3 we shall obtain a key relation between the fractional derivatives for Jacobi analysis and the ones for the classical Euclidean analysis, especially, we can rewrite the inverse operator W_-^1 of W_+^1 in terms of the Euclidean fractional derivatives on \mathbb{R}_+ (see Theorem 3.5). We recall the definition of the real Hardy space $H^1(\Delta)$ in §4, which was introduced in [3].

We characterize $H^1(\Delta)$ by using a Euclidean maximal function of $W_+^1(f)$ via the key relation obtained in §3. Then it becomes clear that $H^1(\Delta)$ is related with Euclidean weighted Hardy spaces $H_w^1(\mathbb{R})$ (see (19)). In §5 we consider the H^1 -estimate of the Poisson maximal operator M_P (see Theorem 5.1) and in §6 the one of the g -function (see Theorem 6.5). In §7 we treat the modified area function $S_{a,\gamma}$ and obtain that $S_{a,\alpha+1/2}$, $0 < a < 1/3$, is bounded from $H^1(\Delta)$ to $L^1(\Delta)$ (see Theorem 7.2).

2 Notations

Let $\alpha \geq \beta \geq -1/2$ and $\Delta = \Delta_{\alpha,\beta}$ be as before. We put

$$\rho = \alpha + \beta + 1 \quad \text{and} \quad \gamma_\alpha = \alpha + 1/2.$$

Let $L^p(\Delta)$ denote the space of functions f on \mathbb{R}_+ with finite L^p -norm:

$$\|f\|_{L^p(\Delta)}^p = \int_0^\infty |f(x)|^p \Delta(x) dx$$

and $L_{\text{loc}}^1(\Delta)$ the space of locally integrable functions on \mathbb{R}_+ . We regard often functions on \mathbb{R}_+ as even functions on \mathbb{R} , which are denoted by the same symbol. Let $C_c^\infty(\Delta)$ be the space of compactly supported C^∞ even functions on \mathbb{R} . For $f \in C_c^\infty(\Delta)$ we define the Jacobi transform $\hat{f}(\lambda)$, $\lambda \in \mathbb{R}$, of f by

$$\hat{f}(\lambda) = \int_0^\infty f(x) \phi_\lambda(x) \Delta(x) dx.$$

We refer to [4] for some basic properties of \hat{f} : The map $f \rightarrow \hat{f}$ is a bijection of $C_c^\infty(\Delta)$ onto the space of entire holomorphic even functions of exponential type, and the inverse transform is given as

$$f(x) = \int_0^\infty \hat{f}(\lambda) \phi_\lambda(x) |C(\lambda)|^{-2} d\lambda,$$

where $C(\lambda)$ is Harish-Chandra's C -function (cf. [4, (2.6)]). Furthermore, the map $f \rightarrow \hat{f}$ extends to an isometry of $L^2(\Delta)$ onto $L^2(\mathbb{R}_+, |C(\lambda)|^{-2} d\lambda)$. We recall that, as a function of λ , $\phi_\lambda(x)$ is the Fourier transform of a function $A(x, \cdot)$, which is compactly supported on $[0, x]$:

$$\Delta(x) \phi_\lambda(x) = \int_0^x \cos \lambda y A(x, y) dy.$$

Then the Abel transform $W_+^s(f)$, $s \in \mathbb{R}$, is defined by for $x \in \mathbb{R}_+$,

$$W_+^s(f)(x) = e^{\rho(1+s)x} \int_x^\infty f(y) A(x, y) dy.$$

By the integral formula of $A(x, y)$ (see [4, (2.18)]), it follows that for $y \geq x$,

$$A(x, y) \leq ce^{\rho y}(\text{th}y)(\text{th}(y-x))^{\alpha-1/2}(\text{th}(x+y))^{\alpha-1/2} \leq ce^{\rho y}(\text{th}y)^{2\alpha} \quad (1)$$

and

$$\|W_+^1(f)\|_{L^1(\mathbb{R}_+)} \leq c\|f\|_{L^1(\Delta)}.$$

As shown in [4, §6], W_+^s is explicitly given by a composition of the generalized Weyl type fractional operators on \mathbb{R}_+ :

$$W_+^s(f)(x) = e^{s\rho x}W_{\alpha-\beta}^1 \circ W_{\beta+1/2}^2(f)(x) = e^{s\rho x}W_+^0(f),$$

where for $\Re\mu > -n$, $n = 0, 1, 2, \dots$,

$$W_\mu^\sigma(f)(s) = \frac{(-1)^n}{\Gamma(1+n)} \int_s^\infty \left(\frac{d^n}{d(\text{ch}\sigma t)^n} f(t) \right) (\text{ch}\sigma t - \text{ch}\sigma s)^{\mu+n-1} d(\text{ch}\sigma t). \quad (2)$$

Hence, the inverse operator W_-^s of W_+^s is given by

$$W_-^s(f) = W_{-(\beta+1/2)}^2 \circ W_{-(\alpha-\beta)}^1(e^{-s\rho x}f) = W_-^0(e^{-s\rho x}f). \quad (3)$$

We recall (cf. [4, (3.7)]) that $W_+^s(f) \in C_c^\infty(\mathbb{R})$ if $f \in C_c^\infty(\Delta)$ and the Euclidean Fourier transform $W_+^s(f)^\sim$ on \mathbb{C} of $W_+^s(f)$ coincides with the Jacobi transform \hat{f} on $\mathbb{C} + is\rho$ of f : For $\lambda \in \mathbb{C}$,

$$\hat{f}(\lambda + is\rho) = W_+^s(f)^\sim(\lambda).$$

Hence, if we put $\check{f}(x) = f(-x)$, then

$$W_-^s(f) = W_-^0(e^{-s\rho x}f) = W_-^0(e^{s\rho x}\check{f}). \quad (4)$$

3 A key relation

We shall rewrite the fractional differential operator W_-^1 on \mathbb{R}_+ in terms of Euclidean fractional operators $W_\mu^\mathbb{R}$ on \mathbb{R}_+ (see (5) below).

First we shall obtain some basic properties of W_μ^σ on \mathbb{R}_+ (see (2)) and $W_\mu^\mathbb{R}$ on \mathbb{R}_+ , which is defined by

$$W_\mu^\mathbb{R}(f)(s) = \frac{(-1)^n}{\Gamma(1+n)} \int_s^\infty f^{(n)}(t)(t-s)^{\mu+n-1} dt \quad (5)$$

for $\Re\mu > -n$, $n = 0, 1, 2, \dots$. In what follows we denote for $x, \nu > 0$,

$$\Delta_\nu^\sigma(x) = (\text{sh}\sigma x)^{2\nu} \quad \text{and} \quad \nabla_\nu^\sigma(x) = \frac{(\sigma^{-1}\text{ch}\sigma x)^\nu}{\Delta_\nu^\sigma(x)}.$$

Lemma 3.1. *Let $\sigma > 0$ and $0 < \mu < 1$. For $F \in C_c^\infty(\mathbb{R}_+)$ and $x > 0$,*

$$W_{-\mu}^\sigma(F)(x) = \nabla_\mu^\sigma(x) \left(W_{-\mu}^{\mathbb{R}}(F)(x)(\text{th}\sigma x)^\mu + \int_x^\infty F(s)A_\mu^\sigma(x, s)ds \right),$$

where $A_\mu^\sigma(x, s)$ is of the form $A_\mu^\sigma(x, s) = Q_\mu(x, s)Z_\mu(s - x)$ and

- (i) $Z_\mu(x) = e^{-\sigma x}x^{-\mu}$,
- (ii) $|Q_\mu^\sigma(x, s)| \leq c \frac{(\text{th}\sigma x)^{2\mu}}{(\text{th}\sigma(s+x))^{\mu+1}}$ for $s > x$,
- (iii) $\int_0^s A_\mu^\sigma(x, s)dx \leq c$ for all $s > 0$,
- (iv) $\int_x^\infty A_\mu^\sigma(x, s)ds \leq c$ for all $x > 0$.

Proof. Let $K_\mu^\sigma(x, s) = \left(\frac{\text{ch}\sigma s - \text{ch}\sigma x}{s - x} \right)^{-\mu}$. We note that

$$\begin{aligned} W_{-\mu}^\sigma(F)(x) &= \int_x^\infty F'(s)(\text{ch}\sigma s - \text{ch}\sigma x)^{-\mu}ds \\ &= \int_x^\infty F'(s)(s - x)^{-\mu}ds \cdot K_\mu^\sigma(x, x) + \int_x^\infty F'(s) \frac{K_\mu^\sigma(x, s) - K_\mu^\sigma(x, x)}{(s - x)^\mu} ds \\ &= W_{-\mu}^{\mathbb{R}}(F)(x)K_\mu^\sigma(x, x) \\ &\quad + \int_x^\infty F(s) \left(-\frac{dK_\mu^\sigma}{ds}(x, s) + \frac{\mu(K_\mu^\sigma(x, s) - K_\mu^\sigma(x, x))}{s - x} \right) \frac{1}{(s - x)^\mu} ds \\ &= W_{-\mu}^{\mathbb{R}}(F)(x)K_\mu^\sigma(x, x) + \int_x^\infty F(s)a_\mu^\sigma(x, s)ds. \end{aligned}$$

Since $K_\mu^\sigma(x, x) = (\sigma \text{sh}\sigma x)^{-\mu}$, it follows that $\Delta_\mu^\sigma(x)(\sigma^{-1}\text{ch}\sigma x)^{-\mu}K_\mu^\sigma(x, x) = (\text{th}\sigma x)^\mu$. Moreover, since $\frac{s - x}{\text{ch}\sigma s - \text{ch}\sigma x} \sim \text{th}(x + s)^{-1} \frac{s - x}{\text{th}(s - x)} e^{-\sigma s}$, it follows that $|a_\mu^\sigma(x, s)| \sim \text{th}\sigma(x + s)^{-(\mu+1)} e^{-\sigma\mu s} (\text{th}\sigma(s - x))^{-\mu}$. Therefore, if we put

$$\begin{aligned} A_\mu^\sigma(x, s) &= \nabla_\mu^\sigma(x)^{-1}a_\mu^\sigma(x, s) = Q_\mu^\sigma(x, s) \cdot (\text{th}(s - x))^{-\mu}e^{-\sigma\mu(s-x)} \\ &= Q_\mu^\sigma(x, s)Z_\mu^\sigma(s - x), \end{aligned}$$

then we can easily deduce that

$$|Q_\mu^\sigma(x, s)| \leq c \frac{(\text{th}\sigma x)^{2\mu}}{(\text{th}\sigma(x + s))^{\mu+1}}.$$

In particular, $|Q_\mu^\sigma(x, s)| \leq c \frac{(\text{th}x)^\mu}{\text{th}s}$ for $x < s$. Hence (iii) and (iv) are obvious from the following lemma. \square

Lemma 3.2. *We suppose that $0 < \mu < 1$ and for $x < s$, $|g(x, s)| \leq \frac{(\text{th}x)^\mu}{\text{th}s} \text{th}(s-x) \cdot (s-x)^{-(1+\mu)}$. Then it follows that*

$$\int_0^s g(x, s) dx \leq c \quad \text{and} \quad \int_x^\infty g(x, s) ds \leq c.$$

Proof. As for the integral over x , since $|g(x, s)| \leq (\text{th}x)^{\mu-1}$, it follows that, when s is small, $\int_0^s |g(x, s)| dx \leq c \int_0^s x^{\mu-1} (s-x)^{-\mu} dx \leq c$, and when s is large, the integral is dominated by

$$\begin{aligned} & c \int_0^1 x^{\mu-1} (s-x)^{-\mu} dx + c \int_1^{s-1} (s-x)^{-(\mu+1)} dx + c \int_{s-1}^s (s-x)^{-\mu} dx \\ & \leq c \int_0^1 x^{\mu-1} (1-x)^{-\mu} dx + c \int_1^\infty x^{-(\mu+1)} dx + c \int_0^1 x^{-\mu} dx \leq c. \end{aligned}$$

On the other hand, as for the integral over s , when $x \geq 1$, $\int_x^\infty |g(x, s)| ds \leq c \int_0^\infty \text{th}s \cdot s^{-(1+\mu)} ds \leq c$, and when $0 < x < 1$, the integral is dominated by

$$\begin{aligned} & cx^\mu \int_x^{2x+1} s^{-1} (s-x)^{-\mu} ds + cx^\mu \int_{2x+1}^\infty (s-x)^{-(1+\mu)} ds \\ & \leq c \int_1^\infty s^{-1} (s-1)^{-\mu} ds + c \int_2^\infty (s-1)^{-(1+\mu)} ds \leq c. \end{aligned}$$

This completes the proof. \square

Lemma 3.3. *Let $0 < \mu < 1$. For $f \in C_c^\infty(\mathbb{R}_+)$ and $g \in C^\infty(\mathbb{R}_+)$,*

$$W_{-\mu}^{\mathbb{R}}(fg)(x) = W_{-\mu}^{\mathbb{R}}(f)(x)g(x) + \int_x^\infty f(s)B_{g,\mu}(x, s)ds,$$

where $B_{g,\mu}(x, s) = \mu(g(x) - g(s))(s-x)^{-(\mu+1)}$. In particular, when $g(x) = g_{l,m}(x) = (\text{th}\sigma x)^{-l}(\sigma \text{ch}x)^{-m}$ for $l, m > 0$, it follows that

$$B_{g_{l,m},\mu}(x, s) = g_{l-1,m}(x)A_{l,m,\mu}^1(x, s) + g_{l+1,m+2}(x)A_{l,m,\mu}^2(x, s),$$

where $A_{l,m,\mu}^i(x, s)$ is of the form $A_{l,m,\mu}^i(x, s) = Q_{l,m,\mu}^i(x, s)Z_{l,m,\mu}^1(s-x)$ and

$$(i) \quad Z_{l,m,\mu}^1(x) = (\text{th}\sigma x)x^{-(\mu+1)}, \quad |Q_{l,m,\mu}^1(x, s)| \leq c,$$

$$(ii) \quad Z_{l,m,\mu}^2(x) = e^{-m\sigma x}(\text{th}\sigma x)x^{-(\mu+1)}, \quad |Q_{l,m,\mu}^2(x, s)| \leq c \frac{\text{th}\sigma x}{\text{th}\sigma s}.$$

In particular, each $A_{l,m,\mu}^i(x, s)$ satisfies (iii) and (iv) in Lemma 3.1. Moreover, $(\text{th}\sigma x)^{\mu-1}A_{l,m,\mu}^2(x, s)$ also satisfies these properties.

Proof. Since $(fg)'(s) = f'(s)g(x) + \left(f(s)(g(s) - g(x))\right)',$ the formula follows by integrating by parts. Let $g = g_{l,m}$ and $\sigma = 1$ without loss of generality. Then it follows that

$$\begin{aligned}
B_{\tilde{g}_{l,m},\mu}(x,s) &= \mu \left((\text{th}x)^{-l}(\text{ch}x)^{-m} - (\text{th}x)^{-l}(\text{ch}s)^{-m} \right. \\
&\quad \left. + (\text{th}x)^{-l}(\text{ch}s)^{-m} - (\text{th}s)^{-l}(\text{ch}s)^{-m} \right) (s-x)^{-(\mu+1)} \\
&= \mu(\text{th}x)^{-l+1}(\text{ch}x)^{-m} \cdot (\text{th}x)^{-1} \frac{1 - (\text{ch}x)^m/(\text{ch}s)^m}{s-x} (s-x)^{-\mu} \\
&\quad + \mu(\text{th}x)^{-l-1}(\text{ch}x)^{-m-2} \cdot (\text{th}x)^{l+1}(\text{ch}x)^2 \frac{(\text{th}x)^{-l} - (\text{th}s)^{-l}}{s-x} \frac{(\text{ch}x)^m}{(\text{ch}s)^m} (s-x)^{-\mu} \\
&= g_{l-1,m}(x) A_{l,m,\mu}^1(x,s) + g_{l+1,m+2}(x) A_{l,m,\mu}^2(x,s) \\
&= g_{l-1,m}(x) \left(\frac{1 - (\text{ch}x)^m/(\text{ch}s)^m}{s-x} \frac{s-x}{\text{th}(s-x)} \right) \cdot \frac{\text{th}(s-x)}{s-x} (s-x)^{-\mu} \\
&\quad + g_{l+1,m+2}(x) \left((\text{th}x)^{l+1}(\text{ch}x)^2 \frac{(\text{th}x)^{-l} - (\text{th}s)^{-l}}{s-x} \frac{(\text{ch}x)^m}{(\text{ch}s)^m} e^{m(s-x)} \frac{s-x}{\text{th}(s-x)} \right) \\
&\quad \times e^{-m(s-x)} \frac{\text{th}(s-x)}{s-x} (s-x)^{-\mu} \\
&= g_{l-1,m}(x) \cdot Q_{l,m,\mu}^1(x,s) Z_{l,m,\mu}^1(s-x) + g_{l+1,m+2}(x) \cdot Q_{l,m,\mu}^2(x,s) Z_{l,m,\mu}^2(s-x).
\end{aligned}$$

Clearly, $Q_{l,m,\mu}^i(x)$ and $Z_{l,m,\mu}^i(x,s)$ satisfy the desired properties. Hence, it follows from Lemma 3.2 that $A_{l,m,\mu}^1(x,s)$ satisfies (iii) and (iv) in Lemma 3.1. Moreover, since $(\text{th}x)^{\mu-1} \frac{\text{th}x}{\text{th}s} \leq \frac{(\text{th}x)^\mu}{\text{th}s}$ for $s \geq x$, $(\text{th}x)^{\mu-1} A_{l,m,\mu}^2(x,s)$ also satisfies (iii) and (iv). \square

Lemma 3.4. *Let $\sigma > 0$, $0 < \mu < 1$. For $F \in C_c^\infty(\mathbb{R}_+)$ and $G \in C^\infty(\mathbb{R}_+)$*

$$W_{-\mu}^\sigma(FG)(x) = W_{-\mu}^{\mathbb{R}}(F)(x) S_{G,\mu}(x) + \int_x^\infty F(s) T_{G,\mu}(x,s) ds,$$

where

$$\begin{aligned}
S_{G,\mu}(x) &= \nabla_\mu^\sigma(x) G(x) (\text{th}\sigma x)^\mu, \\
T_{G,\mu}(x,s) &= \nabla_\mu^\sigma(x) \left(B_{G,\mu}(x,s) (\text{th}\sigma x)^\mu + G(s) A_\mu^\sigma(x,s) \right).
\end{aligned}$$

Proof. It follows from Lemmas 3.1 and 3.3 that $W_{-\mu}^\sigma(FG)(x)$ equals to

$$\begin{aligned} & \nabla_\mu^\sigma(x) \left(W_{-\mu}^{\mathbb{R}}(FG)(x) (\text{th}\sigma x)^\mu + \int_x^\infty (FG)(s) A_\mu^\sigma(x, s) ds \right) \\ &= \nabla_\mu^\sigma(x) \left(W_{-\mu}^{\mathbb{R}}(F)(x) G(x) (\text{th}\sigma x)^\mu + \int_x^\infty F(s) B_{G, \mu}(x, s) ds \cdot (\text{th}\sigma x)^\mu \right. \\ & \quad \left. + \int_x^\infty F(s) G(s) A_\mu^\sigma(x, s) ds \right). \end{aligned}$$

□

Now we suppose that $\nu = n + \mu$, $n = 0, 1, 2, \dots$ and $0 \leq \mu < 1$. We shall rewrite the fractional derivative $W_{-\nu}^\sigma$ in terms of Euclidean fractional derivatives $W_{-\gamma}^{\mathbb{R}}$, $\gamma \in \Gamma$. When $\mu = 0$ and $\nu = n = 1, 2, \dots$, it easily follows that

$$W_{-n}^\sigma(F)(x) = \sum_{k=1}^n \sum_{p=n}^{2n-k} c_{k,p}^n g_{2n-k,p}(x) W_{-k}^{\mathbb{R}}(F)(x),$$

where $g_{2n-k,p} = (\text{th}\sigma x)^{-(2n-k)} (\text{ch}\sigma x)^{-p}$. Hence, when $0 < \mu < 1$ and $\nu = n + \mu$, it follows that

$$W_{-\nu}^\sigma(F)(x) = \sum_{k=1}^n \sum_{p=n}^{2n-k} c_{k,p}^n W_{-\mu}^\sigma(g_{2n-k,p} \cdot W_{-k}^{\mathbb{R}}(F))(x),$$

where $1_n = 1$ if $n \geq 1$ and $1_n = 0$ if $n = 0$. Here we apply Lemma 3.4 by substituting F and G with $W_{-k}^{\mathbb{R}}(F)$ and $g_{2n-k,p}$ respectively. Then $W_{-\mu}^{\mathbb{R}}(F)$ in Lemma 3.4 corresponds to $W_{-(k+\mu)}^{\mathbb{R}}(F)$ and

$$\begin{aligned} S_{g_{2n-k,p}, \mu}(x) &= \nabla_\mu^\sigma(x) g_{2n-k,p}(x) (\text{th}\sigma x)^\mu \\ &= c_\sigma \nabla_\nu^\sigma(x) (\text{th}\sigma x)^{k+\mu} (\text{ch}\sigma x)^{-(p-n)}. \end{aligned}$$

As for $T_{g_{2n-k,p}, \mu}(x, s)$, $s > x$, since $B_{g_{2n-k,p}, \mu}(x, s) = c g_{2n-k-1,p} A_{2n-k,p, \mu}^1(x, s) + g_{2n-k+1,p+2} A_{2n-k,p, \mu}^2(x, s)$ by Lemma 3.3, it follows that the first term of $T_{g_{2n-k,p}, \mu}(x, s)$ is equal to

$$\begin{aligned} \nabla_\mu^\sigma(x) B_{g_{2n-k,p}, \mu}(x, s) (\text{th}\sigma x)^\mu &= \nabla_\nu^\sigma(x) (\text{th}x)^k (\text{ch}x)^{-(p-n)} \\ &\times \left((\text{th}x)^{\mu+1} A_{2n-k,p, \mu}^1(x, s) + (\text{ch}x)^{-2} (\text{th}x)^{\mu-1} A_{2n-k,p, \mu}^2(x, s) \right) \end{aligned}$$

and the second term of $T_{g_{2n-k,p}, \mu}(x, s)$ is equal to

$$\begin{aligned} & \nabla_\mu^\sigma(x) g_{2n-k,p}(s) A_\mu^\sigma(x, s) \\ &= \nabla_\nu^\sigma(x) (\text{th}\sigma x)^k \cdot (\text{ch}x)^{-(p-n)} \frac{g_{2n-k,p}(s)}{g_{2n-k,p}(x)} A_\mu^\sigma(s, x). \end{aligned}$$

Here we define $\tilde{A}_{2n-k,p,\mu}^i$, $\tilde{Q}_{2n-k,p,\mu}^i$ and $\tilde{Z}_{2n-k,p,\mu}^i$ for $i = 0, 1, 2$ as

$$\begin{aligned}
\tilde{A}_{2n-k,p,\mu}^0(x, s) &= \frac{g_{2n-k,p}(s)}{g_{2n-k,p}(x)} A_\mu^\sigma(s, x) \\
&= \frac{g_{2n-k,p}(s)}{g_{2n-k,p}(x)} Q_\mu^\sigma(x, s) \cdot Z_\mu^\sigma(s - x) \\
&= \tilde{Q}_{2n-k,p,\mu}^0(x, s) \tilde{Z}_{2n-k,p,\mu}^0(s - x), \\
\tilde{A}_{2n-k,p,\mu}^1(x, s) &= (\text{th}x)^{\mu+1} A_{2n-k,p,\mu}^1(x, s) \\
&= (\text{th}x)^{\mu+1} Q_{2n-k,p,\mu}^1(x, s) \cdot Z_{2n-k,p,\mu}^1(s - x) \\
&= \tilde{Q}_{2n-k,p,\mu}^1(x, s) \tilde{Z}_{2n-k,p,\mu}^1(s - x), \\
\tilde{A}_{2n-k,p,\mu}^2(x, s) &= (\text{ch}x)^{-2} (\text{th}x)^{\mu-1} A_{2n-k,p,\mu}^2(x, s) \\
&= (\text{ch}x)^{-2} (\text{th}x)^{\mu-1} Q_{2n-k,p,\mu}^2(x, s) \cdot Z_{2n-k,p,\mu}^2(s - x) \\
&= \tilde{Q}_{2n-k,p,\mu}^2(x, s) \tilde{Z}_{2n-k,p,\mu}^2(s - x).
\end{aligned}$$

Then, by noting Lemmas 3.1, Lemma 3.2 and 3.4, we can easily deduce that each $\tilde{A}_{2n-k,p,\mu}^i$ satisfy the properties (iii) and (iv) in Lemma 3.1 and moreover, each $\tilde{Z}_{2n-k,p,\mu}^i$ is dominated by $(\text{th}\sigma x)x^{-(\mu+1)}$ and

$$\begin{aligned}
|\tilde{Q}_{2n-k,p,\mu}^0(x, s)| &\leq c \frac{(\text{th}\sigma x)^{2\mu}}{\text{th}\sigma(s+x)^{\mu+1}}, \\
|\tilde{Q}_{2n-k,p,\mu}^1(x, s)| &\leq c(\text{th}\sigma x)^{\mu-1}, \\
|\tilde{Q}_{2n-k,p,\mu}^2(x, s)| &\leq c \frac{(\text{th}\sigma x)^\mu}{\text{th}\sigma s}.
\end{aligned} \tag{6}$$

In particular, $|\tilde{Q}_{2n-k,p,\mu}^i(x, s)| \leq c \frac{(\text{th}\sigma x)^\mu}{\text{th}\sigma s}$ holds for all $i = 0, 1, 2$. Hence, changing the notations by removing $\text{th}\tilde{\sigma}$, we can obtain the following.

Proposition 3.5. *Let $\nu = n + \mu > 0$, $n = 0, 1, 2, \dots$ and $0 \leq \mu < 1$. Then for $F \in C_c^\infty(\mathbb{R}_+)$ and $x > 0$,*

$$\begin{aligned}
W_\nu^\sigma(F)(x) &= \nabla_\nu^\sigma(x) \sum_{k=1}^n \sum_{p=n}^{2n-k} c_{k,p}^n \left(c_\sigma(\text{th}\sigma x)^{k+\mu} (\text{ch}\sigma x)^{-(p-n)} W_{-(k+\mu)}^{\mathbb{R}}(F)(x) \right. \\
&\quad \left. + (\text{th}\sigma x)^k (\text{ch}x)^{-(p-n)} \int_x^\infty W_{-k}^{\mathbb{R}}(F)(s) A_{2n-k,p,\mu}(x, s) ds \right)
\end{aligned} \tag{7}$$

where each $A_{2n-k,p,\mu}(x, s)$ is of the form

$$A_{2n-k,p,\mu}(x, s) = Q_{2n-k,p,\mu}(x, s) Z_{2n-k,p,\mu}(s - x)$$

and

- (i) $Z_{2n-k,p,\mu}(x) \leq c(\text{th}\sigma x)x^{-(\mu+1)}$,
- (ii) $|Q_{2n-k,p,\mu}(x,s)| \leq c \frac{(\text{th}\sigma x)^\mu}{(\text{th}\sigma s)} \text{ for } s > x$,
- (iii) $\int_0^s A_{2n-k,p,\mu}(x,s)dx \leq c \text{ for all } s > 0$,
- (iv) $\int_x^\infty A_{2n-k,p,\mu}(x,s)ds \leq c \text{ for all } x > 0$.

Next we shall consider a composition of $W_{-\nu}^2$ and $W_{-\nu'}^1$. We suppose that $\nu = n + \mu$ and $\nu' = \mu' + n'$, where $n, n' = 0, 1, 2, \dots$ and $0 \leq \mu, \mu' < 1$. When one of μ and μ' is equal to 0, we can easily deduce the final theorem from Proposition 3.5. Hence we may assume that $\mu, \mu' > 0$ in the following. We note that $W_{-\nu}^2 \circ W_{-\nu'}^1 = W_{-\mu}^2 \circ (W_{-n}^2 \circ W_{-\nu'}^1)$ and $W_{-1}^2 = \frac{1}{\text{ch}x} W_{-1}^1$. Thereby, it follows from Proposition 3.5 that

$$\begin{aligned} W_{-n}^2 \circ W_{-\nu'}^1(F)(x) &= \sum_{l=1_n}^n \frac{nC_l}{(\text{ch}x)^{2n-l}} W_{-(\nu'+l)}^1(F)(x) \\ &= \sum_{l=1_n}^n \frac{nC_l}{(\text{ch}x)^{2n-l}} \nabla_{\nu'+l}^1(x) \sum_{k=1_{n'+l}}^{n'+l} \sum_{p=n'+l}^{2(n'+l)-k} \left(\begin{array}{l} \text{the right hand side of (7)} \\ \text{changed as } \sigma, \mu, n \rightarrow 1, \mu', n' + l \end{array} \right). \end{aligned}$$

Hence in order to calculate $W_{-\nu}^2 \circ W_{-\nu'}^1$, we first apply $W_{-\mu}^2$ to each term in the right hand side and then use Lemma 3.4 to rewrite it in terms of Euclidean fractional derivatives. Therefore, it is enough to estimate the following terms I_{ij} , $i, j = 1, 2$: For $\gamma = k + \mu'$ and $v = p - n$,

$$\begin{aligned} I_1(x) &= W_{-\mu}^2 \left(\frac{1}{(\text{ch}x)^{2n-l}} \nabla_{\nu'+l}^1(x) (\text{ch}x)^{-v} (\text{th}x)^\gamma W_{-\gamma}^{\mathbb{R}}(F)(x) \right) \\ &= W_{-\mu}^2 \left(g_{2\nu'+2l-\gamma, \nu'+2n+v} W_{-\gamma}^{\mathbb{R}}(F)(x) \right) \\ &= W_{-(\gamma+\mu)}^{\mathbb{R}}(F)(x) S(x) + \int_x^\infty W_{-\gamma}^{\mathbb{R}}(F)(s) T(x, s) ds \\ &= I_{11}(x) + I_{12}(x), \end{aligned}$$

where

$$\begin{aligned} S(x) &= \nabla_\mu^2(x) g_{2\nu'+2l-\gamma, \nu'+2n+v}(x) (\text{th}x)^\mu, \\ T(x, s) &= \nabla_\mu^2(x) \left(B_{g_{2\nu'+2l-\gamma, \nu'+2n+v}, \mu}(x, s) (\text{th}x)^\mu \right. \\ &\quad \left. + (\text{th}x)^{\mu-1} g_{2\nu'+2l-\gamma, \nu'+2n+v}(x) A_\mu^2(x, s) \right) \end{aligned}$$

and for $\gamma = k$ and $v = p - n$, by substituting $A_{2n-k,p,\mu'}(x, s)$ by $A_{\gamma,\mu'}(x, s)$,

$$\begin{aligned}
I_2(x) &= W_{-\mu}^2 \left(\frac{1}{(\operatorname{ch}x)^{2n-l}} \nabla_{\nu'+l}^1(x) \right. \\
&\quad \times (\operatorname{th}x)^\gamma (\operatorname{ch}x)^{-v} \int_x^\infty W_{-\gamma}^{\mathbb{R}}(F)(s) A_{\gamma,\mu'}(x, s) ds \Big) \\
&= W_{-\mu}^2 \left(g_{2\nu'+2l-\gamma,\nu'+2n+v} \int_x^\infty W_{-\gamma}^{\mathbb{R}}(F)(s) A_{\gamma,\mu'}(x, s) ds \right) \\
&= W_{-\mu}^{\mathbb{R}} \left(\int_x^\infty W_{-\gamma}^{\mathbb{R}}(F)(s) A_{\gamma,\mu'}(x, s) ds \right) (x) S(x) \\
&\quad + \int_x^\infty \left(\int_s^\infty W_{-\gamma}^{\mathbb{R}}(F)(t) A_{\gamma,\mu'}(s, t) dt \right) T(x, s) ds \\
&= I_{21}(x) + I_{22}(x).
\end{aligned}$$

I_{11} and I_{12} : By the process which yields Proposition 3.5 from Lemma 3.3, it follows that

$$S(x) = \nabla_\nu^2(x) \nabla_{\nu'}^1(x) (\operatorname{th}x)^{2(n-l)+\gamma+\mu} (\operatorname{ch}x)^{-v} \frac{(\operatorname{ch}2x)^n}{(\operatorname{ch}x)^{2n}}, \quad (8)$$

$$\begin{aligned}
T(x, s) &= \nabla_\nu^2(x) \nabla_{\nu'}^1(x) (\operatorname{th}x)^{2(n-l)+\gamma} (\operatorname{ch}x)^{-v} \\
&\quad \times \left(A_{\gamma,\mu}^0(x, s) + A_{\gamma,\mu}^1(x, s) + A_{\gamma,\mu}^2(x, s) \right),
\end{aligned} \quad (9)$$

where each $A_{\gamma,\mu}^i$ satisfies the corresponding properties (i)~(iv) in Proposition 3.5. Hence, I_{11} and I_{12} can be written as

$$\begin{aligned}
I_{11}(x) &= \nabla_\nu^2(x) \nabla_{\nu'}^1(x) (\operatorname{th}x)^{2(n-l)} (\operatorname{ch}x)^{-v} \frac{(\operatorname{ch}2x)^n}{(\operatorname{ch}x)^{2n}} \cdot W_{-(\gamma+\mu)}^{\mathbb{R}}(F)(x) (\operatorname{th}x)^{\gamma+\mu}, \\
I_{12}(x) &= \nabla_\nu^2(x) \nabla_{\nu'}^1(x) (\operatorname{th}x)^\gamma \cdot (\operatorname{th}x)^{2(n-l)} (\operatorname{ch}x)^{-v} \int_x^\infty W_{-\gamma}^{\mathbb{R}}(F)(s) A_{\gamma,\mu}(x, s) ds,
\end{aligned}$$

where each $A_{\gamma,\mu}(x, s)$ satisfies the properties (i)~(iv).

I_{21} : We define $q_{\gamma,\mu'}(x) = Q_{\gamma,\mu'}(x, x) (\operatorname{th}x)^{1-\mu'}$, which is bounded because of (6), and we put

$$\begin{aligned}
R_{\gamma,\mu'}(x, s) &= \left(Q_{\gamma,\mu'}(x, s) - \frac{(\operatorname{th}x)^{\mu'}}{\operatorname{th}s} q_{\gamma,\mu'}(x) \right) Z_{\gamma,\mu'}(s-x) \\
&= \left(Q_{\gamma,\mu'}(x, s) - \frac{Q_{\gamma,\mu'}(x)}{\operatorname{th}s} \right) Z_{\gamma,\mu'}(s-x).
\end{aligned}$$

Then

$$A_{\gamma,\mu'}(x, s) = \frac{Q_{\gamma,\mu'}(x)}{\operatorname{th}s} Z_{\gamma,\mu'}(s-x) + R_{\gamma,\mu'}(x, s). \quad (10)$$

Since $|\frac{Q_{\gamma,\mu'}(x)}{\text{ths}}| \leq c \frac{(\text{th}x)^{\mu'}}{\text{ths}}$ and $R_\gamma(x, x) = 0$, it follows that $|R_{\gamma,\mu'}(x, s)| \leq c \frac{(\text{th}x)^{\mu'}}{\text{ths}} (\text{th}(s-x))^2 (s-x)^{-(1+\mu')}$ and moreover,

$$\begin{aligned} \frac{d}{dx} R_{\gamma,\mu'}(x, s) &\sim \frac{(\text{th}x)^{\mu'}}{\text{ths}} (\text{th}(s-x)^2 (s-x)^{-(\mu'+2)} \\ &\quad + (\text{th}x)^{-1} \text{th}(s-x)^2 (s-x)^{-(\mu'+1)}), \end{aligned} \quad (11)$$

where the second term appears when x is small.

We here define I_{21}^{QZ} and I_{21}^R by replacing $A_{\gamma,\mu'}(x, s)$ by $(\text{ths})^{-1} Q_{\gamma,\mu'}(x) Z_{\gamma,\mu}(s-x)$ and $R_{\gamma,\mu'}(x, s)$ respectively (see (10)). Then $I_{21} = I_{21}^{QZ} + I_{21}^R$.

As for I_{21}^{QZ} , it follows from Lemma 3.3 that

$$\begin{aligned} I_{21}^{QZ}(x) &= W_{-\mu}^{\mathbb{R}} \left(\int_x^{\infty} W_{-\gamma}^{\mathbb{R}}(F)(s) (\text{ths})^{-1} \cdot Z_{\gamma,\mu'}(s-x) ds \cdot Q_{\gamma,\mu'}(x) \right) (x) S(x) \\ &= W_{-\mu}^{\mathbb{R}} \left(\int_x^{\infty} W_{-\gamma}^{\mathbb{R}}(F)(s) (\text{ths})^{-1} \cdot Z_{\gamma,\mu'}(s-x) ds \right) (x) Q_{\gamma,\mu'}(x) S(x) \\ &\quad + \int_x^{\infty} \int_s^{\infty} W_{-\gamma}^{\mathbb{R}}(F)(t) (\text{th}t)^{-1} \cdot Z_{\gamma,\mu'}(t-s) dt \cdot B_{Q_{\gamma,\mu'},\mu}(x, s) ds \cdot S(x) \\ &= W_{-\mu}^{\mathbb{R}} \left(\int_x^{\infty} W_{-\gamma}^{\mathbb{R}}(F)(s) (\text{ths})^{-1} \cdot Z_{\gamma,\mu'}(s-x) ds \right) (x) Q_{\gamma,\mu'}(x) S(x) \\ &\quad + \int_x^{\infty} W_{-\gamma}^{\mathbb{R}}(F)(t) (\text{th}t)^{-1} \left(\int_x^t Z_{\gamma,\mu'}(t-s) B_{Q_{\gamma,\mu'},\mu}(x, s) ds \right) dt \cdot S(x) \\ &= J_1 + J_2. \end{aligned}$$

To calculate J_1 , we take $\delta > 0$ such that $\tilde{W}_{\delta}^{\mathbb{R}} Z_{\gamma}(s-x) \Big|_{s=x} = 0$, where $\tilde{W}_{\delta}^{\mathbb{R}}$ is the Riemann type fractional operator which is defined as

$$\tilde{W}_{\delta}^{\mathbb{R}}(f)(x) = \int_0^x f(s) (s-x)^{\delta-1} ds. \quad (12)$$

Then, since $\frac{d}{dx} \tilde{W}_{\delta}^{\mathbb{R}} Z_{\gamma,\mu}(s-x) = -\frac{d}{ds} \tilde{W}_{\delta}^{\mathbb{R}} Z_{\gamma,\mu'}(s-x)$, it follows that

$$\begin{aligned} &W_{-\mu}^{\mathbb{R}} \left(\int_x^{\infty} W_{-\gamma}^{\mathbb{R}}(F)(s) (\text{ths})^{-1} \cdot Z_{\gamma,\mu'}(s-x) ds \right) (x) \\ &= W_{-\mu}^{\mathbb{R}} \left(\int_x^{\infty} W_{-\delta}^{\mathbb{R}} \left(W_{-\gamma}^{\mathbb{R}}(F)(t) (\text{th}t)^{-1} \right) (s) \tilde{W}_{\delta}^{\mathbb{R}} Z_{\gamma,\mu'}(s-x) ds \right) \\ &= \int_x^{\infty} W_{-(\mu+\delta)}^{\mathbb{R}} \left(W_{-\gamma}^{\mathbb{R}}(F)(t) (\text{th}t)^{-1} \right) (s) \tilde{W}_{\delta}^{\mathbb{R}} Z_{\gamma,\mu'}(s-x) ds \\ &= \int_x^{\infty} W_{-\mu}^{\mathbb{R}} \left(W_{-\gamma}^{\mathbb{R}}(F)(t) (\text{th}t)^{-1} \right) (s) Z_{\gamma,\mu'}(s-x) ds. \end{aligned}$$

Hence, applying Lemma 3.3, the first term J_1 of I_{21}^{QZ} becomes

$$\begin{aligned}
& \int_x^\infty W_{-(\gamma+\mu)}^{\mathbb{R}}(F)(s)(\text{th}s)^{-1} \cdot Z_{\gamma,\mu'}(s-x)ds \cdot Q_{\gamma,\mu'}(x)S(x) \\
& + \int_x^\infty \int_s^\infty W_{-\gamma}^{\mathbb{R}}(F)(t)B_{(\text{th}t)^{-1},\mu}(s,t)dt \cdot Z_{\gamma,\mu'}(s-x)ds \cdot Q_{\gamma,\mu'}(x)S(x) \\
& = \int_x^\infty W_{-(\gamma+\mu)}^{\mathbb{R}}(F)(s)(\text{th}s)^{-1} \cdot Z_{\gamma,\mu'}(s-x)ds \cdot Q_{\gamma,\mu'}(x)S(x) \\
& + \int_x^\infty W_{-\gamma}^{\mathbb{R}}(F)(t) \left(\int_x^t B_{(\text{th}t)^{-1},\mu}(s,t)Z_{\gamma,\mu'}(s-x)ds \right) dt \cdot Q_{\gamma,\mu'}(x)S(x) \\
& = J_{11} + J_{12}.
\end{aligned}$$

For J_{11} , substituting (8) and $|Q_{\gamma,\mu'}(x)| \leq c(\text{th}x)^{\mu'}$, we see that

$$\begin{aligned}
& (\text{th}s)^{-1}Z_{\gamma,\mu'}(s-x) \cdot Q_{\gamma,\mu'}(x)S(x) \\
& \leq c\nabla_\nu^2(x)\nabla_{\nu'}^1(x)(\text{th}x)^{2(n-l)}(\text{ch}x)^{-v} \frac{(\text{th}x)^{\mu+\mu'}}{s} Z_{\gamma,\mu'}(s-x).
\end{aligned}$$

For J_{12} , we note from Lemma 3.3 with $l=1, m=0$ that $|B_{(\text{th}t)^{-1},\mu}(s,t)| \leq \frac{1}{\text{th}t \cdot \text{th}s} \text{th}(t-s)(t-s)^{-(\mu+1)}$. When t is small, we here take $0 < \epsilon < \min\{1-\mu', \mu\}$ and let $s^{-1} \leq x^{-(\mu'+\epsilon)}(s-x)^{-1+\mu'+\epsilon}$. Then it follows that

$$\begin{aligned}
L &= \int_x^t B_{(\text{th}t)^{-1},\mu}(s,t)Z_{\gamma,\mu'}(s-x)ds \\
&\sim \frac{1}{t} \int_x^t \frac{1}{s} (t-s)^{-\mu} (s-x)^{-\mu'} ds \\
&\leq \frac{1}{tx^{\mu'+\epsilon}} \int_0^{t-x} ((t-x)-s)^{-\mu} s^{-1+\epsilon} ds = c \frac{1}{tx^{\mu'+\epsilon}} (t-x)^{-(\mu-\epsilon)}.
\end{aligned}$$

When t is large and $t-x$ is small, since x is large, L is dominated by

$$\int_x^t (t-s)^\mu (s-x)^{-\mu'} ds = (t-x)^{-1+(2-\mu'-\mu)} \quad \text{and} \quad 2-\mu'-\mu > 0,$$

and when t is large and $t-x$ is large, L is dominated by

$$\begin{aligned}
& \int_x^t \text{th}(t-s) \cdot (t-s)^{-(1+\mu)} \cdot \text{th}(s-x) \cdot (s-x)^{-(1+\mu')} ds \tag{13} \\
& \sim \int_x^t \left(\frac{1}{1+(t-s)} \right)^{\mu+1} \left(\frac{1+(t-s)}{t-s} \right)^\mu \left(\frac{1}{1+(s-x)} \right)^{\mu'+1} \left(\frac{1+(s-x)}{s-x} \right)^{\mu'} ds \\
& = (t-x)^{-\mu-\mu'+1} \int_0^1 \frac{(1-s)^{-\mu}}{1+(t-x)(1-s)} \cdot \frac{s^{-\mu'}}{1+(t-x)s} ds.
\end{aligned}$$

Then, by dividing the last integral as $\int_0^1 ds = \int_0^{1/2} ds + \int_{1/2}^1 ds$, we see that L is dominated by $(t-x)^{-(1+\mu)} + (t-x)^{-(1+\mu')} \cdot (t-x)^{-1-(\mu-\epsilon)}$. Therefore, substituting (8) and $|Q_{\gamma,\mu'}(x)| \leq c(\text{th}x)^{\mu'}$, we can find a $\xi > 0$ such that

$$\begin{aligned} & \left(\int_x^t B_{(\text{th}t)^{-1},\mu}(s,t) Z_{\gamma,\mu'}(s-x) ds \right) \cdot Q_{\gamma,\mu'}(x) S(x) \\ & \leq c \nabla_{\nu}^2(x) \nabla_{\nu'}^1(x) (\text{th}x)^{2(n-l)} (\text{ch}x)^{-v} \frac{(\text{th}x)^{\xi}}{t} \text{th}(t-x) (t-x)^{-(1+\xi)}. \end{aligned}$$

We recall that the properties (iii) and (iv) follows from (i) and (ii). Hence we can conclude that

$$\begin{aligned} J_1 &= \nabla_{\nu}^2(x) \nabla_{\nu'}^1(x) (\text{th}x)^{2(n-l)} (\text{ch}x)^{-v} \\ & \quad \times \left((\text{th}x)^{\gamma+\mu} \int_x^{\infty} W_{-(\gamma+\mu)}^{\mathbb{R}}(F)(s) A_{\gamma,\mu}(x,s) ds \right. \\ & \quad \left. + (\text{th}x)^{\gamma} \int_x^{\infty} W_{-\gamma}^{\mathbb{R}}(F)(s) A_{\gamma}(x,s) ds \right), \end{aligned} \quad (14)$$

where $A_{\gamma,\mu}(x,s)$ and $A_{\gamma}(x,s)$ satisfy the corresponding properties (i)~(iv) in Proposition 3.5. To calculate J_2 we recall that $|Q_{\gamma,\mu'}(x)| \leq c(\text{th}x)^{\mu'}$. Since $\mu' < 1$, it follows that $|B_{Q_{\gamma,\mu'},\mu}(x,s)| \leq c s^{\mu'-1} (s-x)^{-\mu}$ for all small s , and since $\gamma \geq 0$, it follows that $|B_{Q_{\gamma,\mu'},\mu}(x,s)| \leq c (s-x)^{-(\mu+1)}$ for all $x < s$. We shall estimate the inside integral of J_2 . When t is small, similarly as above, we take $0 < \epsilon < \min\{1 - \mu', \mu\}$ and let $s^{\mu'-1} \leq x^{-\epsilon} (s-x)^{\mu'-1+\epsilon}$. Then the inside integral of J_2 is dominated by $x^{-\epsilon} (t-x)^{-(\mu-\epsilon)}$. When t is large, also similarly as above, it is dominated by $(t-x)^{-(1+\mu)} + (t-x)^{-(1+\mu')}$. Hence, substituting (8), we can find a ξ such that

$$\begin{aligned} & (\text{th}t)^{-1} \left(\int_x^t Z_{\gamma,\mu'}(t-s) B_{Q_{\gamma,\mu'},\mu}(x,s) ds \right) dt \cdot S(x) \\ & \sim \nabla_{\nu}^2(x) \nabla_{\nu'}^1(x) (\text{th}x)^{2(n-l)} (\text{ch}x)^{-v} \frac{(\text{th}x)^{\xi}}{\text{th}t} \text{th}(t-x) (t-x)^{-(1+\xi)}. \end{aligned}$$

Therefore, J_2 can be rewritten as the last term in (14).

As for I_{21}^R , we recall that $R_\gamma(x, x) = 0$. Then it follows that

$$\begin{aligned}
I_{21}^R(x) &= W_{-\mu}^{\mathbb{R}} \left(\int_x^\infty W_{-\gamma}^{\mathbb{R}}(F)(s) R_\gamma(x, s) ds \right)(x) S(x) \\
&= \int_x^\infty \left(\int_s^\infty W_{-\gamma}^{\mathbb{R}}(F)(t) \frac{d}{dx} R_\gamma(s, t) dt \right) (s - x)^{-\mu} ds \cdot S(x) \\
&= \int_x^\infty W_{-\gamma}^{\mathbb{R}}(F)(t) \left(\int_x^t \frac{d}{dx} R_\gamma(s, t) (s - x)^{-\mu} ds \right) dt \cdot S(x) \\
&= \nabla_\nu^2(x) \nabla_{\nu'}^1(x) (\text{th}x)^{2(n-l)+u} (\text{ch}x)^{-v} c_n(x) \cdot (\text{th}x)^{\gamma+\mu} \\
&\quad \times \int_x^\infty W_{-\gamma}^{\mathbb{R}}(F)(t) \left(\int_x^t \frac{d}{dx} R_\gamma(s, t) (s - x)^{-\mu} ds \right) dt.
\end{aligned}$$

We shall prove that $M = (\text{th}x)^\mu \int_x^t \frac{d}{dx} R_\gamma(s, t) (s - x)^{-\mu} ds$ satisfies the properties (i) and (ii). We recall (11) and we consider separately the cases where (a) t is small, (b) t is large and $t - x$ is small, (c) $t, t - x$ are large and x is large, (d) $t, t - x$ are large and x is small.

(a) When t is small, M is dominated by

$$\frac{x^\mu}{t} \int_x^t \left(s^{\mu'} (t - s)^{-\mu'} (s - x)^{-\mu} + s^{\mu'-1} (t - s)^{1-\mu'} (s - x)^{-\mu} \right) ds = M_1 + M_2.$$

Then $M_1 \leq c \frac{x^\mu}{t} \int_x^t (t - s)^{-\mu'} (s - x)^{-\mu} ds \leq c \frac{x^\mu}{t} (t - s)^{-1+(2-\mu-\mu')}$. As for M_2 , if $\mu + \mu' > 1$, then $M_2 \leq c \frac{x^{\mu+\mu'-1}}{t} (t - x)^{2-\mu-\mu'}$ and $\mu + \mu' - 1, 2 - \mu - \mu' > 0$. If $\mu + \mu' \leq 1$, we take $0 < \epsilon < \min\{\mu, \mu'\}$ and let $s^{\mu'-1} \leq x^{-\mu+\epsilon} (s - x)^{-1+\mu+\mu'-\epsilon}$. Then $M_2 \leq c \frac{x^\epsilon}{t} (t - x)^{1-\epsilon}$.

(b) When t is large and $t - x$ is small, since x is large, $M \leq c \int_x^t (t - s)^{-\mu'} (x - s)^{-\mu} ds = c(t - x)^{-1+(2-\mu-\mu')}$.

(c) When $t, t - x, x$ are large, we divide the integral M as $\int_x^{(t+x)/2} dx + \int_{(t+x)/2}^t ds = M_- + M_+$. Similarly as (13), M_- is dominated by

$$(t - x)^{-\mu-\mu'+1} \int_0^{1/2} \frac{(1 - s)^{-\mu'} s^{-\mu}}{(1 + (t - x)(1 - s))^2} ds \leq c(t - x)^{-1-\mu-\mu'}.$$

As for M_+ , by integration by part, it follows that M_+ is dominated by

$$R_{\gamma, \mu'} \left(\frac{t+x}{2}, t \right) \left(\frac{t-x}{2} \right)^{-\mu} + \mu \int_{(t+x)/2}^t R_{\gamma, \mu'}(s, t) (s - x)^{-\mu-1} ds.$$

Then the last integral is dominated as

$$\int_{(t+x)/2}^t (1+(t-s))^{-(1+\mu')}(s-x)^{-\mu-1}ds \leq \left(\frac{t-x}{2}\right)^{-(1+\mu)} \int_0^\infty (1+s)^{-(1+\mu')}ds.$$

Hence, it is easy to see that M_+ is dominated by $c(t-x)^{-(1+\mu)}$.

(d) When $t, t-x$ are large and x is small, we divide the integral as $\int_x^1 ds + \int_1^t ds$. Then the last integral satisfies the same estimate in (c) because $\int_1^t ds \leq \int_x^t ds$. On the other hand, the first one is dominated by

$$\begin{aligned} & x^\mu \int_x^1 \left(s^{\mu'-1} (t-s)^{-(1+\mu')} (s-x)^{-\mu} + s^{\mu'} (t-s)^{-(2+\mu')} (s-x)^{-\mu} \right) ds \\ &= m_1 + m_2. \end{aligned}$$

As for m_1 , we replace $\int_x^1 ds \leq \int_x^t ds$ and apply the same argument as used for M_1 in (a). Then we can deduce that, if $\mu + \mu' > 1$, then $m_1 \leq cx^{\mu+\mu'-1}(t-x)^{-(\mu+\mu')}$ and, if $\mu + \mu' \leq 1$, then $m_1 \leq cx^\epsilon(t-x)^{-(1+\epsilon)}$, where $0 < \epsilon < \min\{\mu, \mu'\}$. As for m_2 , by replacing s^μ by 1, m_2 is dominated by

$$x^\mu (t-x)^{-1-\mu-\mu'} \int_0^{(1-x)/(t-x)} (1-s)^{-(2+\mu')} s^{-\mu} ds \leq cx^\mu (t-x)^{-1-\mu-\mu'},$$

because we may suppose that $(1-x)/(t-x) \leq 1/2$.

Hence, in all cases M satisfies the desired properties (i) and (ii). Therefore, I_{21}^R can be rewritten as the last term in (14).

I_{22} : Last we shall estimate I_{22} . Substituting (8) and changing the order of integrations, it follows that

$$\begin{aligned} I_{22}(x) &= \int_x^\infty W_{-\gamma}^{\mathbb{R}}(F)(t) \left(\int_x^t A_\gamma(s, t) T(x, s) ds \right) dt \\ &= \nabla_\nu^2(x) \nabla_{\nu'}^1(x) (\text{th}x)^{\gamma+\mu+\mu'-2} \\ &\quad \times (\text{th}x)^{2(n-l)+u} (\text{ch}x)^{-v} \int_x^\infty W_{-\gamma}^{\mathbb{R}}(F)(t) A_{\gamma, \mu}(x, t) dt, \end{aligned}$$

where we denote each $\int_x^t A_{\gamma, \mu'}(s, t) A_{\gamma, \mu}^i(x, s) ds$ by $A_\gamma(x, s)$. Since $A_{\gamma, \mu'}(s, t)$ and $A_{\gamma, \mu}^i(x, s)$ satisfy the desired properties (i) and (ii), it is easy to see that $A_\gamma(x, s)$ also satisfies the same properties. Therefore, I_{22} also can be rewritten as the last term in (14).

Finally, we can obtain the following.

Theorem 3.6. Let $\nu = n + \mu$ and $\nu' = n' + \mu'$, where $n, n' = 0, 1, 2, \dots$ and $0 \leq \mu, \mu' < 1$. Then for $F \in C_c^\infty(\mathbb{R}_+)$,

$$\begin{aligned} W_\nu^2 \circ W_{\nu'}^1(F)(x) &\sim \frac{(2^{-1}\text{ch}2x)^\nu(\text{ch}x)^{\nu'}}{(\text{sh}2x)^{2\nu}(\text{sh}x)^{2\nu'}} \left(\sum_{\gamma \in \Gamma_0} (\text{th}x)^\gamma W_{-\gamma}^{\mathbb{R}}(F)(x) \right. \\ &\quad \left. + \sum_{\gamma \in \Gamma_1} (\text{th}x)^\gamma \int_x^\infty W_{-\gamma}^{\mathbb{R}}(F)(s) A_\gamma(x, s) ds \right), \end{aligned}$$

where $\Gamma_0 = \{k + \mu + \mu' | 1_{n+n'} \leq k \leq n + n'\}$ and $\Gamma_1 = \{k, k + \mu, k + \mu' | 1_{n+n'} \leq k \leq n + n'\}$. For each $\gamma \in \Gamma_1$, $A_\gamma(x, s)$ is of the form $A_\gamma(x, s) = Q_\gamma(x, s)Z_\gamma(s - x)$ and there exists $0 < \xi < 1$ such that

- (i) $Z_\gamma(x) \leq c(\text{th}x)x^{-(\xi+1)}$,
- (ii) $|Q_\gamma(x, s)| \leq c \frac{(\text{th}x)^\xi}{(\text{th}s)}$ for $s > x$,
- (iii) $\int_0^s A_\gamma(x, s) dx \leq c$ for all $s > 0$,
- (iv) $\int_x^\infty A_\gamma(x, s) ds \leq c$ for all $x > 0$.

Let $\nu = \beta + 1/2$ and $\nu' = \alpha - \beta$ in Theorem 3.6. If we replace F by $e^{-\rho x}F(x)$ and $e^{\rho x}\check{F}(x)$ respectively (see (4)), then we can obtain the following.

Corollary 3.7. For $F \in C_c^\infty(\mathbb{R}_+)$,

$$W_-^1(F)(x) \sim \frac{1}{\Delta(x)} \left(\sum_{\gamma \in \Gamma_0} (\text{th}x)^\gamma W_{-\gamma}^{\mathbb{R}}(F)(x) \right. \quad (15)$$

$$\begin{aligned} &\quad \left. + \sum_{\gamma \in \Gamma_1} (\text{th}x)^\gamma \int_x^\infty W_{-\gamma}^{\mathbb{R}}(F)(s) A_\gamma(x, s) ds \right) \\ &\sim \frac{e^{\rho x}}{\Delta(x)} \left(\sum_{\gamma \in \Gamma_0} (\text{th}x)^\gamma e^{\rho x} W_{-\gamma}^{\mathbb{R}}(\check{F})(x) \right. \quad (16) \\ &\quad \left. + \sum_{\gamma \in \Gamma_1} (\text{th}x)^\gamma \int_x^\infty e^{\rho s} W_{-\gamma}^{\mathbb{R}}(\check{F})(s) A_\gamma(x, s) ds \right) \end{aligned}$$

where Γ_i and $A_\gamma(x, s)$ are same as in Theorem 3.6.

4 Real Hardy spaces

We keep the notations in the previous section. We put $\Gamma = \Gamma_0 \cup \Gamma_1$ and for each $\gamma \in \Gamma$ we define

$$w_\gamma(x) = (\operatorname{th} x)^\gamma, \quad x \in \mathbb{R}_+.$$

We regard often $W_{-\gamma}^{\mathbb{R}}(F)$ and w_γ on \mathbb{R}_+ as even functions on \mathbb{R} . We suppose that $f \in L^1(\Delta)$ and put $F = W_+^1(f)$. Since $f = W_-^1 \circ W_+^1(f) = W_-^1(F)$, it follows from (15), (16) and the property (iii) of Theorem 3.6 that

$$\|f\|_{L^1(\Delta)} \leq c \sum_{\gamma \in \Gamma} \|W_{-\gamma}^{\mathbb{R}}(F)\|_{L_{w_\gamma}^1(\mathbb{R}_+)} \sim \sum_{\gamma \in \Gamma} \|e^{2\rho x} W_{-\gamma}^{\mathbb{R}}(\check{F})\|_{L_{w_\gamma}^1(\mathbb{R}_+)},$$

where $L_{w_\gamma}^1(\mathbb{R}_\pm)$ is the w_γ -weighted L^1 -space on \mathbb{R}_\pm . Here we recall that $W_{-\gamma}^{\mathbb{R}}$ is a Fourier multiplier of an even or an odd function on \mathbb{R} . Therefore, $W_{-\gamma}^{\mathbb{R}}(\check{F})(x) = \pm W_{-\gamma}^{\mathbb{R}}(F)(-x)$ and thus,

$$\|e^{2\rho x} W_{-\gamma}^{\mathbb{R}}(\check{F})\|_{L_{w_\gamma}^1(\mathbb{R}_+)} = \|e^{-2\rho x} W_{-\gamma}^{\mathbb{R}}(F)\|_{L_{w_\gamma}^1(\mathbb{R}_-)}.$$

Hence, it follows that

$$\|W_{-\gamma}^{\mathbb{R}}(F)\|_{L_{w_\gamma}^1(\mathbb{R}_-)} \leq \|e^{-2\rho x} W_{-\gamma}^{\mathbb{R}}(F)\|_{L_{w_\gamma}^1(\mathbb{R}_-)} \sim \|W_{-\gamma}^{\mathbb{R}}(F)\|_{L_{w_\gamma}^1(\mathbb{R}_+)}.$$

Then we obtain that

$$\|f\|_{L^1(\Delta)} \leq c \sum_{\gamma \in \Gamma} \|W_{-\gamma}^{\mathbb{R}}(F)\|_{L_{w_\gamma}^1(\mathbb{R})}.$$

For the converse, first we note that for $0 \leq \gamma \leq \gamma_\alpha$, if $-n < \gamma \leq -n + 1$, then

$$F^{(n)}(x) = \int_x^\infty \frac{d^n}{dx^n} (e^{\rho x} A(x, y)) dy,$$

because $\frac{d^k}{dx^k} (e^{\rho x} A(x, y)) \Big|_{y=x} = 0$ for $0 \leq k \leq n - 1$ (see (1)) and thereby, $|W_{-\gamma}^{\mathbb{R}}(e^{\rho x} A(x, y))| \leq e^{2\rho y} (\operatorname{th} y)^{2\alpha-\gamma}$. Since $e^{2\rho s} (\operatorname{th} s)^{2\alpha+1} \sim \Delta(s)$, we see that

$$\begin{aligned} \int_0^\infty |W_{-\gamma}^{\mathbb{R}}(F)(x)| (\operatorname{th} x)^\gamma dx &\leq c \int_0^\infty |f(s)| \left(\int_0^s |W_{-\gamma}^{\mathbb{R}}(e^{\rho x} A(x, s))| (\operatorname{th} x)^\gamma dx \right) ds \\ &\leq c \int_0^\infty |f(s)| \Delta(s) ds = \|f\|_{L^1(\Delta)}. \end{aligned} \quad (17)$$

Since $\|W_{-\gamma}^{\mathbb{R}}(F)\|_{L_{w_\gamma}^1(\mathbb{R}_-)} \leq c \|W_{-\gamma}^{\mathbb{R}}(F)\|_{L_{w_\gamma}^1(\mathbb{R}_+)}$, the converse follows. Hence we can obtain the following.

Theorem 4.1. For $f \in L^1(\Delta)$, it follows that

$$\|f\|_{L^1(\Delta)} \sim \sum_{\gamma \in \Gamma} \|W_{-\gamma}^{\mathbb{R}}(F)\|_{L_{w_\gamma}^1(\mathbb{R})}. \quad (18)$$

We recall that $\gamma_\alpha = \alpha + 1/2$ is the maximum in Γ and rewrite $W_{-\gamma}^{\mathbb{R}}(F)$ as $W_{\gamma_\alpha - \gamma}^{\mathbb{R}} \circ W_{-\gamma_\alpha}^{\mathbb{R}}(F)$. Since $|W_{\gamma_\alpha - \gamma}^{\mathbb{R}} \circ W_{-\gamma_\alpha}^{\mathbb{R}}(F)| \leq W_{\gamma_\alpha - \gamma}^{\mathbb{R}}(|W_{-\gamma_\alpha}^{\mathbb{R}}(F)|)$, we have

$$\begin{aligned} \int_0^\infty |W_{-\gamma}^{\mathbb{R}}(F)(x)|w_\gamma(x)dx &\leq \int_0^\infty W_{\gamma_\alpha - \gamma}^{\mathbb{R}}(|W_{-\gamma_\alpha}^{\mathbb{R}}(F)|)(x)w_\gamma(x)dx \\ &\leq \int_0^\infty |W_{\gamma_\alpha}^{\mathbb{R}}(F)|(x)\tilde{W}_{\gamma_\alpha - \gamma}(w_\gamma)(x)dx, \end{aligned}$$

where $\tilde{W}_{\gamma_\alpha - \gamma}$ is a fractional integral defined by (12). Since $\tilde{W}_{\gamma_\alpha - \gamma}((\text{th}x)^\gamma) \sim (\text{th}x)^{\gamma_\alpha}$ when x is small, it follows that

$$\|f\|_{L^1(\Delta)} \sim \|W_{-\gamma_\alpha}^{\mathbb{R}}(F)\chi_1\|_{L_{w_{\gamma_\alpha}}^1(\mathbb{R})} + \sum_{\gamma \in \Gamma} \|W_{-\gamma}^{\mathbb{R}}(F)(1 - \chi_1)\|_{L^1(\mathbb{R})},$$

where $\chi_1(x)$ is the characteristic function of $[0, 1]$. In particular, if $f(x)$ is supported on $[0, R]$, then $F = W_+^1(f)$ is also supported on $[0, R]$ and

$$\|f\|_{L^1(\Delta)} \sim c_R \|W_{-\gamma_\alpha}^{\mathbb{R}}(F)\|_{L_{w_{\gamma_\alpha}}^1(\mathbb{R})}.$$

We shall introduce a real Hardy spaces $H^p(\Delta)$, $p > 0$. For $\phi \in C_c^\infty(\Delta)$ with $\int_{-\infty}^\infty \phi(x)\Delta(x) = 1$, we define a dilation ϕ_t , $t > 0$, of ϕ as

$$\phi_t(x) = \frac{1}{t\Delta(x)}\Delta\left(\frac{x}{t}\right)\phi\left(\frac{x}{t}\right),$$

which keeps the $L^1(\Delta)$ -norm of ϕ , and by using this dilation, we define the radial maximal operator M_ϕ by $M_\phi(f)(x) = \sup_{t>0} |f * \phi_t(x)|$. We set

$$H^p(\Delta) = \{f \in L_{\text{loc}}^1(\Delta) ; M_\phi(f) \in L^p(\Delta)\}$$

and $\|f\|_{H^1(\Delta)} = \|M_\phi(f)\|_{L^p(\Delta)}$. Then it follows from [3, §4] that $H^p(\Delta) = L^p(\Delta)$ for $1 < p < \infty$ and $H^1(\Delta) \subset L^1(\Delta)$. We now apply the formula (15) to $f * \phi_t = W_+^1(W_+^1(f * \phi_t)) = W_+^1(F \circledast W_+^1(\phi_t))$, where \circledast denotes the convolution on \mathbb{R} . Then, since $W_{-\gamma}^{\mathbb{R}}(F \circledast W_+^1(\phi_t)) = W_{-\gamma}^{\mathbb{R}}(F) \circledast W_+^1(\phi_t)$ and the Euclidean Fourier transform $\tilde{W}_+^1(\phi_t)$ of $W_+^1(\phi_t)$ has the same properties of the Fourier transform $\tilde{\psi}(t\lambda)$ of a Euclidean dilation ψ_t with non-vanishing moment (see [3, §3]). Therefore, by taking the supremum over $t > 0$ and

integrating with respect to $\Delta(x)dx$, we see that $\|M_\phi(f)\|_{L^1(\Delta)}$ is bounded by $\sum_{\gamma \in \Gamma} \|M^\mathbb{R}(W_{-\gamma}^\mathbb{R}(F))\|_{L_{w_\gamma}^1(\mathbb{R})}$, where $M^\mathbb{R}$ is a Euclidean radial maximal operator. Then it follows from (18) that

$$\|f\|_{H^1(\Delta)} \leq c \sum_{\gamma \in \Gamma} \|W_{-\gamma}^\mathbb{R}(F)\|_{H_{w_\gamma}^1(\mathbb{R})},$$

where $H_{w_\gamma}^1(\mathbb{R})$ is the w_γ -weighted H^1 -space on \mathbb{R} (see [8, Chap.6]). For the converse, we note that $\|W_{-\gamma}^\mathbb{R}(F)\|_{H_{w_\gamma}^1(\mathbb{R})} \sim \|\sup_{t>0} W_{-\gamma}^\mathbb{R}(F) \circledast W_+^1(\phi_t)\|_{L_{w_\gamma}^1(\mathbb{R})} = \|\sup_{t>0} W_{-\gamma}^\mathbb{R}(F \circledast W_+^1(\phi_t))\|_{L_{w_\gamma}^1(\mathbb{R})} \leq c \|\sup_{t>0} |f * \phi_t|\|_{L^1(\Delta)} = \|f\|_{H^1(\Delta)}$ similarly as in (17). Therefore, we can deduce that

Theorem 4.2. *For $f \in H^1(\Delta)$, it follows that*

$$\|f\|_{H^1(\Delta)} \sim \sum_{\gamma \in \Gamma} \|W_{-\gamma}^\mathbb{R}(F)\|_{H_{w_\gamma}^1(\mathbb{R})}. \quad (19)$$

We here define a norm $\|f\|_{H_0^1(\Delta)}$ as

$$\|f\|_{H_0^1(\Delta)} = \sum_{\gamma \in \Gamma} \|W_{-\gamma}^\mathbb{R}(F)\|_{H^1(\mathbb{R})}$$

and denote by $H_0^1(\Delta)$ the set of all $f \in L_{\text{loc}}^1(\Delta)$ satisfying $\|f\|_{H_0^1(\Delta)} < \infty$. Clearly, it follows that

$$H_0^1(\Delta) \subset H^1(\Delta)$$

and moreover, since $C(\lambda + i\rho)^{-1} = O(|\lambda|^{\alpha+1/2})$,

$$\|f\|_{H_0^1(\Delta)} \sim \|M_{C(\lambda+i\rho)^{-1}} F\|_{H^1(\mathbb{R})}, \quad (20)$$

where $M_{C(\lambda+i\rho)^{-1}}$ is the Fourier multiplier corresponding to $C(\lambda + i\rho)^{-1}$.

Remark 4.3. The right hand sides of (19) and (20) can be characterized in terms of Triebel-Lizorkin spaces $F_{1,2}^s$ on \mathbb{R} . Therefore, by taking the inverse W_-^1 , we can pull back some properties of $F_{1,2}^s$ to Jacobi analysis, such as atomic decompositions and interpolations, which will be investigated in the forthcoming papers.

5 Poisson maximal operator

The Poisson kernel p_t , $t > 0$, is a function on \mathbb{R}_+ whose Jacobi transform is given as $\hat{p}_t(\lambda) = e^{-t\sqrt{\lambda^2 + \rho^2}}$, $\lambda \in \mathbb{C}$. We define the Poisson maximal operator M_P by

$$M_P(f)(x) = \sup_{t>0} |f * p_t(x)|.$$

Then M_P is bounded on $L^p(\Delta)$ for $1 < p < \infty$ and satisfies the weak type L^1 estimate with respect to $\Delta(x)dx$ (see [1], [5], [6]). When $p = 1$, we can prove that M_P is bounded from $H^1(\Delta)$ to $L^1(\Delta)$. Since the proof is essentially same as in [3, Theorem 7.7], we shall give a sketch of the proof.

For $f \in H^1(\Delta)$ we put $F = W_+^1(f)$. In what follows we regard functions on \mathbb{R}_+ as even functions on \mathbb{R} denoted by the same symbol. Then for each $\gamma \in \Gamma$, $W_{-\gamma}(F)$ belongs to $H_{w_\gamma}^1(\mathbb{R})$. Since $f * p_t = W_-^1 \circ W_+^1(f * p_t) = W_-^1(F \circledast W_+^1(p_t))$, applying (15) and taking the supremum over $t > 0$, we can deduce that

$$\|M_P(f)\|_{L^1(\Delta)} \leq c \sum_{\gamma \in \Gamma} \|M_{\mathbb{R}}(W_{-\gamma}(F))\|_{L_{w_\gamma}^1(\mathbb{R})},$$

where $M_{\mathbb{R}}$ is a maximal operator on \mathbb{R} defined by

$$M_{\mathbb{R}}(H)(x) = \sup_{t>0} |H \circledast W_+(p_t)(x)|.$$

Therefore, to prove the $(H^1(\Delta), L^1(\Delta))$ -boundedness of M_P , it is enough to show the $(H_{w_\gamma}^1(\mathbb{R}), L_{w_\gamma}^1(\mathbb{R}))$ -boundedness of $M_{\mathbb{R}}$ for each γ . Let $H \in H_{w_\gamma}^1(\mathbb{R})$. We denote a $(1, \infty, 2)$ -atomic decomposition of H as

$$H = \sum_i \lambda_{\gamma,i} A_{\gamma,i} \tag{21}$$

where $\lambda_{\gamma,i} \geq 0$, $A_{\gamma,i}$ is a $(1, \infty, 2)$ -atom on \mathbb{R} supported on $B_{\gamma,i} = B(x_{\gamma,i}, r_{\gamma,i})$ and

$$\left\| \sum_i \lambda_{\gamma,i} r_{\gamma,i}^{-1} \chi_{B_{\gamma,i}} \right\|_{L_{w_\gamma}^1(\mathbb{R})} \leq \|H\|_{H_{w_\gamma}^1(\mathbb{R})} \tag{22}$$

(see [8, Chap. 8]). To prove the $(H_{w_\gamma}^1(\mathbb{R}), L_{w_\gamma}^1(\mathbb{R}))$ -boundedness of $M_{\mathbb{R}}$, we shall determine a shape of $M_{\mathbb{R}}(A)(x)$ for each $(1, \infty, 2)$ -atom A on \mathbb{R} . We may suppose that A is centered, that is, A is supported on $[-r, r]$. As in [3, Lemma 7.8], we see that $M_{\mathbb{R}}$ is dominated by the Hardy-Littlewood maximal operator. Thereby, $M_{\mathbb{R}}$ is bounded on $L^2(\mathbb{R})$ and $\int_{|x|<2r} |M_{\mathbb{R}}(A)(x)|^2 dx \leq \|M_{\mathbb{R}}(A)\|_2^2 \leq c\|A\|_2^2 \leq cr^{-1}$. If $x \geq 2r$, as in [3, Lemma 7.9], we see that $M_{\mathbb{R}}(A) \leq c \frac{r^{1/2}}{|x-r|^{3/2}}$. Then, combining these results, we obtain that

$$\begin{aligned} M_{\mathbb{R}}(A)(x) &\leq M_{\mathbb{R}}(A)(x)\chi_{B(0,2r)}(x) + cr^{1/2}|x|^{-3/2}\chi_{B(0,2r)^c}(x) \\ &\leq ca(x) + c \sum_{k=2}^{\infty} r^{-1} 2^{-3k/2} \chi_{B(0,2^k r)}(x), \end{aligned} \tag{23}$$

where $a \geq 0$, a is supported on $B(0, 2r)$ and $\|a\|_{L^2(\mathbb{R})} \leq r^{-1/2}$. Especially, it follows from (21) that

$$M_{\mathbb{R}}(H)(x) \leq c \sum_i \lambda_{\gamma,i} \left(a_{\gamma,i}(x) + \sum_{k=2}^{\infty} r_{\gamma,i}^{-1} 2^{-3k/2} \chi_{B(x_{\gamma,i}, 2^k r_{\gamma,i})}(x) \right), \quad (24)$$

where $a_{\gamma,i} \geq 0$ is supported on $B(x_{\gamma,i}, 2r_{\gamma,i})$ and $\|a_{\gamma,i}\|_{L^2(\mathbb{R})} \leq r_{\gamma,i}^{-1/2}$. Therefore, it follows from [8, Lemmas 4 and 5 in Chap. 8] and (22) that

$$\begin{aligned} \|M_{\mathbb{R}}(H)\|_{L^1_{w_{\gamma}}(\mathbb{R})} &\leq \left\| \sum_i \sum_{k=1}^{\infty} \lambda_{\gamma,i} r_{\gamma,i}^{-1} 2^{-3k/2} \chi_{B(x_{\gamma,i}, 2^k r_{\gamma,i})} \right\|_{L^1_{w_{\gamma}}(\mathbb{R})} \\ &\leq c \left\| \sum_i \sum_{k=1}^{\infty} \lambda_{\gamma,i} r_{\gamma,i}^{-1} 2^{-k/2} \chi_{B(x_{\gamma,i}, r_{\gamma,i})} \right\|_{L^1_{w_{\gamma}}(\mathbb{R})} \quad (25) \\ &\leq c \left\| \sum_i \lambda_{\gamma,i} r_{\gamma,i}^{-1} \chi_{B(x_{\gamma,i}, r_{\gamma,i})} \right\|_{L^1_{w_{\gamma}}(\mathbb{R})} \\ &\leq c \|H\|_{H^1_{w_{\gamma}}(\mathbb{R})}. \end{aligned}$$

Hence $M_{\mathbb{R}}$ is bounded from $H^1_{w_{\gamma}}(\mathbb{R})$ to $L^1_{w_{\gamma}}(\mathbb{R})$.

Theorem 5.1. M_P is bounded from $H^1(\Delta)$ to $L^1(\Delta)$.

6 Littlewood-Paley g -function

The Littlewood-Paley g -function $g(f)$ is defined as

$$g(f)(x) = \left(\int_0^{\infty} \left| t \frac{\partial}{\partial t} f * p_t(x) \right|^2 \frac{dt}{t} \right)^{1/2}.$$

Then g is bounded on $L^p(\Delta)$ for $1 < p < \infty$ and satisfies the weak type L^1 estimate with respect to $\Delta(x)dx$ (see [1], [5], [6]). We put $F = W^1_+(f)$ and $K_t = t(\partial/\partial t)p_t$. Since $t(\partial/\partial t)f * p_t = W^1_-(W^1_+(f * K_t)) = W^1_-(W^1_+(f) \circledast W^1_+(K_t)) = W^1_-(F \circledast W_+(K_t))$, it follows that

$$g(f)(x) = \left(\int_0^{\infty} \left| W^1_-(F \circledast W^1_+(K_t))(x) \right|^2 \frac{dt}{t} \right)^{1/2}. \quad (26)$$

We here define

$$g_{\mathbb{R}}(H)(x) = \left(\int_0^{\infty} |H \circledast W_+(K_t)(x)|^2 \frac{dt}{t} \right)^{1/2}. \quad (27)$$

Proposition 6.1. *Let notation be as above. Then*

$$\|g(f)\|_{L^1(\Delta)} \leq c \sum_{\gamma \in \Gamma} \|g_{\mathbb{R}}(W_{-\gamma}^{\mathbb{R}}(F))\|_{L^1_{w_{\gamma}}(\mathbb{R})}.$$

Proof. We apply the formula (15) to (26). Since $W_{-\gamma}^{\mathbb{R}}(F \circledast W_+^1(K_t)) = W_{-\gamma}^{\mathbb{R}}(F) \circledast W_+^1(K_t)$, we see that

$$\begin{aligned} g(f)(x) &\leq c\Delta(x)^{-1} \left(\sum_{\gamma \in \Gamma_0} (\text{th}x)^{\gamma} g_{\mathbb{R}}(W_{-\gamma}^{\mathbb{R}}(F))(x) \right. \\ &\quad \left. + \sum_{\gamma \in \Gamma_1} (\text{th}x)^{\gamma} \int_x^{\infty} g_{\mathbb{R}}(W_{-\gamma}^{\mathbb{R}}(F))(s) A_{\gamma}(x, s) ds \right). \end{aligned} \quad (28)$$

We take the integration of the right hand side with respect to $\Delta(x)dx$. Since $A_{\gamma}(x, s)$ satisfies the property (iii) of Theorem 3.6, it follows that the Δ -integral is dominated by $\|g_{\mathbb{R}}(W_{-\gamma}^{\mathbb{R}}(F))\|_{L^1_{w_{\gamma}}(\mathbb{R})}$. \square

Now we shall consider the $(H^1(\Delta), L^1(\Delta))$ -boundedness of g . Let $f \in H^1(\Delta)$ and put $F = W_+(f)$. For each $\gamma \in \Gamma$, $W_{-\gamma}^{\mathbb{R}}(F)$ belongs to $H^1_{w_{\gamma}}(\mathbb{R})$. Hence, Proposition 6.1 and (18) imply that g is of type $(H^1(\Delta), L^1(\Delta))$ provided that $g_{\mathbb{R}}$ is of type $(H^1_{w_{\gamma}}(\mathbb{R}), L^1_{w_{\gamma}}(\mathbb{R}))$ for each $\gamma \in \Gamma$. In what follows we shall prove that $g_{\mathbb{R}}$ is bounded from $H^1_{w_{\gamma}}(\mathbb{R})$ to $L^1_{w_{\gamma}}(\mathbb{R})$.

Let $H \in H^1_{w_{\gamma}}(\mathbb{R})$. Then it has a $(1, \infty, 1)$ -atomic decomposition: $H = \sum_i \lambda_{\gamma, i} A_{\gamma, i}$, which satisfies (22). Similarly as in the case of M_P in §5, we shall determine a shape of $g_{\mathbb{R}}(A)(x)$ for each $(1, \infty, 1)$ -atom A on \mathbb{R} . We may suppose that A is centered, that is, A is supported on $[-r, r]$, $\|A\|_{\infty} \leq (2r)^{-1}$ and $\int_{-\infty}^{\infty} A(x) x^k dx = 0$ for $k = 0, 1$.

Proposition 6.2. *$g_{\mathbb{R}}$ is L^2 bounded on \mathbb{R} .*

Proof. For $H \in L^2(\mathbb{R})$,

$$\begin{aligned} \|g_{\mathbb{R}}(H)\|_{L^2(\mathbb{R})}^2 &= \int_0^{\infty} \|H \circledast W_+(K_t)\|_{L^2(\mathbb{R})}^2 \frac{dt}{t} = \int_0^{\infty} \|\tilde{H} \cdot W_+(K_t)^{\sim}\|_{L^2(\mathbb{R})}^2 \frac{dt}{t} \\ &= \int_0^{\infty} \|\tilde{H}(\lambda) \cdot t \sqrt{\lambda(\lambda + 2i\rho)} e^{-t\sqrt{\lambda(\lambda + 2i\rho)}}\|_{L^2(\mathbb{R})}^2 \frac{dt}{t} \\ &= \int_{-\infty}^{\infty} |\tilde{H}(\lambda)|^2 \left(\int_0^{\infty} t |\lambda(\lambda + 2i\rho)| e^{-2t\Re\sqrt{\lambda(\lambda + 2i\rho)}} dt \right) d\lambda \\ &= \int_{-\infty}^{\infty} |\tilde{H}(\lambda)|^2 \left(\int_0^{\infty} t r e^{-2t\sqrt{r} \cos(\theta/2)} dt \right) d\lambda \\ &\leq c \int_{-\infty}^{\infty} |\tilde{H}(\lambda)|^2 d\lambda = c \|H\|_{L^2(\mathbb{R})}^2, \end{aligned}$$

where we set $\lambda(\lambda + 2i\rho) = re^{i\theta}$ and we used the fact that $\Re(\lambda(\lambda + 2i\rho)) = r \cos \theta \geq 0$ and $\cos(\theta/2) = \sqrt{(\cos \theta + 1)/2} \geq 1/\sqrt{2}$. \square

In particular, we have

$$\int_{|x| \leq 2r} g_{\mathbb{R}}(A)^2(x) dx \leq \|g_{\mathbb{R}}(A)\|_{L^2(\mathbb{R})}^2 \leq c \|A\|_{L^2(\mathbb{R})}^2 \leq cr^{-1}. \quad (29)$$

Next we shall obtain an estimate of $g_{\mathbb{R}}(A)$ for $|x| > 2r$. We recall that

$$\begin{aligned} W_+(K_t)(x) &= te^{\rho x}(\partial/\partial t)W_+(p_t)(x) = te^{\rho x}(\partial/\partial t)F_{p_t}^0(x) \\ &= Cte^{\rho x}(\partial/\partial t)\left(t(t^2 + x^2)^{-1/2}K_1(\rho(t^2 + x^2)^{1/2})e^{\rho(t^2 + x^2)^{1/2}} \cdot e^{-\rho(t^2 + x^2)^{1/2}}\right), \end{aligned}$$

where K_{ν} is the modified Bessel function (see [1, p. 289]), which satisfies $(d/dx)^k K_{\nu}(x) = O(x^{-1/2-k}e^{-x})$ if $x \rightarrow \infty$, and $O(x^{-\nu-k})$ if $x \rightarrow 0$.

Lemma 6.3. *Let notation be as above.*

- (g₁) : $W_+(K_t)(x) \leq ct(t^2 + x^2)^{-3/4}$ if $t^2 + x^2 \geq 1$,
- (l₁) : $W_+(K_t)(x) \leq ct(t^2 + x^2)^{-1}$ if $t^2 + x^2 \leq 1$,
- (g₂) : $(d/dx)^2(W_+(K_t))(x) \leq ct(t^2 + x^2)^{-7/4}$ if $t^2 + x^2 \geq 1$,
- (l₂) : $(d/dx)^2(W_+(K_t))(x) \leq ct(t^2 + x^2)^{-2}$ if $t^2 + x^2 \leq 1$,
- (g₃) : $(d/dx)^2(W_+(K_t))(x) \leq ct^{-2}(t^2 + x^2)^{-1}$ if $t^2 + x^2 \geq 1$.

Proof. Except (g₃), all estimates follow from the asymptotic behavior of $W_+(K_t)(x)$. As for (g₃), as a function $t \in \mathbb{R}_+$, $t^{2l}e^{-\rho(t^2+x^2)^{1/2}}$, $l \in \mathbb{R}$, has the maximum $O(|x|^l e^{-\rho x})$ at $t \sim |x|^{1/2}$. Then (g₃) follows from (g₂). \square

Lemma 6.4. *Let notation be as above and suppose $|x| \geq 2r$. Then $|A \circledast W_+(K_t)(x)|$ is dominated by*

$$G_r(t, x) = c \begin{cases} t(t + |x|)^{-3/2} & \text{if } t + |x| \geq 1 \\ t(t + |x|)^{-2} & \text{if } t + |x| \leq 1 \\ r^2 t^{-2}(t + |x|)^{-2} & \text{if } t + |x| \geq 1 \\ r^2 t^{-1}(t + |x|)^{-2} & \text{if } t + |x| \leq 1. \end{cases} \quad \begin{matrix} (G_1) \\ (L_1) \\ (G_3) \\ (L_2) \end{matrix}$$

Proof. Let $|y| \leq r$. Since $|x| \geq 2r$, $|x - y| \leq |x| + r \leq 3|x|/2$ and $|x - y| \geq |x| - r \geq |x|/2$, that is, $|x - y| \sim |x|$ and $t + |x - y| \sim t + |x|$. Therefore, since $A \circledast W_+(K_t)(x) = \int_{-\infty}^{\infty} A(y)W_+(K_t)(x - y)dy$ and $\|A\|_{L^1(\mathbb{R})} = 1$, (G₁) and (L₁) follow from (g₁) and (l₁) in Lemma 6.3 respectively. Since A satisfies the

moment conditions, it follows that $B(x) = \int_{-\infty}^x \int_{-\infty}^u A(v)dvdu$ is supported on $[-r, r]$, $\|B\|_\infty \leq 2r$, and thereby $\|B\|_{L^1(\mathbb{R})} \leq 4r^2$. Since integration by parts implies that $A \circledast W_+(K_t)(x) = \int_{-\infty}^\infty B(y)(d/dy)^2(K_t(x-y))dy$, (G_3) and (L_2) follow from (g_3) and (l_2) in Lemma 6.3 respectively. \square

We return to the estimate of $g_{\mathbb{R}}(A)(x)$ for $|x| \geq 2r$. Since

$$g_{\mathbb{R}}(A)(x) \leq \left(\int_0^\infty G_r(t, x)^2 \frac{dt}{t} \right)^{1/2} \quad (30)$$

(see (27)), applying Lemma 6.4, we have the following.

Case I: $r \geq 1$. Since $|x| \geq 2$, we can apply (G_1) and (G_3) in Lemma 6.4. Then $g_{\mathbb{R}}(A)^2(x)$ is dominated by

$$c|x|^{-3} \int_0^{\sqrt{r}} t dt + cr^4|x|^{-4} \int_{\sqrt{r}}^\infty t^{-5} dt \leq cr|x|^{-3} + cr^2|x|^{-4} \leq cr|x|^{-3}.$$

Case II: $r < 1$. When $|x| \geq 2$, we can use the same argument in Case I and obtain $g_{\mathbb{R}}(A)^2(x) \leq cr|x|^{-3}$. We suppose that $|x| \leq 1$. Then, if $t \leq 1$, we can use (L_1) and (L_2) , and if $t \geq 1$, we can use (G_3) . Hence, $g_{\mathbb{R}}(A)^2(x)$ is dominated by

$$c|x|^{-4} \int_0^r t dt + cr^4|x|^{-4} \int_r^1 t^{-3} dt + cr^4|x|^{-4} \int_1^\infty t^{-5} dt \leq cr^2|x|^{-4} \leq cr|x|^{-3}.$$

Therefore, in both cases we can deduce that

$$\left(\int_0^\infty G_r(t, x)^2 \frac{dt}{t} \right)^{1/2} \leq cr^{1/2}|x|^{-3/2} \quad \text{if } |x| \geq 2r. \quad (31)$$

Finally, combining (29) and (31), we see that

$$\begin{aligned} g_{\mathbb{R}}(A)(x) &\leq g_{\mathbb{R}}(A)(x)\chi_{B(0,2r)}(x) + cr^{1/2}|x|^{-3/2}\chi_{B(0,2r)^c}(x) \\ &\leq ca(x) + c \sum_{k=2}^{\infty} r^{-1} 2^{-3k/2} \chi_{B(0,2^k r)}(x), \end{aligned} \quad (32)$$

where $a \geq 0$, a is supported on $B(0, 2r)$ and $\|a\|_{L^2(\mathbb{R})} \leq r^{-1/2}$. Hence (23) also holds for $g_{\mathbb{R}}(A)$. Therefore, the same arguments used for M_P yields that $g_{\mathbb{R}}$ is bounded from $H_{w_\gamma}^1(\mathbb{R})$ to $L_{w_\gamma}^1(\mathbb{R})$ for each $\gamma \in \Gamma$.

Theorem 6.5. g is bounded from $H^1(\Delta)$ to $L^1(\Delta)$.

7 Lusin area function

We retain the notation used in the previous section. We define the Lusin area function $S(f)$ as an analogue of the classical theory (cf. [5, p.314]). Let $B(t) = [0, t]$ and $\chi_{B(t)}$ the characteristic function of $B(t)$. We put $|B(t)| = \int_0^t \Delta(x)dx$. We define the Lusin area function $S(f)$ as

$$S(f)(x) = \left(\int_0^\infty \frac{1}{|B(t)|} \chi_{B(t)} * \left| f * t \frac{\partial}{\partial t} p_t \right|^2(x) \frac{dt}{t} \right)^{1/2}.$$

As shown in [5], S is bounded on $L^2(\Delta)$. We also define a modified area function $S_\Theta(f)$ as

$$S_\Theta(f)(x) = \left(\int_0^\infty \frac{1}{|B(t)|} \int_0^\infty \Theta(x, y) T_x \chi_{B(t)}(y) \left| f * t \frac{\partial}{\partial t} p_t(y) \right|^2 dy \frac{dt}{t} \right)^{1/2}, \quad (33)$$

where $\Theta(x, y)$ is the even function on \mathbb{R}^2 , which is defined on $\mathbb{R}_+ \times \mathbb{R}_+$ as

$$\Theta(x, y) = \begin{cases} \frac{\Delta(y)}{\Delta(x)} \left(\frac{\text{th}x}{\text{thy}} \right)^{2\gamma_\alpha} & \text{if } y \geq x \\ \frac{\Delta(y)^2}{\Delta(x)^2} & \text{if } y < x. \end{cases}$$

We note that $\Theta(x, y) \geq 1$ if $y \geq x \geq 0$ and $\Theta(x, y) < 1$ if $y \geq x \geq 0$ and moreover, for all $0 \leq \xi \leq \gamma_\alpha$, we see that for $x, y \in \mathbb{R}_+$,

$$\Theta(x, y) \frac{\Delta(x)^2}{\Delta(y)} \left(\frac{\text{thy}}{\text{th}x} \right)^{2\xi} \leq \begin{cases} \Delta(x) \left(\frac{\text{th}x}{\text{thy}} \right)^{2(\gamma_\alpha - \xi)} \\ \Delta(y) \left(\frac{\text{thy}}{\text{th}x} \right)^{2\xi} \end{cases} \leq \min\{\Delta(x), \Delta(y)\}. \quad (34)$$

We shall consider $(H^1(\Delta), L^1(\Delta))$ -boundedness of S_Θ . We recall that $t(\partial/\partial t)f * p_t = W^1(F \circledast W_+(K_t))$ and we apply the formula (15) to (33). Here we introduce the operators $S_{\gamma, \mathbb{R}}$ for $\gamma \in \Gamma$ as follows; if $\gamma \in \Gamma_0$, then

$$\begin{aligned} S_{\gamma, \mathbb{R}}(H)(x) &= \left(\int_0^\infty \frac{1}{|B(t)|} \int_0^\infty \Theta(x, y) T_x \chi_{B(t)}(y) \right. \\ &\quad \left. \times (\text{thy})^{2\gamma} \Delta(y)^{-2} |H \circledast W_+(K_t)(y)|^2 \Delta(y) dy \frac{dt}{t} \right)^{1/2} \end{aligned} \quad (35)$$

and if $\gamma \in \Gamma_1$, then

$$\begin{aligned} S_{\gamma, \mathbb{R}}(H)(x) &= \left(\int_0^\infty \frac{1}{|B(t)|} \int_0^\infty \Theta(x, y) T_x \chi_{B(t)}(y) (\text{thy})^{2\gamma} \Delta(y)^{-2} \right. \\ &\quad \left. \times \left| \int_y^\infty H \circledast W_+(K_t)(s) A_\gamma(y, s) ds \right|^2 \Delta(y) dy \frac{dt}{t} \right)^{1/2}. \end{aligned} \quad (36)$$

Then we see that the $L^1(\Delta)$ -norm of $S_\Theta(f)$ is dominated as

$$\begin{aligned} & \sum_{\gamma \in \Gamma} \|S_{\gamma, \mathbb{R}}(W_{-\gamma}^{\mathbb{R}}(F))\Delta\|_{L^1(\mathbb{R})} \\ &= \sum_{\gamma \in \Gamma} \|S_{\gamma, \mathbb{R}}(W_{-\gamma}^{\mathbb{R}}(F))(\operatorname{th} x)^{-\gamma}\Delta\|_{L_{w_\gamma}^1(\mathbb{R})} = \sum_{\gamma \in \Gamma} \|T_{\gamma, \mathbb{R}}(W_{-\gamma}^{\mathbb{R}}(F))\|_{L_{w_\gamma}^1(\mathbb{R})}, \end{aligned}$$

where

$$T_{\gamma, \mathbb{R}}(H)(x) = S_{\gamma, \mathbb{R}}(H)(x)(\operatorname{th} x)^{-\gamma}\Delta(x).$$

As in the case of $g_{\mathbb{R}}$, S_Θ is of type $(H^1(\Delta), L^1(\Delta))$ provided that $T_{\gamma, \mathbb{R}}$ is of type $(H_{w_\gamma}^1(\mathbb{R}), L_{w_\gamma}^1(\mathbb{R}))$ for each $\gamma \in \Gamma$. Therefore, to obtain the $(H^1(\Delta), L^1(\Delta))$ -boundedness of S_Θ , it is enough to prove that each $T_{\gamma, \mathbb{R}}$ is L^2 bounded on \mathbb{R} and it satisfies (30) for each centered $(1, \infty, 1)$ -atom A on \mathbb{R} . Actually, these facts yield (23) for $T_{\gamma, \mathbb{R}}$ as in the case of $g_{\mathbb{R}}$ and thereby, $T_{\gamma, \mathbb{R}}$ is of type $(H_{w_\gamma}^1(\mathbb{R}), L_{w_\gamma}^1(\mathbb{R}))$ as before.

Case of $\gamma \in \Gamma_0$: First we shall prove that $T_{\gamma, \mathbb{R}}$ is bounded on $L^2(\mathbb{R})$. Let $H \in L^2(\mathbb{R})$. We apply (34) in the integrand of $T_{\gamma, \mathbb{R}}(H)^2$ and take the integration over \mathbb{R}_+ with respect to $\Delta(x)dx$. Then, since

$$\frac{1}{|B(t)|} \int_0^\infty T_x \chi_{B(t)}(y) \Delta(x) dx = \frac{1}{|B(t)|} \int_0^\infty \chi_{B(t)}(x) \Delta(x) dx = 1, \quad (37)$$

it follows from Proposition 6.2 that

$$\begin{aligned} \|T_{\gamma, \mathbb{R}}(H)\|_{L^2(\mathbb{R})}^2 & \leq c \int_0^\infty \int_0^\infty |H \circledast W_+(K_t)(y)|^2 dy \frac{dt}{t} \\ & = c \int_0^\infty g_{\mathbb{R}}(H)^2(y) dy \leq c \|H\|_{L^2(\mathbb{R})}. \end{aligned}$$

Next we shall prove that $T_{\gamma, \mathbb{R}}$ satisfies (30). Let A be a $(1, \infty, 1)$ -atom on \mathbb{R} supported on $[-r, r]$ and let $H = A$ in (35). We suppose that $|x| \geq 2r$.

$A \circledast W_+(K_t)(y)$ is given by $\int_{-\infty}^\infty A(z) W_+(K_t)(y-z) dz$ and it follows that $|x-y| \leq t$ and $|z| \leq r$. Since $x = (x-y) + (y-z) + z$, $|x| \leq t + |y-z| + r \leq t + |y-z| + |x|/2$ and thus, $|x| \leq 2(t + |y-z|)$. Moreover, $|y-z| \leq |y| + |z| \leq t + |x| + r \leq t + 3|x|/2$. Hence it follows that $t + |x| \sim t + |y-z|$. Then, applying the arguments used in the proofs of Lemmas 6.3 and 6.4 to $A \circledast W_+(K_t)(y)$, we can deduce that $|A \circledast W_+(K_t)(y)| \leq cG_r(t, x)$. Since (34) and

$$\frac{1}{|B(t)|} \int_0^\infty T_x \chi_{B(t)}(y) \Delta(y) dy = \frac{1}{|B(t)|} \int_0^\infty \chi_{B(t)}(y) \Delta(y) dy = 1, \quad (38)$$

it follows that

$$T_{\gamma, \mathbb{R}}(A)(x) \leq c \left(\int_0^\infty G_r^2(t, x) \frac{dt}{t} \right)^{1/2}.$$

Case of $\gamma \in \Gamma_1$: First we shall prove that $T_{\gamma, \mathbb{R}}$ is bounded on $L^2(\mathbb{R})$. As in the previous case, first we apply (34) and take the integration over \mathbb{R}_+ with respect to $\Delta(x)dx$. Since $A_\gamma(x, s)$ is of the form $A_\gamma(x, s) = Q_\gamma(x, s)Z_\gamma(s - x)$ and satisfies the properties (i) and (ii) of Theorem 3.6, it follows that

$$\begin{aligned} & \int_0^\infty T_{\gamma, \mathbb{R}}(H)^2(x) dx \\ & \leq \int_0^\infty \int_0^\infty \left| \int_0^\infty H \circledast W_+(K_t)(s+y) \frac{(\text{th}y)^\xi}{\text{th}(s+y)} (\text{th}s)s^{-(1+\xi)} ds \right|^2 dy \frac{dt}{t}. \end{aligned}$$

When $0 < y < 1$ and $0 < s < 1$, it becomes

$$\begin{aligned} & \int_0^\infty \int_0^1 \left| \int_0^1 H \circledast W_+(K_t)(s+y) \frac{y^\xi}{(s+y)} s^{-\xi} ds \right|^2 dy \frac{dt}{t} \\ & = \int_0^\infty \int_0^1 \left| \int_0^{1/y} H \circledast W_+(K_t)((s+1)y)(s+1)^{-1}s^{-\xi} ds \right|^2 dy \frac{dt}{t} \\ & \leq c \|g_{\mathbb{R}}(H)\|_{L^2(\mathbb{R})}^2 \left(\int_0^\infty (s+1)^{-2}s^{-\xi} ds \right)^2 \leq c \|H\|_{L^2(\mathbb{R})}. \end{aligned}$$

Otherwise, the integral is dominated as

$$\begin{aligned} & \leq c \int_{-\infty}^\infty \left(\int_0^\infty g_{\mathbb{R}}(H)(s+y) Z_\gamma(s) ds \right)^2 dy \\ & \leq c \|g_{\mathbb{R}}(H)\|_{L^2(\mathbb{R})}^2 \left(\int_0^\infty Z_\gamma(s) ds \right)^2 \leq \|H\|_{L^2(\mathbb{R})}. \end{aligned}$$

Next we shall prove that $T_{\gamma, \mathbb{R}}$ satisfies (30) for a $(1, \infty, 1)$ -atom A on \mathbb{R} supported on $[-r, r]$. Let $|x| \geq 2r$ and let $H = A$ in (36). When $s \geq |x|$, it follows that $s \geq 2r$ and $|A \circledast W_+(K_t)(s)| \leq G_r(t, s) \leq G_r(t, |x|)$ by Lemma 6.4.

When $s \leq |x|$, we note that $A \circledast W_+(K_t)(s)$ is given by $\int_{-\infty}^\infty A(z)W_+(K_t)(s-z)dz$ and $t + |s-z| \sim t + |x|$. Actually, we may suppose that $|z| \leq r$, $|x-y| \leq t$, and $0 \leq y \leq s \leq x$. Since $x = (x-y) + (y-s) + (s-z) + z$, we see that $x \leq 2t + |s-z| + r \leq 2t + |s-z| + x/2$ and thus, $t+x \leq 4(t+|s-z|)$. Moreover, $t + |s-z| \leq t + s + |z| \leq t + 3x/2 \leq 3(t+x)/2$. Therefore, it follows from the arguments used in the proofs of Lemmas 6.3 and 6.4 yield

that $A \circledast W_+(K_t)(s) \leq cG_r(t, |x|)$ again. Hence it follows from the property (iv) of $A_\gamma(x, s)$ (see Theorem 3.6) that

$$\int_y^\infty A \circledast W_+(K_t)(s) A_\gamma(y, s) ds \leq cG_r(t, x) \int_y^\infty A_\gamma(x, s) ds \leq cG_r(t, x).$$

Then (34) and (38) imply that

$$T_{\gamma, \mathbb{R}}(A)(x) \leq c \left(\int_0^\infty G_r^2(t, x) \frac{dt}{t} \right)^{1/2}.$$

We can obtain that $T_{\gamma, \mathbb{R}}$, $\gamma \in \Gamma$, satisfy the desired properties.

Theorem 7.1. S_Θ is bounded from $H^1(\Delta)$ to $L^1(\Delta)$.

Remark 7.2. Since $a, b > \frac{ab}{a+b}$ and $a+b \leq (1+a)(1+b)$ for $a, b \geq 0$, it easily follows that $\Theta(x, y) \geq \frac{(\text{th}x)^{4\gamma_\alpha}}{\Delta(x)^2} \cdot (\text{th}y)^{2\gamma_\alpha} \Delta(y)$. Therefore, the operator defined by

$$\frac{(\text{th}x)^{2\gamma_\alpha}}{\Delta(x)} \left(\int_0^\infty \frac{1}{|B(t)|} \chi_{B(at)} * \left| w_{\gamma_\alpha} \sqrt{\Delta} \cdot f * t \frac{\partial}{\partial t} p_t \right|^2(x) \frac{dt}{t} \right)^{1/2}$$

is also bounded from $H^1(\Delta)$ to $L^1(\Delta)$.

Now we shall consider a modified operator S_{a, γ_α} for $a > 0$:

$$S_{a, \gamma_0}(f)(x) = \left(\int_0^\infty \frac{1}{|B(t)|} \chi_{B(at)} * \left| w_{\gamma_\alpha} \cdot f * t \frac{\partial}{\partial t} p_t \right|^2(x) \frac{dt}{t} \right)^{1/2}.$$

By this modification, $\Theta(x, y)$ and $T_x \chi_{B(t)}$ in (33) is changed to $(\text{th}y)^{2\gamma_\alpha}$ and $T_x \chi_{B(at)}$ respectively, and thereby, (34) becomes

$$\begin{aligned} W(x, y) &= (\text{th}y)^{2\gamma_\alpha} \frac{\Delta(x)^2}{\Delta(y)} \left(\frac{\text{th}y}{\text{th}x} \right)^{2\gamma} \\ &= \frac{\Delta(x)}{\Delta(y)} \left(\frac{\text{th}y}{\text{th}x} \right)^{2\gamma_\alpha} \Delta(x) (\text{th}y)^{2\gamma} (\text{th}x)^{2(\gamma_\alpha - \gamma)} \leq c e^{2\rho(x-y)} \Delta(x). \end{aligned}$$

In the previous arguments for S_Θ , which yields Theorem 7.1, the key process is that (34) yields (37), (38) respectively. Therefore, if we can deduce that

$$J(y) = \frac{1}{|B(t)|} \int_{T_x y \leq at} W(x, y) dx \sim 1, \quad (34a)$$

$$I(x) = \frac{1}{|B(t)|} \int_{T_x y \leq at} W(x, y) dy \sim 1, \quad (34b)$$

then we can apply the previous arguments without changes.

In what follows we suppose that $0 < a \leq 1/3$.

Case I. $x \leq y$: Since $W(x, y) \leq \Delta(x) \leq \Delta(y)$, it follows that $I(x)$ and $J(y)$ are dominated by $\frac{|B(at)|}{|B(t)|} \leq 1$.

Case II. $x > y$: Since $a \leq 1/3$, it follows that

$$J(y) \leq e^{2\rho at} \frac{|B(at)|}{|B(t)|} \sim e^{2\rho t(2a-1)} \leq 1.$$

As for $I(x)$, we consider separately the following cases.

Case II(1). $x > y, y \geq 1$: Since $W(x, y) \leq ce^{2\rho(x-y)} \cdot \frac{\Delta(x)}{\Delta(y)} \cdot \Delta(y) \leq ce^{4\rho(x-y)} \Delta(y)$, it follows that $I(x) \leq ce^{4\rho at} \frac{|B(at)|}{|B(t)|} \sim e^{2\rho t(3a-1)} \leq 1$.

Case II(2). $x > y, y < 1, t \geq 1$: Since $x - at < y < x + at$, it follows that $x < y + at < 1 + at$ and thus, $\Delta(x) \leq \Delta(1 + at) \sim e^{2\rho at}$. Hence

$$I(x) \leq c \frac{\Delta(x)}{|B(t)|} \int_{x-at}^{x+at} e^{2\rho(x-y)} dy = c \frac{e^{4\rho at}}{|B(t)|} \sim e^{2\rho t(2a-1)} \leq 1.$$

Case II(3). $x > y, y < 1, t \leq 1, t \geq x/2$: Since $W(x, y) \leq ce^{2\rho(x-y)} \Delta(x) \leq ce^{2\rho(x-y)} \Delta(2t)$, it follows that

$$I(x) \leq ce^{2\rho at} \frac{\Delta(2t)}{|B(t)|} \int_{x-at}^{x+at} dy = ce^{2\rho at} \frac{\Delta(2t)t}{|B(t)|} \sim 1.$$

Case II(4). $x > y, y < 1, t \leq 1, t < x/2$: Since $x/2 \leq x - t \leq x - at \leq y$ and $x \leq y + at \leq y + t < 2$, we see that $\frac{\Delta(x)}{\Delta(y)} \leq \frac{\Delta(x)}{\Delta(x/2)} \sim 1$ and $W(x, y) \leq ce^{2\rho(x-y)} \cdot \frac{\Delta(x)}{\Delta(y)} \cdot \Delta(y) \leq ce^{2\rho at} \Delta(y)$. Hence $I(x) \leq ce^{2\rho at} \frac{|B(at)|}{|B(t)|} \sim 1$.

Thereby, $I(x)$ and $J(y)$ satisfy the desired estimates (34a) and (34b). Hence, by using the same arguments in the proof of Theorem 7.1, we can obtain the following.

Theorem 7.3. *For $0 < a < 1/3$, S_{a,γ_α} is bounded from $H^1(\Delta)$ to $L^1(\Delta)$.*

Acknowledgments. A part of this work was announced in the Proceedings of the Forth German-Japanese Symposium on Infinite Dimensional Harmonic Analysis, World Scientific (2008). The final version was accomplished, while I am visiting Peking University. I am grateful to School of Mathematical Sciences, especially, Professors L. Peng, H. Liu and J. Liu for helpful discussions and hospitality.

References

- [1] J.-Ph. Anker, Sharp estimates for some functions of the Laplacian on noncompact symmetric spaces, *Duke Math. J.* 65(1992), 257–297.
- [2] M. Flensted-Jensen, Paley-Wiener type theorems for a differential operator connected with symmetric spaces, *Ark. Mat.* 10(1972), 143–162.
- [3] T. Kawazoe, Real Hardy spaces on real rank 1 semisimple Lie groups, *Japanese J. Math.* 31(2005), 281–343.
- [4] T. Koornwinder, A new proof of a Paley-Wiener type theorem for the Jacobi transform, *Ark. Mat.* 13(1975), 145–159.
- [5] N. Lohoue, Estimation des fonctions de Littlewood-Paley-Stein sur les variétés Riemanniennes à courbure non positive, *Ann. scient. Éc. Norm. Sup.* 20(1987), 505–544.
- [6] E.M. Stein, Topics in Harmonic Analysis. Related to the Littlewood-Paley Theory, *Annals of Mathematics Studies* 63, Princeton University Press, New Jersey, 1970.
- [7] E.M. Stein, Harmonic Analysis. real-variable methods, orthogonality, and oscillatory integrals, *Princeton Mathematical Series* 43, Princeton University Press, New Jersey, 1993.
- [8] J-O. Strömberg and A. Torchinsky, Weighted Hardy Spaces, *Lecture Notes in Mathematics* 1381, Springer-Verlag, Berlin, 1989.
- [9] A. Torchinsky, Real-variable Methods in Harmonic Analysis, *Pure and Applied Mathematics* 123, Academic Press, Orlando, Florida, 1986.
- [10] G. Warner, Harmonic Analysis on Semi-Simple Lie Groups II, Springer-Verlag, Berlin, 1972.

Department of Mathematics
Keio University at Fujisawa
5322 Endo, Fujisawa, Kanagawa
252-8520 Japan

E-mail address: kawazoe@sfc.keio.ac.jp