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Abstract

Let Zn be the lattice in Rn and G the set of all discrete hyperplanes in
Zn. Similarly as in the Euclidean case, for a function f on Zn, the discrete
Radon transform Rf is defined by the integral of f over hyperplanes, and
R maps functions on Zn to functions on G. In this paper we determine
the Radon transform images of the Schwartz space S(Zn), the space of
compactly supported functions on Zn, and a discrete Hardy space H1(Zn).

1 Introduction

Let Zn be the lattice in Rn. For a = (a1, a2, · · · , an) ∈ Zn\{0} and k ∈ Z,
the linear diophantine equation a · x = k has an infinity of solutions in Zn if
and only if k is an integral multiple of the greatest common divisor d(a) of
a1, a2, · · · , an. Therefore, for a ∈ P = {z ∈ Zn | d(z) = 1}, the set of solutions
H(a, k) = {x ∈ Zn | a · x = k} forms a discrete hyperplane in Zn. Let G
be the set of all discrete hyperplanes in Zn. Then G can be parametrized as
P × Z/{±1} (see §2 in [1]). As an analogue of the Euclidean case, the discrete
Radon transform R, which maps functions on Zn to functions on G, is given by

Rf(H(a, k)) =
∑

m∈H(a,k)

f(m)

for a suitable function f on Zn. In their previous paper [1] the first author and
A. Ihsane investigated the basic properties of R. Especially, the Strichartz type
inversion formula for R and the support theorem were obtained. Moreover, they
showed that the discrete Radon transform R is a continuous linear mapping of
S(Zn) into S(G) (see §2 for the definitions of the Schwartz spaces Zn and G).
Our natural question, that is a starting point of this paper, is whether this map
is bijective or not. Let us suppose that f belongs to S(Zn) and has a suitable
decay. Then it follows from Corollary 3.10 in [1] that for θ ∈ T,

F1Rf(H(a, ·))(θ) = Ff(θa), (1)

wehre F and F1 are the classical Fourier (inverse) transforms on Zn and Z
respectively. We note that Ff is a C∞ function on Tn. Therefore, in order to
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show the surjectivity of the above mapping, we have to construct a C∞ function
on Tn from θa variables with θ ∈ T and a ∈ P. However, it is impossible,
because θa varies in a dence subset of Tn (see Remark 8). Hence, the map R
from S(Zn) into S(G) is not bijective and, to characterize the image of S(Zn), a
condition corresponding to (1) is required. When we fix an a ∈ P and we restrict
our attention to a local area Zn

a in Zn and the set of hyperplanes with direction
a: Ga = {H(a, k) | k ∈ Z} in G, we use a terminology “local”; for example, we
call S(Zn

a) and S(Ga) the local Shcwartz spaces on Zn
a and Ga respectively (see

§3). This paper is organized as follows. A characterization of the local Shcwartz
space S(Zn

a) is given in §3 and a Paley-Wiener type theorem is obtained in §4.
We determine the Radon transform image of the global Schwartz space S(Zn)
in §5. We introduce discrete Hardy spaces on Zn and G, locally and globally,
in §6 and then characterize their Radon transform images.

2 Notations

Let Zn be the vector space of all a = (a1, a2, · · · , an) ∈ Zn equipped with the
norm ∥a∥2 = a2

1+a2
2+· · ·+a2

n and the inner product a·b = a1b1+a2b2+· · ·+anbn.
For 1 ≤ p < ∞ let lp(Zn) denote the space of all complex valued functions f on
Zn with finite norm:

∥f∥p =
( ∑

m∈Zn

|f(m)|p
)1/p

< ∞.

We introduce a space G of hyperplanes in Zn. For a = (a1, a2, · · · , an) ∈ Zn let
d(a) = d(a1, a2, · · · , an) denote the greatest common divisor of a1, a2, · · · , an

and put P = {a ∈ Zn\{0} | d(a) = 1}. For each (a, k) ∈ P × Z we define a
discrete hyperplane H(a, k) by

H(a, k) = {m ∈ Zn | a · m = k}.

Let G be the set of all hyperplanes H (a, k) with (a, k) ∈ P × Z, which is
parameterized as P × Z/{±1}. For 1 ≤ p < ∞ let lp(G) denote the space of all
complex valued functions F on G with finite norm:

∥F∥a,p =
( ∑

k∈Z

|F (H(a, k))|p
)1/p

< ∞

for all a ∈ P.
For f ∈ l1(Zn), the Radon transform Rf on G is given by

Rf(H(a, k)) =
∑

a·m=k

f(m).

Then R(l1(Zn)) ⊂ l1(G) (see Remark 3.8 in [1]) and the Strichartz type inversion
of R is given as follows: For each m ∈ Zn,

f(m) = lim
j→∞

Rf(H(aj , aj · m)),
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where aj = (1, j, j2, · · · , jn−1) (see Theorem 4.1 in [1]). We define the Fourier
(inverse) transform Ff(t) of f as

Ff(t) =
∑

m∈Zn

f(m)e−im·t, t ∈ Tn.

Similarly, F1 denotes the one-dimensional Fourier (inverse) transform on Z.
Then Corollary 3.6 in [1] asserts that Rf satisfies that for all a ∈ P and θ ∈ T,

F1Rf(H(a, ·))(θ) = Ff(θa). (2)

We introduce Schwartz spaces on Zn and G as follows. Let S(Zn) denote
the space of all complex valued functions f on Zn such that for all N ∈ N,

pN (f) = sup
m∈Zn

(1 + ∥m∥2)N |f(m)| < ∞

and S(G) the space of all complex valued functions F on G such that for all
N ∈ N,

qN (f) = sup
a∈P,k∈Z

( 1 + k2

1 + ∥a∥2

)N

|F (H(a, k))| < ∞.

Then R(S(Zn)) ⊂ S(G) and∑
k∈Z

F (H(a, k))kp =
∑

m∈Zn

f(m)(a · m)p.

(see Corollary 3.10 in [1]). In particular, as a function of a ∈ P,∑
k∈Z F (H(a, k))kp is a homogeneous polynomial of degree p (3)

for all p = 0, 1, 2, · · · . The dual space S ′(Zn) of S(Zn), the space of distributions
on Zn, is defined as the space of all complex valued functions f on Zn for which
there exists N ∈ N such that supm∈Zn(1 + ∥m∥)−N |f(m)| < ∞.

3 Characterization of local Schwartz spaces

As in the classical case (cf. Theorem 2.4 in [3]), we shall consider local Schwartz
spaces on Zn and G respectively. In what follows we fix an a ∈ P. For each
hyperplane H(a, k) let pa,k ∈ Zn be the point in H(a, k) that is nearest from
the origin. We set

Zn
a = {pa,k | k ∈ Z}.

We define a local Schwartz space S(Zn
a) on Zn by

S(Zn
a) = {f ∈ S(Zn) | supp(f) ⊂ Zn

a}.

We denote by Ga the set of all hyperplanes with direction a, that is,

Ga = {H(a, k) | k ∈ Z}.

3



Since H(a, k) ∩ H(a, k′) = ∅ if k ̸= k′ and ∪k∈ZH(a, k) = Zn, it is clear that
Ga ∩ Ga′ = ∅ if a ̸= a′ and ∪a∈PGa = G (see [1] for more details). We define a
local Schwartz space S(Ga) on G by

S(Ga) = {F ∈ S(G) | supp(F ) ⊂ Ga}.

For a function F on G we denote by PGa(F ) the function on G such that
PGa(F )(H) = F (H) if H ∈ Ga and 0 otherwise.

Theorem 1. For all a ∈ P,

PGa ◦ R(S(Zn
a)) = S(Ga).

Proof. Since The argument used in the proof that R(S(Zn)) ⊂ S(G) (see Theo-
rem 3.7 in [1]) yields that PGa ◦R(S(Zn

a)) ⊂ S(Ga). We shall prove the converse.
For F ∈ S(Ga) we put

f(m) =
∑
k∈Z

F (H(a, k))χpa,k
(m).

Then it follows Proposition 3.4 in [1] that

Rf(H) =
∑
k∈Z

F (a, k)χG
pa,k

(H).

If H = H(a, k) ∈ Ga, then Rf(H(a, k)) = F (H(a, k)) and Rf(H) = 0 other-
wise. Therefore, it follows that PGa ◦ R(f) = F . Hence, to complete the proof
of the surjectivity, it is enough to prove that f ∈ S(Zn). Since f is supported
on Zn

a and ∥pa,k∥ ≤ |k|, it follows that for all m = pa,k,

(1 + ∥m∥2)N |f(m)| = (1 + ∥pa,k∥2)N |f(pa,k)|
≤ (1 + k2)N |F (H(a, k))|.

Since F ∈ S(G), it follows that pN (f) < ∞.

4 A Paley-Wiener type theorem

We shall consider a discrete Paley-Wiener theorem relatively at the discrete
Radon transform, which characterizes the image of functions on Zn with finite
support. Let K = {x1, x2, . . . , xl} be a finite set in Zn. We denote by DK(Zn)
the subspace of S(Zn) consisting of all complex-valued functions on Zn such
that suppf ⊂ K. Let GK = {H ∈ G | H ∩ K ̸= ∅}. We denote by DK(G)
the subspace of S(G) consisting of all complex-valued functions on G such that
suppF ⊂ GK . Each function f ∈ DK(Zn) is of the form

f =
∑
z∈K

f(z)χz.
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As shown in [1], Proposition 3.4 and Theorem 3.5, Rf is of the form

Rf =
∑
z∈K

f(z)χG
z (4)

and suppRf ⊂
∪

z∈K Gz. Hence Rf belongs to DK(G). In what follows we
shall characterize functions of the form (4). We define D∗,K(G) as the subspace
of DK(G) consisting of all functions F with moment condition (3) and for each
m ∈ Zn, there exists jm ∈ N for which

F (H(aj , aj · m)) = F (H(ajm , ajm · m)) for all j ≥ jm, (5)

where aj = (1, j, j2, . . . , jn−1).

Lemma 2. Let F ∈ DK(G) and a ∈ P. Assume that∑
k∈Z

F (H(a, k))kp = 0 for all p = 0, 1, 2, · · · .

Then F (H(a, k)) = 0 for all k ∈ Z.

Proof. We note that for a fixed a ∈ P, F (H(a, k)) = 0 except finite k and

∞∑
p=0

∑
k∈Z

F (H(a, k))
(iθk)p

p!
=

∑
k∈Z

F (H(a, k))eiθk = 0

for θ ∈ T. Therefore F1F (H(a, ·))(θ) = 0 and thus, F (H(a, k)) = 0 for all
k ∈ Z. Hence F = 0.

Lemma 3. Let m ∈ Zn.
(i) The case of m /∈ K: Let jm,K =

∑
z∈K ∥z − m∥2. If j > jm,K , then

H(aj , aj · m) ∩ K = ∅.

(ii) The case of m ∈ K: Let jK =
∑

z∈K ∥z∥2. If j > 2jK , then

H(aj , aj · m) ∩ K = {m}.

Proof. (i) Let m /∈ K and j > jm,K . We assume that H(aj , aj ·m)∩K ̸= ∅ and
z ∈ H(aj , aj · m) ∩ K. This implies that

(z1 − m1) + (z2 − m2)j + · · · + (zn − mn)jn−1 = 0.

Hence j | (z1 −m1) and thus, there exists α ∈ Z such that z1 −m1 = αj. Then
it follows that

(αj)2 = (z1 − m1)2 ≤ ∥z − m∥2 ≤ jm,K .

Therefore, α must be 0 and z1 = m1. We repeat the same argument for z2−m2

and so on. Then z = m. This contradicts to m /∈ K and z ∈ K. Hence
H(aj , aj ·m)∩K = ∅ for all j > jm,K . (ii) Let m ∈ K and j > jK . We assume

5



that z ∈ H(aj , aj · m) ∩ K. Similarly as above, z1 − m1 = αj. Then it follows
that

jK ≥ ∥z∥2 ≥ z2
1 = m2

1 + (αj)2 + 2αjm1

≥ (αj)2 − 2|α|jjK = |α|j(|α|j − 2jK).

Therefore, α must be 0 and z1 = m1. We repeat the same argument for z2−m2

and so on. Then z = m.

Theorem 4. R is a bijection of DK(Zn) onto D∗,K(G).

Proof. Let f ∈ DK(Zn). As said above, Rf ∈ DK(G). Moreover, it follows
from Corollary 3.10 in [1] that Rf satisfies (3) and from the proof of Theorem
4.1 in [1] that Rf satisfies (5). Therefore, Rf belongs to D∗,K(G). Since the
inversion formula of R exists, it is sufficient to prove the surjectivity of R. Let
F ∈ D∗,K(G). We define a function g on Zn by g(m) = limj→∞ F (H(aj , aj ·m)).
Then if follows from Lemma 3 that g ∈ DK(Zn). Moreover, since F satisfies (5)
and K is finite, there exists JK ∈ N such that g(m) = F (H(aj , aj · m)) for all
m ∈ K and j ≥ JK . Then it follows from Corollary 3.10 in [1] and Lemma 3
that for all j > j0 = max{2jK , JK} and p = 0, 1, 2, · · · ,∑

k∈Z

Rg(H(aj , k))kp =
∑

m∈Zn

g(m)(aj · m)p

=
∑

m∈K

F (H(aj , aj · m))(aj · m)p

=
∑
k∈Z

( ∑
m∈H(aj ,k)∩K

F (H(aj , k))
)
kp

=
∑
k∈Z

F (H(aj , k))kp.

Hence
∑

k∈Z(Rg − F )(H(aj , k))kp = 0 for all j ≥ j0. Since Rf and F satisfies
the moment condition (3), as a function of a ∈ P,

∑
k∈Z(Rg − F )(H(a, k))kp

is a homogeneous polynomial of degree p, which is equal to 0 at a = aj for
all j ≥ j0. Therefore,

∑
k∈Z(Rg − F )(H(a, k))kp = 0 for all a ∈ P. Then by

Lemma 2, we see that F = Rg. This completes the proof of the theorem.

5 Characterization of global spaces

We shall obtain a global characterization of the Radon transform images of
subspaces of l1(Zn). For a subspace X of L1(Tn), we denote by X̂ the space on
Zn consisting of all Fourier coefficients of G ∈ X, that is,

X̂ = {f : Zn → C | there exists G ∈ X such that f(m) = Ĝ(m)},

where
Ĝ(m) =

∫
Tn

G(t)e−im·tdt.
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Let XG denote a subspace of l1(G) consisting of all F ∈ l1(G) such that there
exists a G ∈ X for which

F1F (H(a, ·))(θ) = G(θa). (6)

Theorem 5. Suppose that X̂ ⊂ l1(Zn). Then R is a bijection of X̂ onto XG.

Proof. Since X̂ ⊂ l1(Zn) and R(l1(Zn)) ⊂ l1(G), R is defined on X̂ and each
Rf, f ∈ X̂, belongs to l1(G). Moreover, it follows from (2) that Rf satisfies
(6) with G = Ff ∈ X. Hence R(X̂) ⊂ XG. Since the inversion formula of R
exists, it is sufficient to prove the surjectivity of R. Let F ∈ XG and suppose
that F1F (H(a, ·))(θ) = G(θa) for G ∈ X. Since X̂ ⊂ l1(Zn), it follows that

G(θa) =
∑

m∈Zn

Ĝ(m)e−im·θa =
∑

m∈Zn

Ĝ(m)e−iθm·a

=
∑
k∈Z

( ∑
m∈H(a,k)

Ĝ(m)
)
e−iθk.

Hence F (H(a, k)) =
∑

m∈H(a,k) Ĝ(m). Therefore, if we define a function g on
Zn by g(m) = Ĝ(m), m ∈ Zn, it follows that F = Rg. Clearly, G ∈ X implies
g ∈ X̂. This completes the proof of the theorem.

Let S∗(G) denote a subspace of S(G) consisting of all F ∈ S(G) such that
there exists a G ∈ C∞(Tn) for which F1F (H(a, ·))(θ) = G(θa). Then

Corollary 6. R is a bijective continuous mapping of S(Zn) onto S∗(G).

Let A1(Tn) denote a subspace of L1(Tn) consisting of all G ∈ L1(Tn) such
that

∑
m∈Zn |G(m)| < ∞ and let L1

∗(G) be a subspace of L1(G) consisting of
all F ∈ L1(G) such that there exists a G ∈ A1(Tn) for which F1F (H(a, ·))(θ) =
G(θa). Then it follows that

Corollary 7. R is a bijective continuous mapping of l1(Zn) onto L1
∗(G).

Remark 8. (i) The left hand side of (6) is a function of θ with 0 ≤ θ ≤ 2π and
G in the right hand side is a function on Tn. Therefore, for a fixed a ∈ P, θ in

the right hand side varies in the set of 0 ≤ θ ≤ La

∥a∥
, where La is the length of

the line segment with direction a between the origin and the boundary of Tn.
Hence, if we rewrite (6) as

F1F (H(a, ·))
( θ

∥a∥

)
= G

(
θ

a

∥a∥

)
, 0 ≤ θ ≤ La, (7)

then
a

∥a∥
, a ∈ P moves all rational points in Sn−1∩Tn. Therefore, the condition

(7) implies that the left hand side defined on

{rω | ω ∈ Sn−1 ∩ Tn and rational, 0 ≤ r ≤ Lω}

can be extended to a function G on Tn. (ii) In Corollary 6 and Corollary 7, the
continuity of R−1 is an open problem.
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6 Hardy spaces

The lattice Zn is a space of homogeneous type, because Zn is equipped with
a Euclidean distance and a counting measure. Hence, we can introduce real
Hardy spaces on Zn according to the process in G. Folland and E. Stein [2]. We
shall prove that the Radon transform R locally maps H1(Zn) onto H1(Z) and
globally maps to an atomic Hardy space on G.

We briefly overview the definition of H1(Zn) and its atomic decomposition.
For ϕ ∈ S(Rn) we define a discrete dilation ϕt, t = 1, 2, 3, · · · of ϕ by

ϕt(x) = t−n
∑

m∈Zn

ϕ(t−1m)χm(x), x ∈ Zn.

In the Euclidean case, ϕt is an approximate identity. Hence, to keep this prop-
perty, we put

ϕ0(x) = ϕ(0)χ0(x).

For any f ∈ S ′(Zn), we define a radial maximal function Mϕf on Zn by

Mϕf(x) = sup
t=0,1,2,···

|f ∗ ϕt(x)|, x ∈ Zn,

where ∗ is the discrete convolution on Zn. We say that a distribution f ∈ S ′(Zn)
belongs to H1(Zn) if there is a ϕ ∈ S(Rn) with

∫
Rn ϕ(x)dx ̸= 0 so that Mϕf ∈

L1(Zn). We put ∥f∥H1 = ∥Mϕf∥1. Since |f(x)| ≤ cMϕf(x), it follows that
H1(Zn) ⊂ l1(Zn). According to the process in [2], Chap. 3, we can obtain an
atomic decomposition of H1(Zn) as follows. We say that a function b on Zn is
a (1,∞, 0)-atom if it satisfies

(i) suppb ⊂ B(m0, r),

(ii) ∥b∥∞ ≤ r−n

(iii)
∑

m∈Zn

b(m) = 0,

where B(m0, r) is a closed ball centered at m0 ∈ Zn and radius r ∈ N, which
depends on b. Then f ∈ H1(Zn) if and only if there exist a collection {bi} of
(1,∞, 0)-atoms on Zn and a sequence {λi} of complex numbers with

∑
i |λi| <

∞ so that f =
∑

i λibi. Moreover, ∥f∥H1 ∼ inf
∑

i |λi|, where the infimum is
taken over all atomic decomposition of f . Similarly, we can define H1(Z) on Z.
For l ∈ N, we denote by Hl(Z) the subspace of H(Z) which is constructed by
using (1,∞, 0)-atoms supported on intervals with length 2lr, r ∈ N.

Now we shall characterize the image Rb on G of a (1,∞, 0)-atom b on Zn.
As pointed in §3, Rb =

∑
z∈B(m0,r) b(z)χG

z . Therefore, for each fixed a ∈ P, as
a function of k ∈ Z, Rb(H(a, k)) is supported on {a · z | z ∈ B(m0, r)}. We
denote by k0 = a · m0 the middle point of this support. Then we can easily
deduce that

suppRb(H(a, ·)) ⊂ [k0 − ∥a∥r, k0 + ∥a∥r],
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because if k = a·z is in the support of Rb(H(a, ·)), |k−k0| = |a·(z−m0)| ≤ ∥a∥r.
We note that

|Rb(H(a, k))| ≤
∑

m∈H(a,k)

|b(m)|

≤ r−n|H(a, k) ∩ B(m0, r)| (8)

≤ r−n crn−1

∥a∥
= c(∥a∥r)−1

and ∑
k∈Z

Rb(H(a, k)) =
∑

m∈Zn

b(m) = 0.

These properties imply that c−1Rb(H(a, k) is a (1,∞, 0)-atom on Z with radius
∥a∥r. Therefore, if we define Ra by

Raf(k) = Rf(H(a, k)),

we can obtain the following.

Proposition 9. For each a ∈ P, Ra continuously maps H1(Zn) into H1
∥a∥(Z).

For the surjectivity we shall prove the following lemmas.

Lemma 10. Let a ∈ P and Q be a cube in Rn such that it is centered at the
origin, each side length is 2∥a∥r and a face parallels to H(a, 0). Then, for each
integer l ∈ [−∥a∥r, ∥a∥r], |Q ∩ H(a, l)| contains at least (2r)n−1 elements.

Proof. Since Q is cubic, we may suppose that l = 0. When n = 2, the assertion
is clear. Let a = (a1, a2, · · · , an), n ≥ 3 and bi = (0, · · · , 0, ai, ai+1, 0, · · · , 0)
for 1 ≤ i ≤ n − 1. Then it follows from the case of n = 2 that there exist at
least 2r elements ni,j = (0, · · · , 0,mi,j ,mi+1,j , 0, · · · , 0) ∈ Q for which mi,jai +
mi+1,jai+1 = 0, 1 ≤ j ≤ 2r. Hence each ni,j belongs to Q ∩H(a, 0). Since ni,j ,
1 ≤ i ≤ n − 1, are linearly independent, the desired result follows.

Lemma 11. Let a ∈ P. For each (1,∞, 0)-atom B on Z with radius ∥a∥r, r ∈
N, there exist a (1,∞, 0)-atom b on Zn and a constant C for which B = CRab,
where C depends only on n and a.

Proof. We may suppose that B is supported on [−∥a∥r, ∥a∥r]. Let Q be a
cube in Rn such that Q is centered at the origin, each side length 2∥a∥rand
a face parallels to H(a, 0). By Lemma 10, for each integer l ∈ [−∥a∥r, ∥a∥r],
Q ∩ H(a, l) contains (2r)n−1 integral points, say {mq

l }, 1 ≤ q ≤ (2r)n−1. We
define a function b on Zn as

b(mq
l ) = (2r)−(n−1)B(l)
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for ∥a∥r ≤ l ≤ ∥a∥r, 1 ≤ q ≤ (2r)n−1 and 0 otherwise. Then b is supported on
Q ⊂ B(0, ([

√
n] + 1)∥a∥r). We note that∑

m∈Zn

b(m) =
∑
l,q

b(mq
l ) =

∑
l

B(l) = 0

by the moment condition of B. Moreover,

|b(mq
l )| ≤ (2r)−(n−1)|B(l)| ≤ 2∥a∥−1(2r)−n.

Therefore, it is easy to see that 2n−1([
√

n] + 1)−n∥a∥−n+1b is a (1,∞, 0)-atom
on Zn. Last we note that

Rab(l) =
∑

m∈H(a,l)

b(m) =
∑

q

b(mq
l ) = B(l).

Hence B = Rab = Cn,aRa(C−1
n,ab), where Cn,a = 2−n+1([

√
n] + 1)n∥a∥n−1.

Let F ∈ H1
∥a∥(Z) and F =

∑
i λiBi an atomic decomposition of F , where

each atom is supported on an interval with length 2∥a∥r. Then it follows from
Lemma 11 that there exist a collection of (1,∞, 0)-atoms bi on Zn so that Bi =
Cn,aRabi. Therefore, F = Ra(

∑
i λiCn,abi) and

∑
i |λi|Cn,a ≤ Cn,a∥F∥H1 .

Hence, F belongs to the image of H1(Zn).

Theorem 12. For each a ∈ P, Ra continuously maps H1(Zn) onto H1
∥a∥(Z).

Now we shall introduce an atomic Hardy space on G. Let B(m, r) ⊂ Zn

be a closed ball centered at m ∈ Zn with radius r ∈ N. We use the notations
in §3 and we recall Theorem 4 and (8). We say that a function B on G is a
(1,∞, 0)-atom on G if it satisfies

(i) B ∈ D∗,B(m,r)(G),

(ii) |B(H(a, k))| ≤ |H(a, k) ∩ B(m, r)|r−n for all H(a, k) ∈ G, (9)

(iii)
∑
k∈Z

B(H(a, k)) = 0 for all a ∈ P,

where B(m, r) depends on B. Clearly, if b is a (1,∞, 0)-atom on Zn, then Rb
is a (1,∞, 0)-atom on G (see the argument before Proposition 9). Let B be
a (1,∞, 0)-atom on G. Then by Theorem 4 and its proof, R−1B is supported
on B(m, r) and, if x ∈ B(m, r), then for a sufficiently large j, H(aj , aj · x) ∩
B(m, r) = {x} (see Lemma 3). Hence, it follows from (9) that |R−1B(x)| =
|B(H(aj , aj · x))| ≤ r−n and thus, ∥R−1B∥∞ ≤ r−n. Moreover,∑

m∈Zn

R−1B(m) =
∑
k∈Z

∑
m∈H(a,k)

R−1B(m)

=
∑
k∈Z

B(H(a, k)) = 0.
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Therefore, it is easy to see that R−1B is a (1,∞, 0)-atom on Zn.
Finally, we define the atomic Hardy space H1

∞,0(G) on G as F ∈ H1
∞,0(G) if

and only if there exist a collection {Bi} of (1,∞, 0)-atoms on G and a sequence
{λi} of complex numbers with

∑
i |λi| < ∞ so that F =

∑
i λiBi. We put

∥F∥H1
∞,0

= inf
∑

i |λi|, where the infimum is taken over all atomic decomposition
of F . Then the previous argument yields the following.

Theorem 13. R is an isomorphism of H1(Zn) onto H1
∞,0(G).
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