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ABSTRACT. We define and study the Bessel potential and inhomogeneous Besov spaces
associated with the Dunkl operators on R%. As applications on these spaces we construct
the Sobolev type embedding theorem and the paraproduct operators associated with the
Dunkl operators, as similar to those defined by Bony. We also establish Strichartz type
estimates for the Dunkl-Schrédinger equation and finally we study the problem of well
posedness of the generalized heat equation.

1. INTRODUCTION

The Dunkl operators, which are differential-difference operators introduced by Dunkl
in [3], are very important in pure mathematics and in physics. Especially, they provide
a useful tool in the study of special functions related with root systems (cf. [4]). In the
previous paper [7], we study some function spaces associated with Dunkl operators. We
have begun a general theory on Littlewood-Paley decompositions associated with Dunkl
operators and introduced generalized Sobolev spaces, generalized Holder spaces and BMO
associated with the Dunkl operators.

In this second paper of a series of our study we continue our investigation of function
spaces; generalized Bessel potential spaces, inhomogeneous Besov spaces and Triebel-
Lizorkin spaces associated with Dunkl operators. We obtain their basic properties and
apply them to estimate the solutions of the Dunkl-Schrodinger and the Dunkl heat equa-
tions. In their recent paper [1], Abdelkefi, Anker, Sassi and Sifi also obtain some basic
properties of the Besov spaces and integrability for the Dunkl transform.

The contents of the paper is as follows. In §2 we recall some basic results about the
harmonic analysis associated with the Dunkl operators. In §3 we introduce the Littlewood-
Paley decomposition associated with the Dunkl operators. We shall obtain Bernstein’s
inequalities. §4 is devoted to study the Dunkl-Bessel potential spaces, the inhomogeneous
Dunkl-Besov spaces and the Dunkl-Triebel-Lizorkin spaces. According to a standard
process in the Euclidean case (cf. [15]), we shall consider equivalent norms, lifting prop-
erties, interpolations and dualities of these spaces. In §5 we summarize some results on
embeddings and paraproduct operators, which depend on the index ~ associated to the
multiplicity function of the root system. In the last §6 we consider some applications
of the Dunkl-Besov spaces to differential-difference equations. We shall obtain Strichartz
type estimates of the solutions of the Dunkl-Schrédinger equation and finally a space-time
estimate of the solutions of the Dunkl heat equation.

Throughout this paper by ¢, C' we always represent positive constants not necessarily
the same in each occurrence.
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2. PRELIMINARIES

In order to confirm the basic and standard notations we briefly overview the theory of
Dunkl operators and related harmonic analysis. Main references are (3, 4, 5, 6, 7, 11, 12,
14, 17, 18].

2.1. Root system, reflection group and multiplicity function. Let R? be the Eu-
clidean space equipped with a scalar product (,) and let ||z|| = y/(z,z). For « in
R\ {0}, o, denotes the reflection in the hyperplane H, C R perpendicular to a, i.e.,
for v € R o,(z) =  — 2||al|%{a, z)a. A finite set R C R?\{0} is called a root sys-
tem if RN Ra = {£a} and 0,R = R for all « € R. We normalize each o € R as
(a,a) = 2. We fix a 3 € RN\UyerH, and define a positive root system R, of R as
R, ={a € R| (a,) > 0}. The reflections o,,a € R, generate a finite group W C O(d),
called the reflection group. A function k : R — C on R is called a multiplicity function if
it is invariant under the action of W. We introduce the index v as

y=k) =Y k).

Throughout this paper, we will assume that k(«) > 0 for all « € R. We denote by wy, the
weight function on R? given by

wor(x) = [T Ky,
aER

which is invariant and homogeneous of degree 2. In the case that the reflection group
W is the group Z$ of sign changes, the weight function wy is a product function of the

form H;i:l |z;|%3, k; > 0. We denote by ¢, the Mehta-type constant defined by

|2

ck:/ e s wi(z)dz.
R4

In the following we denote by

C(R?)  the space of continuous functions on R

Co(R?)  the space of continuous functions on R¢ vanishing at infinity.
CP(RY) the space of functions of class C? on R

CP(R?) the space of bounded functions of class C?.

E(RY)  the space of C*-functions on R?.

S(RY)  the Schwartz space of rapidly decreasing functions on R?.
D(R?)  the space of C°°-functions on R? which are of compact support.
S’'(RY)  the space of temperate distributions on R?.

2.2. The Dunkl operators. Let k£ : R — C be a multiplicity function on R and R, a
fixed positive root system of R. Then the Dunkl operators T3, 1 < j < d, are defined on
CY(R?) by

) =g 3 Mol

where o = (aq, @z, - -+ , ). Similarly as ordinary derivatives, each T satisfies for all f, g
in C'(R?) and at least one of them is W-invariant,

Ti(fg) = (T;f)g + f(T;9)
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and for all f in C}(R?) and ¢ in S(R?),

[ Bt@e@nads = [ g

Furthermore, according to [3, 4], the Dunkl operators Tj, 1 < j < d commute and there
exists the so-called Dunkl’s intertwining operator Vj such that 7,V = V,(0/0z;) for
1 <j <dand Vi(1) = 1. We define the Dunkl-Laplace operator A\ on R¢ by

Duf(a) = YT (@) = Af(a) +2 3 k(a)<<v{05$)’0‘> _flo) - f(aa(x)>>’

2 (@)

where A and V are the usual Euclidean Laplacian and nabla operators on R? respectively.
Since the Dunkl operators commute, their joint eigenvalue problem is significant, and for
each y € RY, the system

Tyu(z,y) = yu(z,y), j=1,..,d, and u(0,y) =1

admits a unique analytic solution K (z,y), * € R?, called the Dunkl kernel. which has a
holomorphic extension to C? x C?. For x,y € C%, the kernel satisfies

(a) K(z,y) = K(y,x),
(b) K(Az,y) = K(z,\y) for A € C,
(¢) K(wz,wy) = K(z,y) for we W.

2.3. The Dunkl transform. For functions f on R? we define LP-norms of f with respect
to wy(x)dx as

g = ([ @Pantonr)”

if 1 <p <ooand [|f|pemrs = ess sup,cpa|f(z)|. We denote by LP(RY) the space of all

measurable functions f on R? with finite L}-norm.
The Dunkl transform Fp on L}(R9) is given by

Fo(f)y) = L F(@)K (z, —iy)wg (z)dz.

Ck JRrd
Some basic properties are the following (cf. [5] and [6]): For all f € Li(R?),
() IFp(Hllzz@s < e I1flryme,
(b) Fp(f(-/N)))(y) = X Fp(f)(Ay) for A >0,
(c) if Fp(f) belongs to LL(R?), then
£0) = | Fol @)K iz ()i,

Ck JRd

and moreover, for all f € S(RY),

(d) Fo(T;)(y) = iy;Fp(f)(y),
(e) if we define Fp(f)(y) = Fp(f)(—y), then

FpFp =FpFp = 1Id.

Proposition 2.1. The Dunkl transform Fp is a topological isomorphism from S(R?) onto
itself and for all f in S(RY),

y | f(z)Pwr(z)dz = y | Fo(f)(€)Pwi(€)dE.
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In particular, the Dunkl transform f — Fp(f) can be uniquely extended to an isometric
isomorphism on L3(RY).

We define the tempered distribution 7; associated with f € L¥(R?) by
(2.) T.0) = [ F@)o)alndr
R

for ¢ € S(R?) and denote by (f, ¢), the integral in the righthand side.
Definition 2.1. The Dunkl transform Fp(7) of a distribution 7 € &'(R?) is defined by
(Fp(7),¢) = (1. Fp(9))
for ¢ € S(RY).
In particular, for f € L} (R?), it follows that for ¢ € S(R?),
(Fp(f),0) = (Fp(Ty), 9) = Ty, Fp(9)) = {f, Fp(¢))k-

Theorem 2.2. The Dunkl transform Fp is a topological isomorphism from S'(R?) onto
itself.

2.4. The Dunkl convolution. By using the Dunkl kernel in 2.2, we introduce a gen-
eralized translation and a convolution structure in our Dunkl setting. For a function

f € S(RY) and y € R? the Dunkl translation 7, f is defined by

R (@) = [ PR K i 2onl2)
Clearly 7, f(z) = 7, f(y) and by using the Dunkl’s intertwinig operator Vj, 7, f is related
to the usual translation as 7,f(z) = (Vi):(Vi), (Vi) *(f)(x + y)) (cf. [11, 18]), where
the subscript = of (Vj), means that Vj is applied to the x variable. Hence, 7, can also
be defined for f € £(R?). We define the Dunkl convolution product f *p g of functions
f,9 € S(RY) as follows.

Fr0.9(0) = [ mratatnin

This convolution is commutative and associative (cf. [18]). Since Fp(r,f)(z) = K (ix,y)
Fp(f)(z) by the above definition of 7, f, it follows that
(a) For all f,g € D(R?) (resp. S(RY)), f *p g belongs to D(RY) (resp. S(R?)) and

(2.2) Fo(f*p 9)(w) = Fo(f)(y)Fplg)(y).

Moreover, as pointed in [14], §4 and §7, the operator f — f xp g is bounded on LE(R?),
1 < p < oo, provided that g is a radial function in L}(R?) or an arbitrary function in
LL(RY) for W = Z4. Hence the standard argument yields the following Young’s inequality.

(b) Let 1 < p,q,r < oo such that %Jr % —1 =11 f € L}(R?) and g € L{(R?) is
radial or arbitrary for W = Z3, then f xp g € L} (R?) and

d
(2.3) 1f *p QHL;(W) <22 HfHLg(Rd) HgHLZ(Rd) :

Definition 2.2. The Dunkl convolution product of a distribution S in &'(R?) and a
function ¢ in S(RY) is the function S *p ¢ defined by

S#*p ¢(x) = {Sy, Ty0(7)).
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Proposition 2.3. Let f be in L¥(RY), 1 < p < oo, and ¢ in S(R?). Then the distribution
T xp ¢ is given by the function f xp ¢. If we assume that ¢ is arbitrary for d =1 and
radial for d > 2, then T *p ¢ belongs to LE(RY). Moreover, for all v € S(R?),

(2.4) (Ty #p ¢,9) = <f> ¢ *p @k,
where (x) = P(—x), and
(2.5) Fo(Ts #p ¢) = Fp(T;) Fo(d).

Proof. 1t follows that

T *p ¢(x) = (Tf)y, o p(=Y))
= ([, muf(=9))x = [ *p $(2).

Let us suppose that ¢ is arbitrary for d = 1 and radial for d > 2. Then by (2.3), 7; *p ¢
belongs to L} (R?). By Fubini-Tonelli’s theorem the function (z,y) — f(—y)7¢1(y)da(x)
is integrable on R? x R? with respect to wi(y)dy wy(z)dz. Then for any ¢ € S(R?),

Trepoty= [ [ Fnmoi@ndy o

= [ 10 ( [ no@pia@nis o sy

— [ £ 50 Slonto)dy = (.0 00

Moreover, from (1), (2.2) and (2.
(Fp(Tf *p ¢),1) =

4) it follows that

(Ty *p ¢, Fp(¥))

= (f.¢xp Fp(¥))

= (£, Fo(Fp(0)))k = (Fo(T5) Fp(9), ¥).
For each u € §'(R?), we define the distributions Tju, 1 < j < d, by
(Tyu, ¢) = —(u, T;9)

for all 1 € S(RY). Then (Ayu, ) = (u, Aptb) and these distributions satisfy the following
properties (see 2.3 (d)):

(2.6) Fp(Tju) = iy;Fp(u),
Fo(Dgu) = —[ly*Fp(u).
In the following we denote 7; given by (2.1) by f for simplicity.

3. DUNKL-LITTLEWOOD-PALEY DECOMPOSITION

One of the main tools in this paper is the Dunkl-Littlewood-Paley decompositions of
distributions on R? into dyadic blocks of frequencies. Let 1) be a non-negative function
in D(R?), which is radial for d > 2, satisfying ¢(£) = 1 for [|£]] < 1 and ¢(§) = 0 for
|€]| > 1. We define a function ¢ on R¢ by

p(&) = v(5) —¥(&).
Then we see that (&) + 372 p(277¢) = 1.
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Definition 3.1. For j =0,1,2,---, the operators S; and A; on &'(R?) are defined by
Fo(Sif) = v(277)Fn(f),
Fo(Aif) = o277 Fp(f),

and put A_; = Sp.

We see that f = Zji—1 A, f in the sense of §'(R?). We call A;f the j-th dyadic
block of the Dunkl-Littlewood-Paley decomposition of f Similarly, the operators S and
A on 8'(R%) are defined by replacing 1 and ¢ by (&) = ¢(§) and p(§) = 7,0( ) —

1 (4€) respectively. Throughout this paper we define the functions y, X, ¢ and ¢ on R4

respectively by

X=Fp' (W), X =Fp' (W), 6=Fp'(¢), 6= Fp' (@)
Proposition 3.1. (Bernstein inequalities) For all y € NY, 0 € R, j € N, 1 < p, ¢ <
00, =141 -1 and f € S'(RY), we have

7 q p
(1) 118 fll s may < 21(d+27><”*>||¢||y re) || A5 f 1 £ (e
(2) 1S5 luggzey < 2550 R g oy 15l g,
(3) 1(V=2k)7 A fllepmay < 271 F5 (€Nt ey 185 £l 2 ey
Moreover, if W = Z3, then each T* = T{" o --- o T} satisfies
(4) |1 T"2 fllzpmey < 2VHTHE]| ey | A5 | p ey,
(5) TS fll oy < c22WHTHX L2y 155/ Wl 2 ey
Proof. Proposition 2.3 implies that
(3.1) S;f =2 (20 xp Sif, A f = VG2 wp AT
Therefore, (1), (2), (3) follow from (2.3) and (4), (5) follow from (2.3) and (2.6). O

Lemma 3.2. Assume that N is an integer such that N > v+ % and that o € L3 (R?)
satisfies THo € L2(RY) for |u| = N. Then Fp'(p) € Li(R?) and

175 (p )N L1 gey < C||P||L2 (R%) |S|1ip | P||L2 (Rd)

d+2
where § = 2.
Proof. The proof is similar to the classical case (cf. [16]). U

Definition 3.2. For s € R, the operator J¢ from §'(RY) to S'(RY) is defined by
T (f) = Fp (L+ - 172 Fnf).
We call J,° the Dunkl-Bessel potential operator.

Proposition 3.3. Let s € R and 1 < p < co. If f € S'(R?) satisfies A;f € LY (RY) for
7 =-1,0,1,2,---, then

(3.2) 1T (DG )| 2o may SC27 A | e ro),
where C' s independent of p and j.
Proof. We note that for all j =0,1,2,---,
1 1
Ajf= Z AjnA;f = Z Gj+1 %D A f,

I=—1 I=—1
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where ¢ = Fp' () and ¢;,(&) = 20020 (25+¢). This gives that

T (A f) = ij bj+1) *p A, f.
I—1

Since the L?(R%)-norms of Fp (T (¢j41))(E) = (1 + [|€]|})2¢;4(€) and 20+ (272640 4
1€]12)20(€) are same, it follows from Lemma 3.2 that

(3.3) | T8 (D540l L1 (ray < C2°, 1=0,=£l.
Hence (3.2) follows from (2.3). The case of j = —1 is proved by the similar way. O

4. Bsk Fek Hf, SPACES AND BASIC PROPERTIES

In this section we define analogues of the Besov, Tribel-Lizorkin and Bessel potential
spaces associated with the Dunkl operators on R? and obtain their basic properties. In
particular, we use the Dunkl-Littlewood-Paley decomposition of f in &'(R%), obtained in
the previous section, and apply the standard process used in the Euclidean case. Hence,
we expect that, according to routine, we obtain analogous results in our Dunkl setting.

However, we have some obstacles to carry out the Euclidean process, which are stated in
Remarks 4.1 and 4.2 below.

4.1. Definitions. From now, we make the convention that for all non-negative sequence
. 1 .
{aq}tqez, the notation (3, ay)r stands for sup,a, in the case r = co. Let s € R and

1 < p < oo. For a sequence {u;};=01,2,. of functions on R?, we define

1
sy = l|wollLr ey + (Z(QJ [lwill e gay)®) e,

5>0
; 1
||{Uj}||L£(l;) = ||U0||L§(1Rd) + |l 2(2]S|Uj($)|)q)q ||L§(Rd)-
5>0
Let A;, j = —1,0,1,2,---, be the operators given in Definition 3.1. For convenience

we replace the indices j by j + 1. That is, Ag = So, Fp(A;f) = @277 Fp(f) and
f=32720A,f in the sense of S'(R?).

Definition 4.1. For s € R and 1 < p,q < 00, the inhomogeneous Dunkl-Besov space
Byk(R?) is defined by

Byg(RY) = {f € S'(RY) | ||f]

ByF(Ra) — ||{Ajf}||lg(L§) < OO}

Definition 4.2. Let s € R and 1 < p, ¢ < o0, the inhomogeneous Dunkl-Triebel-Lizorkin
space F2F(R?) is defined by

FryRY) = {f € S'(RY) | ]|f]

Fpg (RY) — {2 fH sy < oo}

Definition 4.3. For s € R and 1 < p < oo, the Dunkl-Bessel potential space H ,(R?) is
defined as the space J °(LY(R?)), equipped with the norm || f|

a3 &) = | (F)ll g ma)-

Remark 4.1. We can define these spaces for 0 < p < 1 in the same way. In order to study
the case of 0 < p < 1, (vector-valued) Hardy spaces are useful, that is, the theory of
maximal operators is necessary. In our Dunkl setting, it is not accomplished generally,
because of the difficulty arisen from the facts that an explicit formula for a generalized
translation operator 7, is unknown and 7, is not a positive operator.
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4.2. Equivalent norms. Let f € §'(R%). We say that f has a general Dunkl-Littlewood-
Paley decomposition if f is decomposed as f = Z;io uj, where each u; is a functions on
R? satisfying

suppFp(uo) € {¢ | [§] < 1},

Obviously, the Dunkl-Littlewood-Paley decomposition f = Z;O:O A, f is an example of
the generalized decomposition.

Theorem 4.1. (1) Lets € R and 1 <p,q < oo. Then
/] ~ inf [|{u; }

where the infimum is taken over all general Dunkl-Littlewood-Paley decompositions f =
D js0ls € S'(RY) with || {u;} 15(L7) < O0.
(2) Let s € R and 1 < p < oco. Then

By (RY) 15(L7)

Hf”F;;;“(Rd) ~ inf H{uj}HLz(l;),

where the infimum is taken over all general Dunkl-Littlewood-Paley decompositions f =
> js0 s € S'(RY) with |[{u;}Hlrzs) < oo.

Proof. Since Fp satisfies (2.2), we can apply the same argument used in the proof of
Theorem 4.2.2 in [15]. We note that

Apf = Z Apuy = Z AU yr-

—k|<2 r=0,1,2

Hence (1) follows from the inequality ||¢x *p wsirllrr@mey < cflunirllpmey for 1 < p <
o0, where ¢ is independent of k (see (2.3)). (2) follows from the inequality |{¢x *p
Urr ey < cll{uwrertrag for 1 < p < oo, where ¢ is independent of k, which is
obtained in Theorem 3.13 in [7]. O

Remark 4.2. In the Euclidean case, (2) holds for F3F(R?) with 1 < ¢ < 0o, because the
inequality |[{¢x *p wrrr}H|rras) < cl[{urtr}||zras) follows from the Hormander multiplier
theorem. However, in our Dunkl setting, we have no Hormander type multiplier theorem.
When ¢ = 2, we can apply the Plancherel formula for the Dunkl transform Fp and thereby
we can obtain (2).

Corollary 4.2. Lets € R and 1 < p,q < 0o. Let {u;j}jen be a sequence of functions such
that [[{w;}H[sszry < oo.

(1) If suppFp(u;) C 2/ R for some annulus R centered at the origin, then f =372 u;
belongs to ByE(RY) and there exists a positive constant C(s) such that ||f| <
() ot gz |

(2) If s > 0 and suppFp(u;) C 2B for some ball B centered at the origin, then
f = 22720uy belongs to BsE(RY) and there exists a positive constant C(s) such that

11l gty < C()IH{us)

Proof. We can find an integer N such that A.f = le—k\sN Aguy in the case of (1) and
Arf = sp_n Aru in the case of (2). Hence (1) follows as in Theorem 4.1 (1) (see [7],
Proposition 3.6) and (2) follows as in [7], Proposition 3.7. O

k
Bpg(R9)

Is(LY)-
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Corollary 4.3. Let p,q be as above. The definitions of the spaces B;:’;(Rd) and F;’;‘:(Rd)
do not depend on the choice of the couple (p,1)) defining the Dunkl-Littlewood-Paley de-
composition.

In the following, we denote by fg’f(Rd) the space of all f € §'(R?) which has a general
Dunkl-Littlewood-Paley decomposition f = 3772, u; with [[{u;}|rqs) < oo. Clearly,

F3k(R?Y) C F3F(R?) and FJ(R?) = FJ3(R?) by Theorem 4.1 (2).
Theorem 4.4. Let 1 < p < o0 and s € R, we have
Frf(RY) = Hy (R,
Proof. Because of Fi3(R?) = FS5(R?), it is enough to show that F5(R?) = H: (R,

When s = 0, this is nothing but a theorem of Littlewood-Paley type. The general case of
s # 0 follows form the lifting property (see Theorem 4.7 below). O

Corollary 4.5. Let s € N and 1 < p < oo then
b (Y = W (RY,
where W P(RY) = {u € S'(RY) | THu € LE(RY) for all p € N¢ with |u| = s}.
4.3. Lifting property. We recall that for f € §'(R?),
Fo(TiAnf)(§) = 2°0(2 ") Fp(£)(€), 6(€) = ig;e(&).
Then we can obtain

Theorem 4.6. Let s € R and 1 < p,q < o0o. The operator Tj is a linear continuous
operator from Bs%(R?) into By VF(R?), from ﬁ;}f(Rd) into ﬁ;gl’k (RY), and from H3¥(R?)
into H3 VF(RY).

Similarly, we recall that J, t € R, is a linear continuous injective operator from S(R¢)
onto S(R?Y) and is extended to a linear continuous operator from &'(R%) onto S'(R%) with
(TH " =T"

Theorem 4.7. Let s,t € R and 1 < p,q < oo. The operator [T is a linear continuous
injective operator from By¥(R?) onto Bs tF(RY), from ]*Nj;’f(Rd) onto ﬁ;’gt’k(Rd), and from
HYE(RY) onto HE WF(RY).

Proof. Since Fp satisfies (2.2), we can apply the same arguments used in the proof of
Theorem 5.1.1 in [15]. O

4.4. Embeddings. As in the Euclidean case (see [15], 5.2), the monotone character of
l~spaces and Minkowski’s inequality yield the following.

Theorem 4.8. (1) Ifs1 < sy and 1 < p,q < oo, then
Bri(RY) — By H(RY),
s2,k (Tod s1,k (Tod
F2N(RY) — FyLF(RY).
(2) IfseR1<p<ooandl <q < g < o0, then
Bs,kz (Rd> SN Bs,k (Rd),

p,q1 Psq2
& (od k (od
F;,CI1<R ) - F;%(R )

(8) ForseR and 1 <p,q<oo, let r=min{p,q},t =max{p,q}. Then
(4.1) BiF(RY) — FrFR?Y) — By (RY).
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As in [15], §6, we can obtain

Theorem 4.9. Let s € R and 1 < p,q < oo. Then D(R?) is dense in Bjk(R?) and
F3F(RY).

4.5. Duality. In the Euclidean case we see that (Bj ,(R?))" = B % (R?) and (F}; ,(R%)) =
Ty (Rd), where p', ¢’ are conjugate numbers of p, ¢ respectively (see [15], §7). For the
BS k—spaces we can apply the same argument used in [15], §7. However, we can not do for

the F]f’(f—spaces because Hormander’s type multiplier theorem is used in the Euclidean
case (see Remark 4.2). For the H? -space, the duality follows from the one of L} (R?).

Theorem 4.10. (1) Ifs€ R and 1 <p < oo, then
(Hyr(RY) = Hy 5 (RY).
(2) If se R and 1 <p,q < oo, then
sk(md\Y _ p—sk(md
(B (RY) = B (RY).

4.6. Interpolation. We can apply the real method used in [15], §8. In this process, the
duality is used frequently. In our Dunkl setting, as shown in Theorem 4.10 the duality
holds only for By k-spaces and H ;-spaces. Hence, we have the following.

Theorem 4.11. (1) Let 59,81 € R, 59 # s1, 0 < 0 <1, s = (1 —80)sg+ 0s1, 1 <
P4, 490,41 S 0o. Then

(BSQ k(Rd) le k(Rd)) — Bs’k(Rd).

Dpsq0 p,q1

(2) LetseR,1§p0,p1§oo,p07ép1,0<9<1,%——4—— then

Po p1’

(Fsk (Rd) Fsk (Rd)) — Fs’k(Rd).

Po,2 P1,2
(3) Letso,sleR So # 81, L < po,p1 <00, po #Zp1, 0<0 <1, s=(1-0)sy+ 0s,

> +— then

(Fgob (RS, F (R, = ByA(RY).
(4) Let sg,s1 €R, s9#s1,0<0<1,s=(1-0)so+60s1,1<p,qq,n <oco. Then
(12 (B (R, E3s (R = Byh(RY).

Proof. (1), (2), (3) follows from the arguments used in Theorem 8.1.3 and Theorem 8.3.3
n [15]. (4) follows from (1) and (4.1). O

As a consequence of real and complex interpolations, we can deduce multiplicative
inequalities, which will be needed in the theory of differential operators.

Theorem 4.12. (1) Ifu belongs to B35 (RY)NBLE(R?), then u belongs to Bﬁfj“‘”t”“(Rd)
for all 6 € [0,1] and

el g -omn sy < el g 12 oy

u belongs to B> Nnby and s < t, then u belongs to or
2) If u bel B (R N BYE (R) and hen u bel B (R f
all 0 € (0,1) and there exists a positive constant C(t,s) such that

Hu|’395+(1 0)t, k(Rd < O(t S)||U| BSk (R4) ||U”1 (]Rd)
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(3) Ifu belongs to B3 (R?) N Bst*(RY) and e > 0, then u belongs to By (R?) and there
exists a positive constant C' such that
”“”Bz,tz”“(uw))

T T (
ollagten < Sl ey ot (64

By & (RY)
Proof. (1) is obvious from Holder’s inequality. As for (2), we write ”U/HBeer(lfe)t,k(Rd) as
p,1
j(0s —0 1CH —0
ZQJ( +(1 )t)HAJ’“HLz(Rd) +22j( o )t)HAJUHLQ(Rd),
J<N >N
where N is chosen here after. By the definition of the Dunkl-Besov norms, we see that
2j(65+(1_6)t)||Aju||L§(Rd) < 2i(1-@)(t—s)||u|

2j(98+(1*9)t>||AjUHL§(Rd) < 27j0(t7$)||u||35;’;o(md)

BySo(R)?

and thus, [Jul] gosra-oek  is dominated by
p,1

(Re
Hu\ By (R) Z 2j(179)(tfs) + HUHB;;’;O(Rd) Z 27j0(tfs)
J<N j>N
2(N+1)(1-0)(t—s) 9—NO(t—s)
§C||u| st):];o(Rd) 2(1-0)(t—s) — 1 + ||U’||B;v”fx(Rd)m.

Hence, in order to complete the proof of (2), it suffices to choose N such that

el g ey N (t—s) 2”“”321’20(Rd)
| |

Bk (RY) By (RY)

As for (3), it is easy to see that ||u]] 55k nay 1S dominated as
Bp,l(R )

Z 2js||Aj“HL§(Rd) + Z 2jSHAjU||Lg(Rd)

j<N-1 i>N
2—(N—1)z—:
<N+ Dlul Bk ®d) T 2 _ 1 ] Bys* (RY):

Hence, letting

1l

s+e,k
N =1+ |- logy o=,
3

el e

we can obtain the desired estimate. O

5. SOME PROPERTIES RELATED WITH THE INDEX

We continue to study the B]’,f;g spaces. The results obtained in the previous section are
exactly same as in the Euclidean case. In this section we obtain some properties related
with the index ~.

5.1. Embeddings.

Theorem 5.1. If sg,51 €R, 51 <50, 1 <p<p1 <00,1<qg<q <00, 59— dJ;Q'y _
sl—dz%, then

B;:’;(Rd) — Bsvk(R9),

p1,q1
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Proof. In order to prove the inclusion, we use the identities

Nif=¢i%p Ajf, G=1,2---, Aof =X #p Aof.
Then the Bernstein inequality (Proposition 3.1 (1)) gives that for j = 0,1,2,---,

i(d+2y) (L —L
12 £l o1 gy < C2 VG Fl 1 ).

Thus, by definition of the inhomogeneous Dunkl-Besov spaces, we see that

o1 mj(dray)(t—L Bl
170531 ey < CUlBSllzpcaa + (2120730 Ay £y gy )
jEN
. 1
< C(1Aofllzr sy + Q2114 fllp@e) ™)™
jEN
< Clf gyt
because q < ¢;. O

d+2~

Proposition 5.2. If 1 < p < oo, then B, ’k(Rd) — Cy(RY) and B (RY) — Cy(RY).

d+2y

77'% . .
Proof. To prove that B} " (R?) — Cy(R?) for 1 < p < oo, we use again Bernstein
inequalities (see Proposition 3.1) to deduce that

d+2~v
P ||Aju||L§(Rd)-

140 Lo gy < C2?

This ensures that the series > i Aju of continuous bounded functions converges uniformly

to a continuous bounded function on R?¢. Hence u is a bounded d(igntinuous function on
a2y
R? If p is finite, one can use in addition that D(R?) is dense in B, " (R?) (see Theorem

4.9). Then we can conclude that u decays at infinity. UJ

5.2. Sobolev type embedding. In the previous paper [7], Theorem 4.3, the second
author proved the Sobolev embedding theorem; if s > 2“’%1, then

e d
By5(RY) = Hj(RY) — Bl ™ (RY).

In this subsection we consider the case s < 2. We recall that Bff (RY) C Li(R?) by

the definition and B3F(R?Y) — Fy(RY) = H: (RY) — LI (R?) for 1 < r < 2 by (4.1). We

here obtain a stronger integrability in the case of 0 < s < 2”’%1.

Theorem 5.3. [fsceR, 1 <r<oo,0<s< 27%[, then we have a continuous embedding
BEA(RY) — Ly(RY),

r(2v +d)
2v+d—rs

Proof. We recall that for f € S(RY),

e =2 [ mlla | 1) = A,

where p =

where my(E) is the volume of E C R? with respect wy(x)dr. For A > 0, we put f =
fra+ foa with fia =30 4 Af, and fou = ZWZA A, f. Then by using Proposition
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3.1 we deduce that
is R
1fralle@a < > 22128 f i )

21<A

(5.1) < CAdt%‘stl

BE(RY)

We take now A = A, such that CA A

BIE R = ’\ . Then for all A > 0, we see that

me({z | [f(@)] > A}) <m({z | [fra(@)] > 33 + ml{z | [ f2a(2)] > 5})
<my({z | |fon,(2)] > 3})
< 2°A7" | fo, a0 12y ey
and moreover, for ¢ > 0,

fnllims = [ | 3 2560)

21>A
T

/Z2J€Af ‘wk yo - (3 27y

21>A 20>A

<A D PO Ny we,

21> Ay

wk)

Hence by Fubini’s theorem we can deduce that

£y < ¢ / VAT ST A A

2i> Ay

4 J( *S)
c2 Hf” s, k(]Rd) p—r— 1—
< C E A 2fy+d rsd)\

7j>—1
x (4c||f] 5
< el gy Z 27t~

j>—1
Bsk RY) Z 2Tj$||Ajf||2;(Rd) = | fII"

— By (RY)
-

This implies the desired result. O

2 .
) T Y 5

2'y+d rs
125 N7y ey

< cllfII:

Theorem 5.4. If1 <r < oo and s € R such that 0 < s < %%1, then we have

1 r
gy < OU ooy Wiy
r(2y+d)

where P = m

Proof. The precedent proof is available. In fact it suffices to modify the calculation in

(5.1) by
dt2y
fralln < CAF s,

and by taking A = A, with C’A Y ||f|| Lk gy 2. O
Rd
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5.3. Paraproduct algorithm. In this subsection we study how the product of ww,
u,v € §'(R) acts on Dunkl-Besov spaces. This could be well useful in nonlinear par-
tial differential-difference equations. Let u € S'(RY) and u = )7 A,u be the Dunkl-
Littlewood-Paley decomposition of u. This implies that the partial sum

Squ = Z Apu
p<q—1

converges to u € S'(R?). Let us consider two tempered distributions
u= ZApu and v = ZAqv.
P q
Formally, the product uv can be written as
uv = Z Apulgv.

p.q

We introduce the paraproduct and the remainder operators associated with the Dunkl
operators.

Definition 5.1. (1) The paraproduct operator II(u,v): S'(R?) x S'(RY) — S'(RY) is
defined by II(u,v) = II,(v) and

II,v= Z Sq—2u - Agu.

q>1
(2) The remainder operator R(u,v) : 8'(R%) x §'(RY) — &'(RY) is defined by
R(u,v) = Z Ayulgv, forall.

lp—ql<1
Then Bony’s paraproduct decomposition of uv is given as
wo = I,v 4+ ,u + R(u,v).

The following theorems describe paraproduct estimates in the Dunkl-Besov spaces, that
is, the estimates of the action of the paraproduct and remainder operators on the Dunkl-
Besov spaces. Their proofs are given by using the equivalent norms of the Dunkl-Besov
spaces and Bernstein’s estimates in (3.1) (see [7]).

Theorem 5.5. Let 1 < p,r < oo and s € R.
(i) If s >0, then I is a bilinear continuous from L*(RY) x ByF(R?) to Bi¥(RY) and
there exists a positive constant C' such that

1
1T nge ety s ety ey < €

(i) If s > 0,t < 0,s+t >0 and 1 < rry,ry < oo, % = % + %, then 11 is a bilinear
continuous from BEF, (RT) x Bs% (R) to BstF(RY) and there exists a positive constant
C such that

Os+t

< .
- 1

HHHL(B&";” (Rd)><Bf;;',?2(Rd),B§7tt’k(Rd))
Theorem 5.6. (Morse type estimate) Let (s1, s3) € R? and 1 < p,py,pa, 7,71, 79 < 00.
Assume that
1 1 1 1 1 1 1 1 1
y T — <1 and s1+8>d+2y)(—+——-).
4 proop2 P
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Then R is a bilinear continuous from Bsl% (R?) x Bi2F (R) to B;,lf’k(]Rd) and there exists
a positive constant C' such that
Csl+82+1
IRl o1k gy mok gy 52t gy S oo
‘C(BPLH (R )X7Bp21T2(R )7BP»T (R )) S1 + S9

where 815 = 81+ 53 — (d +27)(= + = — %)

P p2
Combining these estimates of the paraproducts and the remainders, we can deduce the
following.
Corollary 5.7. (1) Let s > 0 and 1 < p,r < oo. Then ByF(R?) N L*(R?) is an algebra
and there exists a positive constant C' such that

[uv] Bk (R < O<||U||L;°(Rd)||v| B;;’;(Rd)’|v||Lz°(Rd)>‘

spren + [

(2) Let (s1,82) € R?, 1 < po, 19 < 00, 81 + 89 > d;% and s1 < T2 Then

p1
gt < O (Il
d+2vy
p1
(3) Let (s1,s2) € R%, 1 < py,pa,p, 71,72 < 00, p > max(p1,p2), §j < % and sy + sg >

(d+ 27)(1%1 + L — 1), Then

p2 p

B;i:’;<Rd>>’

[wv]

BZ%;';(Rd)HM BZ%:%(]@i) + ||U’| B;g:f2(Rd)||U|

where s = 81 + Sy —

HUUHBZ}ﬂ’k(Rd) < CHUHB;%’EI (R4) HUHB;%:%(Rd)’
where $19 = s1+ s9 — (d + 27)(1%1 + p% - %) and r = max(ry,73).
6. APPLICATION TO DIFFERENTIAL-DIFFERENCE EQUATIONS

In this section we treat differential-difference equations, given by replacing the Lapla-
cian A in a differential equation with the Dunkl-Laplacian A, and consider some basic
properties of the solutions in Dunkl-Besov spaces. Though the process is a standard way;,
we sketch their proofs to understand the essential parts.

6.1. The slowly hypoellipticity. We consider the linear equation
(6.1) —Apu + Z ¢ Tiuliu+cu=0

1<i,j<d

with ¢;; € R and ¢ > 0.
Theorem 6.1. If u is a solution of (6.1) such that u in B%:S(Rd) N WE®(RY), then
u € By (RY) N LP(RY) for all n € N and in particular, u € E(RY).
Proof. If w in By§(R?), then each Tju € By5(R?). Therefore, it follows from Corollary
5.7, (1) that ¢;;TiuTju € ByS(R?) N L(R?). Hence, we can deduce that

—Apu+cu € B?;S(Rd).
Since the operator —A\, +cl is isomorphism from By¥(R?) in By >*(R?) for all s € R and
(p,7 € [1,00]?), it follows that u € Bi5(R?). By iteration we deduce that u € B} (R?)

4421
for all n € N. Then it follows from the Theorem 5.1 that u € By, * ’k(Rd). On the
other hand, the Sobolev imbedding theorem (see [7], Theorem 4.3) yields that Hj , (R?) =

d
B;:g(Rd) — C175(RY) if 5 > 4 + 7 Thereby, the desired result follows. O
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6.2. Dunkl-Schrédinger equation. Let I be an interval of R (bounded or unbounded).
We shall consider a space-time estimate of the solutions u(t,z), (t,z) € I x R%, of the
Dunkl-Schrodinger equation

(6.2) {&gu —iAgu = f,

U|t:0 =g

with initial data g and f. For any Banach space X, let L(I, X') denote a mixed space-time
Banach space consisting of measurable functions u : I — X such that

1wl agr,x) = /||u ||§(dt < 00

if 1 < ¢ < oo and |Julpe(r,x) = esssup,e;llu(t,-)||x < oo if ¢ = co. In what follows we
shall consider a Strichartz type estimate of the solution u of (6.2) and obtain the L9(/, X)-
norm of u when X = H;, (R?) and Bff(Rd). The special case of X = Li(R?) = H?, (R?)
was treated in [8].

We suppose that g € X and f € LI(I, X') where X, X’ are H?,(R%) and B*}(R?). As
in the Euclidean case, we use the integral formulation of u , ’

u(t,x) = T(t)g(a) + / To(t — 5) (s, )ds.
(6.3) — Tu(9)(t, 2) + Bu(f) (¢, ),

where T, (t) = e*® t € R, is the Schrodinger semi-group. Moreover, the exponents ¢, r
are required to satisfy the so-called admissible condition:

Definition 6.1. A pair (¢, r) is called v+ g—admissible if g,r > 2, (q,r, v+ %l) # (2,00,1)
and

1—1— d+ 2y < d—|—27.
q 2r 4
In particular, when d + 2y > 2 and (¢, r) = (2, dzf; 2l 5), the equality holds.

Theorem 6.2. (Strichartz type estimate)
(1) Let s € R and (q,7) be a v+ %-admissible pair. Then there exists a constant C such
that for all g € S'(RY),

||Ik(9) ||Lq(1,H;,€(Rd))
||Ik(g) ”Lq(I,Bf:g(Rd)) < C||g|

Rd);

k
B (RT)

(2) Lets € R and (q,7), (g1, 51) be v+ -admissible pairs. Then there exists a constant
C such that for all f € S'(I x RY),

1@k (Nl zacrms  wayy < CUAN

1Pe (A Lar o ey < CIF g

qu I,HS, (Rd))’
10

qu 1.BY; i (Rd))
Proof. Let t #0, s € R and 2 < p < co. As in the Euclidean case (cf. Corollary 4.1 in
[8]), we can deduce that

1
1 Z ()| 5o mety < THQHL
Ck
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Since ||Zy,(¢)g 2 ey = [|9]|£2(ra), We see by interpolation that

1

6.4 Tu(t)gll ety < _
(6.4) 1Ze () gl L2 (ray < @D

||g||L£/(Rd)'

On the other hand, For any v € S'(R?) it is easy to see that
(6.5) Fp' (wFp(Tu(9)(t, ) = Tu(t) Fp' (vFp(g)).
In particular, it follows from (6.4) that for 2 < p < oo,

1 -1
(2 [t[2rHa) 3 5 170" F (9Dl oy

175 (wFp (Zi(g) (t, D) ey ey

IN

Therefore, the definitions of the Dunkl-Bessel potential and Dunkl-Besov norms yield that

1
(Glefr+e)'-
1

B;:];(Rd) S ( 2‘ ’2 +d> l—l ||g|

1Zk ()9l 5 ey < 1) HgHHZ/,k(R

1Zk(t)g1

s k Rd)
Then by using the standard argument, we can deduce the desired estimates. 0

6.3. Generalized heat equation. As in the previous section we shall obtain a space-
time estimate of the solution u(t, ), (t,z) € I x R, of the generalized heat equation

— A —
uli—o = g.

As before, to estimate the solution u of (6.6), we use the integral formulation

(6.7) u(t,z) = / Hy(t — 1) f(1,z)d,

where Hy(t) is the generalized heat semi-group. Then by using the explicit form of the
kernel of Hy(t) obtained by Résler [11] and the corresponding formula (6.5), we can deduce
the following (see [9]).

Lemma 6.3. There exist positive constants k and C such that for all1 <p <oo, 7 >0
and j € N,
—K 2‘7’
1A (Hi(T)u) || pray < Ce 77| Ajul pp ey
Theorem 6.4. Let s c R, T > 0 and 1 < p,q,r < co. We suppose that g € B;;f(]Rd) and
s— 2+ k

fe LY(0,T), Bpyr (R)). Then (6.6) has a unique solution u belongs to

s+

L9((0,7), By (RY) () L=((0.T), BiA(RY)
and there exists a constant C' such that for all ¢ < ¢; < 00,

1 1
. 14T s . )
Byi¥(RY) + ( ! )||f||L4((0 ).B. T2+ k(Rd))

[ 2 SO((HTﬁ)IIm
L11((0,T),Bp 1" (R?))

If in addition v is finite, then u belongs to C([0,T], ByE(R?)).
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Proof. Since g, f are tempered, (6.6) has a unique solution u in S’((0,T) x R?) satisfying

Fo(u)(t,€) = e 1 Fp(g)(€) + /t I (f) (7, €)dr

0
Hence, applying A;, j > 1, to (6.7), we see that

t
Aju(t, ) = Hi(t)A;g + / Hy(t —1)A; f(r,-)dr
0
and thus, by Lemma 6.3, we can deduce that

t
[Aut, ) e @ay < [Hi(t)Aj9| r may +/0 [ Hi(t —7)A; £ (7, ) || 2 gy dT

t
< Ce 2JtHAJ'9”L§(Rd)+/ e DA (7, ) | e ey
0

Then it follows from (2.3) that ||Ajul|za (o,7),27(re)) is dominated by

1— efan1221 1 1 — G*HTQZQQj L
q1 a2
( ) 1291l g (gay + <—Eq222j ) 14 fll oo,z

with q% =1+ q% - %. Moreover, similarly as above, we can obtain that

6.8 .

t
[Aou(t, )z ey < [[Dogllcy ey +/ [A0f (7, )| g ety
0

and thus, if 1 < ¢ < ¢ < 00,

1 1
(69) ||A0U||Lq1 ((07T)7L£(Rd)) S C(T‘Il ||A09||L£(Rd) + T'a2 HAOJCHLQ((O,T),Lﬁ(Rd)))'
Finally, taking the {"-norm with respect to j in (6.8) and (6.9) with the usual convention
if 7 = 0o, we can deduce the desired estimate. O
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