On Hardy’s theorem on SU(1,1)
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Abstract

The classical Hardy theorem asserts that f and its Fourier trans-
form f can not both be very rapidly decreasing. This theorem was
generalized on Lie groups and also for the Fourier-Jacobi transform.
However, on SU(1,1) there are infinitely many “good” functions in
the sense that f and its spherical Fourier transform f both have good
decay. In this paper, we shall characterize such functions on SU(1,1).
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1. Introduction. The classical Hardy theorem [2] asserts that f and its
Fourier transform f can not both be ”very rapidly decreasing”. More pre-
cisely, suppose a measurable function f on R and its Fourier transform f on
R satisfying

[f(2)] < Ae™ and  [f(N)] < Be™ (1)

for some positive constants A, B, a and b. If ab > 1/4, then f = 0, and
if ab = 1/4, then f is a constant multiple of e’ Recently, an analogue
of Hardy’s theorem was established on Lie Groups by various people, where
the heat kernel on Lie groups play an essential role to control the decay of f
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and, in the case of ab = 1/4, to express a unique function up to a constant
multiplication. We refer to [9] and the references there for more information.
Moreover, Hardy’s theorem was generalized for the Fourier-Jacobi transform
(see [1] and [3]) and, as an application, Andersen pointed out that Hardy’s
theorem on SU(1,1) does not hold unless the K-type of f is fixed: Let
G = SU(1,1), and for g € G let g = kyazky, 0 < z, 0 < ¢,¢ < 4m,
denote the Cartan decomposition of ¢g. Let h; denote the heat kernel on
G and for integrable functions f on G let fn,m, n,m € %Z, the spherical
Fourier transform of f corresponding to the K-type (n,m) (see (12) below).
We suppose that a measurable function f on G and its spherical Fourier
transform fn,m on R satisfying

| fom(9)] < Ahijaa(g) and | fum(N)| < Be™™ foralln,m € 12 (2)

for some positive constants A, B, a and b. Then, f = 0if ab > 1/4, however,
there are infinitely many linearly independent functions on G satisfying the
above condition if ab = 1/4 (see Corollary 4.3).

In this paper, we restrict our attention to functions on G with K-types
(n,m), n,m =0,1,2,---, and we show that the condition (2) under ab = 1/4
determines a function on G uniquely in the following sense: In the classical
case the condition (1) under ab = 1/4 guarantees the limit

: az? _
An et ) =c

and then f is uniquely determined as f(z) = ce **". On SU(1, 1), similarly,
the condition (2) under ab = 1/4 guarantees the limit

Jm hijaa() " f(kgas) = F(9)

and then f is uniquely determined by using the Fourier coefficient of F'. Here
F € H*(T) and is real analytic. Moreover, the L?-norm of F on T coincides
with the L?-norm of the principal part of f on G and the Fourier coefficients
{dn;n=0,1,2,---} of F satisfy

00 n—1
Sl (14 3 ke < oo,
n=0 k=0

In Theorem 5.1 we shall give a characterization of F'.



2. Notation. Let G = SU(1,1) and A, K the subgroups of G of the
matrices

_( chz/2 shx/2

e?2 0
o = ( shz/2 chx/2

),a’,‘ER and k¢:(0 €,i¢/2

), 0<¢<dr
respectively. According to the Cartan decomposition of GG, each g € G can
be written uniquely as g = kgayky where 0 < z, 0 < ¢,9 < 4w, Let 7,
(j =0,1/2, X € R) denote the principal series representation of G. Then the
(vector-valued) spherical Fourier transform 7, \(f) of f on G is defined as

mia(f) = / f(f)mjr(g)dg, where dg a Haar measure on G. In the following,

G
we shall consider functions f on G satisfying

flag) = fla—s), z€R

and we identify f with an even function on R, which is denoted by the same
symbol f. Under this restriction, we may suppose that m; (f) is supported
on j =0 and A > 0 and the K-types (m,n) of f is supported on m,n € Z
(cf. [6] and [8, §8]).

Before introducing the explicit form of the spherical Fourier transform of
f on G, we shall recall the theory of the Jacobi transform on R, (see [4] and
[5]). Let a, 3, A € C and = € R and consider the differential equation;

(Las + A+ p%) f(2) =0, (3)

where p=a + [+ 1 and

2
Log= 4 + ((2a+ 1)cthz + (26 + 1)thx)di.
T

dz?
Then, for a ¢ —N, the Jacobi function of the first kind with order («, )
A p— 1A
i"’g(x):F(p—;Z ’p 22 ;a+1;—sh2x> (4)

is a unique solution of (3) satisfying ¢°(0) = 1 and d¢%” /dz(0) = 0. For
A ¢ —iN, the Jacobi function of the second kind with order («, ()

9 .
P g M,p QM;I—i)\;—sh_Qt> (5)

O (t) = (' — e P PF (
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is another solution of (3). Then T'(a + 1)~'¢$” is entire of a, 3, and for
A ¢ iZ, we have the identity

VT g0 (t) — &

T 0 = 3(CasN27(0) + Cup(-2)22 (1), (6)

where C, () is the C-function given by

20T (iA/2)0((1 +4M)/2)
T((p+140)/2)T((p — 28 +1i))/2)
(see [4, (2.5), (2.6)]). For convenience we assume o > —1 and € R in the
following. Then C, 3(—A)~" has only simple poles for I\ > 0 which lie in the

finite set Dy 3 = {i(|f| —a—1—-2m);m =0,1,2,---,|f]| —a—1—2m > 0}.
We denote the residue of (Co,5(A)Cap(—N)) ! at v € Dy g by

da,5(7) = —iRes)=(Ca,5(N)Ca(—X)) 7"

Let f be a compactly supported C*° even function on R We define the
Jacobi transform f, 3(\) by

Cap(A) = (7)

s = 55 [T @8 @Bt ®)

where A, 5(z) = (Qth)ZO‘“(2(:ha:)25“rl (see [4, (3.2)] and [5, (2.12)]). Then
the inversion formula and the Plancherel formula respectively given as fol-
lows:

10 =t ([ e @1Cas
T Z fos (165 (@)da (7)) 9)

and

/0 @) Aas(a)dz = / sV PICas (V)] 2
+ > fap()Pdas() (10)

ersz N

(see [4, Theorem 4.2, (5.1)] and [5, Theorem 2.3 and Theorem 2.4]).
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Let hf"ﬂ denote the heat kernel for the Jacobi transform, that is, an even
function on R satisfying

(h)h s(N) = e ") A e R (11)

We return to harmonic analysis on SU(1,1). Let n,m € Z and "™ (g)
(A € R, g € G) denote the matrix coefficient of 7 \(g) with K-type (n,m).
Let f be a compactly supported C'* function on G. We define the scalar-
valued spherical Fourier transform f,, ,,(\) by

Fom(N) = / " @)™ (@) Ag()de. (12)

We recall that the explicit form of "™ (g) is given by using the Jacobi
function (4) (cf. [5, (4.17)] and [6, (3.4.10)]): For g = kya,ky € G,

nm(g) = (cha)™ ™ (sha) P Q (V)T (1) e P ™

where

Q) = ( ~1/2—i)/2Fm > . (13)

n —mj

and Fm is equal to —m if m > n and m if m < n. Hence from (8) and (11)
it follows that

fn,m(A) — 2_2(n+m)_2|n_m|Qn,m(>‘)
><<f(x)(shx)_|”_m|(chx)_(”+m)>A ). (14)

|[n—m|,n+m

We shall consider the case of n = m. Let F' be a compactly supported C'*
even function on R. We put

f(9) = F(x)(cha)?e™ ) g = kyasky € G. (15)
Then letting o = 0,3 = 2n in (10) and (13), we see that
|1 @PS0a@de = [ FanPICoo)| A
0

0
In|—1

+ > (k+1/2)|fanl@k+ 1P (16)

k=0
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(see [6, (4.21)] and [8, Theorem 8.2]). This is nothing but the Plancherel
formula for central compactly supported C'* functions on G . We denote by
fp and °f respectively the principal part and discrete part of f on G|

f=r+°r
Then (16) corresponds to the relation ||f||%2(G) = ||fP||%2(G) + ||°f||%2(G).

3. Asymptotic behavior of heat kernels. When o > 3 > —1/2, the
asymptotic behavior of h’ () is well-known (see [1] and [3, Theorem 3.1]),
in particular,

WO (z) ~ t7 e P e PP e (Lt 4 1) V2 (1 + 1), (17)

In this section we shall treat the case of a,3 = 0,1,2,---, and we shall
investigate a leading term of A%’ (x) when 2 — co. In the following, we fix
t > 0 and we denote a = 1/4t for simplicity.

For an even function f on R let W7 (f), u € C, 0 > 0, denote the Weyl
type fractional integral of f, which is defined by

W@ =T [ f@)chor — choy)dlchor)  (18)

for i > 0 and is extended to an entire function in p (see [4, (3,10), (3.11)]).
Then it is known that

fas(N) = F (202 WL 50 WE,5(1)).

[0}

where F denotes the Euclidean Fourier transform (see [4, (3.7), (3.12)]).
Therefore, letting o = 3 = 0, it follows from (11) that

1

2

W) () = 5zt (19)
and moreover, letting o = m, § = n, 2343/ 2etmAnt Lo W2 o (h™")
does not depend on m,n. Hence, it follows that

hyot = 2 ime man P02 ) oW o WL (). (20)
Lemma 3.1. Forn=0,1,2,---,
W2, 0 W,(f)(z) = Z ¢ (chz) "W (f) (=), (21)

=0



where 4cf = ¢ ' — (n+1—2) ' In particular, cf = 27", | || =

272n(2n — )1, ¢ > 0 if | is even and ¢} < 0 if | is odd, and

(2n — 3)!!
T e

! (0<i<n-1).

Proof. Since
) 1 d 1,

W, = — = W
17 9sh2e der 4chx Y

(21) and the recursive relation 4¢? = ¢/~" — (n+1 — 2)c}'~;" follows from the
induction on n. In particular, 4ci = ¢!~' and 4¢?_| = —(2n — 3)c’~3, and
thus, ¢f = 272" > 0 and |c’_,| = 272"(2n — 3)!!. The signature of general
c? follows from the recursive relation. Since 4"71(2n — 3)|c] 7| < 47|},
it follows that 4|c?| < || + 4(n + | — 2)|c}|/(2n — 3) and thus, 4]c!| <
(2n — 3)|c}~"/(n — 1 — 1). This means that

< (2n — 3)!! ¥
= 22n=l=D(p — [ —1)1(21 — I

. (2n — 3)!!

4 2 (p — 1 1)

Lemma 3.2. Let p,q > 0 and suppose ¢ = 0 if p = 0. Then there exists
a positive constant ¢ such that for alll =0,1,2,---, and x > max(1,1/a),

I/Vll (efam2fp:1:xq) S 6271(2a)lel2/4aefam27(p7l)qu7l.

Here, if | > 1, then (2a)'z~! can be replaced by T'(1)~'(2a)~'z~t. Moreover,
if 271"/ s replaced by 272, then the lower bound follows.

Proof. The case of [ = 0 is obvious, so we may suppose that [ > 1. Since
2shr < e*, s+ < (1+s)(1+2z) < 2x(1+s)forz > 1,s > 0, and
e (1 + s)7 < ¢, it follows from (18) that

L)W} (e~ Pogt) = / e~ P 59(chs — chz)''shsds

-1

= e‘“‘”Lp‘”/ S G (P <2sh(s/2 + x)sh(s/2)> sh(s + x)ds
0

2

< ce 7(p7l)qu / 67a52+(l/2+1/2)572axs (Sh(S/Q))lildS (22)
0
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< CQleth(pl)qu/ efa52+lsf2awsd8
0
— 627l6l2/4a67a$27(p7l)qu(2ax)71,
where we used the fact that —as® + ls = —a(s — [/2a)? + [*/4a. Since
shx < ze®, the integral in (22) is also estimated as

< 02l6l2/4“c/ e 255 ds = 27 el /T (1) (2az) .
0

Therefore, we can deduce the first estimate.
We note that shx > xe”/2 for 0 < 2 < 1/2. Since 0 < 1/2ax < 1/2 and
s+x > x for s,z > 0, it follows that

1/2bx
F(Z)VVlI (e—a:v2 —p:vxq) > C2—2l€—ax2—(p—l)qu / e—aSQ—(p—l)s—Qa:vsSl—ldS
0

1
> 02216“m2(pl)$(2ax)l/ e *s!lds.
0

1
Since F(l)l/ e *s'"'ds is bounded below, the lower estimate follows. H
0

Lemma 3.3. Let p,q > 0 and suppose ¢ = 0 if p = 0. Then there exist a
positive constants ¢ such that for all l,n =0,1,2,---, and v > max(1,1/a),

W25 ((cha)™ Wi (e 7))
< C2n(2a)—l€l2/4ae—ax2—(n+1+p)qu—l((n + Z)I_I/Z + $1/2).
Here, if | > 1, then (2a) 'a~" can be replaced by T'(1) "1 (2a) 'z ~t. Moreover,
if 2nel’/4a s replaced by 2", then the lower bound follows.

Proof. Since W2, ,, = W7, o W2, it follows that

WEI/2 ° ((Chx)i(nﬂ)wvll)

1
= W0 (—(n+D)(cha) I+ (cha) WL, (23)

Therefore, we need to estimate

WIZ/Z((Chx)i(n+l+2)VVll(67‘n27p$xq))7 [ = _17 07 17 27 e
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Substituting the estimate obtained in Lemma 3.2, we see that for [ > 0,
W2, ((cha) T (e o e y))

< CC[)/ 67“52’(”+2+p)ssq’l(ch2$—ch2x)’1/225h25ds
xr

< CCoe_axL(ner)x/ e (200 (g 4 )07 (ch2(s + x) — ch2x) ~!/2ds,
0

where ¢y = ¢2"(2a)'e!*/4*. We note that, if [ > ¢, then (s + )7 < 27!, and
if | < gq,then (s+2)9 ! < (2z(1+s))? tand e P(1+5)7 ' <e P (1+s) <c.
Therefore, applying [3, (3.1)] to (ch2(s + 2) — ch2x)~'/2, we have

< cepe @ (AP gl /OO o~ 0’ —(n+1+2a2)s (M) 1/2d8
0 s(x + )

< Ccoe—a:UZ—(n—l—l—l—p):vxq—l(l + 1) 1/2 /oo €—2axsid8 (24)
x 0 Vs

_axr2— =
< cepe ™ (n+1+p)qu l 1/2.

When [ = —1, we note that |[W!, (e=%"~P%z1)| < ¢(1 4 )7+ e~ 9" P2 (shg) =",
Hence, (24) is replaced by

< C2n€—ax2_(n+p)x/ e—aSQ—(n-}-p—I—?ax)s (S 4 $)Q+1(Ch(8 + IL‘) o Ch!L‘)_l/2dS
0

o 1
< @re o ntlEn)T / e 2% —_((x + 5)(1 + 2(z + s))%ds.
0

NG

The last integral is dominated by z'/2. Substituting these estimates to (23),
we can deduce the desired upper estimate. Other desired estimates follow
from Lemma 3.2 and the arguments used in [3, Theorem 3.1]. B

When p = ¢ =0 and [ = 0, we have the following refinement.

Lemma 3.4. For alln=0,1,2,---,

1)
W2, 5((che) e%") = cqfcha) "h2(@) + O (2me=e - 0mgm12)

Lf = O(g) means that |f(z)/g(z)| < C when x — oo. If C' depends on some parameters
7, then we use the symbol f = O(,)(g).



where cog = 22\/tet.

Proof. Since e=%’ = con/Q(h?’O) (see (19)), the case of n = 0 is obvious
and moreover, for n > 1, it follows that

2

051W31/2((Ch33)7n67% )
*“ d
= —/ Jeho (((Cha’,‘)_n _ (Chs)_n)WIQ/Z(h?,O) (S)) (Ch28 - Ch2!L‘)_1/2dCh28
@ s
+(chz) "Ry’ (2)

= —/ ((chz) " —(chs) ™)e " (ch2s —ch2z) */?2sh2sds + (chz) "h{°(z).

We note that for 0 < z < s,

n(chs — chz)

(chz)™ — (chs)™ < “eha(cha)

Therefore, the similar argument in the proof of Lemma 3.3 (or [3, Theorem
3.1]) yields that the last integral is dominated by 2"ne "~ (nthzg-1/2 g

Now we shall obtain the asymptotic behavior of k" (z) as © — oo. It
follows from (19), (20) and (21) that

2

n—1
hmn _ 0612 3m 7t (m—+n-+1)2-1) ZC W21/2 ChZU)i(nﬁH)I/Vll_m(@iaw )) (25)
=0

Since 2)
2 2
”fim(e—a:v ) ~(m) (2ax)me—ax —mx ,

Lemmas 3.4 implies that, when © — oo, the term corresponding to [ = 0
contributes to the asymptotic behavior of h;"" (x):

Proposition 3.5. We firt > 0 and m,n =0,1,2,---. Then forx,ax > 1

h:gn,n(l') ~ () 6,p2t6—pm6—m2/4t(1 + x)m+1/2. (26)

2f ~ g means that there exist positive constants c;,cs such that ¢ f(z) < g(z) <
caf(x). If ¢1,c2 depend on some parameters v, then we use the symbol f ~ (. g.
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Next we shall consider the behavior of (chz)"h)™(z). Let € > 0 and we
suppose that

1 1
() -
z 2 glog{5— z(€),

that is, che < 27'"” if x > z(€) and  — oo if € — 0. Then it follows from
(25), Lemmas 3.3 and 3.4 that

(chz)"hy™" (z)

n—1
— 2n667t((n+1)271) <Cg,h(t),0 (ZU) +0 ( Z |C?|el2/4aF(l)71670,1:271:”‘7771/2) ) )

=1
We note that e!’/4 < ¢(m=1D*/4a 54

< 1 = n— 1)! 4
> IHEw sl_zl2n+2(rf_l_>l)m(l) 9t —1).

Hence, it follows that
(chz)" A" (x)
— 2n567t((n+1)271) (Cgh?,o (l‘) +0 (e(n71)2/4a67a$27$n21,71/2))

_ 2ne2—2ne—t((n+1)2—1)h?,0(x) <1 L0 (n222n€(n—1)2/4ax—1> ) . (27)

Letting x — oo, we have the following.

Proposition 3.6. We firt >0 andn =20,1,2,---. Then,

n O,n
lim (Chfc?) Oht (z) — 9=2n —t((n+1)2-1) (28)
T—+00 ht, (ZU)

4. Hardy’s theorem. We keep the notations in the previous section.
We recall the proof of Hardy’s theorem for the Jacobi transform of («, (),
a> (3> —1/2 (see [1] and [3]). Then it is easy to see that Hardy’s theorem
for the Jacobi transform of (m,n), m,n =0,1,2,--- also holds:

Theorem 4.1. Let m,n =0,1,2,---, and let f be a measurable function
on Ry satisfying

(1) 9(z) = Opnm (A4, (2)),
(1) Grmn(N) = Oy (7).

11



If ab > 1/4, then g = 0, and if ab = 1/4, then g is a constant multiple of

Applying this theorem, we have Hardy’s theorem on SU(1,1) for a fixed
K-type (see the example in [7]).

Theorem 4.2. Let f be a measurable function on G of K-type (n,m),
n,m=0,1,2,---, satisfying

(i) () = Oty (M7 " () (shar) "= (chiz)™ ™),
(i4) Frm(N) = Ouamy (@nn(Ne ™).

If ab > 1/4, then f = 0, and if ab = 1/4, then f is a constant multiple of
P () (shap)Imoml (chu ),

Proof. Let g(x) = f(z)(shz)~™"™/(chz)~("*™)  Then
9(x) = Opumy (b} " ()
and

Ginempnam(X) = 22FmE2n=ml £ (0Ot () = Ogmy (e7)

(see (14)). Then Theorem 4.1 implies that, if ab > 1/4, then g = 0, and if
ab = 1/4, then g is a constant multiple of hL”me”er(x) and thus, f is the
desired form. W

Let L§, (G) denote the subspace of L?(G) consisting of all f of the form

f: Z fn,ma

n,m=0

where f, ,, is of K-type (n,m).
Corollary 4.3. Let f be in L§, (G) and satisfy for all n,m =0,1,2,---,

(2) fn,M(x) = O(n,m)(h?,/[ila(x)%
(”) fn,M()‘) = O(n,m)(eibv)'
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If ab > 1/4, then f =0, and if ab = 1/4, then f is of the form

Z anhy”" () (cha)?rem@+e) (29)

where g = kyazky and a, € C .

Proof. Proposition 3.5 implies that
P (@) (sha) ™ (eha) ™ sy B (@) (14 2) (30)

for x,ax > 1. Hence f,m(2) = Opm) (h|17;4(:nl,n+m(x) (sha)ll (cha) ™ (1 +

2)~mm) and fom(A) = Oy (€7) = Opum) (Qum(A)e™) (see (13)).
Hence Theorem 4.2 implies that, if ab > 1/4, then f,,, = 0, for all n,m €
Z, and thus f = 0. If ab = 1/4, then f,,, is a constant multiple of

hl)niml’ner(x)(Sh%)lniml(Ch$)n+m- Since fn,m(x) = O(nm (h'OO (2)), it fol-

1/4a
lows that |n —m| = 0 (see (30)). Thereby, f must be of the desired form. B

5. Main theorem. We retain the notations and suppose that
Zanho " (z)(chx) et € 2 (G).

We recall that
Fun(X) = a2~ ineH@m+1243) (31)

(see (11) and (14)). Then letting ¢ = b = 1/4a in (16), we obtain the L?>-norm
of f on G as follows.

/G Fo)Pdg = nf;w / TR0 () (cha)™ P Ago(a) d

— Z |an|22—8n6—2b(2n+1)2 (32)

n=0

00 n—1
< / eV [Cop(N)[2dA+ 3 (k +1/2)e2440),
0 k=0
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We define the partial sum fy, N =0,1,2,---, of f as

N
frlg) = anhy®" (x)(chz)™ @),

n=0
Then Proposition 3.6 implies that

o0

lim lim A)° ()~ fa (kgar) = Zan2_4"e_b((2”+1)2_1)em¢

N—o00 x—00
n=0

= D due = F (o), (3)

where d, = 27e~(r+1)’=1) g Obviously, (32) implies that
00 n—1
1P|l 2y = el fplle) and Y |dn|2(1 + ) ke ) ~ 1 fll72c)- (34)
n=0 k=0

Since >0 |d,|> < 0o and 32, |d,|*(n — 1)e??~D” < oo, there exists a
positive constant C' such that |d,,|(1+n)"/2e!®=D* < C foralln = 0,1,2,- - -.
This means that F' is real analytic and

lan |24 (1 + n)l/Qe—b(2n+1)2€b(2n_1)2 <c
for all n = 0,1,2,---. Hence (31) implies
fn,n()\) = O((l + n)*1/2e*b(2n71)267b)\2)‘

We introduce a subspace AZ(T) of H?(T) as follows:

AYT) = {F(¢) =) dne™ € H*(T) ;

n=0
00 n—1
1P Iy = D Il (1 4+ 3 ke @) < oo},
n=0 k=0

For F(¢) = Y 2%  d,e™ € AZ(T), we define a function f on G as (29) with
a, = 247l +D)* g Then (32) and (34) imply | fllz2) < C||F||,242(’JI‘)'
b

14



Clearly, | fo.n(2)|=|an|hy™™ (x)(cha)?® = Oy (hy* (x)) and (31) implies £, ,(\)
= O(n)(e—b/\z)_ Moreover, limy_,o lim, o hg’o(x)_lfN(k¢aw) = F(¢).
Finally, we have the following theorem.

Theorem 5.1. Let ab = 1/4. Let f be in L§, (G) and satisfy for all
n,m:O,l,Q,---,

(1) fam() = Omy(hy )4 (@),
(1) frm(N) = Oy (e7).
Then, as an L*-function on T,

(i) lim lim 7)°(2) ' fx(kpas) = F(o)

N—00 T—00

evists and F' € AZ(T). Here ||F||z2(ry = cl| fpllr2) and [|Fllazcr) ~ 1 f]lz2(c)-
Let F(¢) = > 27 dne™ denote the Fourier series of F. Then f is uniquely
determined as a central function

flg) =" dy2"meCnt =DR02 () (ch)?em(OH0),
n=0
where g = kgagky, and each fo,(\) satisfies
Fam(N) =O((1+ n)*l/Qe*b(Z”*I)ze*w‘Z).

Conversely, if F € AZ(T), then there exists a function f € L§, (G) such that
[ satisfies (i), (i1) and (iii).

Remark 5.2. (1) We note that, if f € L}, (G) is of the form in (29) and
F is given by (iii), then |f(g) — hy’(x)F(9)|, g = kgazky, is dominated as

( Z |an|2”€€_t(("+1)2_1)nQe(”_1)2/4a> h2’0($)$_1
n=0

(see (27)). Therefore, if this sum is finite, then we can replace (ii7) by

(iii)" lim hy®(2) "' f(kgao) = F(9),

and deduce that f € L'(G) and f(z) = O(hy°(x)).
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(2) In Corollary 4.3 we can replace the condition (i) by
(i) flx) =0, (@)),

because (i)' implies (7). Also, in Theorem 5.1, it is true if we ignore the last
statement of the existence of f for F' € AZ(T). As remarked in (1), in order
to construct f € L}, (G) from F € Aj(T), which satisfies (¢)’, (74) and (iii),
it is necessary to control the series in (1).

(3) In Corollary 4.3 and Theorem 5.1, if we replace the condition (i) by

(Z)IP (fP)m,n(x) = O(n,m)(h?’/[zla(x))a

then a, = 0 for n # 0, that is, f is K-biinvariant. Actually, since fmn =
(fP)mn (1)p and (77) imply that fp is of the form in (29). Since fpr has no
discrete part, (32) implies that a,, must be 0 if n # 0.
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