Refinements of the Hardy and Morgan
uncertainty principles

T. Kawazoe, J. Liu, A. Miyachi

Abstract

Various generalizations of Hardy’s theorem and Morgan’s theorem,
which assert that a function on R and its Fourier transform cannot
both be very small, are known. We give two theorems which improve
various generalizations known so far.

1 Introduction

For an integrable function f on R, we define the Fourier transform f by

+o0o
fly) = (z)e ™dr, yeR.
Classical Hardy’s theorem [4] reads as follows: if a,b > 0, ab = 1/4, and if f
is a measurable function on R such that

f(@)e™ € L®(R) and f(y)e® € Lo(R), (1)
then f is a constant multiple of e An immediate corollary of this theorem
is the following: if a,b > 0, ab > 1/4, and if f is a measurable function on R
satisfying (1), then f = 0 almost everywhere. The examples f(z) = e“$2P(x)
with P(z) polynomials show that there are infinitely many f’s that satisfy
(1) for ab < 1/4. Morgan [6] proved the following variant of Hardy’s theorem:
ifl<f<2<a<oo, l/a+1/=1,a,b>0,and

(ac)/*(b3)"7 > (sin(x (8 — 1)/2))/, (2)
and if f is a measurable function on R satisfying

f2)e™ e L*(R) and f(y)e™” € L®(R), (3)



then f = 0 almost everywhere. He also obtained that the condition (2) is
optimal; if (ac)/*(b3)Y/? = (sin(n(B — 1)/2))*/#, then for any m € R and
m' = (2m — a + 2)/(2a — 2), there exists a measurable function f on R
such that (14 |z|)~™f(z)e®* € L*(R) and (1 + |y|)~™ f(y)e'¥’ € L=(R).
Therefore, there are infinitely many f’s that satisfy (3).

Various generalizations of Hardy’s theorem and Morgan’s theorem are
known. Cowling and Price [2] proved that, if in Hardy’s theorem the as-
sumption (1) is replaced by

f(x)e” € LP(R) and f(y)e?" e LY(R)

with 1 £ p,¢ £ oo and with at least one of p and ¢ finite, then f = 0. The
third author proved that (see [5], Theorem 1), if a,b > 0, ab = 1/4, and if f
is a measurable function on R such that

[/ (y)e™’|

+oo
flz)e® € LY(R) + L™=(R) and / log™® Tdy < 00

for some C' > 0, then f is a constant multiple of =%, Here L'(R) 4 L>(R)
is the set of functions of the form f = f; + fo, f1 € L'(R), fo € L>(R), and
log"¥z = logz if > 1 and log" 2z = 0 if < 1. Ben Farah and Mokni [1]
proved that, if we replace L in the assumptions of Morgan’s theorem by L”
and L7, 1 < p,q < oo, then f =0 and the condition (2) is optimal.

The purpose of the present paper is to give further generalizations of the
above theorems. Our results are the following two theorems.

THEOREM 1 Letl < a,f < oo, 1/a+1/=1, a,b> 0, and

(ac)*(bB)"" > ¢(a, B) (4)
v (sin(r(3— /2D if <2
simn(mw(o — () < 2,

(e, f) = { (sin(r(a —1)/2)/*  if B>2 (5)

Suppose f is a measurable function on R such that
" f(z) € L'(R) + L*(R) (6)

and

o) dy
1 +
/oo B T Ty~ ()

for some C' > 0. Then f =0 almost everywhere.



THEOREM 2 Ifa,b > 0, ab = 1/4, and if f is a measurable function on R
that satisfies (6) and (7) with « = 3 = 2, then f(x) is a constant multiple of
2

e,

REMARK 3 (a) If the conditions (4) and (6) are satisfied and if we take a’ < a
sufficiently near to a, then (4) is still satisfied with o’ in place of a and the
condition (6) implies

f(x)e“l"“"'a = f(x)e“'xlae(a/’“)ma € L'(R).

Hence the essential claim of Theorem 1 remains unchanged if the assumption
(6) is replaced by the seemingly stronger assumption f(z)e®*!® € L*(R).
(b) It is easy to see that (3) or its LP-L9-version implies (6) and (7). There-
fore, LP-L? Morgan’s theorem follows from Theorem 1.

(c) Theorem 2 is an improvement of the third author’s Theorem 1 in [5],
where the condition (7) was assumed with dy instead of dy/(1 + |y|).

(d) Similarly as Morgan’s result, the condition (4) is optimal.

In §3 we shall prove Theorems 1 and 2. Part of the argument will be
only a slight modification of that of [5]. Since the paper [5] was published in
a proceedings of a local seminar in Japan and is not easy to refer, we shall
repeat some argument of [5] for convenience of the reader.

2 Key lemmas

For —oo < a < 3 < 00, we write

D(a,f) = {z | a <argz < f},

which is the domain in the Riemann surface of logz. We shall give three
lemmas. The first lemma is an improvement of Lemma 1 of [5], where the
integral (8) below is taken with respect to ds instead of ds/s.

LEMMA 4 Let —oo < a < 3 < 00 and f be a bounded holomorphic function
on D(«a, 3). Then for each 0 with o < 6 < [3,

sup log | f(re”)] (8)

0<r<oco
ds

< oo i) [ 1ot e S +ecfa,50) [ log |7

where
( 5 0) lztcos%
c+\&, O, -
28 — «) Sin%

and f(se'®) and f(se?) denote the nontangential boundary values of f(z).
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Proof. Let § = (8 — a)/n. For z = re? € D(a,3), we make a change of
variables as z = ¢ ®w’. Then w € D(0,7) and g(w) = f(2) = f(e"*w®)
is a bounded holomorphic function on the upper half plane. Let P,(t) =
Sw/(m|w —t[*) be the Poisson kernel for the upper half plane. Then Jensen’s
inequality (cf. [3], Chap. II, §4, p.65) gives

[e.e]

log |(2)| = log |g(w)] < / P, (t) log g(¢)]dt

—00

< / " Pu(t)log® lg()ldt

o0

- / " Pu(t)log” [f (%) dt

:/ P,(t)log* |f(emt6)|dt+/ P, (—t)log™ | f(e®t)|dt
0 0
1 [ : dt
=5 [ P b0 e
5/, i
1 [ . dt
5 [ Pt 08" 10|
5/ i
If we write w = (re’®=®)Y/% = 4 + jv, then
Vs
Py(4s)) = [
0r<ns8<D§o{S (+5)} m((u F $)% 4+ v?2) ls=v2o?
v VU vt

= (sci(aaﬂa 9)

B or(Vu? + v Fu) 2mv

Hence the desired inequality follows. m

LEMMA 5 Let 0 < f—a < 7/p and f be a holomorphic function on D(a, (3).
Suppose that there exist constants A, B > 0 such that

|f(2)] < AePF!
for all z € D(«a, 3). Then (8) holds for each 0 with o < 6 < 3.

Proof. By a rotation of the variable, we may suppose that a = —( and
0 < 8 < 7/(2p). Take a 7 such that v > p and 73 < 7/2. For e > 0, set
fe(2) = f(2)e=*". Then f. is holomorphic on D = D(—#3, 3). Moreover, if
z € D and ¢ = arg z, then

|fe(2’)| _ |f(z)|€—e|z|7 cosy¢p < A€B|z|p—e|z\7605’yﬁ‘



Since 7 > p and cosyf3 > 0, it follows that f. is bounded on D. Hence
(8) holds with f replaced by f.. We note that |f.(z)| < |f(z)| on D and
fe(z) — f(z) as e — 0. Hence, letting € — 0, we have the desired inequality.
n

The last lemma is well known as the Phragmén-Lindelof theorem, which
can be proved by an application of Lemma 5 to f(z)/M.

LEMMA 6 Let o, 3,p and f satisfy the same assumptions as in Lemma 5.
Assume in addition that there exists a constant M such that |f(z)| < M on
the boundary of D(a, ). Then |f(2)| < M for all z € D(«a, 3).

3 Proof of Theorem 1

We shall use the notation
1(0) = {re” | r >0}, HcR.

Let a,b,a, 3, and f satisfy the assumptions of Theorem 1. As noted in
Remark 3 (a), by replacing a with a smaller constant if necessary, we may
assume that f(¢)e?® € L'(R). Thus f(t), t € R, is of the form f(t) =
fi(t)e~ " with f; € LY(R).

We define f(z) for z € C by

For z = x 41y € C,
fels [ Inwle e

Using Young’s inequality u®/a + vﬁ/ﬁ > wov for u,v > 0 with u = (aa)l/a|t|
and v = |y|/(aa)/®, we have a|t|* + |y|®/(B(ac)?/*) > |y||t| and thus

/OO Fu(£)] eIt el gy < (ol )y gy

Combining the above inequalities, we see that there exists a constant ¢ such
that R
@ +iy)| < ce®™ A=1/(B(ac)’). (10)

It is also easy to see that f (z) is an entire holomorphic function.
We shall consider the two cases 3 < 2 and (3 > 2 separately.

b}



Case I: 1 < 8 < 2. In this case the condition (4) with (5) implies
A(—cosmf3/2) < b.

Since —cos7mf/2 > 0, we can take a sufficiently small ¢ > 0 such that
0<e<m/20 and

A <(—cos Wﬁ/Q)‘%(tanEszﬁ};ﬁE) sin? 13/2 + cos® Wﬁ/Q)
= — btan(nf3/2 + Pe)sinmfF/2 — beosw3/2
=vsinmf3/2 — beos /2, (11)
where we set
v = —btan(w (/2 + fe). (12)

We set
O.=m/2—m/20 +e.

Notice that 0 < 6. < m/2.
We shall prove that f is bounded on [(6.). To prove this, consider the

function R '
9(2) = f(2)e® M 2 € D(0,7/2).

By (10), there exists B > 0 such that
l9(2)] < eI (13)

for z € D(0,7/2). Since g(z), = € R, is bounded on a neighborhood of z = 0,
the condition (7) implies that there exists a constant C’ > 0 such that

> g(x)| dx
/0 log™ |é—/)’? < 0. (14)

For z = re'™? r > 0, from (10) and (11) we have

|g(2)\ < CerB(A+bcos7rﬁ/2—vsinﬂ'ﬁ/2) < e (15)

Since m/2 < 7/3, we can apply Lemma 5 to g on D(0,7/2) to see that g(z)
is bounded on each half line [(f) with 0 < § < 7/2. For z = rei’ r > 0, (12)
gives

A~ — i) 2P —rBLbcos B6.—v sin 36,
7@ = lg(e)lle 0] = [g(z)je" oo s0e-vsimanc

— |g(2)|€—rﬁ{bsin(7r,8/2+ﬂe)+v cos(mB/2+Pe)} _ |g(z)|



~

Thus, since g is bounded on I(f,), f is bounded on I(6.).

Applying the same argument to f(Z), f(—z), f(—Z), we see that f is also
bounded on I(—0,), [(6 + =), and (=0, + 7). By (10), f is also bounded on
[(0) and I(m). Notice that the 6 half lines I[(£6,), I(£6. + 7), (0), and ()
divide the complex plane into 6 sectors each of which has angle less than
/3. Thus using Lemma 6, we conclude that f is bounded on the whole
plane. Thus by Liouville’s theorem f is a constant. Obviously the constant
must be 0 and hence f =0 and f = 0. This completes the proof for the case
0 < 2.

Case II: 2 < < 00. Define v by

v = A(sinm/203)". (16)
Consider
9(z) = f(2)e® 2z € D(0,7/20).

By (10) and (7), there exist constants B and C” for which ¢ satisfies (13) for
z € D(0,7/283) and (14). For z = re'™28 r > 0, it follows from (10) and
(16) that

’g(Z)l < cerﬁ{A(sinw/Qﬁ)ﬁfv} —c.

Hence, by Lemma 5, g is bounded on [(#) for each 6 € (0,7/23). Thus we
proved

£ i B (bcos B0—v sin
sulg{|f(re 6)|er” (beos AN < 0 (17)
>

for each 6 € (0,7/20). B
Applying the same argument with f(Z) in place of f(z), we also have

£ —1 708 (bcos 30—v sin
su%){|f(7“e e (bcos 30 69)} < o0 (18)
>

for each 6 € (0,7/20).
Take a 6 satisfying 0 < 0y < 7/2(3 and set

b = b — vtan 36,.

Consider the function h(z) = f(2)e¥*’ on Dy = D(—6y,6,). For z =
ret >0, we have

fA(re:tiHO) |€b’r'8 cos 309

|
’f(reiiﬁo) |€rﬁ (bcos B6p—v sin Bp) .

Thus, by (17) and (18), the function h(z) is bounded on (+6,). By (10),
h(z) satisfies the global estimate |h(z)| < ceB*” on Dy. Since 260, < 7/3,
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we can use Lemma 6 to see that h(z) is bounded on Dy. Thus, in particular,
F(y)e’” is bounded for y > 0.

Applying the same argument to f (—z), we see that f(—y)eb'yﬁ is also
bounded for y > 0. Thus we conclude that f (y)eb/‘yw is bounded for y € R.

Now the conditions (6) and (7) are satisfied with f, a, 3, a, b replaced by
f,ﬁ, a,b',a. Notice that b — b as 0y — 0. Hence if we take 6, sufficiently
small the condition (4) is satisfied with «, 3, a, b replaced by 3, i, b, a. There-
fore, applying the result of Case I, we conclude that f = 0. This completes
the proof of Theorem 1. m

4 Proof of Theorem 2

By dilation of variables, we may assume that a = b = 1/2. We define f(z)
by (9). From (6) with a = 1/2 and o = 2, it follows that, for z = z +iy € C,

1f(2)] < /_Oo | F(t)|edt

o0

= v’/ /OO | (8)]ef2emE02qp < cev'/?, (19)

where ¢ is a constant independent of z. It is also easy to see that f is an
entire holomorphic function. We consider g(z) = f(z)e*/2, which is also an
entire function. We shall prove that g(z) is bounded.

For € € (0,7/2), we set

v. = (tane)/4 = (sine)?/2sin2, 6, =m/2 ¢

and R o
96(2) — f(z)e(1/2+w€)z )
By (19), there exists a constant B, such that

9:(2)] < eeFF -z e

For z € R, |ge(x)| = |f(x)e”’/?| satisfies (14) for some sufficiently large C
which is independent of . For z = e, r > 0, (19) implies

‘96(2’)’ < Ce(r2/2)((sin96)2—&-605206—2115sin295)

_ Ce(r2/2)((cos 0¢)? —2ve sin 26.)

_ 66(1”2/2)((sine)2—2vE sin2e) __ c.



If 0 < 0 < 6., then using Lemma 5 we have
sup |g.(re”)| < c(8,¢),
r>0

where the constant ¢(6, €) remains bounded if # € (0, 7/2) is fixed and € — 0.
Since, as € — 0, v. — 0 and g.(z) — ¢(z), we conclude that g(z) is bounded
on each half line {(#) with 0 < 6 < 7/2.

Applying the same argument to g(—z), g(—=z), g(2z), we see that ¢ is
also bounded on the half lines /() for 7/2 < § < 7m, 7 < 6 < 37/2, and
37/2 < 0 < 27. Thus we can find, say, 5 half lines that divide the complex
plane into 5 sectors each of which has angle less than 7/2 and g(z) is bounded
on each half line. Thus, using Lemma 6, we can conclude that ¢ is bounded
on the whole complex plane. Since g is entire, it must be constant and thus
f(x) is a constant multiple of e~*/2.
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