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Abstract. We define and study the Bessel potential and inhomogeneous Besov spaces
associated with the Dunkl operators on Rd. As applications on these spaces we construct
the Sobolev type embedding theorem and the paraproduct operators associated with the
Dunkl operators, as similar to those defined by Bony. We also establish Strichartz type
estimates for the Dunkl-Schrödinger equation and finally we study the problem of well
posedness of the generalized heat equation.

1. Introduction

The Dunkl operators, which are differential-difference operators introduced by Dunkl
in [3], are very important in pure mathematics and in physics. Especially, they provide
a useful tool in the study of special functions related with root systems (cf. [4]). In the
previous paper [7], we study some function spaces associated with Dunkl operators. We
have begun a general theory on Littlewood-Paley decompositions associated with Dunkl
operators and introduced generalized Sobolev spaces, generalized Hölder spaces and BMO
associated with the Dunkl operators.

In this second paper of a series of our study we continue our investigation of function
spaces; generalized Bessel potential spaces, inhomogeneous Besov spaces and Triebel-
Lizorkin spaces associated with Dunkl operators. We obtain their basic properties and
apply them to estimate the solutions of the Dunkl-Schrödinger and the Dunkl heat equa-
tions. In their recent paper [1], Abdelkefi, Anker, Sassi and Sifi also obtain some basic
properties of the Besov spaces and integrability for the Dunkl transform.

The contents of the paper is as follows. In §2 we recall some basic results about the
harmonic analysis associated with the Dunkl operators. In §3 we introduce the Littlewood-
Paley decomposition associated with the Dunkl operators. We shall obtain Bernstein’s
inequalities. §4 is devoted to study the Dunkl-Bessel potential spaces, the inhomogeneous
Dunkl-Besov spaces and the Dunkl-Triebel-Lizorkin spaces. According to a standard
process in the Euclidean case (cf. [15]), we shall consider equivalent norms, lifting prop-
erties, interpolations and dualities of these spaces. In §5 we summarize some results on
embeddings and paraproduct operators, which depend on the index γ associated to the
multiplicity function of the root system. In the last §6 we consider some applications
of the Dunkl-Besov spaces to differential-difference equations. We shall obtain Strichartz
type estimates of the solutions of the Dunkl-Schrödinger equation and finally a space-time
estimate of the solutions of the Dunkl heat equation.

Throughout this paper by c, C we always represent positive constants not necessarily
the same in each occurrence.
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2. Preliminaries

In order to confirm the basic and standard notations we briefly overview the theory of
Dunkl operators and related harmonic analysis. Main references are [3, 4, 5, 6, 7, 11, 12,
14, 17, 18].

2.1. Root system, reflection group and multiplicity function. Let Rd be the Eu-
clidean space equipped with a scalar product ⟨, ⟩ and let ||x|| =

√
⟨x, x⟩. For α in

Rd\{0}, σα denotes the reflection in the hyperplane Hα ⊂ Rd perpendicular to α, i.e.,
for x ∈ Rd, σα(x) = x − 2∥α∥−2⟨α, x⟩α. A finite set R ⊂ Rd\{0} is called a root sys-
tem if R ∩ Rα = {±α} and σαR = R for all α ∈ R. We normalize each α ∈ R as
⟨α, α⟩ = 2. We fix a β ∈ Rd\∪α∈RHα and define a positive root system R+ of R as
R+ = {α ∈ R | ⟨α, β⟩ > 0}. The reflections σα, α ∈ R, generate a finite group W ⊂ O(d),
called the reflection group. A function k : R → C on R is called a multiplicity function if
it is invariant under the action of W . We introduce the index γ as

γ = γ(k) =
∑

α∈R+

k(α).

Throughout this paper, we will assume that k(α) ≥ 0 for all α ∈ R. We denote by ωk the
weight function on Rd given by

ωk(x) =
∏

α∈R+

|⟨α, x⟩|2k(α),

which is invariant and homogeneous of degree 2γ. In the case that the reflection group
W is the group Zd

2 of sign changes, the weight function ωk is a product function of the

form
∏d

j=1 |xj|2kj , kj ≥ 0. We denote by ck the Mehta-type constant defined by

ck =

∫
Rd

e
−||x||2

2 ωk(x)dx.

In the following we denote by

C(Rd) the space of continuous functions on Rd.
C0(Rd) the space of continuous functions on Rd vanishing at infinity.
Cp(Rd) the space of functions of class Cp on Rd.
Cp

b (Rd) the space of bounded functions of class Cp.
E(Rd) the space of C∞-functions on Rd.
S(Rd) the Schwartz space of rapidly decreasing functions on Rd.
D(Rd) the space of C∞-functions on Rd which are of compact support.
S ′(Rd) the space of temperate distributions on Rd.

2.2. The Dunkl operators. Let k : R → C be a multiplicity function on R and R+ a
fixed positive root system of R. Then the Dunkl operators Tj, 1 ≤ j ≤ d, are defined on
C1(Rd) by

Tjf(x) =
∂

∂xj

f(x) +
∑

α∈R+

k(α)αj
f(x) − f(σα(x))

⟨α, x⟩
,

where α = (α1, α2, · · · , αd). Similarly as ordinary derivatives, each Tj satisfies for all f , g
in C1(Rd) and at least one of them is W -invariant,

Tj(fg) = (Tjf)g + f(Tjg)
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and for all f in C1
b (Rd) and g in S(Rd),∫

Rd

Tjf(x)g(x)ωk(x)dx = −
∫

Rd

f(x)Tjg(x)ωk(x)dx.

Furthermore, according to [3, 4], the Dunkl operators Tj, 1 ≤ j ≤ d commute and there
exists the so-called Dunkl’s intertwining operator Vk such that TjVk = Vk(∂/∂xj) for
1 ≤ j ≤ d and Vk(1) = 1. We define the Dunkl-Laplace operator △k on Rd by

△kf(x) =
d∑

j=1

T 2
j f(x) = △f(x) + 2

∑
α∈R+

k(α)
(⟨∇f(x), α⟩

⟨α, x⟩
− f(x) − f(σα(x))

⟨α, x⟩2
)
,

where △ and ∇ are the usual Euclidean Laplacian and nabla operators on Rd respectively.
Since the Dunkl operators commute, their joint eigenvalue problem is significant, and for
each y ∈ Rd, the system

Tju(x, y) = yju(x, y), j = 1, ..., d, and u(0, y) = 1

admits a unique analytic solution K(x, y), x ∈ Rd, called the Dunkl kernel. which has a
holomorphic extension to Cd × Cd. For x, y ∈ Cd, the kernel satisfies

(a) K(x, y) = K(y, x),
(b) K(λx, y) = K(x, λy) for λ ∈ C,
(c) K(wx,wy) = K(x, y) for w ∈ W .

2.3. The Dunkl transform. For functions f on Rd we define Lp-norms of f with respect
to ωk(x)dx as

∥f∥Lp
k(Rd) =

( ∫
Rd

|f(x)|pωk(x)dx
) 1

p
,

if 1 ≤ p < ∞ and ∥f∥L∞
k (Rd) = ess supx∈Rd |f(x)|. We denote by Lp

k(Rd) the space of all

measurable functions f on Rd with finite Lp
k-norm.

The Dunkl transform FD on L1
k(Rd) is given by

FD(f)(y) =
1

ck

∫
Rd

f(x)K(x,−iy)ωk(x)dx.

Some basic properties are the following (cf. [5] and [6]): For all f ∈ L1
k(Rd),

(a) ∥FD(f)∥L∞
k (Rd) ≤ c−1

k ∥f∥L1
k(Rd),

(b) FD(f(·/λ)))(y) = λ2γ+dFD(f)(λy) for λ > 0,
(c) if FD(f) belongs to L1

k(Rd), then

f(y) =
1

ck

∫
Rd

FD(f)(x)K(ix, y)ωk(x)dx,

and moreover, for all f ∈ S(Rd),
(d) FD(Tjf)(y) = iyjFD(f)(y),
(e) if we define FD(f)(y) = FD(f)(−y), then

FDFD = FDFD = Id.

Proposition 2.1. The Dunkl transform FD is a topological isomorphism from S(Rd) onto
itself and for all f in S(Rd),∫

Rd

|f(x)|2ωk(x)dx =

∫
Rd

|FD(f)(ξ)|2ωk(ξ)dξ.
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In particular, the Dunkl transform f → FD(f) can be uniquely extended to an isometric
isomorphism on L2

k(Rd).

We define the tempered distribution Tf associated with f ∈ Lp
k(Rd) by

(2.1) ⟨Tf , ϕ⟩ =

∫
Rd

f(x)ϕ(x)ωk(x)dx

for ϕ ∈ S(Rd) and denote by ⟨f, ϕ⟩k the integral in the righthand side.

Definition 2.1. The Dunkl transform FD(τ) of a distribution τ ∈ S ′(Rd) is defined by

⟨FD(τ), ϕ⟩ = ⟨τ,FD(ϕ)⟩

for ϕ ∈ S(Rd).

In particular, for f ∈ Lp
k(Rd), it follows that for ϕ ∈ S(Rd),

⟨FD(f), ϕ⟩ = ⟨FD(Tf ), ϕ⟩ = ⟨Tf ,FD(ϕ)⟩ = ⟨f,FD(ϕ)⟩k.

Theorem 2.2. The Dunkl transform FD is a topological isomorphism from S ′(Rd) onto
itself.

2.4. The Dunkl convolution. By using the Dunkl kernel in 2.2, we introduce a gen-
eralized translation and a convolution structure in our Dunkl setting. For a function
f ∈ S(Rd) and y ∈ Rd the Dunkl translation τyf is defined by

τyf(x) =
1

ck

∫
Rd

FD(f)(z)K(ix, z)K(iy, z)ωk(z)dz.

Clearly τyf(x) = τxf(y) and by using the Dunkl’s intertwinig operator Vk, τyf is related
to the usual translation as τyf(x) = (Vk)x(Vk)y((Vk)

−1(f)(x + y)) (cf. [11, 18]), where
the subscript x of (Vk)x means that Vk is applied to the x variable. Hence, τy can also
be defined for f ∈ E(Rd). We define the Dunkl convolution product f ∗D g of functions
f, g ∈ S(Rd) as follows.

f ∗D g(x) =

∫
Rd

τxf(−y)g(y)ωk(y)dy.

This convolution is commutative and associative (cf. [18]). Since FD(τyf)(x) = K(ix, y)
FD(f)(x) by the above definition of τyf , it follows that

(a) For all f, g ∈ D(Rd) (resp. S(Rd)), f ∗D g belongs to D(Rd) (resp. S(Rd)) and

(2.2) FD(f ∗D g)(y) = FD(f)(y)FD(g)(y).

Moreover, as pointed in [14], §4 and §7, the operator f → f ∗D g is bounded on Lp
k(Rd),

1 ≤ p ≤ ∞, provided that g is a radial function in L1
k(Rd) or an arbitrary function in

L1
k(Rd) for W = Zd

2. Hence the standard argument yields the following Young’s inequality.
(b) Let 1 ≤ p, q, r ≤ ∞ such that 1

p
+ 1

q
− 1

r
= 1. If f ∈ Lp

k(Rd) and g ∈ Lq
k(Rd) is

radial or arbitrary for W = Zd
2, then f ∗D g ∈ Lr

k(Rd) and

(2.3) ∥f ∗D g∥Lr
k(Rd) ≤ 2

d
2 ∥f∥Lp

k(Rd) ∥g∥Lq
k(Rd) .

Definition 2.2. The Dunkl convolution product of a distribution S in S ′(Rd) and a
function ϕ in S(Rd) is the function S ∗D ϕ defined by

S ∗D ϕ(x) = ⟨Sy, τ−yϕ(x)⟩.
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Proposition 2.3. Let f be in Lp
k(Rd), 1 ≤ p ≤ ∞, and ϕ in S(Rd). Then the distribution

Tf ∗D ϕ is given by the function f ∗D ϕ. If we assume that ϕ is arbitrary for d = 1 and
radial for d ≥ 2, then Tf ∗D ϕ belongs to Lp

k(Rd). Moreover, for all ψ ∈ S(Rd),

(2.4) ⟨Tf ∗D ϕ, ψ⟩ = ⟨f̌ , ϕ ∗D ψ̌⟩k,

where ψ̌(x) = ψ(−x), and

(2.5) FD(Tf ∗D ϕ) = FD(Tf )FD(ϕ).

Proof. It follows that

Tf ∗D ϕ(x) = ⟨(Tf )y, τxϕ(−y)⟩
= ⟨f, τxϕ(−y)⟩k = f ∗D ϕ(x).

Let us suppose that ϕ is arbitrary for d = 1 and radial for d ≥ 2. Then by (2.3), Tf ∗D ϕ
belongs to Lp

k(Rd). By Fubini-Tonelli’s theorem the function (x, y) 7→ f(−y)τxϕ1(y)ϕ2(x)
is integrable on Rd × Rd with respect to ωk(y)dy ωk(x)dx. Then for any ψ ∈ S(Rd),

⟨Tf ∗D ϕ, ψ⟩ =

∫
Rd

∫
Rd

f(−y)τxϕ(y)ψ(x)ωk(y)dyωk(x)dx

=

∫
Rd

f(−y)
( ∫

Rd

τyϕ(x)ψ(x)ωk(x)dx
)
ωk(y)dy

=

∫
Rd

f(−y)ϕ ∗D ψ̌(y)ωk(y)dy = ⟨f̌ , ϕ ∗D ψ̌⟩k.

Moreover, from (1), (2.2) and (2.4) it follows that

⟨FD(Tf ∗D ϕ), ψ⟩ = ⟨Tf ∗D ϕ,FD(ψ)⟩

= ⟨f̌ , ϕ ∗D
ˇFD(ψ)⟩k

= ⟨f,FD(FD(ϕ)ψ)⟩k = ⟨FD(Tf )FD(ϕ), ψ⟩.
¤

For each u ∈ S ′(Rd), we define the distributions Tju, 1 ≤ j ≤ d, by

⟨Tju, ψ⟩ = −⟨u, Tjψ⟩

for all ψ ∈ S(Rd). Then ⟨△ku, ψ⟩ = ⟨u,△kψ⟩ and these distributions satisfy the following
properties (see 2.3 (d)):

FD(Tju) = iyjFD(u),(2.6)

FD(△ku) = −∥y∥2FD(u).

In the following we denote Tf given by (2.1) by f for simplicity.

3. Dunkl-Littlewood-Paley decomposition

One of the main tools in this paper is the Dunkl-Littlewood-Paley decompositions of
distributions on Rd into dyadic blocks of frequencies. Let ψ be a non-negative function
in D(Rd), which is radial for d ≥ 2, satisfying ψ(ξ) ≡ 1 for ∥ξ∥ ≤ 1

2
and ψ(ξ) ≡ 0 for

∥ξ∥ ≥ 1. We define a function φ on Rd by

φ(ξ) = ψ(
ξ

2
) − ψ(ξ).

Then we see that ψ(ξ) +
∑∞

j=0 φ(2−jξ) = 1.
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Definition 3.1. For j = 0, 1, 2, · · · , the operators Sj and ∆j on S ′(Rd) are defined by

FD(Sjf) = ψ(2−jξ)FD(f),

FD(∆jf) = φ(2−jξ)FD(f),

and put ∆−1 = S0.

We see that f =
∑∞

j=−1 ∆jf in the sense of S ′(Rd). We call ∆jf the j-th dyadic

block of the Dunkl-Littlewood-Paley decomposition of f . Similarly, the operators S̃j and

∆̃j on S ′(Rd) are defined by replacing ψ and φ by ψ̃(ξ) = ψ( ξ
2
) and φ̃(ξ) = ψ( ξ

4
) −

ψ(4ξ) respectively. Throughout this paper we define the functions χ, χ̃, ϕ and ϕ̃ on Rd

respectively by

χ = F−1
D (ψ), χ̃ = F−1

D (ψ̃), ϕ = F−1
D (φ), ϕ̃ = F−1

D (φ̃).

Proposition 3.1. (Bernstein inequalities) For all µ ∈ Nd, σ ∈ R, j ∈ N, 1 ≤ p, q ≤
∞, 1

q
= 1

p
+ 1

r
− 1, and f ∈ S ′(Rd), we have

(1) ∥∆jf∥Lq
k(Rd) ≤ 2j(d+2γ)( 1

p
− 1

q
)∥ϕ̃∥Lr

k(Rd)∥∆jf∥Lp
k(Rd),

(2) ∥Sjf∥Lq
k(Rd) ≤ 2j(d+2γ)( 1

p
− 1

q
)∥χ̃∥Lr

k(Rd)∥Sjf∥Lp
k(Rd),

(3) ∥(
√
−△k)

σ∆jf∥Lp
k(Rd) ≤ 2jσ∥F−1

D (∥ξ∥σφ̃)∥L1
k(Rd)∥∆jf∥Lp

k(Rd).

Moreover, if W = Zd
2, then each T µ = T µ1

1 ◦ · · · ◦ T µd

d satisfies

(4) ∥T µ∆jf∥Lp
k(Rd) ≤ c2j|µ|∥T µϕ̃∥L1

k(Rd)∥∆jf∥Lp
k(Rd),

(5) ∥T µSjf∥Lp
k(Rd) ≤ c2j|µ|∥T µχ̃∥L1

k(Rd)∥Sjf∥Lp
k(Rd).

Proof. Proposition 2.3 implies that

(3.1) Sjf = 2j(d+2γ)χ̃(2j·) ∗D Sjf, ∆jf = 2j(d+2γ)ϕ̃(2j·) ∗D ∆jf.

Therefore, (1), (2), (3) follow from (2.3) and (4), (5) follow from (2.3) and (2.6). ¤
Lemma 3.2. Assume that N is an integer such that N > γ + d

2
and that ϱ ∈ L2

k(Rd)

satisfies T µϱ ∈ L2
k(Rd) for |µ| = N . Then F−1

D (ρ) ∈ L1
k(Rd) and

∥F−1
D (ρ)∥L1

k(Rd) ≤ C∥ρ∥1−θ
L2

k(Rd)
sup
|µ|=N

∥T µρ∥θ
L2

k(Rd),

where θ = d+2γ
2N

.

Proof. The proof is similar to the classical case (cf. [16]). ¤
Definition 3.2. For s ∈ R, the operator J s

k from S ′(Rd) to S ′(Rd) is defined by

J s
k (f) = F−1

D ((1 + ∥ · ∥2)
s
2FDf).

We call J −s
k the Dunkl-Bessel potential operator.

Proposition 3.3. Let s ∈ R and 1 ≤ p ≤ ∞. If f ∈ S ′(Rd) satisfies ∆jf ∈ Lp
k(Rd) for

j = −1, 0, 1, 2, · · · , then

∥J s
k (∆jf)∥Lp

k(Rd) ≤C2sj∥∆jf∥Lp
k(Rd),(3.2)

where C is independent of p and j.

Proof. We note that for all j = 0, 1, 2, · · · ,

∆jf =
1∑

l=−1

∆j+l∆jf =
1∑

l=−1

ϕj+l ∗D ∆jf,
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where ϕ = F−1
D (φ) and ϕj+l(ξ) = 2(j+l)(d+2γ)ϕ(2j+lξ). This gives that

J s
k (∆jf) =

1∑
l=−1

J s
k (ϕj+l) ∗D ∆jf.

Since the L2
k(Rd)-norms of FD(J s

k (ϕj+l))(ξ) = (1 + ||ξ||2) s
2 ϕj+l(ξ) and 2(j+l)s (2−2(j+l) +

∥ξ∥2)
s
2 φ(ξ) are same, it follows from Lemma 3.2 that

∥J s
k (ϕj+l)∥L1

k(Rd) ≤ C2js, l = 0,±1.(3.3)

Hence (3.2) follows from (2.3). The case of j = −1 is proved by the similar way. ¤

4. Bs,k
p,q , F s,k

p,q , Hs
p,k spaces and basic properties

In this section we define analogues of the Besov, Tribel-Lizorkin and Bessel potential
spaces associated with the Dunkl operators on Rd and obtain their basic properties. In
particular, we use the Dunkl-Littlewood-Paley decomposition of f in S ′(Rd), obtained in
the previous section, and apply the standard process used in the Euclidean case. Hence,
we expect that, according to routine, we obtain analogous results in our Dunkl setting.
However, we have some obstacles to carry out the Euclidean process, which are stated in
Remarks 4.1 and 4.2 below.

4.1. Definitions. From now, we make the convention that for all non-negative sequence
{aq}q∈Z, the notation (

∑
q ar

q)
1
r stands for supq aq in the case r = ∞. Let s ∈ R and

1 ≤ p ≤ ∞. For a sequence {uj}j=0,1,2,··· of functions on Rd, we define

∥{uj}∥lsq(Lp
k) = ∥u0∥Lp

k(Rd) + (
∑
j>0

(2js∥uj∥Lp
k(Rd))

q)
1
q ,

∥{uj}∥Lp
k(lsq) = ∥u0∥Lp

k(Rd) + ∥
∑
j>0

(2js|uj(x)|)q)
1
q ∥Lp

k(Rd).

Let ∆j, j = −1, 0, 1, 2, · · · , be the operators given in Definition 3.1. For convenience
we replace the indices j by j + 1. That is, ∆0 = S0, FD(∆jf) = φ(2−j+1ξ)FD(f) and
f =

∑∞
j=0 ∆jf in the sense of S ′(Rd).

Definition 4.1. For s ∈ R and 1 ≤ p, q ≤ ∞, the inhomogeneous Dunkl-Besov space
Bs,k

p,q (Rd) is defined by

Bs,k
p,q (Rd) = {f ∈ S ′(Rd) | ∥f∥Bs,k

p,q (Rd) = ∥{∆jf}∥lsq(Lp
k) < ∞}.

Definition 4.2. Let s ∈ R and 1 ≤ p, q ≤ ∞, the inhomogeneous Dunkl-Triebel-Lizorkin
space F s,k

p,q (Rd) is defined by

F s,k
p,q (Rd) = {f ∈ S ′(Rd) | ∥f∥F s,k

p,q (Rd) = ∥{∆jf}∥Lp
k(lsq) < ∞}.

Definition 4.3. For s ∈ R and 1 ≤ p ≤ ∞, the Dunkl-Bessel potential space Hs
p,k(Rd) is

defined as the space J −s
k (Lp

k(Rd)), equipped with the norm ∥f∥Hs
p,k(Rd) = ∥J s

k (f)∥Lp
k(Rd).

Remark 4.1. We can define these spaces for 0 < p < 1 in the same way. In order to study
the case of 0 < p < 1, (vector-valued) Hardy spaces are useful, that is, the theory of
maximal operators is necessary. In our Dunkl setting, it is not accomplished generally,
because of the difficulty arisen from the facts that an explicit formula for a generalized
translation operator τy is unknown and τy is not a positive operator.
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4.2. Equivalent norms. Let f ∈ S ′(Rd). We say that f has a general Dunkl-Littlewood-
Paley decomposition if f is decomposed as f =

∑∞
j=0 uj, where each uj is a functions on

Rd satisfying

suppFD(u0) ⊂ {ξ | |ξ| ≤ 1},
suppFD(uj) ⊂ {ξ | 2j−2 ≤ |ξ| ≤ 2j}, j = 1, 2, · · · .

Obviously, the Dunkl-Littlewood-Paley decomposition f =
∑∞

j=0 ∆jf is an example of
the generalized decomposition.

Theorem 4.1. (1) Let s ∈ R and 1 ≤ p, q ≤ ∞. Then

∥f∥Bs,k
p,q (Rd) ∼ inf ∥{uj}∥lsq(Lp

k),

where the infimum is taken over all general Dunkl-Littlewood-Paley decompositions f =∑
j≥0 uj ∈ S ′(Rd) with ∥{uj}∥lsq(Lp

k) < ∞.

(2) Let s ∈ R and 1 < p < ∞. Then

∥f∥F s,k
p,2 (Rd) ∼ inf ∥{uj}∥Lp

k(ls2),

where the infimum is taken over all general Dunkl-Littlewood-Paley decompositions f =∑
j≥0 uj ∈ S ′(Rd) with ∥{uj}∥Lp

k(ls2) < ∞.

Proof. Since FD satisfies (2.2), we can apply the same argument used in the proof of
Theorem 4.2.2 in [15]. We note that

∆kf =
∑

|l−k|≤2

∆kul =
∑

r=0,1,2

∆kuk+r.

Hence (1) follows from the inequality ∥ϕk ∗D uk+r∥Lp
k(Rd) ≤ c∥uk+r∥Lp

k(Rd) for 1 ≤ p ≤
∞, where c is independent of k (see (2.3)). (2) follows from the inequality ∥{ϕk ∗D

uk+r}∥Lp
k(ls2) ≤ c∥{uk+r}∥Lp

k(ls2) for 1 < p < ∞, where c is independent of k, which is

obtained in Theorem 3.13 in [7]. ¤

Remark 4.2. In the Euclidean case, (2) holds for F s,k
p,q (Rd) with 1 < q < ∞, because the

inequality ∥{ϕk ∗D uk+r}∥Lp
k(lsq) ≤ c∥{uk+r}∥Lp

k(lsq) follows from the Hörmander multiplier
theorem. However, in our Dunkl setting, we have no Hörmander type multiplier theorem.
When q = 2, we can apply the Plancherel formula for the Dunkl transform FD and thereby
we can obtain (2).

Corollary 4.2. Let s ∈ R and 1 ≤ p, q ≤ ∞. Let {uj}j∈N be a sequence of functions such
that ∥{uj}∥lsq(Lp

k) < ∞.

(1) If suppFD(uj) ⊂ 2jR for some annulus R centered at the origin, then f =
∑∞

j=0 uj

belongs to Bs,k
p,q (Rd) and there exists a positive constant C(s) such that ∥f∥Bs,k

p,q (Rd) ≤
C(s)∥{uj}∥lsq(Lp

k).

(2) If s > 0 and suppFD(uj) ⊂ 2jB for some ball B centered at the origin, then
f =

∑∞
j=0 uj belongs to Bs,k

p,q (Rd) and there exists a positive constant C(s) such that

∥f∥Bs,k
p,q (Rd) ≤ C(s)∥{uj}∥lsq(Lp

k).

Proof. We can find an integer N such that ∆kf =
∑

|l−k|≤N ∆kul in the case of (1) and

∆kf =
∑

l≥k−N ∆kul in the case of (2). Hence (1) follows as in Theorem 4.1 (1) (see [7],
Proposition 3.6) and (2) follows as in [7], Proposition 3.7. ¤
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Corollary 4.3. Let p, q be as above. The definitions of the spaces Bs,k
p,q (Rd) and F s,k

p,2 (Rd)
do not depend on the choice of the couple (φ, ψ) defining the Dunkl-Littlewood-Paley de-
composition.

In the following, we denote by F̃ s,k
p,q (Rd) the space of all f ∈ S ′(Rd) which has a general

Dunkl-Littlewood-Paley decomposition f =
∑∞

j=0 uj with ∥{uj}∥Lp
k(lsq) < ∞. Clearly,

F s,k
p,q (Rd) ⊂ F̃ s,k

p,q (Rd) and F s,k
p,2 (Rd) = F̃ s,k

p,2 (Rd) by Theorem 4.1 (2).

Theorem 4.4. Let 1 < p < ∞ and s ∈ R, we have

F s,k
p,2 (Rd) = Hs

p,k(Rd).

Proof. Because of F s,k
p,2 (Rd) = F̃ s,k

p,2 (Rd), it is enough to show that F̃ s,k
p,2 (Rd) = Hs

p,k(Rd).
When s = 0, this is nothing but a theorem of Littlewood-Paley type. The general case of
s ̸= 0 follows form the lifting property (see Theorem 4.7 below). ¤
Corollary 4.5. Let s ∈ N and 1 < p < ∞ then

F s,k
p,2 (Rd) = W s,p

k (Rd),

where W s,p
k (Rd) = {u ∈ S ′(Rd) | T µu ∈ Lp

k(Rd) for all µ ∈ Nd with |µ| = s}.
4.3. Lifting property. We recall that for f ∈ S ′(Rd),

FD(Tj∆nf)(ξ) = 2nϕ̃(2−nξ)FD(f)(ξ), ϕ̃(ξ) = iξjϕ(ξ).

Then we can obtain

Theorem 4.6. Let s ∈ R and 1 ≤ p, q ≤ ∞. The operator Tj is a linear continuous

operator from Bs,k
p,q (Rd) into Bs−1,k

p,q (Rd), from F̃ s,k
p,q (Rd) into F̃ s−1,k

p,q (Rd), and from Hs,k
p,q (Rd)

into Hs−1,k
p,q (Rd).

Similarly, we recall that J t
k , t ∈ R, is a linear continuous injective operator from S(Rd)

onto S(Rd) and is extended to a linear continuous operator from S ′(Rd) onto S ′(Rd) with
(J t

k)−1 = J −t
k .

Theorem 4.7. Let s, t ∈ R and 1 ≤ p, q ≤ ∞. The operator J t
k is a linear continuous

injective operator from Bs,k
p,q (Rd) onto Bs−t,k

p,q (Rd), from F̃ s,k
p,q (Rd) onto F̃ s−t,k

p,q (Rd), and from

Hs,k
p,q (Rd) onto Hs−t,k

p,q (Rd).

Proof. Since FD satisfies (2.2), we can apply the same arguments used in the proof of
Theorem 5.1.1 in [15]. ¤
4.4. Embeddings. As in the Euclidean case (see [15], 5.2), the monotone character of
lq-spaces and Minkowski’s inequality yield the following.

Theorem 4.8. (1) If s1 < s2 and 1 ≤ p, q ≤ ∞, then

Bs2,k
p,q (Rd) ↪→ Bs1,k

p,q (Rd),

F s2,k
p,q (Rd) ↪→ F s1,k

p,q (Rd).

(2) If s ∈ R, 1 ≤ p ≤ ∞ and 1 ≤ q1 < q2 ≤ ∞, then

Bs,k
p,q1

(Rd) ↪→ Bs,k
p,q2

(Rd),

F s,k
p,q1

(Rd) ↪→ F s,k
p,q2

(Rd).

(3) For s ∈ R and 1 ≤ p, q ≤ ∞, let r = min{p, q}, t = max{p, q}. Then

Bs,k
p,r (Rd) ↪→ F s,k

p,q (Rd) ↪→ Bs,k
p,t (Rd).(4.1)
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As in [15], §6, we can obtain

Theorem 4.9. Let s ∈ R and 1 ≤ p, q < ∞. Then D(Rd) is dense in Bs,k
p,q (Rd) and

F s,k
p,q (Rd).

4.5. Duality. In the Euclidean case we see that (Bs
p,q(Rd))′ = B−s

p′,q′(Rd) and (F s
p,q(Rd))′ =

F−s
p′,q′(Rd), where p′, q′ are conjugate numbers of p, q respectively (see [15], §7). For the

Bs,k
p,q -spaces, we can apply the same argument used in [15], §7. However, we can not do for

the F s,k
p,q -spaces, because Hörmander’s type multiplier theorem is used in the Euclidean

case (see Remark 4.2). For the Hs
p,k-space, the duality follows from the one of Lp

k(Rd).

Theorem 4.10. (1) If s ∈ R and 1 ≤ p < ∞, then

(Hs
p,k(Rd))′ = H−s

p′,k(R
d).

(2) If s ∈ R and 1 ≤ p, q < ∞, then

(Bs,k
p,q (Rd))′ = B−s,k

p′,q′ (R
d).

4.6. Interpolation. We can apply the real method used in [15], §8. In this process, the
duality is used frequently. In our Dunkl setting, as shown in Theorem 4.10 the duality
holds only for Bs,k

p,q -spaces and Hs
p,k-spaces. Hence, we have the following.

Theorem 4.11. (1) Let s0, s1 ∈ R, s0 ̸= s1, 0 < θ < 1, s = (1 − θ)s0 + θs1, 1 ≤
p, q, q0, q1 ≤ ∞. Then

(Bs0,k
p,q0

(Rd), Bs1,k
p,q1

(Rd))θ,q = Bs,k
p,q (Rd).

(2) Let s ∈ R, 1 ≤ p0, p1 ≤ ∞, p0 ̸= p1, 0 < θ < 1, 1
p

= 1−θ
p0

+ θ
p1

, then

(F s,k
p0,2(Rd), F s,k

p1,2(Rd))θ,p = F s,k
p,2 (Rd).

(3) Let s0, s1 ∈ R, s0 ̸= s1, 1 ≤ p0, p1 ≤ ∞, p0 ̸= p1, 0 < θ < 1, s = (1 − θ)s0 + θs1,
1
p

= 1−θ
p0

+ θ
p1

, then

(F s0,k
p0,2 (Rd), F s1,k

p1,2 (Rd))θ,p = Bs,k
p,p(Rd).

(4) Let s0, s1 ∈ R, s0 ̸= s1, 0 < θ < 1, s = (1 − θ)s0 + θs1, 1 ≤ p, q, q0, q1 ≤ ∞. Then

(F s0,k
p,q0

(Rd), F s1,k
p,q1

(Rd))θ,q = Bs,k
p,q (Rd).(4.2)

Proof. (1), (2), (3) follows from the arguments used in Theorem 8.1.3 and Theorem 8.3.3
in [15]. (4) follows from (1) and (4.1). ¤

As a consequence of real and complex interpolations, we can deduce multiplicative
inequalities, which will be needed in the theory of differential operators.

Theorem 4.12. (1) If u belongs to Bs,k
p,q (Rd)∩Bt,k

p,q(Rd), then u belongs to B
θs+(1−θ)t,k
p,q (Rd)

for all θ ∈ [0, 1] and

∥u∥
B

θs+(1−θ)t,k
p,q (Rd)

≤ ∥u∥θ

Bs,k
p,q (Rd)

∥u∥1−θ

Bt,k
p,q(Rd)

.

(2) If u belongs to Bs,k
p,∞(Rd)∩Bt,k

p,∞(Rd) and s < t, then u belongs to B
θs+(1−θ)t,k
p,1 (Rd) for

all θ ∈ (0, 1) and there exists a positive constant C(t, s) such that

∥u∥
B

θs+(1−θ)t,k
p,1 (Rd)

≤ C(t, s)∥u∥θ

Bs,k
p,∞(Rd)

∥u∥1−θ

Bt,k
p,∞(Rd)

.
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(3) If u belongs to Bs,k
p,∞(Rd)∩Bs+ε,k

p,∞ (Rd) and ε > 0, then u belongs to Bs,k
p,1(Rd) and there

exists a positive constant C such that

∥u∥Bs,k
p,1(Rd) ≤

C

ε
∥u∥Bs,k

p,∞(Rd) log2

(
e +

∥u∥Bs+ε,k
p,∞ (Rd)

∥u∥Bs,k
p,∞(Rd)

)
.

Proof. (1) is obvious from Hölder’s inequality. As for (2), we write ∥u∥
B

θs+(1−θ)t,k
p,1 (Rd)

as∑
j≤N

2j(θs+(1−θ)t)∥∆ju∥Lp
k(Rd) +

∑
j>N

2j(θs+(1−θ)t)∥∆ju∥Lp
k(Rd),

where N is chosen here after. By the definition of the Dunkl-Besov norms, we see that

2j(θs+(1−θ)t)∥∆ju∥Lp
k(Rd) ≤ 2j(1−θ)(t−s)∥u∥Bs,k

p,∞(Rd),

2j(θs+(1−θ)t)∥∆ju∥Lp
k(Rd) ≤ 2−jθ(t−s)∥u∥Bt,k

p,∞(Rd)

and thus, ∥u∥
B

θs+(1−θ)t,k
p,1 (Rd)

is dominated by

∥u∥Bs,k
p,∞(Rd)

∑
j≤N

2j(1−θ)(t−s) + ∥u∥Bt,k
p,∞(Rd)

∑
j>N

2−jθ(t−s)

≤C∥u∥Bs,k
p,∞(Rd)

2(N+1)(1−θ)(t−s)

2(1−θ)(t−s) − 1
+ ∥u∥Bt,k

p,∞(Rd)

2−Nθ(t−s)

1 − 2−θ(t−s)
.

Hence, in order to complete the proof of (2), it suffices to choose N such that

∥u∥Bt,k
p,∞(Rd)

∥u∥Bs,k
p,∞(Rd)

≤ 2N(t−s) < 2
∥u∥Bt,k

p,∞(Rd)

∥u∥Bs,k
p,∞(Rd)

.

As for (3), it is easy to see that ∥u∥Bs,k
p,1(Rd) is dominated as∑

j≤N−1

2js∥∆ju∥Lp
k(Rd) +

∑
j≥N

2js∥∆ju∥Lp
k(Rd)

≤(N + 1)∥u∥Bs,k
p,∞(Rd) +

2−(N−1)ε

2ε − 1
∥u∥Bs+ε,k

p,∞ (Rd).

Hence, letting

N = 1 +
[1

ε
log2

∥u∥Bs+ε,k
p,∞ (Rd)

∥u∥Bs,k
p,∞(Rd)

]
,

we can obtain the desired estimate. ¤

5. Some properties related with the index

We continue to study the Bk,s
p,q spaces. The results obtained in the previous section are

exactly same as in the Euclidean case. In this section we obtain some properties related
with the index γ.

5.1. Embeddings.

Theorem 5.1. If s0, s1 ∈ R, s1 ≤ s0, 1 ≤ p ≤ p1 ≤ ∞, 1 ≤ q ≤ q1 ≤ ∞, s0 − d+2γ
p

=

s1 − d+2γ
p1

, then

Bs,k
p,q (Rd) ↪→ Bs1,k

p1,q1
(Rd).
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Proof. In order to prove the inclusion, we use the identities

∆jf = ϕ̃j ∗D ∆jf, j = 1, 2, · · · , ∆0f = χ̃ ∗D ∆0f.

Then the Bernstein inequality (Proposition 3.1 (1)) gives that for j = 0, 1, 2, · · · ,

∥∆jf∥L
p1
k (Rd) ≤ C2

j(d+2γ)( 1
p
− 1

p1
)∥∆jf∥Lp

k(Rd).

Thus, by definition of the inhomogeneous Dunkl-Besov spaces, we see that

∥f∥
B

s1,k
p1,q1

(Rd)
≤ C(∥∆0f∥Lp

k(Rd + (
∑
j∈N

(2js12
j(d+2γ)( 1

p
− 1

p1
)∥∆jf∥Lp

k(Rd))
q1)

1
q1

≤ C(∥∆0f∥Lp
k(Rd) + (

∑
j∈N

(2js∥∆jf∥Lp
k(Rd))

q1)
1
q1

≤ C∥f∥Bs,k
p,q (Rd),

because q ≤ q1. ¤

Proposition 5.2. If 1 < p < ∞, then B
d+2γ

p
,k

p,1 (Rd) ↪→ C0(Rd) and B0,k
∞,1(Rd) ↪→ Cb(Rd).

Proof. To prove that B
d+2γ

p
,k

∞,1 (Rd) ↪→ Cb(Rd) for 1 < p ≤ ∞, we use again Bernstein
inequalities (see Proposition 3.1) to deduce that

∥∆ju∥L∞
k (Rd) ≤ C2j d+2γ

p ∥∆ju∥Lp
k(Rd).

This ensures that the series
∑

j ∆ju of continuous bounded functions converges uniformly

to a continuous bounded function on Rd. Hence u is a bounded continuous function on

Rd. If p is finite, one can use in addition that D(Rd) is dense in B
d+2γ

p
,k

p,1 (Rd) (see Theorem
4.9). Then we can conclude that u decays at infinity. ¤

5.2. Sobolev type embedding. In the previous paper [7], Theorem 4.3, the second
author proved the Sobolev embedding theorem; if s > 2γ+d

2
, then

Bs,k
2,2(Rd) = Hs

2,k(Rd) ↪→ B
s−γ− d

2
,k

∞,∞ (Rd).

In this subsection we consider the case s < 2γ+d
2

. We recall that B0,k
1,1 (Rd) ⊂ L1

k(Rd) by

the definition and Bs,k
r,r (Rd) ↪→ F s,k

r,2 (Rd) = Hs
r,k(Rd) ↪→ Lr

k(Rd) for 1 < r ≤ 2 by (4.1). We

here obtain a stronger integrability in the case of 0 < s < 2γ+d
r

.

Theorem 5.3. If s ∈ R, 1 ≤ r ≤ ∞, 0 < s < 2γ+d
r

, then we have a continuous embedding

Bs,k
r,r (Rd) ↪→ Lp

k(R
d),

where p =
r(2γ + d)

2γ + d − rs
.

Proof. We recall that for f ∈ S(Rd),

∥f∥p
Lp

k(Rd)
= p

∫ ∞

0

λp−1mk({x | |f(x)| ≥ λ})dλ,

where mk(E) is the volume of E ⊂ Rd with respect ωk(x)dx. For A > 0, we put f =
f1,A + f2,A with f1,A =

∑
2j<A △jf , and f2,A =

∑
2j≥A △jf . Then by using Proposition
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3.1 we deduce that

∥f1,A∥L∞
k (Rd) ≤

∑
2j<A

2js∥△jf∥Lr
k(Rd)2

j( d+2γ
r

−s)

≤ CA
d+2γ

r
−s∥f∥Bs,k

r,r (Rd).(5.1)

We take now A = Aλ such that CA
d+2γ

r
−s

λ ∥f∥Bs,k
r,r (Rd) = λ

4
. Then for all λ > 0, we see that

mk({x | |f(x)| ≥ λ}) ≤ mk({x | |f1,A(x)| ≥ λ
2
}) + mk({x | |f2,A(x)| ≥ λ

2
})

≤ mk({x | |f2,Aλ
(x)| ≥ λ

2
})

≤ 2rλ−r∥f2,Aλ
∥r

Lr
k(Rd)

and moreover, for ε > 0,

∥f2,Aλ
∥r

Lr
k(Rd) =

∫
Rd

∣∣∣ ∑
2j>A

△jf(x)
∣∣∣rωk(x)dx

=

∫
Rd

∑
2j>A

∣∣∣2jε△jf(x)
∣∣∣rωk(x)dx · (

∑
2j>A

2−jεr′)
r
r′

≤ cA−εr
λ

∑
2j≥Aλ

2jεr∥△jf∥r
Lr

k(Rd).

Hence by Fubini’s theorem we can deduce that

∥f∥p
Lp

k(Rd)
≤ c

∫ ∞

0

λp−1−rA−εr
λ

∑
2j≥Aλ

2jεr∥△jf∥r
Lr

k(Rd)dλ

≤ c
∑
j≥−1

∫ 4c2j(
2γ+d

r −s)∥f∥
B

s,k
r,r (Rd)

0

λp−r−1− εr2

2γ+d−rs dλ

× (4c||f ||Bs,k
r,r (Rd))

εr2

2γ+d−rs 2jεr∥△jf∥r
Lr

k(Rd)

≤ c∥f∥p−r

Bs,k
r,r (Rd)

∑
j≥−1

2j(p−r)( 2γ+d−rs
r

)∥△jf∥r
Lr

k(Rd)

≤ c∥f∥p−r

Bs,k
r,r (Rd)

∑
j≥−1

2rjs∥△jf∥r
Lr

k(Rd) = c∥f∥p

Bs,k
r,r (Rd)

This implies the desired result. ¤
Theorem 5.4. If 1 ≤ r ≤ ∞ and s ∈ R such that 0 < s < 2γ+d

r
, then we have

∥f∥Lp
k(Rd) ≤ C∥f∥

1− r
p

B
−(

2γ+d
r −s),k

∞,∞ (Rd)

∥f∥
r
p

Bs,k
r,r (Rd)

,

where p =
r(2γ + d)

2γ + d − rs
.

Proof. The precedent proof is available. In fact it suffices to modify the calculation in
(5.1) by

∥f1,A∥L∞
k (Rd) ≤ CA

d+2γ
r

−s∥f∥
B

−(
2γ+d

r −s),k
∞,∞ (Rd)

and by taking A = Aλ with CA
d+2γ

r
−s

λ ∥f∥
B

−(
2γ+d

r −s),k
∞,∞ (Rd)

= λ
4
. ¤
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5.3. Paraproduct algorithm. In this subsection we study how the product of uv,
u, v ∈ S ′(R) acts on Dunkl-Besov spaces. This could be well useful in nonlinear par-
tial differential-difference equations. Let u ∈ S ′(Rd) and u =

∑
p △pu be the Dunkl-

Littlewood-Paley decomposition of u. This implies that the partial sum

Squ =
∑

p≤q−1

△pu

converges to u ∈ S ′(Rd). Let us consider two tempered distributions

u =
∑

p

∆pu and v =
∑

q

∆qv.

Formally, the product uv can be written as

uv =
∑
p,q

∆pu∆qv.

We introduce the paraproduct and the remainder operators associated with the Dunkl
operators.

Definition 5.1. (1) The paraproduct operator Π(u, v): S ′(Rd) × S ′(Rd) → S ′(Rd) is
defined by Π(u, v) = Πu(v) and

Πuv =
∑
q≥1

Sq−2u · ∆qv.

(2) The remainder operator R(u, v) : S ′(Rd) × S ′(Rd) → S ′(Rd) is defined by

R(u, v) =
∑

|p−q|≤1

∆pu∆qv, for all.

Then Bony’s paraproduct decomposition of uv is given as

uv = Πuv + Πvu + R(u, v).

The following theorems describe paraproduct estimates in the Dunkl-Besov spaces, that
is, the estimates of the action of the paraproduct and remainder operators on the Dunkl-
Besov spaces. Their proofs are given by using the equivalent norms of the Dunkl-Besov
spaces and Bernstein’s estimates in (3.1) (see [7]).

Theorem 5.5. Let 1 ≤ p, r ≤ ∞ and s ∈ R.
(i) If s > 0, then Π is a bilinear continuous from L∞

k (Rd) × Bs,k
p,r (Rd) to Bs,k

p,r (Rd) and
there exists a positive constant C such that

∥Π∥L(L∞
k (Rd)×Bs,k

p,r (Rd),Bs,k
p,r (Rd)) ≤ Cs+1.

(ii) If s > 0, t < 0, s + t > 0 and 1 ≤ r, r1, r2 ≤ ∞, 1
r

= 1
r1

+ 1
r2

, then Π is a bilinear

continuous from Bt,k
∞,r1

(Rd) × Bs,k
p,r2

(Rd) to Bs+t,k
p,r (Rd) and there exists a positive constant

C such that

∥Π∥L(Bt,k
∞,r1

(Rd)×Bs,k
p,r2

(Rd),Bs+t,k
p,r (Rd)) ≤

Cs+t

−t
.

Theorem 5.6. (Morse type estimate) Let (s1, s2) ∈ R2 and 1 ≤ p, p1, p2, r, r1, r2 ≤ ∞.
Assume that

1

p
≤ 1

p1

+
1

p2

,
1

r
≤ 1

r1

+
1

r2

≤ 1 and s1 + s2 > (d + 2γ)(
1

p1

+
1

p2

− 1

p
).
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Then R is a bilinear continuous from Bs1,k
p1,r1

(Rd)×Bs2,k
p2,r2

(Rd) to B
s1,2,k
p,r (Rd) and there exists

a positive constant C such that

∥R∥
L(B

s1,k
p1,r1

(Rd)×,B
s2,k
p2,r2

(Rd),B
s1,2,k
p,r (Rd))

≤ Cs1+s2+1

s1 + s2

,

where s1,2 = s1 + s2 − (d + 2γ)( 1
p1

+ 1
p2

− 1
p
).

Combining these estimates of the paraproducts and the remainders, we can deduce the
following.

Corollary 5.7. (1) Let s > 0 and 1 ≤ p, r ≤ ∞. Then Bs,k
p,r (Rd) ∩ L∞

k (Rd) is an algebra
and there exists a positive constant C such that

∥uv∥Bs,k
p,r (Rd) ≤ C

(
∥u∥L∞

k (Rd)∥v∥Bs,k
p,r (Rd) + ∥u∥Bs,k

p,r (Rd)∥v∥L∞
k (Rd)

)
.

(2) Let (s1, s2) ∈ R2, 1 ≤ p2, r2 ≤ ∞, s1 + s2 > d+2γ
p1

and s1 < d+2γ
p1

. Then

∥uv∥Bs,k
p2,r2

(Rd) ≤ C
(
∥u∥

B
s1,k
p1,∞(Rd)

∥v∥
B

s2,k
p2,r2

(Rd)
+ ∥u∥

B
s2,k
p2,r2

(Rd)
∥v∥

B
s1,k
p1,∞(Rd)

)
,

where s = s1 + s2 − d+2γ
p1

.

(3) Let (s1, s2) ∈ R2, 1 ≤ p1, p2, p, r1, r2 ≤ ∞, p ≥ max(p1, p2), sj < d+2γ
pj

and s1 + s2 >

(d + 2γ)( 1
p1

+ 1
p2

− 1
p
). Then

∥uv∥
B

s1,2,k
p,r (Rd)

≤ C∥u∥
B

s1,k
p1,r1

(Rd)
∥v∥

B
s2,k
p2,r2

(Rd)
,

where s1,2 = s1 + s2 − (d + 2γ)( 1
p1

+ 1
p2

− 1
p
) and r = max(r1, r2).

6. Application to differential-difference equations

In this section we treat differential-difference equations, given by replacing the Lapla-
cian ∆ in a differential equation with the Dunkl-Laplacian ∆k, and consider some basic
properties of the solutions in Dunkl-Besov spaces. Though the process is a standard way,
we sketch their proofs to understand the essential parts.

6.1. The slowly hypoellipticity. We consider the linear equation

−△ku +
∑

1≤i,j≤d

ci,jTiuTju + cu = 0(6.1)

with ci,j ∈ R and c > 0.

Theorem 6.1. If u is a solution of (6.1) such that u in B1,k
1,2 (Rd) ∩ W 1,∞

k (Rd), then

u ∈ Bn,k
1,2 (Rd) ∩ L∞

k (Rd) for all n ∈ N and in particular, u ∈ E(Rd).

Proof. If u in B1,k
1,2 (Rd), then each Tiu ∈ B0,k

1,2 (Rd). Therefore, it follows from Corollary

5.7, (1) that ci,jTiuTju ∈ B0,k
1,2 (Rd) ∩ L∞

k (Rd). Hence, we can deduce that

−△ku + cu ∈ B0,k
1,2 (Rd).

Since the operator −△k +cI is isomorphism from Bs,k
p,q (Rd) in Bs−2,k

p,q (Rd) for all s ∈ R and

(p, r ∈ [1,∞]2), it follows that u ∈ B2,k
1,2 (Rd). By iteration we deduce that u ∈ Bn,k

1,2 (Rd)

for all n ∈ N. Then it follows from the Theorem 5.1 that u ∈ B
n− d+2γ

2
,k

2,2 (Rd). On the

other hand, the Sobolev imbedding theorem (see [7], Theorem 4.3) yields that Hs
2,k(Rd) =

Bs,k
2,2(Rd) ↪→ Cs−γ− d

2 (Rd) if s > γ +
d

2
. Thereby, the desired result follows. ¤
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6.2. Dunkl-Schrödinger equation. Let I be an interval of R (bounded or unbounded).
We shall consider a space-time estimate of the solutions u(t, x), (t, x) ∈ I × Rd, of the
Dunkl-Schrodinger equation {

∂tu − i△ku = f,

u|t=0 = g
(6.2)

with initial data g and f . For any Banach space X, let Lq(I,X) denote a mixed space-time
Banach space consisting of measurable functions u : I → X such that

∥u∥Lq(I,X) =
( ∫

I

∥u(t, ·)∥q
Xdt

) 1
q

< ∞

if 1 ≤ q < ∞ and ∥u∥L∞(I,X) = ess supt∈I∥u(t, ·)∥X < ∞ if q = ∞. In what follows we
shall consider a Strichartz type estimate of the solution u of (6.2) and obtain the Lq(I,X)-

norm of u when X = Hs
r,k(Rd) and Bs,k

r,2 (Rd). The special case of X = Lr
k(Rd) = H0

r,k(Rd)
was treated in [8].

We suppose that g ∈ X and f ∈ Lq(I,X ′) where X,X ′ are Hs
r,k(Rd) and Bs,k

r,2 (Rd). As
in the Euclidean case, we use the integral formulation of u

u(t, x) = Ik(t)g(x) +

∫ t

0

Ik(t − s)f(s, x)ds,

= Ik(g)(t, x) + Φk(f)(t, x),(6.3)

where Ik(t) = eit△k , t ∈ R, is the Schrödinger semi-group. Moreover, the exponents q, r
are required to satisfy the so-called admissible condition:

Definition 6.1. A pair (q, r) is called γ + d
2
-admissible if q, r ≥ 2, (q, r, γ + d

2
) ̸= (2,∞, 1)

and

1

q
+

d + 2γ

2r
≤ d + 2γ

4
.

In particular, when d + 2γ > 2 and (q, r) = (2, 2d+4γ
d+2γ−2

), the equality holds.

Theorem 6.2. (Strichartz type estimate)
(1) Let s ∈ R and (q, r) be a γ + d

2
-admissible pair. Then there exists a constant C such

that for all g ∈ S ′(Rd),

∥Ik(g)∥Lq(I,Hs
r,k(Rd)) ≤ C∥g∥Hs

r′,k(Rd),

∥Ik(g)∥Lq(I,Bs,k
r,2 (Rd)) ≤ C∥g∥Bs,k

r′,2(Rd),

(2) Let s ∈ R and (q, r), (q1, s1) be γ + d
2
-admissible pairs. Then there exists a constant

C such that for all f ∈ S ′(I × Rd),

∥Φk(f)∥Lq(I,Hs
r,k(Rd)) ≤ C∥f∥

Lq
′
1 (I,Hs

r
′
1,k

(Rd))
,

∥Φk(f)∥Lq(I,Bs,k
r,2 (Rd)) ≤ C∥f∥

Lq
′
1 (I,Bs,k

r
′
1,2

(Rd))
.

Proof. Let t ̸= 0, s ∈ R and 2 ≤ p ≤ ∞. As in the Euclidean case (cf. Corollary 4.1 in
[8]), we can deduce that

∥Ik(t)g∥L∞
k (Rd) ≤

1

ck|t|(γ+ d
2
)
∥g∥L1

k(Rd).
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Since ∥Ik(t)g∥L2
k(Rd) = ∥g∥L2

k(Rd), we see by interpolation that

∥Ik(t)g∥Lp
k(Rd) ≤

1

(c2
k|t|2γ+d)( 1

2
− 1

p
)
∥g∥

Lp′
k (Rd)

.(6.4)

On the other hand, For any v ∈ S ′(Rd) it is easy to see that

F−1
D (vFD(Ik(g)(t, .))) = Ik(t)F−1

D (vFD(g)).(6.5)

In particular, it follows from (6.4) that for 2 ≤ p ≤ ∞,

∥F−1
D (vFD(Ik(g)(t, .)))∥Lp

k(Rd) ≤
1

(c2
k|t|2γ+d)( 1

2
− 1

p
)
∥F−1

D (vFD(g))∥
Lp′

k (Rd)
.

Therefore, the definitions of the Dunkl-Bessel potential and Dunkl-Besov norms yield that

∥Ik(t)g∥Hs
p,k(Rd) ≤

1

(c2
k|t|2γ+d)( 1

2
− 1

p
)
∥g∥Hs

p′,k(Rd),

∥Ik(t)g∥Bs,k
p,q (Rd) ≤

1

(c2
k|t|2γ+d)( 1

2
− 1

p
)
∥g∥Bs,k

p′,q(Rd).

Then by using the standard argument, we can deduce the desired estimates. ¤

6.3. Generalized heat equation. As in the previous section we shall obtain a space-
time estimate of the solution u(t, x), (t, x) ∈ I × Rd, of the generalized heat equation{

∂tu −△ku = f,

u|t=0 = g.
(6.6)

As before, to estimate the solution u of (6.6), we use the integral formulation

u(t, x) = Hk(t)g(x) +

∫ t

0

Hk(t − τ)f(τ, x)dτ,(6.7)

where Hk(t) is the generalized heat semi-group. Then by using the explicit form of the
kernel of Hk(t) obtained by Rösler [11] and the corresponding formula (6.5), we can deduce
the following (see [9]).

Lemma 6.3. There exist positive constants κ and C such that for all 1 ≤ p ≤ ∞, τ ≥ 0
and j ∈ N,

∥∆j(Hk(τ)u)∥Lp
k(Rd) ≤ Ce−κ22jτ∥∆ju∥Lp

k(Rd).

Theorem 6.4. Let s ∈ R, T > 0 and 1 ≤ p, q, r ≤ ∞. We suppose that g ∈ Bs,k
p,r (Rd) and

f ∈ Lq((0, T ), B
s−2+ 2

q
,k

p,r (Rd)). Then (6.6) has a unique solution u belongs to

Lq((0, T ), B
s+ 2

q
,k

p,r (Rd))
⋂

L∞((0, T ), Bs,k
p,r (Rd))

and there exists a constant C such that for all q ≤ q1 ≤ ∞,

∥u∥
Lq1 ((0,T ),B

s+ 2
q1

,k

p,r (Rd))
≤ C

(
(1 + T

1
q1 )∥g∥Bs,k

p,r (Rd) + (1 + T
1+ 1

q1
− 1

q )∥f∥
Lq((0,T ),B

s−2+2
q ,k

p,r (Rd))

)
.

If in addition r is finite, then u belongs to C([0, T ], Bs,k
p,r (Rd)).
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Proof. Since g, f are tempered, (6.6) has a unique solution u in S ′((0, T ) × Rd) satisfying

FD(u)(t, ξ) = e−t∥ξ∥2FD(g)(ξ) +

∫ t

0

e(τ−t)∥ξ∥2FD(f)(τ, ξ)dτ.

Hence, applying ∆j, j ≥ 1, to (6.7), we see that

∆ju(t, ·) = Hk(t)∆jg +

∫ t

0

Hk(t − τ)∆jf(τ, ·)dτ

and thus, by Lemma 6.3, we can deduce that

∥∆ju(t, ·)∥Lp
k(Rd) ≤ ∥Hk(t)∆jg∥Lp

k(Rd) +

∫ t

0

∥Hk(t − τ)∆jf(τ, ·)∥Lp
k(Rd)dτ

≤ Ce−κ22jt∥∆jg∥Lp
k(Rd) +

∫ t

0

e−κ22j(t−τ)∥∆jf(τ, ·)∥Lp
k(Rd)dτ.

Then it follows from (2.3) that ∥∆ju∥Lq1 ((0,T ),Lp
k(Rd)) is dominated by(1 − e−κTq122j

κq122j

) 1
q1 ∥∆jg∥Bs,k

p,r (Rd) +
(1 − e−κTq222j

κq222j

) 1
q2 ∥∆jf∥Lq((0,T ),Lp

k(Rd))(6.8)

with 1
q2

= 1 + 1
q1
− 1

q
. Moreover, similarly as above, we can obtain that

∥△0u(t, ·)∥Lp
k(Rd) ≤ ∥△0g∥Lp

k(Rd) +

∫ t

0

∥△0f(τ, ·)∥Lp
k(Rd)dτ,

and thus, if 1 ≤ q ≤ q1 ≤ ∞,

∥△0u∥Lq1 ((0,T ),Lp
k(Rd)) ≤ C

(
T

1
q1 ∥△0g∥Lp

k(Rd) + T
1
q2 ||△0f∥Lq((0,T ),Lp

k(Rd))

)
.(6.9)

Finally, taking the lr-norm with respect to j in (6.8) and (6.9) with the usual convention
if r = ∞, we can deduce the desired estimate. ¤
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