
Refinements of the Hardy and Morgan
uncertainty principles

T. Kawazoe, J. Liu, A. Miyachi

Abstract

Various generalizations of Hardy’s theorem and Morgan’s theorem,
which assert that a function on R and its Fourier transform cannot
both be very small, are known. We give two theorems which improve
various generalizations known so far.

1 Introduction

For an integrable function f on R, we define the Fourier transform f̂ by

f̂(y) =

∫ +∞

−∞
f(x)e−ixydx, y ∈ R.

Classical Hardy’s theorem [4] reads as follows: if a, b > 0, ab = 1/4, and if f
is a measurable function on R such that

f(x)eax2 ∈ L∞(R) and f̂(y)eby2 ∈ L∞(R), (1)

then f is a constant multiple of e−ax2
. An immediate corollary of this theorem

is the following: if a, b > 0, ab > 1/4, and if f is a measurable function on R
satisfying (1), then f = 0 almost everywhere. The examples f(x) = eax2

P (x)
with P (x) polynomials show that there are infinitely many f ’s that satisfy
(1) for ab < 1/4. Morgan [6] proved the following variant of Hardy’s theorem:
if 1 < β < 2 < α < ∞, 1/α + 1/β = 1, a, b > 0, and

(aα)1/α(bβ)1/β > (sin(π(β − 1)/2))1/β, (2)

and if f is a measurable function on R satisfying

f(x)ea|x|α ∈ L∞(R) and f̂(y)eb|y|β ∈ L∞(R), (3)
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then f = 0 almost everywhere. He also obtained that the condition (2) is
optimal; if (aα)1/α(bβ)1/β = (sin(π(β − 1)/2))1/β, then for any m ∈ R and
m′ = (2m − α + 2)/(2α − 2), there exists a measurable function f on R
such that (1 + |x|)−mf(x)ea|x|α ∈ L∞(R) and (1 + |y|)−m′

f̂(y)eb|y|β ∈ L∞(R).
Therefore, there are infinitely many f ’s that satisfy (3).

Various generalizations of Hardy’s theorem and Morgan’s theorem are
known. Cowling and Price [2] proved that, if in Hardy’s theorem the as-
sumption (1) is replaced by

f(x)eax2 ∈ Lp(R) and f̂(y)eby2 ∈ Lq(R)

with 1 5 p, q 5 ∞ and with at least one of p and q finite, then f = 0. The
third author proved that (see [5], Theorem 1), if a, b > 0, ab = 1/4, and if f
is a measurable function on R such that

f(x)eax2 ∈ L1(R) + L∞(R) and

∫ +∞

−∞
log+ |f̂(y)eby2 |

C
dy < ∞

for some C > 0, then f is a constant multiple of e−ax2
. Here L1(R) + L∞(R)

is the set of functions of the form f = f1 + f2, f1 ∈ L1(R), f2 ∈ L∞(R), and
log+ x = log x if x > 1 and log+ x = 0 if x ≤ 1. Ben Farah and Mokni [1]
proved that, if we replace L∞ in the assumptions of Morgan’s theorem by Lp

and Lq, 1 ≤ p, q ≤ ∞, then f = 0 and the condition (2) is optimal.
The purpose of the present paper is to give further generalizations of the

above theorems. Our results are the following two theorems.

Theorem 1 Let 1 < α, β < ∞, 1/α + 1/β = 1, a, b > 0, and

(aα)1/α(bβ)1/β > c(α, β) (4)

with

c(α, β) =

{
(sin(π(β − 1)/2))1/β if β < 2,
(sin(π(α − 1)/2))1/α if β > 2.

(5)

Suppose f is a measurable function on R such that

ea|x|αf(x) ∈ L1(R) + L∞(R) (6)

and ∫ +∞

−∞
log+ |f̂(y)|eb|y|β

C

dy

1 + |y|
< ∞ (7)

for some C > 0. Then f = 0 almost everywhere.
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Theorem 2 If a, b > 0, ab = 1/4, and if f is a measurable function on R
that satisfies (6) and (7) with α = β = 2, then f(x) is a constant multiple of
e−ax2

.

Remark 3 (a) If the conditions (4) and (6) are satisfied and if we take a′ < a
sufficiently near to a, then (4) is still satisfied with a′ in place of a and the
condition (6) implies

f(x)ea′|x|α = f(x)ea|x|αe(a′−a)|x|α ∈ L1(R).

Hence the essential claim of Theorem 1 remains unchanged if the assumption
(6) is replaced by the seemingly stronger assumption f(x)ea|x|α ∈ L1(R).
(b) It is easy to see that (3) or its Lp-Lq-version implies (6) and (7). There-
fore, Lp-Lq Morgan’s theorem follows from Theorem 1.
(c) Theorem 2 is an improvement of the third author’s Theorem 1 in [5],
where the condition (7) was assumed with dy instead of dy/(1 + |y|).
(d) Similarly as Morgan’s result, the condition (4) is optimal.

In §3 we shall prove Theorems 1 and 2. Part of the argument will be
only a slight modification of that of [5]. Since the paper [5] was published in
a proceedings of a local seminar in Japan and is not easy to refer, we shall
repeat some argument of [5] for convenience of the reader.

2 Key lemmas

For −∞ < α < β < ∞, we write

D(α, β) = {z | α < arg z < β},

which is the domain in the Riemann surface of log z. We shall give three
lemmas. The first lemma is an improvement of Lemma 1 of [5], where the
integral (8) below is taken with respect to ds instead of ds/s.

Lemma 4 Let −∞ < α < β < ∞ and f be a bounded holomorphic function
on D(α, β). Then for each θ with α < θ < β,

sup
0<r<∞

log |f(reiθ)| (8)

≤ c+(α, β, θ)

∫ ∞

0

log+ |f(seiα)|ds

s
+ c−(α, β, θ)

∫ ∞

0

log+ |f(seiβ)|ds

s
,

where

c±(α, β, θ) =
1 ± cos π(θ−α)

β−α

2(β − α) sin π(θ−α)
β−α

and f(seiα) and f(seiβ) denote the nontangential boundary values of f(z).
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Proof. Let δ = (β − α)/π. For z = reiθ ∈ D(α, β), we make a change of
variables as z = eiαwδ. Then w ∈ D(0, π) and g(w) = f(z) = f(eiαwδ)
is a bounded holomorphic function on the upper half plane. Let Pw(t) =
ℑw/(π|w− t|2) be the Poisson kernel for the upper half plane. Then Jensen’s
inequality (cf. [3], Chap. II, §4, p.65) gives

log |f(z)| = log |g(w)| ≤
∫ ∞

−∞
Pw(t) log |g(t)|dt

≤
∫ ∞

−∞
Pw(t) log+ |g(t)|dt

=

∫ ∞

−∞
Pw(t) log+ |f(eiαtδ)|dt

=

∫ ∞

0

Pw(t) log+ |f(eiαtδ)|dt +

∫ ∞

0

Pw(−t) log+ |f(eiβtδ)|dt

=
1

δ

∫ ∞

0

Pw(t1/δ)t1/δ log+ |f(eiαt)|dt

t

+
1

δ

∫ ∞

0

Pw(−t1/δ)t1/δ log+ |f(eiβt)|dt

t
.

If we write w = (rei(θ−α))1/δ = u + iv, then

max
0<s<∞

{sPw(±s)} =
[ vs

π((u ∓ s)2 + v2)

]
s=

√
u2+v2

=
v

2π(
√

u2 + v2 ∓ u)
=

√
u2 + v2 ± u

2πv
= δc±(α, β, θ).

Hence the desired inequality follows.

Lemma 5 Let 0 < β−α < π/ρ and f be a holomorphic function on D(α, β).
Suppose that there exist constants A,B > 0 such that

|f(z)| ≤ AeB|z|ρ

for all z ∈ D(α, β). Then (8) holds for each θ with α < θ < β.

Proof. By a rotation of the variable, we may suppose that α = −β and
0 < β < π/(2ρ). Take a γ such that γ > ρ and γβ < π/2. For ϵ > 0, set
fϵ(z) = f(z)e−ϵzγ

. Then fϵ is holomorphic on D = D(−β, β). Moreover, if
z ∈ D and ϕ = arg z, then

|fϵ(z)| = |f(z)|e−ϵ|z|γ cos γϕ ≤ AeB|z|ρ−ϵ|z|γ cos γβ.
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Since γ > ρ and cos γβ > 0, it follows that fϵ is bounded on D. Hence
(8) holds with f replaced by fϵ. We note that |fϵ(z)| ≤ |f(z)| on D and
fϵ(z) → f(z) as ϵ → 0. Hence, letting ϵ → 0, we have the desired inequality.

The last lemma is well known as the Phragmén-Lindelöf theorem, which
can be proved by an application of Lemma 5 to f(z)/M .

Lemma 6 Let α, β, ρ and f satisfy the same assumptions as in Lemma 5.
Assume in addition that there exists a constant M such that |f(z)| ≤ M on
the boundary of D(α, β). Then |f(z)| ≤ M for all z ∈ D(α, β).

3 Proof of Theorem 1

We shall use the notation

l(θ) = {reiθ | r > 0}, θ ∈ R.

Let a, b, α, β, and f satisfy the assumptions of Theorem 1. As noted in
Remark 3 (a), by replacing a with a smaller constant if necessary, we may
assume that f(t)ea|t|α ∈ L1(R). Thus f(t), t ∈ R, is of the form f(t) =
f1(t)e

−a|t|α with f1 ∈ L1(R).
We define f̂(z) for z ∈ C by

f̂(z) =

∫ +∞

−∞
f(t)e−iztdt. (9)

For z = x + iy ∈ C,

|f̂(z)| ≤
∫ ∞

−∞
|f1(t)|e−a|t|αeytdt.

Using Young’s inequality uα/α + vβ/β ≥ uv for u, v > 0 with u = (αa)1/α|t|
and v = |y|/(αa)1/α, we have a|t|α + |y|β/(β(aα)β/α) ≥ |y||t| and thus∫ ∞

−∞
|f1(t)|e−a|t|αe|y||t|dt ≤ e|y|

β/(β(aα)β/α)∥f1∥1.

Combining the above inequalities, we see that there exists a constant c such
that

|f̂(x + iy)| ≤ ceA|y|β , A = 1/(β(aα)β/α). (10)

It is also easy to see that f̂(z) is an entire holomorphic function.
We shall consider the two cases β < 2 and β > 2 separately.

5



Case I: 1 < β < 2. In this case the condition (4) with (5) implies

A(− cos πβ/2) < b.

Since − cos πβ/2 > 0, we can take a sufficiently small ϵ > 0 such that
0 < ϵ < π/2β and

A <(− cos πβ/2)−1b
(tan(πβ/2 + βϵ)

tan πβ/2
sin2 πβ/2 + cos2 πβ/2

)
= − b tan(πβ/2 + βϵ) sin πβ/2 − b cos πβ/2

=v sin πβ/2 − b cos πβ/2, (11)

where we set
v = −b tan(πβ/2 + βϵ). (12)

We set
θϵ = π/2 − π/2β + ϵ.

Notice that 0 < θϵ < π/2.
We shall prove that f̂ is bounded on l(θϵ). To prove this, consider the

function
g(z) = f̂(z)e(b+iv)zβ

, z ∈ D(0, π/2).

By (10), there exists B > 0 such that

|g(z)| ≤ ceB|z|β (13)

for z ∈ D(0, π/2). Since g(x), x ∈ R, is bounded on a neighborhood of x = 0,
the condition (7) implies that there exists a constant C ′ > 0 such that∫ ∞

0

log+ |g(x)|
C ′

dx

x
< ∞. (14)

For z = reiπ/2, r > 0, from (10) and (11) we have

|g(z)| ≤ cerβ(A+b cos πβ/2−v sin πβ/2) ≤ c. (15)

Since π/2 < π/β, we can apply Lemma 5 to g on D(0, π/2) to see that g(z)
is bounded on each half line l(θ) with 0 < θ < π/2. For z = reiθϵ , r > 0, (12)
gives

|f̂(z)| = |g(z)||e−(b+iv)zβ | = |g(z)|e−rβ{b cos βθϵ−v sin βθϵ}

= |g(z)|e−rβ{b sin(πβ/2+βϵ)+v cos(πβ/2+βϵ)} = |g(z)|.
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Thus, since g is bounded on l(θϵ), f̂ is bounded on l(θϵ).

Applying the same argument to
¯̂
f(z̄), f̂(−z),

¯̂
f(−z̄), we see that f̂ is also

bounded on l(−θϵ), l(θϵ + π), and l(−θϵ + π). By (10), f̂ is also bounded on
l(0) and l(π). Notice that the 6 half lines l(±θϵ), l(±θϵ + π), l(0), and l(π)
divide the complex plane into 6 sectors each of which has angle less than
π/β. Thus using Lemma 6, we conclude that f̂ is bounded on the whole
plane. Thus by Liouville’s theorem f̂ is a constant. Obviously the constant
must be 0 and hence f̂ = 0 and f = 0. This completes the proof for the case
β < 2.

Case II: 2 < β < ∞. Define v by

v = A(sin π/2β)β. (16)

Consider
g(z) = f̂(z)e(b+iv)zβ

, z ∈ D(0, π/2β).

By (10) and (7), there exist constants B and C ′ for which g satisfies (13) for
z ∈ D(0, π/2β) and (14). For z = reiπ/2β, r > 0, it follows from (10) and
(16) that

|g(z)| ≤ cerβ{A(sin π/2β)β−v} = c.

Hence, by Lemma 5, g is bounded on l(θ) for each θ ∈ (0, π/2β). Thus we
proved

sup
r>0

{|f̂(reiθ)|erβ(b cos βθ−v sin βθ)} < ∞ (17)

for each θ ∈ (0, π/2β).

Applying the same argument with
¯̂
f(z̄) in place of f̂(z), we also have

sup
r>0

{|f̂(re−iθ)|erβ(b cos βθ−v sin βθ)} < ∞ (18)

for each θ ∈ (0, π/2β).
Take a θ0 satisfying 0 < θ0 < π/2β and set

b′ = b − v tan βθ0.

Consider the function h(z) = f̂(z)eb′zβ
on D0 = D(−θ0, θ0). For z =

re±iθ0 , r > 0, we have

|h(z)| = |f̂(re±iθ0)|eb′rβ cos βθ0

= |f̂(re±iθ0)|erβ(b cos βθ0−v sin βθ0).

Thus, by (17) and (18), the function h(z) is bounded on l(±θ0). By (10),
h(z) satisfies the global estimate |h(z)| ≤ ceB′|z|β on D0. Since 2θ0 < π/β,
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we can use Lemma 6 to see that h(z) is bounded on D0. Thus, in particular,
f̂(y)eb′yβ

is bounded for y > 0.
Applying the same argument to f̂(−z), we see that f̂(−y)eb′yβ

is also
bounded for y > 0. Thus we conclude that f̂(y)eb′|y|β is bounded for y ∈ R.

Now the conditions (6) and (7) are satisfied with f, α, β, a, b replaced by
f̂ , β, α, b′, a. Notice that b′ → b as θ0 → 0. Hence if we take θ0 sufficiently
small the condition (4) is satisfied with α, β, a, b replaced by β, α, b′, a. There-
fore, applying the result of Case I, we conclude that f = 0. This completes
the proof of Theorem 1.

4 Proof of Theorem 2

By dilation of variables, we may assume that a = b = 1/2. We define f̂(z)
by (9). From (6) with a = 1/2 and α = 2, it follows that, for z = x+ iy ∈ C,

|f̂(z)| ≤
∫ ∞

−∞
|f(t)|etydt

= ey2/2

∫ ∞

−∞
|f(t)|et2/2e−(t−y)2/2dt ≤ cey2/2, (19)

where c is a constant independent of z. It is also easy to see that f̂ is an
entire holomorphic function. We consider g(z) = f̂(z)ez2/2, which is also an
entire function. We shall prove that g(z) is bounded.

For ϵ ∈ (0, π/2), we set

vϵ = (tan ϵ)/4 = (sin ϵ)2/2 sin 2ϵ, θϵ = π/2 − ϵ

and
gϵ(z) = f̂(z)e(1/2+ivϵ)z2

.

By (19), there exists a constant Bϵ such that

|gϵ(z)| ≤ ceBϵ|z|2 , z ∈ C.

For x ∈ R, |gϵ(x)| = |f̂(x)ex2/2| satisfies (14) for some sufficiently large C ′

which is independent of ϵ. For z = reiθϵ , r > 0, (19) implies

|gϵ(z)| ≤ ce(r2/2)((sin θϵ)2+cos 2θϵ−2vϵ sin 2θϵ)

= ce(r2/2)((cos θϵ)2−2vϵ sin 2θϵ)

= ce(r2/2)((sin ϵ)2−2vϵ sin 2ϵ) = c.
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If 0 < θ < θϵ, then using Lemma 5 we have

sup
r>0

|gϵ(re
iθ)| 5 c(θ, ϵ),

where the constant c(θ, ϵ) remains bounded if θ ∈ (0, π/2) is fixed and ϵ → 0.
Since, as ϵ → 0, vϵ → 0 and gϵ(z) → g(z), we conclude that g(z) is bounded
on each half line l(θ) with 0 < θ < π/2.

Applying the same argument to ḡ(−z̄), g(−z), ḡ(z̄), we see that g is
also bounded on the half lines l(θ) for π/2 < θ < π, π < θ < 3π/2, and
3π/2 < θ < 2π. Thus we can find, say, 5 half lines that divide the complex
plane into 5 sectors each of which has angle less than π/2 and g(z) is bounded
on each half line. Thus, using Lemma 6, we can conclude that g is bounded
on the whole complex plane. Since g is entire, it must be constant and thus
f(x) is a constant multiple of e−x2/2.
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