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Abstract

By using the Riemann-Liouville type fractional integral operators
we shall reduce the complex Fourier-Jacobi transforms of even func-
tions on R to the Euclidean Fourier transforms. As an application
of the reduction formula, Parseval’s formula and an inversion formula
of the complex Jacobi transform are easily obtained. Moreover, we
shall introduce a class of even functions, not C* and not compactly
supported on R, whose transforms have meromorphic extensions on
the upper half plane.

1. Introduction.

Let a,3,A € Cand t € R. For a # —1,-2,—-3,---, ¢2"(t) denotes the
Jacobi function of the first kind, and for \ # —i, —2i, —3i, - - -, @i"ﬁ(t) the one
of the second kind. Let C§°(R) denote the space of all even C*° functions on
R with compact support. For f € C§°(R) and Ra > —1 the Fourier-Jacobi
transform fq 5(\) and the complex Fourier-Jacobi one f, 5()\) are defined by

s = = [ 0602l )
and
Fas) = [ PO (0 A0 st e
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respectively, where
Aqp(t) = (2sht)?* T (2cht) 2 (3)

The Fourier-Jacobi transform f — an”@ is well-understood. For example, the
Paley-Wiener theorem and the inversion formula for C§°(R) are obtained by
Flensted-Jensen [2] and Koornwinder [3]. In particular, Koornwinder reduces
the transform fa,g to the Fourier Cosine transform, which corresponds to the
case of a = = —1/2:

fa,,@()\) = 2%t/ \/% (Wl ﬁOWﬂH/Z(f))—l/z,_l/z (M)
= P2 (W0 W2, ()" V. (4)

Here W7 (f), u € C, o0 > 0, is the Weyl type fractional integral of f, which
is for Ry > 0 defined by

W) =)™ [ F@)(ehor — choy)~'d(chor) (5)

and extended to an entire function in p. Moreover, in the second line of (4)
Wa_g o Wiy (f) is regarded as an even function on R and ( - )" is the
Euclidean Fourier transform on R (see [3, (2.7), (3,7), (3.12)]). One of the
aim of this paper is to obtain an analogous formula for the complex Fourier-
Jacobi transform f, s(A). Actually, we shall reduce fa,ﬂ to the Euclidean
Fourier transform, which corresponds to the case of &« = = —1/2 (see |2,
(2.7)]). In order to obtain the reduction formula we introduce the Riemann-
Liouville type fractional integral Wg(f) : For f € C°(R) and Ru > 0,

W7 (f) is defined by

Va4 _ -1 [Y —1

Wi (£)(y) = oT(w) ™ [ F(@)(choy — chow)~dr - shay (6)
and extended to an entire function in u (see Lemma 3.2). Then the relation
between the complex Fourier-Jacobi transform and the Euclidean Fourier one
is given by

Fap(\) = 272CTC, 5(=0) (W, 5 0 W2 5010 (FAap)) oy

where C, g is the C-function (see (11) and Pr0p0s1t1on 4.2). In this formula,
if Ra > RB > —1/2, two operators VV1 ) and Wﬁ (5+1/2) correspond to
fractional derivatives.



As an application of this formula, Parseval’s formula for C§°(R), which
characterizes the inner product (f,g)r2r, ., ) in terms of fa,g and Ga,3,
easily follows from the one for L?(R) (see Theorem 5.1). Next, we shall
consider analytic continuation of §, g(A\) when g is not C'*° and not compactly
supported. We note that, if I\ is sufficiently large, then @i"ﬁ has exponential
decay and thus, g, 3()\) is well-defined for a large class of even functions.
We shall introduce a class of even functions g on R for which g, (\) has a
meromorphic extension on A > 0. Then we can deduce an inversion formula
of the complex Fourier-Jacobi transform g — g, 5 in a distribution sense (see
Theorem 6.5).

Similar result is obtained in [5] by a different and direct approach without
using the reduction arguments. Moreover, in [1] the Fourier-Jacobi transform
Gap of g(x) = (chz)" is explicitly calculated for the group case of SU(n,1)
(¢ =n—1,4=0). This function (chz)” is a simple example of unbounded
functions whose Fourier-Jacobi transform has a meromorphic extension on
A > 0. Compared with these direct approach, if Ra > RS > —1/2, then
the same result follows in our approach, otherwise, some extra conditions
on g are required to carry out our reduction method. However, under these
extra conditions we see that all poles appeared in our inversion formula are
simple and we can distinguish between poles arisen from the C-function and
ones from the analytic continuation (see Theorem 6.5 and Remark 6.6).

The authors are grateful to the referee for his careful reading and valuable
suggestions.

2. Notations.

Let a,3,\ € C and t € R. We shall consider the differential equation
(La,ﬁ + A\ + ,02)f(t) =0, (7)

where p=a + 4+ 1 and
2

d
Los= T ((2a + 1)ctht + (25 + 1)tht)

%.
Then, for @ # —IN, the Jacobi function of the first kind with order (a, 3)
$30(t) = F (pJ;M, P _QM;a +1; —sh2t> (8)

is a unique solution of (7) satisfying ¢$°(0) = 1 and d¢$’/dt(0) = 0. For

A # —iN, the Jacobi function of the second kind with order (e, )

— 20— 1A p—i\
2 o2

(1) = (e — e A PF (p 1—i); —sh2t> (9)
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is another solution of (7). Then I'(a + 1) '¢%” is entire of a, 3, and for
A\ ¢ iZ, we have the identity

VAT (0 1) 65 (0) = SCasNB (1) + 3 Can (NI (D), (10

where C, 3 is the C-function given by

pop (A p (LA
Cap(N) = - (M ;L<p§ >r <Z<)\ +2,; >2ﬂ> ' (11)

We recall the following properties of these functions (cf. [3] and [4]).

Lemma 2.1. Assume that o, 8 € C and Ra > —1.
(1) For each fized t > 0, as a function of A, qﬁi"ﬁ(t) s an entire function.
There exists a constant K > 0 such that for all t > 0 and all A € C,

(637 ()] < K (14 [A)(1 + t)eSA=R0,

where € =0 if Ra > —1/2 and e = 1 for —1 < Ra < —1/2.

(2) For each fized t > 0, as a function of X, ®Y(t) is a holomorphic
function in C\{—iN}. For each ¢ > 0 there exists a constant K > 0 such
that for all t > ¢ and all S\ > 0,

|(I>§”6 (t) | < K e(=SA-=Ro)t

and for all 0 <t < ¢ and all I\ > 0,

@Rt iR > —1/2,
37 (1) < K S log ft] if Ro = —1/2,
1 if =1 < Ra < —1/2.

(3) For each r > 0, there exists a constant K > 0 such that, if A € C,
S\ > 0 and A is at distance larger than v from the poles of Cy 5(—\)"", then

|Ca,ﬂ(_)\)71| S K(l + |)\|)§Ra+1/2‘

Let Cg°(R) denote the set of even C° functions on R with compact
support. For f € C§°(R) we define the Fourier-Jacobi transform f, () and
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the complex Fourier-Jacobi transform f,5(\) by (1) and (2) respectively.

From Lemma 2.1 it follows that f, g()) is entire and f, 5()) is holomorphic
for A # —iN. Especially, (10) implies that for all A ¢ iZ,

V2 fa5(N) = Cap(A) fas (V) + Cas(=A) fas (= N). (12)
In the following we define the Gauss symbol [z] for z € C as [Rz].

3. Fractional integrals.

3.1. Let C*(R,), R, = [a,0), a € R, denote the set of all C* functions
F, on R with compact support, where F' is right differentiable at a. For
F € C*(R,) and —n < Rp, n = 0,1,2,---, we shall define the Weyl type
fractional integral operator Wt by

T e i A S ()

We extend it as an entire function in . Then WR is the identity operator,
W:{ oWR =R and

ptv
WER . C®(R,) = C*(R,)

is bijection. We also define the Riemann-Liouville type fractional integral
operator WE‘ by

= 1 dr

WEHENW) = e J, P =) dr (1)

and extend it as an entire function in p. We note that WOR is the identity
operator and WR o WR(F) = F if Ry > 0. For Ry < 0, WR o WR(F) =
F provided F(a) = F'(a) = --- = F® (@) = 0. On C*(Ry), b > a,
W:‘ o WR = W:iy. For 7,n € Cand m =0, 1,2, - -, we define A7 (R,) the
class of C'™ functions F' on R, of the form F = Fy + Fi;

Fo(z) =(r —a)'G(z), GeC™([a,a+2)) (15)
and
Fi(x)=2"H(z), HeC™((a+1,00)), (16)
where
ogkgms,zlﬁgm@o z* dkzgx) <ec. (17)




Moreover, AT (R,) denote the class defined by replacing (z—a)7 in (15) with

T*,7

log(z —a) - (z —a)” and AT, (R,) the one defined by replacing sup,, <,

T,N*

|H(z)| < ¢, k=0in (17), with sup, <, [(logz)H(z)| < c.

Lemma 3.1. Form =0,1,2,--- and p, 7,1 € C the fractional operators
Wf and WE‘ satisfy the following.
(1) If m+[p]—1>0,Rn <0 and R(n+ p) <0, then

WR AT (R,) — AP TH(R,),

where 6 =7+ p if p=0,—1,-2,---, and otherwise

0 if R(T+ 1) > 0,
§ = { 0 if R(T+ p) =0, (18)
T4+u if R(T+p) <O0.

(2) If m+[p] >0 and R > —1, then
TR . gm m+[u]
W, AT (R,) — ATW% (Ry),
where 6 =n+p if u=0,—1,-2,---, and otherwise

n+p of Ry > -1,
0=19 (m+wpx* ifRn=-1,
pw—1 if Ry < —1.

Proof. (1) When p = 0,—1,=2,---, WR(F)(y) = [FCM]* = cFOM(y),
because (n + ) < 0. Therefore, the assertion for p = 0,—1,—2,--- easily
follows. Let u #0,—1,—2,---. Also we may assume that u > 0. Actually,
if Rp <0, let W = W;E[u} o W[E”] and note that 0 < R(u — [p]) < 1 and
[ —[p]]+ 1] = [p]. Hence, the assertion for Ry < 0 follows from the cases of
Rp>0and p=0,-1,-2,---. Let F' € AT, (R,) be of the form F' = Fy + Fy
in (15) and (16). If y > a 4 1, then W¥(F) is defined as
R _ o T -1 o -1
WR(F)(y) = c/y (x — a)"G(x)(z — y)" 'du + c/y T H (z)(x — y)*da
= L(y) + Ly).

Clearly, I,(y) = 0if y > a + 2 and I; € C™*+H). Moreover,

L(y) = ™ [ @ H(ye)(@— 1) e
1
= CynJr“Hﬂ(y)'
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For 0 <[ <m,
H(l)(y) = / x"HH(l)(yx)(m — 1)”_1dx
1
_ y—(n+u+l)/ HHO (2) (2 — y)Pd
y

and for 0 <1 < [y],

4 00
H;(LHZI)(y) ~ Z yf(n+u+l+k) / anH(l) (l,) (:U - y)uflf(l’fk)dx
k=0 Yy

# %0
Syt / MHO (yz) (z — 1) 1= =8) gy
k=0 !

(1]

~ Sy /1 2 (wy) HO (yar) (z — 1)p=1=00=R) g
k=0

where, if  is positive integer, the term corresponding to I’ = [u], k = 0 equals
y " HO(y) =y~ HO(y) (see the first line). Hence, (17) implies that
y M HIH 0 <141 < m+[u], is bounded on (a+ 1,00). Therefore, H,(y)
satisfies (17) replaced m with m + [u]. If @ <y < a + 1, then W}(F) is
estimated as

/ya+1(x — a)TG(x)(a: — y)”fldx i /a: 2"H (2)(z — y)“ildx

1/(y
a) —a)r +a)(x — 1)F tdo 4y

{1 (y — T*“) it R(T+p)>0 }
+1

~ (y—a)™™<{ log(y i R(T+p)=0
1 if R(7+p) <0
~ (v —a)’G,(z).
Noting 0 < (y —a) < 1 and the argument in the previous case, we see that
G, € C™Hul, Therefore, WE‘(F) is of the desired form.

(2) When p = 0,-1,— WE(F) coincides with ¢F(=*) provided R7 >

—1. Since VVR Wﬁ o W 21 if R <0, as in the first case, we may assume
that Ru > 0. We note that ifa <y <a+1, then

WEF)W) = [(@-0 Ca)y—a) de

— o [ G- e+ a1 - o) s
)
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and if y > a + 1, then WR(F)(y) is estimated as
a+1 y
/ (¢ — a) G (x)(y — 2)P'dz + / S H (2)(y — )P da
a a+1

1/(y—a)
~ (y— a)”“/o ! 27G((y — a)r +a)(1 —x)* tdx

1
+y"+“/ o H (yz)(x — 1) 'dx
(a+1)/y

1

| if Ry > —1
~ (y—a) "y log(y —a) iRy = -

(y—a)™t ifRp<-—1
~ y‘sHu(a:).

Noting (y — 1) > 1 and —R(7 + p — 1) < 0, as in the first case, we see that
G, € O™ and H, satisfies (17) replaced m with m + [u]. n

Remark 3.2. In Lemma 3.1 we note that, if R(7 + ) > 0 and p #
1,2,3,-- - then the Weyl type fractional operator Wf does not keep the zero
of F' at x = a even if F' has sufficiently higher order of zero.

3.2. We shall transfer the operators W= and W® on C®(Ry), Ry =
[1,00), to ones for C3°(R). For f € C{°(R), 0 > 0 and —n < Ru, n =
0,1,2,---, we shall define the Weyl type and the Riemann-Liouville type
fractional integral operators W and Wl‘j respectively as follows:

(=D [ _d"f(x)

Wi(Hw) = T(p+mn) Jy d(chaa:)”(Chax_Chay)m_ld(ChM) (19)
and
e _ T ) (choy — chor) il - shoy. (20
SN0 = 0 dichogy y {0 ehoy = cho) e - shoy. (20

Then the change of varibale:

f(@) = [f]"(chox)

yields the relation between W} and W7
Wi (F)(y) = WH{f]7)(choy) (21)

8



and the one between W:‘ and W;{ :

Wi (F)(y) = WiH(f - (show)']%) (choy) - shoy. (22)

7

For r,n € Cand m =0,1,2,- -+, let A7/*(R) denote the space of all even
functions f on R of the form f = fy + fi;

fo(z) = (shox)*"g(chox), g€ C™([1,3)) (23)
and
fi(z) = (choz)"h(choz), h e C™((2,00)), (24)
where
0<k<:1u£x<w o dl;f;(f) <ec. (25)

Moreover, A7, (R) denote the class defined by replacing (shox)? in (23)
with (logz)(shoz)®” and A7 (R) by replacing supyc, ., [h(z)] < ¢, k=0

in (25), with supyc, o |(logz)h(z)| < c. Then, using the relations (21) and
(22), we can rewrite Lemma 3.1 for W;* and Wf to the one for W7 and W;:

Lemma 3.3. Let yu,7,n € C andm =0,1,2,---.
(1) If m+[p]—1>0, Ry <0 and R(n+ p) <0, then

o. Aom o,m+[ ]
W? 2 AZM(R) — AT™H(R),

where § =7+ p if p=0,—1,-2,---, and otherwise 0 is the same as (18).
(2) If m+[p] >0 and RT > —1/2, then

Wi AT (R) = AT] M (R),
where 6 =n+p if u=0,—1,-2,---, and otherwise

N+ i if Rmp >0
d=% (m+wx ifRn=0 (26)
1 if ®n < 0.

3.3. As an application of Lemma 3.3, we shall consider the inner product

of f € AZ") and g € A72 , and obtain an adjoint relation between W7 and
Wa
i



Proposition 3.4. Let 0 >0, p€ C and 7;,m; € C,n; € N fori=1,2.
Suppose that Rp > 0, nq + [ — 1 >0, ny + [u] > 0 and

(@) R(m +p) <0,Rn <0,
(0) R(m +m+p+2p/0) <0
(¢c) Rin+n+a+p) >-1
(d) R(re+a)>—1
(e) R(rp+a+u) >—-1
Then for f € A7 and g € AT"2
(Wi(f), 9 r2®y.an paz) = ([ Wg(gAa,B)>L2(R+,dz)- (27)

Proof. First we check the both sides of (27) are finite. Lemma 3.3 (1)
with (a) implies that W7 (f) € A;‘”;ju (R) with ¢ in (18). Since gA, 5 €
A7 (R), the left hand side of (27) is finite from (b), (¢), (d). As

Tota+1/2,m24+2p/0
for the right hand side, Lemma 3.3 (2) with (d) implies that

W (gAa ﬁ) € AZQT;+1/2+M 5(R)

with § in (26). Then the right hand side of (27) is also finite from (a) and
(b). We shall prove the equality. When $u > 0, (27) is clear by changing the
order of integration. Let us suppose that —n < Ry < —n+1,n=1,2,3,---.
Then, it follows from (19) that

<W;(,T(f)7 g>L2(R+,Aa’BdI)

. o (_1)n 0 dnf(x) ptn—1 N
B D(p+n) Jy d(choz)" (chow = choy) d(chow) - gy) Bas(y)dy

o d"f(z) (=" [r—s jin-1
o d(chox)" T +n) / 9(y)As5(y)(chox — choy) dy - d(choz).

Since g(y)A,, 5(y) O(x*2T201) if 0 < 2 < 1, the last integral with respect
to dy is O(x?™Fetrtn)) if 0 < < 1. Thereby, since (e) implies that
2R(mo + a4+ p+n) > =2+ 2n > 0, we can repeat n-times integration by
parts with respect to d(chox). This process shifts the differential operator
d/d(chox) acting on f to the one acting on the inner integral with respect
to dy. Therefore, the desired equality follows from (20). |

4. Reduction formula.
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In order to obtain a reduction formula of f’a,g, we recall some reduction
formulas of ®$” obtained by Koornwinder [3]. Let Ry > 0 and S\ > —Rp.
Then for z > 0,

C’a,ﬁ(—)\)_l(bf\“"g = 23u+10a+u,ﬁ+u(—)\)_IWlf((I)?\‘ﬂ"B"'”)

(see [3, (2.15)]). Hence, applying Proposition 3.4 with Lemma 2.1 (2), we
see that for f € C§°(R),

Cap(=A) " fas(N)
= Cap(=N" 23 2Ry A i)
= P G (N W@ o,
= 23“+10a+u”3+u(_)‘)71<W3(an’ﬁ)’W>L2(R+’dw)

= 23“+1Ca+u:ﬁ+u(_)‘)il (Wi(anﬁ)A;}r#ﬁ*“)a+u,ﬁ+ﬂ (-

Clearly, this equation is meromorphically extended to «, 3, A\, u € C.

Proposition 4.1. Let Ra > —1 and f € CP(R). As a meromorphic
function of o, B, A\, u € C,

fa(A) = 2%H1 Cap(=) (Wj(an,ﬂ)

(A)-
Cotusrn(=A) \ Batpprn ) a+p,B+p

Now we shall reduce the complex Fourier-Jacobi transform f, 5 to the
Euclidean Fourier transform.

One way to obtain the reduction is to use Proposition 4.1 repeatedly and
to reduce the parameters (a, 3) to (—1/2,—1/2). We here apply another
way, but essentially it is the same way. We note the following formula: Let
Ra >R > —1/2, s> 0and IA > 0. Then

e = Cos (N1 [ @B () A (s, 1), (28)

where A, 4(s,t) is given by
23(a+1/2)+lsh2t
Pla =B (B+1/2

(see [2, (2.17)]). In particular, it follows from [2, (3.5), (3.12)] that (28) can
be rewritten as

i anﬁ(_)\)7123(a+1/2)wifﬂ o W,@2+1/2((I)§f’ﬂ)(5)‘

t
; / (ch2t — ch2w)?V/2(chw — chs)®*shwdw.
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Since (o — ) + 2(8 — 1/2) = p, Lemma 2.1 (2) and Lemma 3.3 (1) imply
that the right hand side is well-defined if A > 0. Furthermore, it follows
from Lemma 3.3 (1) that, if S\ is sufficiently large, then

OV = Cap(—A)2° (a+1/2)W2(/3+1/2) oW! (a—p) (€ ),

Since Rae > RG> —1/2 means that R(—(a—/F)) < 0and R(—(6+1/2)) <0
e for a sufficiently large S\ and f € C{°(R) satisfy the assumptions on
f, g in Proposition 3.4. Thereby, it is easy to see that

Ca,ﬂ(_A)_lfa,B&
= Caﬂ(— )71<f7 q)a”@>L2(R+ Aa sdr)

= 2 a+1/2<f7 W2 (B+1/2) © ( )> 2(R4,Aq pdz)
= 27 (a+1/2<W—(a— ) © w2 (/3+1/2)(fA 8),€ i)\()>L2(R+,da:)
— 9-3(a+1/2 (Wl(a Y W2 61172 ( ) e, 1/2
If, for simplicity, we put
Waps =Wa 50Wi, and Wag=W5, 0 Wi g, (29)

then we have the following.

Proposition 4.2. Let f € C{°(R) and Ra > RB > —1/2. Then, as a
meromorphic function of a, 3, € C,

FasN) = 2 5DC 5 (-N) (Wb (FA0) )y ) (30)

We shall extend this formula for f € A7"(R). We recall that w, 1 518

a composition of two fractional operators Wi(a, and 1772 (5+1/2) (see (29))
and these operators change smoothness accordlng to Lemma 3.3 (2). We
take m = N, 3 defined by

—[=B+1/2)] = [-(a=B)] fR(B+1/2) 2 0,R(a—p) >0
—[—(8+1/2)] ifR(B+1/2) > 0,R(a—B) <0
[—(B+1/2)] = [-(a=p)] i RE+1/2) <0,R(a—p) >0
0 if (RB+1/2) <0,R(a—pB) <0.

Corollary 4.3. Let o, 3, 7,m € C, Ra > =1, RT > 0, R > —R(«
B) —1/2 and R(n + p) > max{—Rp, —R(a — B)}. Then for f € Arn ™ (R ),
fa3(A) is holomorphic on S\ > R(n+ p) and satisfies (30).

12



Proof. Tt follows from Lemma 2.1 (2) that f, 5()\) is well-defined if R > —1,
Rr > 0 and I\ > R(n+ p). On the other hand, we note that

F () Do) ~ (char) T2 (thar)27F 204

Since R(7 + a +1/2) > R(r —1/2) > —1/2 and R(n + 2p) > 0, Lemma 3.3
(2) implies that

W2 51709 (D) () ~ (char) T2 2012 ()20 12200412,

Since R(r+a+1/2—(8+1/2)) =R(t+ («— 3)) > —1/2 and R(n+ 2p —
206+1/2)) =R+ p+ (a—F)) >0, Lemma 3.3 (2) again implies that

W0 gy 0 W2 541y (f D) () ~ (char) " (thz)?.

Therefore, the Euclidean Fourier transform of Wa’ 5(fAqp) is well-defined if
SA > R(n+p). n

Remark 4.4. If —(f+1/2) and — (o — 3) are 0, —1, —2,---, then the
condition R(n + p) > max{—Rp, —R(« — ()} is not necessary.

5. Inversion formula.

Let a, 8 € C and Ra > —1. The inversion formula of the Fourier-Jacobi
transform f — fa3, f € C°(R), is obtained by Flensted-Jensen [3] and
Koornwinder [4]. We recall their inversion formula and give a simple proof.

Let D, g denote the set of poles of Cy, 5(—A)~" located in S\ > 0:

Dyg={ym=i(cf—a—-1-2m); m=0,1,2,---,3v, > 0}, (31)

where ¢ = 1 if R > 0 and ¢ = —1 if RF < 0. Let Ry 5(7m) denote the
residue of Cy, 5(—\)"" at v, explicitly given by
(_1)m27p+(557a7172m)7: F(é‘ﬁ _ ’ITL)
Raaﬂ(f)/m) = | _ _ _ °
mly/T I'(ef—a—1-2m)

Then it follows from [4, Theorems 2.2, 2.3, 2.4] that
Theorem 5.1 Let a,3 € C and v € R. Suppose that Ra > —1, v > 0,

and v > —R(a £ +1).
(1) For each f € C3°(R) andt > 0,

1O = = [ dasAt )03, (0Cns(—A — i)

13



N / Fag NS (#)(Cap(A) Carg(—A)) M

(a + 1
o > L200) o, o).

_F(a +1) 2D s Cap(7)

(2) For each f,g € C5°(R),

(fs D) 2Ry An sdo)

1 o . .
= A [ _JasO+ )70\ + i) Cop (=2 — i)\

= <= | Fad s (NCaa (=0
VIS fas()ip () Ras ().

Y€Da,s
(3) Ifa,Be Randa > > —1/2, then D,z = 0 and for f,g € CP(R),

([, 9) 2Ry A gdo) = (fa85 Ga,8)) 2Ry, |Co s (V)] -2dN) -

Proof. We shall give a simple proof based on Proposition 3.4 and the re-
duction formula in Corollary 4.3. Obviously, it is enough to prove the
first equation in (2). We note that |(f, g)r2r,,a, sax)| < || fl2]lgll2, Where
|- [|2 is the L2(R.y, Ay gda)-norm, and |fo s(A +iv)| < || fllrim, e T2ROR if
supp(f) C [-R, R] and |§a,3(A + iv)| < ||lgllrm,) (see Lemma 2.1). There-
fore, by using approximation argument, we may suppose that f, g belong
to A%V (R) for sufficiently large positive numbers 7 and N. We take v >
R(n + p) > max{—RNp, —R(a — B)}. Hence, Proposition 3.4, (4), (30) and
the Plancherel formula for L?(R) yield that

—~

[y @) 2Ry A sda)
Was(f), Ws3(98573)) 12(R . dx)

(Wa,s()e”" Wa5(98:5)e™"") 2R )
1

— 27T<f s(A+ i), Gz 5(A — i) Caz(=A+ ) ") 20,

I
N | =

ﬁ\

where W, (f) and Waﬁ(gAaﬁ) in the third line are regarded as even func-
tions on R. m
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Similarly, we can deduce the following.

Corollary 5.2. Let o, ,n € C and Ra > —1. Letv > 0 and v > R(n+
p) > max{—Rp, —R(a — B)}. Then, for all f € CF(R) and g € Aéjg(R),

1 0© ~
([L9) 2Ry A0 g) = \/—2_7r [m fas(A+1i0)g, (A +iv)Co p(—A — )~

6. Analytic continuation.

6.1. We shall consider analytic continuation of the formula in Corollary
5.2. For 0 € C let WR, be the Weyl type fractional operator on Ry = [0, 00)
(see (13)) and let 0[00,1} (resp. C[%,l)) denote the space of all functions H on

R such that supp(H) C [0,1] (resp. [0,1)), W’ (H) is well-defined, and

sup |WR(H)(w)| < c.

0<w<1

For ¢ > 0,60,n € C let Bg:g(R) denote the space consisting of all even
functions f on R of the form

f(z) = (choz)"H((choz) '), H € C’[%’l]. (32)
We note that, if supp(H) C [0,1], then supp(WR(H)) C [0,1] and thus, if
H e C[%,l], then H € 0[90,,1] for all #' such that R6' < R6. When 6 > 0, if

we put h(t) = H(1/t) as in the form of (24), we see that h satisfies (25) with
m = [f]. Hence, if RE > 0, then

B (R) ¢ A7Y(R).

Let Bf”na (R) denote the set of f € Bg:g(R) such that 0 ¢ supp(f), that is f is
identically zero around 0. We may suppose that f € Bﬁ ’7‘79 (R) is of the form

f(z) = (choz)" ' (shox)H((chox)™"), H; € 0[90,1)' (33)

Obviously, we may suppose that f € Bg:g(R) is of the form

f=l+f, fieCPR), fi B (R). (34)
6.2. For p=0,—1,-2,--- it follows from the definition that
Wy :BY(R) — Bl (R) (35)
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and Bg;f, (R) — BZif,iZ(R) (see Lemma 3.3 (2)). For general ; € C we have
the following.

Lemma 6.1. Let p€ C and f € B;”’WH(R).
(1) If Ry > 0 and Hy satisfies

W (s~ =OWE (Hy)) (w) = O(w=""") if R(y—0) <0,

then W[j(f) € Bﬁ’:Jr#(R).
(2) If Rpu <0 and Hy satisfies the above conditions replaced p, 0 and n
with pu— (1], 0+ [u] and 1+ [u] respectively, then W (f) € Bﬁf:;[zﬂ] (R).

Proof. Let Rp > 0 and f be of the form (33). Clearly, if f is identically zero
around 0, then W7 (f) is also identically zero around 0. Letting choz = ¢ in
(20), we see that

~ t
WIN@) = e & H (- sy s VE T
1
= el 1 / S H 1) (1) s
1/t
= "™V —1H, (1),

where

Hy(w) = wl SV H (w)s)(1 — )~ ds

= /1 s~ H (ws)(s — 1) 'ds
= w"/ s M (s5) (s — w)* s
= w"Wf(s_(”Jr“)Hf)(w).

Since H; € Cfy,y and WE (Hy(ws)) = s"WE (Hj)(ws), Ry < RP, as a
function of w, it follows that

WRH) (w) = [ s T OWER (Hy) (ws) (s — 1) s

1

= W 'WR (s"HOWE (Hy)) (w). (36)
Therefore, if ®(n — ) > 0 and WR®(H/;) is bounded, then Lemma 3.1 (1)

yields that W (H;) is bounded. On the other hand, if (n—0) < 0, then the
assumption on H; also yields that WX, (H;) is bounded. Hence, H; € C'[‘%’l)
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and the desired result follows. Let Ry < 0. When ,u =0,-1,-2,---, the

assertion is nothing but (35). Otherwise, since W iy © W the

desired result follows from (35) and the first case. n

Corollary 6.2. Let p € C and f € B/(R).
(1) If Ru <0, then Wg(f) € Bb;;]:i( ).

(2) If Ru=0, then Wg(f) € BITHHN(R) for 6 > 0.

N+ B
(3) If R > 0 and WR (Hy)(w) = O(wh=%), then W (f) € BJI " (R),
where 6o > 0; > 0 or 0; = d, = 0.

Proof. (3) Let Ry > 0 and suppose that W& (Hy)(w) = O(w"). Then,
letteing 6 = 7 in (36), it follows that

WER (Hy) = Wt(s™*WE (Hy))
and thus,
WE i (H) (w) = w™WE (Hp)(w). (37)

Hence H; € CT(’)JFI“ follows. When WX (Hy)(w) = O(w"~*), (37) is replaced
with W& . 5 (H) = Wi (s™*WE, (Hy)). Therefore, H, € C[’Z)J’rl‘f& pro-
vided 0 > &;. (1) Let Ry < 0. When gy = —1,—2,---, the assertion is
obvious from (35). We may suppose that pu # —1,—2,---. Because of (35)
and W" = W" [u]—1© j (uj+1, W€ may suppose that —1 < Ru < 0. Then it is
easy to see that

~ d
Wi(N) = e (7Gyu(t™)) - V-1
= "N —1((n+ )Gyt — 76 0T),
where choxr =t and
Gyp(w) = wWi (s~ Hy)) (w).
Therefore,
Hy(w) = (n+ p)Gyu(w) — UJG;W(U}) = pGypu(w) — Gypa 1 (w). (38)

Let G = GW. As before, WR (G) = WR (s-WDWE (Hy)) and thus,
WR 0 (G) = WR(s 0HDWR (H))). Since R(u +1) > 0, supp(Hy)
[0,1) and WR (Hf) is bounded, Lemma 3.1 means that W& (ip (G) 1s

bounded. Let G Gyt1,u—1. Then the same process yields that WRTH# (@)
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= WR(sWRo WR (Hy)). This function is again bounded. Hence, H; €
C[’Zﬂ‘;. (2) The case of Ry = 0 follows from the same process in (1) replaced
n+ p with 7+ p — 0 and W with W respectively. n

6.3. Now we shall consider analytic continuation of g, () in Corollary

5.2 provided g € Bg:z /o(R) where 6 will be suitably determined. We recall

(34). When g € C§°(R), Lemma 2.1 (2) and the fact that
A, 5(7) = (chx)?(the)?*+!

has zero of order 2« + 1 at x = 0 mean that, if Ra > —1, gos(A) is a

holomorphic function on I\ > 0 of exponential type (see §5). Therefore, it

is enough to consider the analytic continuation of §, z(\) for ¢ € Bf,ﬁ/Z (R).

Since g is identically zero around 0, Corollary 4.3 yields that, if Ra > —1,
then gq5()) is holomorphic on A > R(n+p) and 23@+1/2) g, 5(X) Cy5(—A) 7"
is the Euclidean Fourier transform of

Wi(aﬂe) (WE(,B+1/2) (984,5))-

In the following, let Ra > —1,¢ > 0 and
f = gAa,,B'

Obviously, f € B>? (R) and is of the form

b.n/2+p
f(z) = (ch2z)"**7 (sh2x)Hy((ch2z) '), Hy € Cfj ). (39)

We here take 0 as

n
Ons = 5 Tr (40)

and assume that,

if —R(6+1/2) >0, then W, (Hy)(w) = O(w=F+1/2), (41)

n/2+p

Then, by taking n and p in Corollary 6.2 as 67, ; = 1/2 + p and —(3 +1/2)
respectively, it follows that for a sufficiently small ¢, > 0

Wz(ﬁ+1/2)(f) S Bf,,;lll_q(R)a
where 71 = (n+ p+ (o — 3))/2. This means that WE(ﬂH/Z)(f) is of the form
WE(5+I/2)(f)(x) = (ch2x)"1*1(sh2x)H}(Ch712x), H; e Cony

18



We here rewrite this function as
W2 5112 (f) (@) = (cha)™ " (sha) Hf(ch?z), Hj e Cf ", (42)
where
Hi(w) =22 —w)"H(w/(2 —w)). (43)
Before applying W}( g to W2 (/3+1/2)(f)’ we prepare the following lemma.
Lemma 6.3. Let p € C,e >0 and f be of the form

f(x) = (cha)*~"(shx)H (ch~*x), H € Cf). (44)

(1) If Ru <0, then Wl}(f) is of the form
WL(f)(x) = (cha)®*#~'(shz) Hy(ch™2z), Hy € Clph*™". (45)

(2) If Ru =0, then (45) holds with H, € Cn+“/2 * ford > e.

(3) If Ru > 0 and WR(WR(M/Q_M)(H)(SZ))(U]) = O(wh %), then (45)

holds with H, € C"M*7% where 6, > 6, > 0 or 6, = 6, = 0.
[0,1)

Proof. We repeat the similar arguments in the proof of Corollary 6.2. (3)
Let R > 0 and suppose that WR(WI‘(nﬂ/Z)(H)(s?))(w) = O(w"). From
the proof of Lemma 6.1, letting ch 2z = w, it follows that

Hi(w) = c/\/; s H (w/s?) (1 — s)Pds
— 0/01 21 H(w/s%)(1 — s)*ds
— W ) (),

where H(w) = H(w?). Since WER (H(w/s%)(w) = cs > WE (H)(w/s?),
Ry < Rn, as a function of w, we see that

W () (0) = e [ () ()1 s ds
= (W, () (V). (46)

Hence H, € C’E(];rf)‘ﬂ follows. The case of §; > §; > 0 also follows as in (3) of
Corollary 6.2. (1) Let 8 < 0. As before, we may assume that —1 < Rp < 0.
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Then, using (45) replaced p with p+ 1, we can repeat the proof of Corollary
6.2. Actually, Gy, is replaced by

wnW:grl ( (2n+ﬂ+1)ﬁ[) (Vw)

and Gpy1,—1 by Gpy1/2,—1. Hence, applying W& (ntif2—e) = WI/QOW (u+1)/2°
Wfinfe) to these functions, the desired result similarly follows as in Corollary
6.2. (2) The case of Ry = 0 also follows from the above argument. u

We apply Wf{( g to W2 (5+1/2)(f) (see (42)) under the assumption that,
if —R(a— ) >0, then WR 5 (WF, ., (H})(s*)(w) = O(w=@=5). (47)

Then, by taking 1, u and H in Lemma 6.3 as (n+ p+ (o — f))/2, —(a — 3)
and H]% respectively, it follows that for a sufficiently small €5 > 0,

WL ey W2 511/ () (@) = (cha)™ " (sha) H}(w?),  H} € GBI, (48)

where w = ch™'z and n, = n + p.

Remark 6.4. (1) If —R(3+1/2) < 0 and —R(a — ) < 0, then no
extra conditions on zero of Hy and H} (see (41) and (47)) are required.

(2) If =R(S+1/2) > 0 and —R(a—f) > 0, then the both extra conditions
on zero of Hy and HJ% are required. However, the extra condition on zero of
H? means the one of Hy. First we note that (37) implies that

WER i (Hp)(w) = w CHDWR(H) (w),

where § = —(n+ p + (o — (3))/2. Thereby, if Wj*(H}) is bounded, then
WB(U/QJFP)(Hf) has zero of order —(3 4 1/2) at w = 0 and thus, the extra
condition on zero of H; follows. Now, let us suppose the extra condition on
zero of Hp: WE (WRHp 12 (H7) (%) (w) = O(w™*=#)). We denote this
function by h(w ) Then H; =W (W(lzfﬁ)(h)(\/g)) and thus

(n+p)/2
Wyt (H7) = WEo_p) o (Wia_p) (W (V5)).
Hence, from Lemma 3.1 (1) it is easy to see that the right hand side is
bounded. Similarly, Wyt s(H7) is bounded for 6 > 0 such that —R(a —
B)/2—6 >0. Let 0 = —n+~v, n =0,1,2,---and 0 < Ry < 1. Since
Hj(w) = G(w)H}(w/(2 —w)) for G € CF (see (43)) and Wt = WRoWR |
it follows that

Wo(Hp) ~ > WHGWE(H}))
k=0

= ZW (GkW Y+6+(n—Fk) OWo J(Hf))
k=0
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where Gy € C°. Therefore, since Wy ;(H7) is bounded, Lemma 3.1 (1)
implies that Wy(H}) is bounded as desired.
(3) From (39) and (42) Hy and H7 can be written as

H b w-1)/2 wh/2+e
w) = arccosh w _—
fw) = f(( ) —
(n+p+(a—B))/2
1 _ w
HJ%(U]) - Wz(ﬁ+1/2)(f)(arCCOSh w I/Q)ﬁ

Since 23@+1/2) g, 5()\) Cy3(—A)"! is the Euclidean Fourier transform of
(48), in order to carry out the analytic continuation of g, g(\) Cy(—\)7",
it is enough to consider F'(\) of

F(z) = (cha) ' (she)H(w?), HeCl}*, Ry >0.

For simplicity, put 6§ = /2 — €. Since e** = (chz)™(1 + thx)?, by changing
the variable as w = ch 'z, it follows that for I\ > Ry,

. 1 i Sy s
PO = /H(wQ) (14 VI—w?)” w0,
0
= /1 T(w)w ™ = M/2 gy,
0

Here, I € C[%,l). Then, applying Proposition 3.4 with « = # = —1/2 and
(14), we see that

FO) = [ W) () 0w

B D(—i(\ — i7)/2) - s
a F(—z'(A_m)/g)JrgH)/o WE (1) (w)w = O 024 gy

Since I € Cffy,y and —i(A — i7)/2 + 60 = —i\ — ¢, this integral is bounded if
I\ > —1 +e. Therefore, F(\) has a meromorphic extension in S\ > 0 with
simple poles lie in

and

Resie. (F(V) = m!r(—(;nllme +1) /01 WEI) (w)yw™™ dw.
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Finally, noting (41), (47) and Remark 6.4 (2), we have the following.

Theorem 6.5. Let o,3,n € C, Ra > —1 and g € BO’Z/§+p(R). We
suppose that there exists a decomposition g = go + g1, go € C{°(R) and

g1 € Bf’://;ﬂ(R), such that f = g1, satisfies that, if —R(a— ) > 0, then

WE o) (WE )2 (HF) (7)) (w) = O(w = ?) and, if —R(e — ) < 0 and
~R(B+1/2) > 0, then WX, (Hf) (w) = O(w ~BH2)) . Then, for all
¢ € G (R),

<¢,9>L2(R+,Aa,5dx) = \/ﬂ/ gaﬂ()‘)caﬂ(_()‘))_ld)‘
—V2mi Z ba,3(VRES = (Fa,5(V)Cap (1)),
Do gUFy+p

where we supposed that (Do gUF,,)NR = 0. All poles appered in the second
sum are simple. If go =0 (resp. g1 = 0), then the second sum corresponding
to Dy g (resp. Fyi,) vanishes.

Remark 6.6. (1) If —R(«a — ) <0 and —R(5 + 1/2) < 0, then there
are no assumptions on f and D, g = (. This case perfectly coincides with
(3) of Theorem 5.1.

(2) In [5] the analytic continuation of g, g(\) is also calculated directly;
the poles of g, (A) lie in Fy;, and if D, 5N E,y, # 0, then go 5(A)C(=A)
has double poles. However, in Theorem 6.5, no double poles appear, be-
cause we use the reduction formula in Corollary 4.3 and we assume the extra
conditions on zero of Hy and H3.
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