H'-estimates of Littlewood-Paley and Lusin
functions for Jacobi analysis
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Abstract

For o > 8 > —1/2 let A(z) = (2shz)?**1(2chz)??*! denote a
weight function on Ry and L'(A) the space of integrable functions on
Ry with respect to A(x)dz, equipped with a convolution structure.
For a suitable ¢ € L'(A), we put ¢¢(z) =t ' A(x) LAz /t)p(z/t) for
t > 0 and define the radial maximal operator My as a usual manner.
We introduce a real Hardy space H'(A) as the set of all locally inte-
grable functions f on R4 whose radial maximal function My(f) be-
longs to L'(A). In this paper we shall obtain a relation between H'(A)
and H'(R). Indeed, we characterize H'(A) in terms of weighted H'
Hardy spaces on R via the Abel transform of f. As applications of
H'(A) and its characterization, we shall consider (H'(A), L'(A))-
boundedness of some operators associated to the Poisson kernel for
Jacobi analysis; the Poisson maximal operator Mp, the Littlewood-
Paley g-function and the Lusin area function S. They are bounded
on LP(A) for p > 1, but not true for p = 1. Instead, Mp, g and a
modified S, - are bounded form H'(A) to LY(A).

1 Introduction

Let « > 3 > —1/2 and A(z) = A, z(z) = (2shz)?*+(2chz)??+! for z €
R, = [0,00). We define L'(A) as the space of integrable functions on R,
with respect to A(z)dz. Let ¢(z) = ¢3”(z) denote the Jacobi function of
order («, (3), which satisfies a product formula:
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Then by using the kernel K (x,y, z), the generalized translation is defined as

/f K(,y,2)A(2)dz

and the convolution on L'(A) is given by

frg(x /f Tog(y) Ay)dy.

We call harmonic analysis associated to (R, A, %) Jacobi analysis. It is not
of homogeneous type, because A(x) has an exponential growth order e*?
when = goes to oo whereas p = a+ + 1 > 0. In this paper we treat some
integral operators associated to the Poisson kernel p; (see §5): For a suitable
function f on R, the Poisson maximal operator is given by

Mp(f) = sup f * pi(z)

t>0

and the Littlewood-Paley g-function g(f) is defined by

o0 2 Jt\ 1/2
o@ = ([ gt em )
Then Mp and g satisfy the maximal theorem; they are bounded on LP(A) for
1 < p < co and satisfy a weak type L! estimate with respect to A(z)dz (see
[1], [5], [6]). The aim of this paper is to find a subspace H'(A) C L'(A), from
which Mp and g are strongly bounded to L!'(A). Furthermore, we define a
modified Lusin area function S, (f), a > 0 and v > 0, as

SunlN@) = (| rpcson * wn -t f

where w,(z) = (thx)?, B(t) = [0,t], xB) is the characteristic function of
B(t) and |B(t)| the volume of B(t) with respect to A(z)dz. For p > 1, LP-
boundedness of S, was investigated in [5]. Here we show that if a < 1/3,
then S, q41/2 is bounded from H'(A) to L'(A).

This paper is organized as follows. Basic notations are given in §2 and the
Abel transform W1(f) is defined by using fractional integral operators for
Jacobi analysis. In §3 we shall obtain a key relation between the fractional
derivatives for Jacobi analysis and the ones for the classical Euclidean anal-
ysis, especially, we can rewrite the inverse operator W! of Wi in terms of
the Euclidean fractional derivatives on R, (see Theorem 3.5). We recall the
definition of the real Hardy space H'(A) in §4, which was introduced in [3].
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We characterize H'(A) by using a Euclidean maximal function of W (f) via
the key relation obtained in §3. Then it becomes clear that H'(A) is related
with Euclidean weighted Hardy spaces H.(R) (see (19)). In §5 we consider
the H'-estimate of the Poisson maximal operator Mp (see Theorem 5.1) and
in §6 the one of the g-function (see Theorem 6.5). In §7 we treat the modified
area function S,, and obtain that S, 44+1/2, 0 < a < 1/3, is bounded from
H'(A) to L'(A) (see Theorem 7.2).

2 Notations

Let « > > —1/2 and A = A, 3 be as before. We put
p=a+B+1 and 7, =a+1/2
Let LP(A) denote the space of functions f on R, with finite LP-norm:

T / F(@)PA()de

and L{ (A) the space of locally integrable functions on R,. We regard often

functions on R, as even functions on R, which are denoted by the same
symbol. Let C2°(A) be the space of compactly supported C* even functions
on R. For f € C°(A) we define the Jacobi transform f(A), A € R, of f by

f) = /0 ) f(@)pr(x)A(x)dz.

We refer to [4] for some basic properties of f: The map f — f is a bijection
of C2°(A) onto the space of entire holomorphic even functions of exponential
type, and the inverse transform is given as

f(a) = / T FNea@)|CN)] A,

where C'()) is Harish-Chandra’s C-function (cf. [4, (2.6)]). Furthermore, the
map f — f extends to an isometry of L2(A) onto L2(R,,|C(A)|~2d)). We
recall that, as a function of A\, ¢,(z) is the Fourier transform of a function
A(x, ), which is compactly supported on [0, z]:

A@)or(e) = [ cos g (z. ).
0
Then the Abel transform W3 (f), s € R, is defined by for z € Ry,

WS ()() = e+l / " F) Az, )dy.
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By the integral formula of A(z,y) (see [4, (2.18)], it follows that for y > x,
Alz,y) < ce?(thy)(th(y — )~ ?(th(z +y)*7* < ce™(thy)* (1)

and
W@y < ellfllziay.

As shown in [4, §6], W7 is explicitly given by a composition of the generalized
Weyl type fractional operators on R, :

Wi (F)(@) = e Wo g0 Wiy s(f)(@) = e W),

where for ¥y > —n, n=20,1,2,---,

We(f)(s) = Fil_lj;) / Oo( d(ci;>n (1)) (chot — chos)*d(chot).  (2)

Hence, the inverse operator W2 of W7 is given by

WE(f) = W2i5112 0 Weiag) (e f) = WE(e™™" f). (3)

We recall (cf. [4, (3.7)]) that W3 (f) € C*(R) if f € C(A) and the Eu-
clidean Fourier transform W$(f)~ on C of W3 (f) coincides with the Jacobi
transform f on C+isp of f: For A € C,

~

f +isp) = WE(F)™(A).
Hence, if we put f(z) = f(—z), then

WE(f) = W2(e P f) = WE(e ). (4)

3 A key relation

We shall rewrite the fractional differential operator W! on R, in terms of
Euclidean fractional operators W on R, (see (5) below).

First we shall obtain some basic properties of W7 on Ry (see (2)) and
W7 on Ry, which is defined by

R (_1)n - (n) +n—1
= —— t)(t — s)* dt 5
WENE) = i [ I70E=9) o)
for Ry > —n, n=0,1,2,---. In what follows we denote for z,v > 0,

o lchoz)”

A9(z) = (shox)® and VI(z) = ( A(z)



Lemma 3.1. Leto >0 and 0 < p < 1. For F € C*(R;) and x > 0,
W2,(F)(@) = V(@) (WE,(F)(@) (thow) + / F(s) Az, 5)ds),
whete A (x,s) is of the form Af(z,s) = Qu(x,8)Z,(s — ) and
(1) Zu(x) =e 7"a™",

(i) |Q(a,5)| < e HTD"

(tho(s + x))r+t
(131) / Al (z,s)dx < ¢ for all s > 0,
0

for s > x,

(iv) / Af(x,8)ds < ¢ for all z > 0.

chos — chox

Proof. Let K (,s) = ( )_“. We note that

W, (F)(z) = /OO F'(s)(chos — chox) " ds

= [T P~y Ky + [R5 (x,5) — Ki(a,2)

(s —x)m
= WZ,(F)(2) K} (2, 2)

ds

p(Kg(,s) - Kf:(x,x))) |
(

s — )M

+/wa(s)(—ddKj(x,s)+

= WEL(F)(x)KZ(x, x)+ /00 F(s)aj(x,s)ds.

i

Since K7 (x,z) = (oshoz)™, it follows that A7(z)(o~ " chox) *K](x,z) =
Tt th(a:—i—s)_lle_“ it follows
chos — chox th(s — z) ’

that |af(z, s)| ~ tho(z + 5)~H) e=ons (tho(s — x))~*. Therefore, if we put
o _ o -1 o _ o —u —ou(s—x
AM(LE,S) - vu(x) au(a:,s) - Qu(ﬂf,S) ' (th(s - .17)) e pls)
=Qp(v,8)Z; (s — ),

then we can easily deduce that

(thox)*. Moreover, since

(thoz)?
(tho(x + s))nt1

|Qu(z, s)| < ¢

(tha)H

I ticul o <
n particular, [QF (7, s)| < ¢ s

for < s. Hence (iii) and (iv) are obvious

from the following lemma. ]



Lemma 3.2. We suppose that 0 < p < 1 and for x < s, |g(x,s)| <

th
( tlf) th(s — ) - (s — x)~UFW . Then it follows that

/ g(x,s)dr < c¢ and / g(x,s)ds < c.
0 x

Proof. As for the integral over x, since |g(z,s)| < (thz)*~!, it follows that,

when s is small, lg(z,8)dx < ¢ | 2 (s —x)"dr < ¢, and when s is

0 0
large, the integral is dominated by

1 s—1 s
c/ o' Hs — x) Hdr + c/ (s — )~ WDdy 4 c/ (s —z) Hdx
0 1 s—1
1 00 1
Sc/ "1 — 2) " dx + c/ = gy 4 c/ x Hdr < c.
0 1 0

On the other hand, as for the integral over s, when = > 1, / lg(x, s)|ds <

o)
c/ ths - s™"ds < ¢, and when 0 < z < 1, the integral is dominated by
0

2z+1 o
c:z:“/ s (s — x) M ds + ca” / (s — ) UM ds

§c/ sHs—1)""+ c/ (s — 1)~ WHHds < c.

1 2

This completes the proof. O
Lemma 3.3. Let 0 <pu < 1. For f € C*(Ry) and g € C*(R,),

WE (fg)(x) = WE (f / £(5) By, 5)ds

where By, (z,s) = u(g(xr) — g(s))(s — z)~ WY, In particular, when g(x) =
Gim(x) = (thoz) ™ (ochz)™ for 1,m > 0, it follows that

Bgl m u(x7 S) = gi-1 m(x)Allm “(CL’, 3) + gl+1,m+2<x)"4l2,m,,u(x7 8)7

where A x,8) is of the form A}, (x,s) = Qj,, (¢, 8)Z],, (s —x) and

(i) Zimu(2) = (thoz)z™ Y |QL, (z,5)] <c,

th
(i1) 2y p(2) = e (thow)e™ 0D, |Q2,, (. 8)] < e

im (T, 8) satisfies (iii) and (iv) in Lemma 3.1. More-
(x,s) also satisfies these properties.

lmu(

In particular, each A

over, (thox)" A7, |
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!/
Proof. Since (fg)'(s) = f'(s)g(x) + (f(s)(g(s) - g(a:))) , the formula follows
by integrating by parts. Let g = ¢;,, and 0 = 1 without loss of generality.
Then it follows that
By, u(z,8) = ,u((thx)’l(chx)’m — (tha) Y (chs)™™

+ (tha) ! (chs)™ — (ths)_l(chs)_m> (5 — )+
11— (chaz)™/(chs)™

1,m>

—p(tha) " (cha) ™ - (the) L (s — 2)"
() ) () e B I Oy

() AL (225) + Bs1.m2() A2,

. 1 (ch:)_m ;(chs)m thﬁg-_g:@) | this_—xx) T
 tssmsa(e) () ety UL L (O o8 20y

% e—m(s—a:) th(S B l’)(
S —X
:gl—l,m(x) ) Qll,m,p<x7 S>Zl1,m,,u(s - fL’) + gl+1,m+2<x) ' Ql%m,,u(xa S)Zl%m,,u(s - l’)

s—x) M

Clearly, Q}mu(x) and Zf’m’ﬂ(x,s) satisfy the desired properties. Hence, it

follows from Lemma 3.2 that A}, (,s) satisfies (iii) and (iv) in Lemma

th tha)*
3.1. Moreover, since (thx)“_l—x < (thz)
ths ths

also satisfies (iii) and (iv). O

for s > x, (thx)*'A7, (z,5)

Lemma 3.4. Let 0 >0,0< pu<1. For F € C*(R,) and G € C*(Ry)
We (FG)(z) = WEL(F)(x)SG’M(x) +/ F(s)Tgu(x,s)ds,

where

Sau(z) = Vi (2)G(z)(thox)”,

I

Tou(r,s) = Vi(x) (BG,M(QC, s)(thox)" + G(s) A7 (w, s))



Proof. It follows from Lemmas 3.1 and 3.3 that W7 (FG)(z) equals to
V() <WR (FG)(z)(thox)* + / (FG)(s)AS(x, s)ds)
=V () (WEL(F)( )G(x)(thox)" + /OOF s)Bg u(z, s)ds - (thox)*

+/ F(s)G(s )A;(a:,s)ds).

x

]

Now we suppose that v = n+pu, n =0,1,2,--- and 0 < p < 1. We
shall rewrite the fractional derivative W7, in terms of Euclidean fractional
derivatives WLRW, vyel'. When y=0and v =n=1,2,---, it easily follows

that
n 2n—k

=33 & g ip (@ WEL(F) (),

k=1 p=n

where go, 1, = (thox)~"®(chox)™. Hence, when 0 < pu < 1 and v =
n + u, it follows that

n 2n—k

=50 S W (g - WEF)) (@),

k=1, p=n

where 1, = 1if n > 1 and 1,, = 0 if n = 0. Here we apply Lemma 3.4 by
substituting F' and G' with WX, (F) and gan_, respectively. Then WE (F)
in Lemma 3.4 corresponds to VV]R (i (F) and

Soon_pp(T) = V() G2n—kp(x)(tho)”
= CaV‘;(:E)(tha:t)k+“(chaa7)_(p_”),

Asfor T,, - pw(,8), s > x,since By, .(2,8) = cGon—r—1pAs, jpu(T,8)+
ggn_k+17p+2A2n_k7p’#(x,s) by Lemma 3.3, it follows that the first term of
T, (x,s) is equal to

92n—k,p>~
V() By, _y u(, 8) (thow) =V (2)(tha)" (chz) ="

x ((thay AL,y () + (eha) 2(tha) A3,y (2, 5))
and the second term of Ty, , .(z,s) is equal to

V(@) gon—rp(s) AL (2, 5)

=V?(z)(thox chaz)~P~ ")MAU S,).
0 (x)(thox)* - (cha)” PR o(s,2)



Here we define Al

i
2n—k,p,p> ¢ 2n—k,p,u

and Z¢

ok 001 =0,1,2 as

70 9on— kp( ) o
AQn kpu('r 5) Gon_ kp( )A ( )
an kp( ) o Ol
PR )Q (z,8) Z;(s —x)
- QQn kp,u(x S)Zgnfk,p,u(s - l’),
A;n kp,u(xﬂ 8) (thx>ﬂ+1A%n kpu(x?s)

= (tha)" " Qg (1:8) * Zop_p (5 — )
= Q%n—k‘,p,u(x 3)Z2ln kp,u(s — ),
A%n kpu(x, s) = (cha) " ?(thx)* A3 _ kpu(x s)
= (chz) 7 (tha)" T Q3 (¥, 8) * Ziy_p (5 — )

= an—k,p,u<x7 S)Zgn—k,p,,u(s - C(])

Then, by noting Lemmas 3.1, Lemma 3.2 and 3.4, we can easily deduce that
each A} satisfy the properties (iii) and (iv) in Lemma 3.1 and moreover,

2n—k,p,u
each Z! is dominated by (thox)z~**1 and

2n—k,p,p

(thox)*

0
Qo p (5 8)| < CW’

Qb 9)] < c(thow)" (6)
(thaac)“
’Q2n kp,u( )‘ — thos :

(thox)"

holds for all : = 0,1,2. Hence,

, we can obtain the following.

In particular, [Q, (7. 5)] < ¢

[Sady]

changing the notations by removing

Proposition 3.5. Letv=n+pu>0,n=0,1,2,--- and 0 < u < 1. Then
for F € C*(R;) and x> 0,

n 2n—k

W (F) (@) =vi) S S &, (ca(thax)’fwchax)*@*n) W2y (F) ()
+(thoz)*(chz) == /OO WE (F)(5)Agn_kpu(z, 8)ds (7)

where each Agp_kp (2, s) is of the form
A2n—k’,p7u($a s) = QZn—k,pu(fE» 5)Z2n—k7p,u(3 — )

9



and

(1) Zon—kppu(x) < C(tho’x)w_(ﬂ'f‘l)’

(i) |Qan—kppul(r,s)| < C((tthhaai))# for s >z,

(vi1) / Aop—tppul(x,s)dx < ¢ for all s > 0,
0
(1v) / Aop—tppulz,s)ds < c for all x > 0.

Next we shall consider a composition of W2 and W! ,. We suppose that
v=n+pand v = +n', where n,n’ =0,1,2,--- and 0 < p, ¢/ < 1. When
one of u and p' is equal to 0, we can easily deduce the final theorem form
Proposition 3.5. Hence we may assume that u, / > 0 in the following. We

1
note that W2, o W , = W? o(W? oW!,)and W2, = - W!,. Thereby,

~ chx
it follows from Proposition 3.5 that

n
nCl

v =

W2, o WL, (F)(z) = Z WWE(V'H)(F)(@
I=1n
Z nZH A ni the right hand side of (7)
_l chx 2n—1 Vil k - -~ changed as o, pu,n — 1,0/, n' +1)°
- n n! 41 p=n

Hence in order to calculate W2 oW! , we first apply W? ., to each term in the
right hand side and then use Lemma 3.4 to rewrite it in terms of Euclidean
fractional derivatives. Therefore, it is enough to estimate the following terms
Lij,i,j=1,2: Fory=k+p and v =p —n,

1
(chx)2n—

= WE# (92u'+2l—v,u’+2n+vWiRy(F)(x))
= WI,R(,Y+#)(F)($)S<I) + /00 WERW(F)(S)T(J:, s)ds

= I11(z) + L2(2),

I@) = w2, ( V(@) (cha) " (tha) WE (F)())

where
S(CL’) = vi<x)921/+2l—’y,z/+2n+v(x> (thx)u,
T(:C’ S> = vi(x> <B921//+2l—'y,u/+2n+vuu'('r7 8)(thx>/‘

+ (thl’)“_lggyl+21_7,y’+2n+v(x)Ai('Ta 8))

10



and for v = k and v = p — n, by substituting As,_, (2, s) by A,/ (z,s),
1
|/|/ 2 —_—
[< ) ((Chl’)2n IVV—H( )
< (tha) () [T WE (F)(5) Ay )

_ E“(gzyf+21_w+2n+v / h W2 (F)(s) Ay o (a, s)ds)
—w, / TWE (F)(s) A, e s)ds ) (2)S )

+ / OO( / W (F)(0) Ao (s )t ) T, 5)ds
= Io1(x) + Ia(z).

I1; and I5: By the process which yields Proposition 3.5 from Lemma 3.3, it
follows that

(ch2x)™
(chz)?n’ (®)
T(z,5) = V3 )V, (2)(thz)*" = (cha) ™ (9)

X (A(;,#(% s) + A#,#(m, s) + Afw(x, s)>7

S(x) = Vi (2)V,(2)(the) "7 (cha) ™

where each A? |, satisfies the corresponding properties (i)~ (iv) in Proposition
3.5. Hence, IH and /5 can be written as

o (ch2z)" g
(Chx)Q —(rtp

La(2) = V2(2) VY, (2) (tha)" - (thar)™ / WE (F)(s) A, (. 5)ds,

Li(x) = V3 (2)V, (@) (tha)* ") (cha) ™ ) (F) () (tha)*,

where each A, ,(x,s) satisfies the properties (i)~ (iv).
Ipy: We define ¢, (z) = Q, (2, 7)(thz)'~# which is bounded because of
(6), and we put

ha)#
R%u’(% s) = (Q%u/(x? 5) — %q%u’(x)> Z%u’(s — )

= (Quute.s) - L) 7 (s ),
Then

Qy ()
Ay (@, s) = Vt/fls( Zy (s —

2) + Ropu(e,5). (10)

11



Q@) (tha)”
: <

Since | ths Ise ths

(tha)*

2(e _ =14
g (th(s — x))*(s — x) and moreover,

d (th:r)“ 2 —(u'+2)
de,W (z,8) ~ hs (th(s — z)*(s — z)

+ (tha) 'th(s — 2)*(s — )", (11)
where the second term appears when x is small.
We here define 127 and I by replacing A, . (z,5) by (ths)™'Q, . (x)
Zy (s — x) and R, . (z, s) respectively (see (10)). Then Iy = I7 + I,
As for 17, tt follows from Lemma 3.3 that

and R, (z,z) = 0, it follows that |R, ,/(z,s)| <

/

1870) =W ([ WEP)Ehs) ™ Zps = s Qo)) (05(a)
W ([ WEE)6)th) - Z,e(s — 2)ds) (0)Q1r ) S)

/ / WR (F)(#)(tht) ™ - Zy (t — 5)dt - Bq._, (w,5)ds - S(x)
W ([ WEE)6)th) - 2,5 2)ds) (0)Qr () S()

¢
/ VVR t)(tht)~ (/ Zyw(t —8)Bq, .u(, s)ds)dt - S(z)
=Ji+ Jo.

To calculate J;, we take 6 > 0 such that WRZ, (s — x)‘ = 0, where WE is

the Riemann type fractional operator which is defined as
/ f(s )2~ 1ds. (12)

d
Then, since o —WRZ, (s — ) = W(;RZ (s — z), it follows that

s
WE( [ WEE)e) ) 2 o(s )i o)

—wE / W&(W&(F)(t)(tht)*)( JWEZ, (s — )ds )

- / h WE ) (W&(F)(t)(tht)—l) (YWEZ, (s — 2)ds

= [ WA (WEEO ) (52005 - 2)ds.

T

12



Hence, applying Lemma 3.3, the first term J; of IéQlZ becomes
W () hs) ™ Zya(s = s Qs()S (0

s [T WO By 15,0 Zols — ) Qe (0)S(0)
— W (P)EhS) ™ Zs = s Qs ) So)

/ / By u(8:1)Zgo(s = 2)ds ) dt - Qs 0(2)S )
= Ju + Jio.
For Jy1, substituting (8) and |Q., . (7)| < c(thz)*, we see that

(ths)_IZ%u’(S —1)- @y (z)S(x)

ho Htn
ScVE(x)V},,(x)(thx)Q(”_l)(chx)_”—(t ?)

Z’%HI(S — .ZU)
For Ji3, we note from Lemma 3.3 with [ = 1,m = 0 that |Bny-1 (s, )| <

1

7t th(t — s)(t — s)~®#*Y. When ¢t is small, we here take 0 < € <
- ths

min{l — g/, u} and let s=* < 2=+ (s — )=+ +< Then it follows that

t
L —/ By pu(5,6) Zy (s — )ds

t
1 /
N% / —(t—s)"(s—x) Hds

s
<; tim((t —x) —s) HsHeds = c;(t — x)~ W9
“txtte ), Lo e .
When ¢ is large and ¢ — x is small, since z is large, L is dominated by
t
/ (t—s)(s—a) ™ ds=(t—ax) T =1 and 2— /' —pu>0,

and when ¢ is large and t — x is large, L is dominated by

/t th(t —s) - (t — )" th(s — ) - (s — )"+ ds (13)
[ (e s>>““<1t<:s>> () () e
=(t —x) uu’+1/0 1+ 1—5) 1—|—ft—x)sd8'

13



1 1/2 1
Then, by dividing the last integral as / ds = / ds + / ds, we see that
0 0 1/2

L is dominated by (t — )=+ 4 (¢ — )=+ (¢ — )~ == Therefore,
substituting (8) and |Q, v (7)| < c(thx)*, we can find a £ > 0 such that

( /xt Blenty1 (8, 1) Zoy (5 — g;)d5> Q. (2)S(2)

SCV?,(Z’)V;(JZ) (thgp)Q(n—l) (Chx)—v(tht—x)gth(t . {L‘) (t . ZE)_(1+€).

We recall that the properties (iii) and (iv) follows from (i) and (ii). Hence
we can conclude that

Jy =V2(2)V, (2)(thaz) "D (chz) ™

(et [ W) (F)(5) A s)ds

T

+ (the)” / N WE (F)(8)4,(r,5)ds). (1)

where A, ,(x,s) and A,(z, s) satisfy the corresponding properties (i)~(iv) in
Proposition 3.5. To calculate J, we recall that |Q. . (7)| < c(thz)"'. Since
p' < 1, it follows that [Bg , u(z,s)| < cs”' (s — )™ for all small s, and
since v > 0, it follows that [Bg_ ,.(z,s)] < c(s — x)~ D for all z < 5. We
shall estimate the inside integral of Jo. When t is small, similarly as above,
we take 0 < ¢ < min{1 — ¢/, u} and let s ' < 27(s — x)*~'*<. Then the
inside integral of .J; is dominated by 27¢(t — 2)~(*~9. When ¢ is large, also
similarly as above, it is dominated by (t — z)~(*#) 4 (t — 2)~(+#) Hence,
substituting (8), we can find a & such that

(th)~! ( / t Z ot — 5)Bq. 4l s)ds) dt - S(x)

Y
~ Vz(x)Vi, (x)(thx)Z(”_l)(chx)_“%th(t —z)(t — x)_(Hf).

Therefore, Jo can be rewritten as the last term in (14).

14



As for I, we recall that R, (x,2z) = 0. Then it follows that

(@) / )R, (2, $)ds ) ()5 (x)
/ / :z;R (5. 1)dt) (s — ) ds - ()
/ /; diRv(Sa t)(s — x)‘“ds) dt - S(x)

= V3(2)V ( )(tha:) e lH"(Chx)_”cn(x) < (tha) ™
/ VVR / ddeW(s,t)(s — x)’“ds)dt.

We shall prove that M = (thz)" / dd R.(s,t)(s —x) "ds satisfies the prop-
T

erties (i) and (ii). We recall (11) and we consider separately the cases where
(a) t is small, (b) ¢ is large and ¢ — x is small, (c) t, t — x are large and x is
large, (d) t, t — z are large and x is small.

(a) When ¢ is small, M is dominated by

M t / ’ /
% (S“ (t—s) " (s—a) "+t —s) (s —x)” )ds = M; + M.
xH ¢ ’ xt /
Then M; < e (t—s) ™ (s—x)Hds < e (t — )@= As for M,
’ ptp’ =1

if p+p > 1, then My < pad (t—2)> = and p+p' —1, 2—p—p' > 0. If
p+p' <1, we take 0 < € < min{yu, ¢/} and let s#'~1 < g7H+e (s — x) T IFHFH e,
Then M, < cx?(t —x)te

t
(b) When ¢ is large and t — z is small, since x is large, M < c/ (t —
Wz — 8)Pds = c(t — @)@,

s)”

(t+x)/
(c) When ¢,t — x,x are large, we divide the integral M as / dz +

t
/ ds = M_ + M, . Similarly as (13), M_ is dominated by
(t+z)/2

1 1/2 (1—s5)"HsH g
(t —x) /0 (1+(t_$)(1_s))2ds§c(t—x) .

As for M, , by integration by part, it follows that M, is dominated by
t

t+ t—x\—H
R () (F0) " [ Bt (s =)

t+x)/2

15



Then the last integral is dominated as

t , t— —(1+p) [ )
/ (L (=)0 (s —2) s < () / (1+5)~ () gs,
(t+2)/2 2 0

Hence, it is easy to see that M, is dominated by c(t — z)~(0+#).
(d) When t,t — x are large and z is small, we divide the integral as

/ ds + / ds. Then the last integral satisfies the same estimate in (c)
T 1

t t
because / ds < / ds. On the other hand, the first one is dominated by
1 T

1
x“/ (3‘/_1(15 — 5)_(”“')(3 —x) "+ st (t — s)_(2+’/)(3 — x)_“) ds

=mq + mys.

1 t
As for my, we replace / ds < / ds and apply the same argument as

used for M; in (a). Then we can deduce that, if ©+ ¢/ > 1, then my; <
cxt Tt — )~ W) and, if g+’ < 1, then my < caf(t — 2)~F9 where
0 < e <min{y, p'}. As for msy, by replacing s* by 1, my is dominated by

)/ (t-a) , ,
oh(t — x) e / (1-— s)_(2+“ )s~hds < cat(t — x) T
0

because we may suppose that (1 —x)/(t —x) < 1/2.

Hence, in all cases M satisfies the desired properties (i) and (ii). There-
fore, I£ can be rewritten as the last term in (14).
Iyy: Last we shall estimate Ip;. Substituting (8) and changing the order of
integrations, it follows that

Iy (x / I/V]R /t A (s, )T (x, s)ds) dt
= V2(2)VL, () (the) trtr=2
x (thz)?" =D+ (chg)™ /oo WE (F)(t)A,.(x, t)dt,

where we denote each / Ay (s, )AL (2, 5)ds by A,(x,s). Since A, (s, t)

and A’ (x,s) satisfy the desired properties (i) and (i), it is easy to see
that A, (x,s) also satisfies the same properties. Therefore, 5, also can be
rewritten as the last term in (14).

Finally, we can obtain the following.
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Theorem 3.6. Let v =n+p and v/ =n'+ i/, where n,n’ =0,1,2, --- and
0 <p,pu <1. Then for FF € C*(R,),

(27 'ch2z)¥ (chz)”’
(sh2x)?¥(shx)?’

W2 o WL(F)(z) ~ ( 3 (tha) WE (F)(x)

v€Tlo

+ 3 (tha) / h WR (F)(s)A, (x, s)ds>,

vel

where g = {k+ p+ (|lpsw < k < n+n'} and Ty = {kk + p,k +
Wi <k <n+n'}. Foreachy ey, A (x,s) is of the form A,(z,s) =
Q+(z,5)Z,(s — ) and there exists 0 < & < 1 such that

(i) Zy(w) < e(tha)z™ Y,

g (thz)®
() 10:(e.9)] < (20

(7i1) / A (z,s)dx < c for all s >0,
0

for s >z,

(1v) / A (x,s)ds <c forall x> 0.

Let v = 8+ 1/2 and v/ = o — ( in Theorem 3.6. If we replace F
by e 7" F(x) and e’ F(x) respectively (see (4)) , then we can obtain the
following.

Corollary 3.7. For F € C*(R,),

W (F) (2) ~ Agx) (3 (thay (7)) (15)
+ 3 (thay / h W2 (F)()A, (. 5)ds)
N AQZ:) (g(thxweww&(ﬁ)(x) (16)
+ 3 (thay / h e WE (F)(s) A, (x, s)ds)

where I'; and A, (z,s) are same as in Theorem 3.6.

17



4 Real Hardy spaces

We keep the notations in the previous section. We put I' = I'y U T'; and for
each v € I we define
wy(x) = (the)?, z € Ry.

We regard often W&(F ) and w, on Ry as even functions on R. We suppose
that f € L'(A) and put F' = W(f). Since f = W! o W(f) = WL(F), it
follows from (15), (16) and the property (iii) of Theorem 3.6 that

R 2pz117R
11l ay < €D MIWE(F)ley, @) ~ DN WE ()|, @),

yerl’ yel

where L, (R.) is the w,-weighted L'-space on Ry. Here we recall that

Wﬂ is a Fourier multiplier of an even or an odd function on R. Therefore,

WR (F)(z) = +WE (F)(—z) and thus,

Y

1= WE (F)lley, @y = lle 2 WE (F)l|, -
Hence, it follows that

IWE (), oy < e WE (F)lley, oy ~ IWE (F)llzy, @)

U}—Y
Then we obtain that
111z a) < €D IWE (Pl @)-

yel

For the converse, first we note that for 0 < v <~,, if —n <y < —n+1,
then

o0 d'n,
F(n)@):/ %(ep%‘l(w,y))d%

k

d
because w(e”’fl(w,y))’ =0for 0 <k <n-—1(see (1)) and thereby,
y=z

[WE (er"A(z, y))| < e*¥(thy)?*~7. Since e*(ths)?**™ ~ A(s), we see that

/0 h (WE (F)(z)|(thz)dz < ¢ /0 h | f(s)|( /O s |W£(epfA(x,s))|(thx)vdx>ds
<c [T = [ flue, a7)

Since [[WE (F)llo, =) < c[[WE(F)l11, (r,). the converse follows. Hence
we can obtain the following.
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Theorem 4.1. For f € L'(A), it follows that

1 ey ~ D IWE (F) e, m)- (18)

yel’

We recall that v, = o+ 1/2 is the maximum in I and rewrite WE (F) as
W3 oWE (F). Since [WJ __ o WE (F)] <W WE. (F)|), we have

'Ya 'Y(‘

[ e < [ W, P

< / (W, () ()W (1) (),

where W,,__., is a fractional integral defined by (12). Since VVW]R _((thz)7) ~
(thz)’ when z is small, it follows that

ey ~ IWE, (F)xalle,, e+ D IWE(F)(T = 1)l

vyel

where x1(z) is the characteristic function of [0, 1]. In particular, if f(z) is
supported on [0, R], then F' = W1 (f) is also supported on [0, R] and

1 llz2a) ~ erllWE, (F)llzy,, @-

We shall introduce a real Hardy spaces HP(A), p > 0. For ¢ € C*(A)
with / o(x = 1, we define a dilation ¢;, t > 0, of ¢ as

) = 5 (1) (5)

which keeps the L'(A)-norm of ¢, and by using this dilation, we define the
radial maximal operator M, by My(f)(z) = sup;sg | f * ¢e(x)]. We set

HP(A) = {f € Li,.(8) ; My(f) € LP(A)}

and || f|laray = [[Mg(f)|lr(a). Then it follows from [3, §4] that HP(A) =
LP(A) for 1 < p < oo and H'(A) € L*(A). We now apply the formula
(15) to f ¢y = WEWL(f * ¢y)) = WH(F ® W{(¢:)), where ® denotes the
convolution on R. Then, since WE (F ® W{(¢)) = WE (F) ® W{(¢;) and
the Euclidean Fourier transform W (¢;) of W!(¢;) has the same properties
of the Fourier transform zﬁ(t)\) of a Euclidean dilation 1; with non-vanishing
moment (see [3, §3]). Therefore, by taking the supremum over ¢ > 0 and
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integrating with respect to A(z)dr, we see that |[My(f)|r1(a) is bounded
by > er ||MR(W§(F))||L11M(R), where M® is a Euclidean radial maximal
operator. Then it follow from (18) that

) < €Y IWE (F) g, @)1

U?»Y
yer
where H,, (R) is the w,-weighted H'-space on R (see [8, Chap.6]). For the
converse, we note that [WZE (F)[lmy_ @) ~ [ supyso WE (F) @ W) |1y, )
= [[supp WE (F & Wi(e))lo, @ < cllsupolf = éilla) = 1flma)

similarly as in (17). Therefore, we can deduce that

Theorem 4.2. For f € H'(A), it follows that

£l ~ D IWE (F) s, - (19)

yel’

We here define a norm || f|[ g3 (a) as

1 gy = D IWEF) ey

vel

and denote by Hj(A) the set of all f € L _(A) satisfying | fllazay < oo
Clearly, it follows that
Hy(A) € HY(A)

and moreover, since C(\ +ip)~! = O(|A|*F1/2),

£z ca) ~ I Moprin -1 Fl o) (20)
where Mg (yyip)-1 is the Fourier multiplier corresponding to C(A +ip)~*.
Remark 4.3. The right hand sides of (19) and (20) can be characterized in
terms of Triebel-Lizorkin spaces I}, on R. Therefore, by taking the inverse
W', we can pull back some properties of FY, to Jacobi analysis, such as
atomic decompositions and interpolations, which will be investigated in the
forthcoming papers.

5 Poisson maximal operator

The Poisson kernel p;, t > 0, is a function on R, whose Jacobi transform is
given as py(\) = e 'V A*+p? X\ € C. We define the Poisson maximal operator
Mp by

Mp(f)(x) = sup|f *pi(z)].

t>0
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Then Mp is bounded on LP(A) for 1 < p < oo and satisfies the weak type L!
estimate with respect to A(x)dzx (see [1], [5], [6]). When p = 1, we can prove
that Mp is bounded from H'(A) to L'(A). Since the proof is essentially
same as in [3, Theorem 7.7], we shall give a sketch of the proof.

For f € H'(A) we put F' = W(f). In what follows we regard functions
on R, as even functions on R denoted by the same symbol. Then for each
v € I, W_,(F) belongs to H,, (R). Since fxp, = W!oWL(f*p) =
WY(F®W}(p:)), applying (15) and taking the supremum over ¢ > 0, we can
deduce that

IMp(f)llzia) < e IIMe(W_y (F))lls, (2.

yerl

where My is a maximal operator on R defined by

Mg (H)(x) = sup [H @ W (pe)(x)].

t>0

Therefore, to prove the (H'(A), L'(A))-boundedness of Mp, it is enough to
show the (HlluW (R), Ly, (R))-boundedness of Mg, for each . Let H € HSUW (R).
We denote a (1,00, 2)-atomic decomposition of H as

H=Y AiA, (21)

where \,; >0, A, is a (1, 00, 2)-atom on R supported on B, ; = B(x,,7,)
and

| ZM,J{%XBW w,® < [ Hllm, @ (22)
(see [8, Chap. 8]). To prove the (H, (R),L,, (R))-boundedness of Mg, we
shall determine a shape of Mg(A)(z) for each (1,00,2)-atom A on R. We
may suppose that A is centered, that is, A is supported on [—r,r]. As in [3,
Lemma 7.8], we see that My is dominated by the Hardy-Littlewood maximal
operator. Thereby, Mg is bounded on L?(R) and / | Mg (A)(z)Pdz <

|z|<2r
|Mg(A)|3 < cl|All5 < er™'. If 2 > 27, as in [3, Lemma 7.9], we see that
1/2

Mr(A) <c Then, combining these results, we obtain that

|z — r[3/2
Mg(A)(z) < Mg(A)(x)xBo2)(T) + CT1/2|37|_3/2XB(0,2r)0(5U)

< ca(z)+ CZ 7‘71273]“/2)(3(0,2'@7«)(95): (23)
k=2

21



where a > 0, a is supported on B(0,2r) and ||a||r2@r) < 7~'/2. Especially, it
follows from (21) that

Ma(H)(@) < ¢ Ai(ar(@) Z 2 i (@) (24)

where a,; > 0 is supported on B(z,.,2r,,;) and ||| r2@) < r;}ﬂ. There-
fore, it follows from [8, Lemmas 4 and 5 in Chap. 8] and (22) that

1M ()1, ey < 1Y Z Mt 2 X (e ke s, @)

<c|| Z Z Ay, ZT—12 “2x B(r,i7,) ||L«1M(R) (25)

< CH Z A%ir%i XB(@y,i,.0)
i

< | Hlmy, w)

i, (R)

Hence Mpy is bounded from H}UW (R) to L, (R).

Theorem 5.1. Mp is bounded from H'(A) to L*'(A).

6 Littlewood-Paley g-function

The Littelwood-Paley g-function g(f) is defined as

o = ([ gt §)"

t
Then g is bounded on LP(A) for 1 < p < oo and satisfies the weak type L'
estimate with respect to A(x)dz (see [1], [5], [6]). We put F = Wi (f) and
K, = t(0/0t)p,. Since t(0/0t)f x py = WL o Wi(f x K;) = WHWL(f) ®
Wi(Ky)) = WHF ® Wi (K)), it follows that

2dt)1/2

o)) = ([ [ e Wi (26)

We here define

() = ([ 1@ W)@ PT) " @)
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Proposition 6.1. Let notation be as above. Then

||g ||L1 (A) < CZ ||g]R ||L1 (R)-

vyel

Proof. We apply the formula (15) to (26). Since WE (F ® W}(K;)) =
WE (F) @ WL(K,), we see that

g(N@) < @) (Y (the) ga(WE (F) (@) (28)
+ 3 (tha)? / r (WR (F))(S)A7($,s)ds>.

We take the integration of the right hand side with respect to A(z)dz. Since
A, (z,s) satisfies the property (iii) of Theorem 3.6, it follows that the A-
integral is dominated by ||gR(W&(F))||L11M (R)- O

Now we shall consider the (H'(A), L'(A))-boundedness of g. Let f €
H'(A) and put F' = W, (f). For each y € I', WE (F) belongs to H,, (R).
Hence, Proposition 6.1 and (18) imply that g is of type (H'(A), L'(A))
provided that gg is of type (H;}7 (R), L}UV (R)) for each v € I'. In what follows
we shall prove that gg is bounded from H,, (R) to L,, (R).

Let H € HiV(R). Then it has a (1,00, 1)-atomic decomposition: H =
> i Ay,iAy i, which satisfies (22). Similarly as in the case of Mp in §5, we
shall determine a shape of gr(A)(x) for each (1,00, 1)-atom A on R. We may
suppose that A is centered, that is, A is supported on [—7, 7], || Al < (2r)7!

and / A(z)zFdz = 0 for k=0, 1.

Proposition 6.2. gr is L? bounded on R.

Proof. For H € L*(R),

lgr(H)|72@) = 1 H @ W (Ko 72 ) 7 = [ W (K) ramy
0 0

= [ 1O /A i VR
—/ |H(\)[? (/ tyA(AJrzz'p)yeM\/M“Mdt) d\
- 0

[e.o]

= / |H(\)[? ( /0 tre—2WC°S<9/2>dt) d\

< o[ MNP = clHl g,
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where we set A\(\ + 2ip) = re?? and we used the fact that R(A\(\ + 2ip))

rcosf >0 and cos(0/2) = \/(cos +1)/2 > 1/+/2. E

In particular, we have
/|<2 9=(A)*(2)dz < ||gr(A) 2@ < cllAlTom < e (29)

Next we shall obtain an estimate of gg(A) for |z| > 2r. We recall that
Wi (K) () = te (0/ o)W (pi) (z) = te"(0/Ot) F,, (x)
_ Ctepx(a/at) (t(t2 + 1‘2)_1/2K1<p(t2 + m2)1/2)€;J(t2-i-9[:2)1/2 . e—p(tQ-i-xQ)l/Q)7

where K, is the modified Bessel function (see [1, p. 289]), which satisfies
(d/dx)*K,(z) = O(x=*7Fe=®) if 2 — oo, and O(z7**) if z — 0.

Lemma 6.3. Let notation be as above.

(g1) 1 Wo(K) () < ct(t? +a?) 3 if 2 + 2% > 1,

(L) Wo(K)(x) <ct(t®+2°) "t ift?2 + 22 < 1,

(92) = (d/dw)*(Wi(K))(x) < et(t® +a®) 7 if t? + a2 > 1,
(I) : (d/dz)*(Wi(K))(z) < ct(t® 4+ a2 if t2 + 2% < 1,
(g3):  (d/dz)2(Wo(K))(z) < et 2( + 22 if 2 + 22 > 1.

Proof. Except (g3), all estimates follow from the asymptotic behavior of
W (K;)(x). As for (gs), as a function ¢ € Ry, t¥eP*+"? | € R has the
maximum O(|z|'e=#%) at t ~ |x|*/2. Then (g3) follows from (gs). O

Lemma 6.4. Let notation be as above and suppose |x| > 2r. Then |A &
Wi (Ky)(z)| is dominated by

t(t + |z|) 7372 ift+ x| >1 G1)

(
Go(t2) = ¢ t(t+ |x|)~2 ift+ |z <1 ELl)
(

w

T2+ |z))72 aift 4 | > 1 Gs)
rt e+ |2))72 aift+ |x] < 1. Ly)

Proof. Let |y| < r. Since |z| > 2r, |z —y| < |z| +r < 3|z|/2 and |z — y| >
|z| —r > |z|/2, that is, |x —y| ~ |z] and t + |z —y| ~ t+ |z|. Therefore, since

A®Wo(Ki)(e) = [ AW (o~ p)dy and 4] pge) = 1, (G1) and
(Ly) follow from (g1) and (I;) in Lemma 6.3 respectively. Since A satisfies the
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moment conditions, it follows that B(z) = / / A(v)dvdu is supported
on [—r,r], |Blle < 2r, and thereby ||BHL1(R_) < 4r?. Since integration by
parts implies that A ® W, (K;)(z) = / B(y)(d/dy)*(K(z — y))dy, (G3)

and (Ls) follow from (g3) and (I3) in Lemma 6.3 respectively. O
We return to the estimate of gg(A)(z) for |z| > 2r. Since

)@ < ([ Garf)" (30

(see (27)), applying Lemma 6.4, we have the following,.
Case I: » > 1. Since |z| > 2, we can apply (G) and (G3) in Lemma 6.4.
Then gg(A)?*(z) is dominated by

VT )
c|;1:]_3/ tdt + cr4|;1:]_4/ t2dt < er|z| ™ + er?lz| ™t < erlz| 7R
0

T

Case II: 7 < 1. When |z| > 2, we can use the same argument in Case I and
obtain gr(A)*(z) < cr|x|™2. We suppose that |z| < 1. Then, if ¢t < 1, we
can use (L) and (L), and if ¢ > 1, we can use (G3). Hence, gr(A)*(x) is
dominated by

r 1 00
c|33]4/ tdt + cr4]x|4/ t3dt + cr4|x|4/ t0dt < er?lo|™ < erlz| .
0 T 1
Therefore, in both cases we can deduce that
o dt\1/2
(/ Go(t, )" < e a2 it ] > o (31)
0

Finally, combining (29) and (31), we see that
gr(A)(z) < gr(A)(z)XB02n)(T) + C7'1/2|3U|_3/2><B(0,2r)c(37)

< ca(aﬁ) + CZ r_12_3k/2XB(o,zkr)($): (32)
k=2

where a > 0, a is supported on B(0,2r) and ||a||z2@) < r~/2. Hence (23)
also holds for gg(A). Therefore, the same arguments used for Mp yields that
gr is bounded from H,, (R) to L, (R) for each v € I".

Theorem 6.5. g is bounded from H'(A) to L'(A).
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7 Lusin area function

We retain the notation used in the previous section. We define the Lusin
area function S(f) as an analogue of the classical theory (cf. [5, p.314]). Let
B(t) = [0,t] and xp() the characteristic function of B(t). We put |B(t)| =

t
/ A(z)dz. We define the Lusin area function S(f) as
0

st = ([ g = |f gl @F) "

As shown in [5], S is bounded on L%*(A). We also define a modified area
function Se(f) as

2 dt>1/2

5o~ (| T [ @@ Tomo ] e[ @) 3)

where ©(z,y) is the even function on R?, which is defined on R, x R, as

A(y) sthey2e |
A(z) <@> ify =2
A(y)
A(z)

We note that O(z,y) > 1ify > x> 0 and O(z,y) < 1if y > x > 0 and
moreover, for all 0 < & < ~,, we see that for z,y € R,

[\

@(:C,y) =

if y < x.

[\

et gy ()
oe.) 3o (i) < e <A@, A0 @9
W) (52)
We shall consider (H'(A), L'(A))-boundedness of Sg. We recall that
t(0/0t)f x py = WL(F ® W, (K;)) and we apply the formula (15) to (33).
Here we introduce the operators S, r for v € I' as follows; if v € I'y, then

$x@ =( [ g [ @i Tmom) (35)

x (thy)* Ay) *|H ® W+(Kt)(y)l2A(y)dy%>l/2

and if v € I'y, then

Syr(H)(z) Z(/OOO @
% WH®W

/0 " 0, y) v () (thy) AL (36)
/ () (5) Ay (y, 5)ds

2 1/2

A(y)dy%)
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Then we see that the L'(A)-norm of Sg(f) is dominated as

D 1S =(WE (F)) Al

yel
= > 1S =(WE (1)) (the) Al @ = ) IIT, F)ey,, @
vyel vyel

where
Ty r(H)(x) = Syr(H)(x)(the) " A(z).

As in the case of gr, Se is of type (H'(A), L'(A)) provided that T, g is of type
(HiW (R), Ly, (R)) for each v € T'. Therefore, to obtain the (H'(A), L'(A))-
boundedness of Se, it is enough to prove that each T,y is L? bounded on
R and it satisfies (30) for each centered (1,00,1)-atom A on R. Actually,
these facts yield (23) for 7, g as in the case of gg and thereby, 7, g is of type
(H,, (R), L, (R)) as before.

Case of v € T'g: First we shall prove that T, g is bounded on L*(R).
Let H € L*(R). We apply (34) in the integrand of T, g(H)?* and take the
integration over R, with respect to A(x)dz. Then, since

1 L oo
\B(t)\/o TxXB(t)(y)A(x)dxz—’B@)’/0 Xaw(@)Ax)de =1,  (37)

it follows from Proposition 6.2 that

sl <o [~ [ 1@ WL ()0 Y
_ e / 9w (H)?(y)dy < cl|H| 12,

Next we shall prove that T, r satisfies (30). Let A be a (1,00, 1)-atom on
R supported on [—r,r] and let H = A in (35). We suppose that || > 2r.

A ® Wi (Ky)(y) is given by / A(2)Wi(Ky)(y — z)dz and it follows that

|z —y| < tand |z] <r. Since - (x—y)+y—2)+z || <t+|y—z|+r <
t+|y—z|+|z|/2 and thus, |z| < 2(t+ |y —z|). Moreover, |y—z| < |y|+]z] <
t+|z|+r < t+3|z|/2. Hence it follows that t+|x| ~ t+|y—=z|. Then, applying
the arguments used in the proofs of Lemmas 6.3 and 6.4 to A ® W, (K¢)(y),
we can deduce that |[A ® W, (Ky)(y)| < ¢G,(t,z). Since (34) and

1 [ s
W/o Texs(y)Aly)dy = W/o X (¥)A(y)dy = 1, (38)
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it follows that
1/2
T, r )<c / G2

Case of v € I'y: First we shall prove that T, g is bounded on L*(R). As in

the previous case, first we apply (34) and take the integration over R, with
respect to A(x)dz. Since A,(z, s) is of the form A, (x,s) = Q(z, ) Z,(s— )
and satisfies the properties (i) and (ii) of Theorem 3.6, it follows that

/oo T, r(H)*(z)dx
/ / / H& W, (K)(s + ) h((h v* (ths)s‘“*g)dsrdy%

+y)

When 0 <y <1 and 0 < s <1, it becomes

/ /‘/H@W@Kt (s+y)( v 5ds’ dy

/ / ‘/ H® W, (K)((s+ y)(s + 1)~ _5ds‘ dy
<cllg (Bl ([ 5+ 1) 7574s) " < el Hl oo

Otherwise, the integral is dominated as

<o [ (] stm)ts + 02,(50ds) ay

o0

oo 2
<claa( ey (| Z(5)ds) " < | lioge

Next we shall prove that T, g satisfies (30) for a (1,00,1)-atom A on R
supported on [—r,r|. Let |x| > 2r and let H = A in (36). When s > ||, it
follows that s > 2r and |A®W (K;)(s)| < G,(t,s) < G.(t,|z|) by Lemma 6.4.
When s < |z, we note that A® W, (K};)(s) is given by / A(2)W o (Ky)(s—
z)dz and t + |s — z| ~ t + |z|. Actually, we may sulgpose that |z| < r,
lr—y|<t,and 0 <y<s<z. Sincex=(r—y)+(y—s)+(s—2)+z, we
see that x < 2t+4|s—z|+7r < 2t+|s—z|4+x/2 and thus, t+x < 4(t+|s—z|).
Moreover, t + |s — z| < t+ s+ |z] < t+32/2 < 3(t + x)/2. Therefore, it
follows from the arguments used in the proofs of Lemmas 6.3 and 6.4 yield
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that A ® W (K,)(s) < ¢G,(t,|z|) again. Hence it follows from the property
(iv) of A,(z,s) (see Theorem 3.6) that

/ A® W, (K)(s)A, (y, 5)ds < cGi(t, ) / A (2, 8)ds < Gy (t, ).
) Yy
Then (34) and (38) imply that

7)) < o | “een®)

We can obtain that T, g, v € I, satisfy the desired properties.
Theorem 7.1. Sg is bounded from H'(A) to L'(A).

1/2

ab and a +b < (14 a)(l +b) for a,b > 0, it
a+b

(tha)he
A(x)?

Remark 7.2. Since a,b >

easily follows that O(z,y) >
defined by

B (), mapee:

is also bounded from H'(A) to L'(A).

- (thy)?*™*A(y). Therefore, the operator

()=

2 dt\1/2
7)

0
w%MZ- f = tgpt

Now we shall consider a modified operator S, ., for a > 0:

SN = (| yesen 0

wva * f * t&pt
By this modification, ©(z,y) and T, xp«) in (33) is changed to (thy)** and
T X B(at) Tespectively, and thereby, (34) becomes

Wiw.y) :(thy)”a% (i)

:igz; (gll_z)27“A(x)(thy>2v(thx>2(vav) < ce?p(xfy)A<x).

In the previous arguments for Sg, which yields Theorem 7.1, the key process
is that (34) yields (37), (38) respectively. Therefore, if we can deduce that

()=

2 dt\1/2
1)

1

J(y) = m /j;zy<at W(ZL’, y)dl‘ ~ ]_, (34&)
1

1) = S /T Wy, (34b)
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then we can apply the previous arguments without changes.
In what follows we suppose that 0 < a < 1/3.
Case I. < y: Since W(x,y) < A(z) < A(y), it follows that I(z) and
| B(at)|
<

|B(®)|

Case II. & > y: Since a < 1/3, it follows that

J(y) are dominated by

|B(at)| 2pt(2a—1
J( )§e2pat—N€pt(a )Sl
| B(1)]

As for I(z), we consider separately the following cases.

A
Case II(1). @ > y,y > 1: Since W(z,y) < ce®9. Aﬁxi (y) <
)
B(at
ce* @Y A(y), it follows that I(z) < ce4patﬂ ~ 2PtBa=1) <

| B(t)]

Case II(2). z > y,y < 1,t > 1: Since x — at < y < = + at, it follows that
r <y+at <1+ at and thus, A(z) < A(1 + at) ~ e**. Hence

T+at €4pat
/ p(z— y eZpt(Qa—l) < 1.

B

Case 11(3). z > y,y < 1,t < 1,t > x/2: Since W (z,y) < ce? @V A(z) <
ce?@Y A(2t), it follows that

A(2t) [*To A(2t)t
I(x) < cezpat—/ dy = ce?PUt " ]
(=) B0 B)

xr—at

Case II(4). z >y,y < L,t <1t <x/2: Since /2 <ax—t<z—at<y
Alx) _ Ax)

< ~ 1and W(z,y) <

Aly) — Az/2)

A(z) | B(at)]
ce?r@y) . 20 A(y) < ce? A(y). Hence I(z) < ce e2eat |IZVWUT
Aly) |B(1)]
Thereby, I(z) and J(y) satisfy the desired estimates (34a) and (34b).
Hence, by using the same arguments in the proof of Theorem 7.1, we can

obtain the following.

Theorem 7.3. For 0 < a <1/3, S,., is bounded from H'(A) to L'(A).

and r < y+at <y+t <2, wesee that
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