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Abstract

Let Z™ be the lattice in R™ and G the set of all discrete hyperplanes in
Z"™. Similarly as in the Euclidean case, for a function f on Z", the discrete
Radon transform Rf is defined by the integral of f over hyperplanes, and
R maps functions on Z™ to functions on G. In this paper we determine
the Radon transform images of the Schwartz space S(Z™), the space of
compactly supported functions on Z™, and a discrete Hardy space H'(Z").

1 Introduction

Let Z™ be the lattice in R™. For a = (a1,a2, -+ ,an) € Z"\{0} and k € Z,
the linear diophantine equation a - = k has an infinity of solutions in Z™ if
and only if &k is an integral multiple of the greatest common divisor d(a) of
ai,az2,- - ,an. Therefore, for a € P = {z € Z" | d(z) = 1}, the set of solutions
H(a,k) = {x € Z" | a -z = k} forms a discrete hyperplane in Z". Let G
be the set of all discrete hyperplanes in Z". Then G can be parametrized as
P x Z/{£1} (see §2 in [1]). As an analogue of the Euclidean case, the discrete
Radon transform R, which maps functions on Z" to functions on G, is given by

Rf(H(a, k)= Y f(m)

meH (a,k)

for a suitable function f on Z". In their previous paper [1] the first author and
A. Thsane investigated the basic properties of R. Especially, the Strichartz type
inversion formula for R and the support theorem were obtained. Moreover, they
showed that the discrete Radon transform R is a continuous linear mapping of
S(Z™) into S(G) (see §2 for the definitions of the Schwartz spaces Z" and G).
Our natural question, that is a starting point of this paper, is whether this map
is bijective or not. Let us suppose that f belongs to S(Z™) and has a suitable
decay. Then it follows from Corollary 3.10 in [1] that for 8 € T,

FiRf(H(a,-))(0) = Ff(0a), (1)

wehre F and Fj are the classical Fourier (inverse) transforms on Z" and Z
respectively. We note that Ff is a C* function on T". Therefore, in order to



show the surjectivity of the above mapping, we have to construct a C* function
on T" from fa variables with 8 € T and a € P. However, it is impossible,
because fa varies in a dence subset of T" (see Remark 8). Hence, the map R
from S(Z™) into S(G) is not bijective and, to characterize the image of S(Z"), a
condition corresponding to (1) is required. When we fix an a € P and we restrict
our attention to a local area Z? in Z™ and the set of hyperplanes with direction
a: G, ={H(a,k) | k € Z} in G, we use a terminology “local”; for example, we
call S(Z7) and S(G,,) the local Shewartz spaces on Z' and G, respectively (see
83). This paper is organized as follows. A characterization of the local Shcwartz
space S(Z) is given in §3 and a Paley-Wiener type theorem is obtained in §4.
We determine the Radon transform image of the global Schwartz space S(Z™)
in §5. We introduce discrete Hardy spaces on Z™ and G, locally and globally,
in §6 and then characterize their Radon transform images.

2 Notations

Let Z™ be the vector space of all a = (a1,az,- -+ ,a,) € Z"™ equipped with the
norm ||a||? = a?+a3+- - -+a? and the inner product a-b = a1b; +agby+- - -+anby,.
For 1 <p < oo let [P(Z™) denote the space of all complex valued functions f on
Z™ with finite norm:

17 = (3 1rmr) " < .

mezZn
We introduce a space G of hyperplanes in Z". For a = (a1, a2, ,a,) € Z" let
d(a) = d(ay1,as, -+ ,a,) denote the greatest common divisor of ay,as,- - ,an

and put P = {a € Z"\{0} | d(a) = 1}. For each (a,k) € P x Z we define a
discrete hyperplane H(a, k) by

H(a,k)={meZ" |a-m=k}.

Let G be the set of all hyperplanes H (a,k) with (a,k) € P X Z, which is
parameterized as P x Z/{£1}. For 1 < p < oo let I?(G) denote the space of all
complex valued functions F' on G with finite norm:

1Bl = (X 1P R)P) " < o0

kEZ

for all a € P.
For f € IY(Z"), the Radon transform Rf on G is given by

Rf(H(a,k) = Y f(m).
a-m=k
Then R(I*(Z™)) C I}(G) (see Remark 3.8 in [1]) and the Strichartz type inversion

of R is given as follows: For each m € Z",

f(m) = lim Rf(H/(a;,a;-m)),

J—0o0



where a; = (1,7,5%,-++,5"') (see Theorem 4.1 in [1]). We define the Fourier
(inverse) transform F f(t) of f as

Ffi) = Z f(m)e™™™t e T

mezn

Similarly, F; denotes the one-dimensional Fourier (inverse) transform on Z.
Then Corollary 3.6 in [1] asserts that Rf satisfies that for all a € P and 6 € T,

F1Rf(H(a,-))(0) = F[(0a). (2)

We introduce Schwartz spaces on Z™ and G as follows. Let S(Z™) denote
the space of all complex valued functions f on Z™ such that for all N € N,

p(f) = sup (14 [m])¥]f(m)] < o0
and S(G) the space of all complex valued functions F' on G such that for all
N eN,

gn(f) = sup
a€P,kEL

Then R(S(Z")) C S(G) and

ZF(H(a,k))k”: Z f(m)(a-m)P.

kEZ mezn

( 1+ k2

N
THQHz) |F(H(a, k))| < oc.

(see Corollary 3.10 in [1]). In particular, as a function of a € P,
> nez F(H(a, k))kP is a homogeneous polynomial of degree p (3)

forallp=0,1,2,---. The dual space §’(Z™) of S(Z"), the space of distributions
on Z", is defined as the space of all complex valued functions f on Z™ for which
there exists N € N such that sup,,cz (1 + [|m|))~N|f(m)| < cc.

3 Characterization of local Schwartz spaces

As in the classical case (cf. Theorem 2.4 in [3]), we shall consider local Schwartz
spaces on Z™ and G respectively. In what follows we fix an a € P. For each
hyperplane H(a, k) let p,r € Z™ be the point in H(a, k) that is nearest from
the origin. We set

22 = {pa | k€ Z}.

We define a local Schwartz space S(Z2) on Z™ by
S(Zg) ={f € S(Z") | supp(f) C Zg}.
We denote by G, the set of all hyperplanes with direction a, that is,

G = {H(a,k) | k € Z).



Since H(a, k)N H(a, k') = 0 if k # k' and UgezH(a, k) = Z™, it is clear that
Ga NGy =0 if a# a and UyepG, = G (see [1] for more details). We define a
local Schwartz space S(G,) on G by

8(Ga) = {F € S(G) | supp(F) C Ga}.

For a function F' on G we denote by Pg, (F) the function on G such that
Pg, (F)(H)=F(H) if H € G, and 0 otherwise.

Theorem 1. For all a € P,
Pg, o R(S(ZY)) = S(Gy).

Proof. Since The argument used in the proof that R(S(Z™)) C S(G) (see Theo-
rem 3.7 in [1]) yields that Pg, o R(S(Z2)) C S(G,). We shall prove the converse.
For F € §(G,) we put

f(m) =" F(H(a,k)xp,,.(m).

kEZ

Then it follows Proposition 3.4 in [1] that

Rf(H) =) Fla,k)x;, , (H).
keZ
If H = H(a,k) € Gg, then Rf(H(a,k)) = F(H(a,k)) and Rf(H) = 0 other-
wise. Therefore, it follows that Pg, o R(f) = F. Hence, to complete the proof
of the surjectivity, it is enough to prove that f € S(Z™). Since f is supported
on Z7 and ||pa.x|| < |k|, it follows that for all m = pq g,

1+ [mlIP)Nfm)] = (L + [pakll>)VIf (Pak)|
< (1+EHN|F(H (a,k))|.

Since F' € §(G), it follows that py(f) < oco. O

4 A Paley-Wiener type theorem

We shall consider a discrete Paley-Wiener theorem relatively at the discrete
Radon transform, which characterizes the image of functions on Z™ with finite
support. Let K = {z1,22,...,2;} be a finite set in Z™. We denote by D (Z™)
the subspace of S(Z™) consisting of all complex-valued functions on Z" such
that suppf C K. Let Gk = {H € G| HN K # (0}. We denote by Dk (G)
the subspace of S(G) consisting of all complex-valued functions on G such that
suppF C Gg. Each function f € Dg(Z") is of the form

F=>1@x.

zeK



As shown in [1], Proposition 3.4 and Theorem 3.5, Rf is of the form

Rf =) f2)x? (4)

zEK

and suppRf C |J,cx G.. Hence Rf belongs to D (G). In what follows we
shall characterize functions of the form (4). We define D, x(G) as the subspace
of Dk (G) consisting of all functions F' with moment condition (3) and for each
m € Z", there exists j,, € N for which

F(H(aj,a; - m)) = F(H(aj,,, a;,, - m)) for all j = jm, (5)
where a; = (1,7,5%,...,7"71).

Lemma 2. Let F € Dg(G) and a € P. Assume that

> F(H(a,k)k" =0 for allp=0,1,2,--- .
kEZ

Then F(H(a,k)) =0 for all k € Z.
Proof. We note that for a fixed a € P, F(H(a,k)) = 0 except finite k& and

S S P k) T S R (k) = 0
|

p=0keZ p kEZ

for § € T. Therefore FiF(H(a,-))(0) = 0 and thus, F(H(a,k)) = 0 for all
k € Z. Hence F = 0. O

Lemma 3. Let m € Z".
(i) The case of m & K: Let jmx = Y .cx 12 —ml*. If j > jmx, then

H(aj,a; -m)NK = 0.
(ii) The case of m € K: Let jx =Y, 121> If j > 2k, then
H(aj,a;-m)NK ={m}.

Proof. (i) Let m ¢ K and j > j, k. We assume that H(aj,a;-m)NK # () and
z € H(aj,a; -m) N K. This implies that

(21 —=ma) + (22 —ma)j + - + (20 — my)j" = 0.

Hence j | (21 —m;) and thus, there exists @ € Z such that z; — m1 = «j. Then
it follows that
(@j)? = (21 —m1)® < |z = m||* < jm k.

Therefore, o must be 0 and z; = m;. We repeat the same argument for zo —my
and so on. Then z = m. This contradicts to m ¢ K and z € K. Hence
H(aj,a;-m)NK =0 for all j > j,, k. (i) Let m € K and j > jx. We assume



that z € H(aj,a; - m) N K. Similarly as above, z; —m; = «j. Then it follows
that

jx > 1217 > 27 = mi + (aj)® + 2ajmy
> (af)? = 2|eljjx = |ali(|ali — 2jk).

Therefore, a must be 0 and z; = m;. We repeat the same argument for zo —ms
and so on. Then z = m. O

Theorem 4. R is a bijection of Dk (Z™) onto Dy k(G).

Proof. Let f € Dg(Z™). As said above, Rf € Dg(G). Moreover, it follows
from Corollary 3.10 in [1] that Rf satisfies (3) and from the proof of Theorem
4.1 in [1] that Rf satisfies (5). Therefore, Rf belongs to D, x(G). Since the
inversion formula of R exists, it is sufficient to prove the surjectivity of R. Let
F € D, k(G). We define a function g on Z" by g(m) = lim;_,oc F(H (aj,a;-m)).
Then if follows from Lemma 3 that g € Dg (Z™). Moreover, since F satisfies (5)
and K is finite, there exists Jx € N such that g(m) = F(H(a;,a; - m)) for all
m € K and j > Jg. Then it follows from Corollary 3.10 in [1] and Lemma 3
that for all j > jo = max{2jk,JJx} and p=0,1,2,---,

> Ry(H(az k)k? = Y g(m)(a; - m)?

kEZ mezn

> F(H(aja;-m))(a; - m)?

meK

(X FH k)R

k€Z meH((aj;,k)NK

= F(H(aj, k))k".
keZ
Hence », ., (Rg — F)(H(a;,k))k? = 0 for all j > jo. Since Rf and F satisfies
the moment condition (3), as a function of a € P, >, ,(Rg — F)(H(a, k))k?
is a homogeneous polynomial of degree p, which is equal to 0 at a = a; for
all j > jo. Therefore, ), ,(Rg — F)(H(a,k))k? = 0 for all a € P. Then by
Lemma 2, we see that F' = Rg. This completes the proof of the theorem. O

5 Characterization of global spaces

We shall obtain a global characterization of the Radon transform images of
subspaces of [1(Z"). For a subspace X of L'(T"), we denote by X the space on
Z™ consisting of all Fourier coefficients of G € X, that is,

X ={f:2Z" — C | there exists G € X such that f(m) = G(m)},

where

G(m) = i G(t)e "™qt.



Let X denote a subspace of [!(G) consisting of all F' € [1(G) such that there
exists a G € X for which

F1F(H(a,-))(0) = G(0a). (6)
Theorem 5. Suppose that X C IY(Z"™). Then R is a bijection of X onto Xg.

Proof. Since X c 1'(Z") and R(I*(Z")) C I"(G), R is defined on X and each
Rf,f € X, belongs to I*(G). Moreover, it follows from (2) that Rf satisfies
(6) with G = Ff € X. Hence R(X) C Xg. Since the inversion formula of R
exists, it is sufficient to prove the surjectivity of R. Let F € Xg and suppose
that F1F(H(a,-))(d) = G(8a) for G € X. Since X C I*(Z"), it follows that

G(Qa) = Z G(m)e—imﬂa _ Z é(m)e—iamu
mezm mezn

:Z( Z é(m))e*wk.

k€EZ meH (a,k)

Hence F(H(a,k)) = > ct(an) G(m). Therefore, if we define a function g on

Z" by g(m) = G(m), m € Z", it follows that F' = Rg. Clearly, G € X implies
g € X. This completes the proof of the theorem. O

Let S.(G) denote a subspace of S(G) consisting of all F' € S(G) such that
there exists a G € C°°(T™) for which F; F(H(a,-))(0) = G(0a). Then

Corollary 6. R is a bijective continuous mapping of S(Z"™) onto S.(G).

Let AL(T™) denote a subspace of L*(T") consisting of all G € L*(T") such
that > .. |G(m)| < co and let Li(G) be a subspace of L'(G) consisting of
all F € LY(G) such that there exists a G € AY(T") for which Fy F(H (a,-))(0) =
G(6a). Then it follows that

Corollary 7. R is a bijective continuous mapping of I(Z"™) onto L1(G).

Remark 8. (i) The left hand side of (6) is a function of § with 0 < 6 < 27 and

G in the right hand side is a function on T™. Therefore, for a fixed a € P, 6 in
L, :

the right hand side varies in the set of 0 < 6 < W7 where L, is the length of
a

the line segment with direction a between the origin and the boundary of T™.

Hence, if we rewrite (6) as

FiF(H(a, .))(léll) - G(Gﬁ), 0<0< L, (7)

a
then W, a € P moves all rational points in S 'NT". Therefore, the condition
a

(7) implies that the left hand side defined on
{rw|we S" 1 NT" and rational, 0 < r < L}

can be extended to a function G on T". (ii) In Corollary 6 and Corollary 7, the
continuity of R~! is an open problem.



6 Hardy spaces

The lattice Z™ is a space of homogeneous type, because Z" is equipped with
a Fuclidean distance and a counting measure. Hence, we can introduce real
Hardy spaces on Z" according to the process in G. Folland and E. Stein [2]. We
shall prove that the Radon transform R locally maps H'(Z") onto H'(Z) and
globally maps to an atomic Hardy space on G.

We briefly overview the definition of H*(Z") and its atomic decomposition.
For ¢ € S(R™) we define a discrete dilation ¢, t =1,2,3,--- of ¢ by

Ge() =t Y Pt m)xm(z), T € Z".

mezZ"

In the Euclidean case, ¢; is an approximate identity. Hence, to keep this prop-
perty, we put
do(z) = ¢(0)xo0().

For any f € S’(Z™), we define a radial maximal function My f on Z" by

Myf(z) = sup [f*¢u()], = €Z",
t=0,1,2,--

where * is the discrete convolution on Z™. We say that a distribution f € §'(Z")
belongs to H*(Z™) if there is a ¢ € S(R™) with [, ¢(x)dx # 0 so that My f €
LYZ™). We put ||fllgr = [[Myfll1. Since |f(z)] < cMyf(z), it follows that
HY(Z™) C IY(Z"™). According to the process in [2], Chap. 3, we can obtain an
atomic decomposition of H(Z") as follows. We say that a function b on Z" is
a (1, 00,0)-atom if it satisfies

(Z) Suppb - B(m07 T)a
(@) [bfloc < 77"

(iii) Y b(m) =0,

meZ"

where B(mg,r) is a closed ball centered at mg € Z™ and radius r» € N, which
depends on b. Then f € H'(Z") if and only if there exist a collection {b;} of
(1,00,0)-atoms on Z™ and a sequence {A;} of complex numbers with )", [A;| <
oo so that f = 3. A;ibj. Moreover, || f|g: ~ inf ", |\;|, where the infimum is
taken over all atomic decomposition of f. Similarly, we can define H'(Z) on Z.
For | € N, we denote by H;(Z) the subspace of H(Z) which is constructed by
using (1, 0o, 0)-atoms supported on intervals with length 2ir, r € N.

Now we shall characterize the image Rb on G of a (1, 00,0)-atom b on Z".
As pointed in §3, Rb = ZZGB(mOm) b(z)x%. Therefore, for each fixed a € P, as
a function of k € Z, Rb(H (a,k)) is supported on {a -z | z € B(mg,7)}. We
denote by kg = a - mg the middle point of this support. Then we can easily
deduce that

suppRb(H (a,)) C ko — llallr, o + lall],



because if k = a-z is in the support of Rb(H (a,-)), |k—ko| = |a-(z—mg)| < ||a||r.
We note that

[Rb(H(a, k)| < D7 |b(m)]

méeH (a,k)
<r~"|H(a,k) N B(mg, )] (8)
crnl
<r "o =c([lallr)”"
all

and

> Rb(H(a,k)) = Y b(m)=0.

keZ mez"

These properties imply that ¢~ Rb(H (a, k) is a (1,00, 0)-atom on Z with radius
la||r. Therefore, if we define R, by

Raf(k) = Rf(H(a,k)),
we can obtain the following.
Proposition 9. For each a € P, R, continuously maps H'(Z™) into Hﬁa” (Z).
For the surjectivity we shall prove the following lemmas.

Lemma 10. Let a € P and Q be a cube in R™ such that it is centered at the
origin, each side length is 2||a||r and a face parallels to H(a,0). Then, for each
integer | € [—||al||r, ||a||7], |Q N H(a,l)| contains at least (2r)"~' elements.

Proof. Since @ is cubic, we may suppose that [ = 0. When n = 2, the assertion
is clear. Let a = (a1,a2, - ,a,), n > 3 and b; = (0,---,0,a;,a;41,0,---,0)
for 1 < ¢ < n—1. Then it follows from the case of n = 2 that there exist at
least 2r elements n; ; = (0,---,0,m; j, Mit1,5,0,---,0) € Q for which m; ja; +
Mit1,50i+1 = 0, 1 < j < 2r. Hence each n; ; belongs to Q@ N H(a,0). Since n, ;,
1 <i<n—1, are linearly independent, the desired result follows. O

Lemma 11. Let a € P. For each (1,00,0)-atom B on Z with radius ||a||r, r €
N, there exist a (1,00,0)-atom b on Z" and a constant C for which B = CR,b,
where C' depends only on n and a.

Proof. We may suppose that B is supported on [—|lal|r, |la||r]. Let @ be a
cube in R™ such that @ is centered at the origin, each side length 2|a|/rand
a face parallels to H(a,0). By Lemma 10, for each integer [ € [—||alr, ||a|r],
Q N H(a,l) contains (2r)"~! integral points, say {m{}, 1 < ¢ < (2r)"~!. We
define a function b on Z" as

b(m{) = (2r)" "~V B(1)



for [la|lr <1 <lallr,1 < ¢ < (2r)""! and 0 otherwise. Then b is supported on
Q C B(0,([y/n] + 1)||lal|r). We note that

> bm)=> b(mi)=> B()=0
l,q l

mezn
by the moment condition of B. Moreover,
[b(m)| < (2r)~" VB0 < 2flaf 7 (2r) 7

Therefore, it is easy to see that 271 ([\/n] + 1)7"||al|7"1b is a (1, 0o, 0)-atom
on Z". Last we note that

Rb(l)= > bm)=>Y bm{)=B().

meH (a,l)
Hence B = Ryb = Cy, o Ro(C; 3b), where C, o = 27" ([\/n] + 1)"|[a|"~!. O

Let F € H{ (Z) and F = Y, \; B; an atomic decomposition of F, where

each atom is stll‘plf‘)orted on an interval with length 2||a||r. Then it follows from
Lemma 11 that there exist a collection of (1,00, 0)-atoms b; on Z" so that B; =
Ch,aRab;. Therefore, F = R,(>°, \iCpobi) and >, |A\i|Cra < CrallFllmr-
Hence, F' belongs to the image of H(Z").

Theorem 12. For each a € P, R, continuously maps H'(Z™) onto H}

ay (Z)-

Now we shall introduce an atomic Hardy space on G. Let B(m,r) C Z"
be a closed ball centered at m € Z™ with radius r € N. We use the notations
in §3 and we recall Theorem 4 and (8). We say that a function B on G is a
(1,00,0)-atom on G if it satisfies

(Z) Be D*,B(m,r)(G)a

(#9) |B(H(a,k))| < |H(a,k) N B(m,r)|r~" for all H(a,k) € G, 9)

(iii) Y _ B(H(a,k)) =0 for all a € P,

keZ

where B(m,r) depends on B. Clearly, if b is a (1, 00,0)-atom on Z", then Rb
is a (1,00,0)-atom on G (see the argument before Proposition 9). Let B be
a (1,00,0)-atom on G. Then by Theorem 4 and its proof, R~ B is supported
on B(m,r) and, if € B(m,r), then for a sufficiently large j, H(a;,a; - ) N
B(m,r) = {z} (see Lemma 3). Hence, it follows from (9) that |R~!B(x)| =
|B(H(aj,a;-x))] <r~™ and thus, |R7! Bl < r~™. Moreover,

> B'Bm)=Y_ > R 'B(m)

mezn k€Z meH (a,k)

= B(H(a,k)) =0.

kEZ

10



Therefore, it is easy to see that R™!B is a (1, 00,0)-atom on Z".

Finally, we define the atomic Hardy space HL, ,(G) on G as F € H., ,(G) if
and only if there exist a collection {B;} of (1,00, 0)-atoms on G and a sequence
{A\i} of complex numbers with ) . |\;| < oo so that F' = Y . \;B;. We put
[ Fll g1, = inf 37, [As], where the infimum is taken over all atomic decomposition
of F. Then the previous argument yields the following.

Theorem 13. R is an isomorphism of H'(Z™) onto HL, ((G).
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