

On Hardy's theorem on $SU(1, 1)$

Takeshi KAWAZOE * LIU Jianming †

Abstract

The classical Hardy theorem asserts that f and its Fourier transform \hat{f} can not both be very rapidly decreasing. This theorem was generalized on Lie groups and also for the Fourier-Jacobi transform. However, on $SU(1, 1)$ there are infinitely many “good” functions in the sense that f and its spherical Fourier transform \tilde{f} both have good decay. In this paper, we shall characterize such functions on $SU(1, 1)$.

Keywords Heat kernel, Jacobi transform, Plancherel formula

2000 MR Subject Classification 22E30, 43A80, 43A90, 33C45

1. Introduction. The classical Hardy theorem [2] asserts that f and its Fourier transform \tilde{f} can not both be “very rapidly decreasing”. More precisely, suppose a measurable function f on \mathbb{R} and its Fourier transform \tilde{f} on \mathbb{R} satisfying

$$|f(x)| \leq Ae^{-ax^2} \quad \text{and} \quad |\tilde{f}(\lambda)| \leq Be^{-b\lambda^2} \quad (1)$$

for some positive constants A , B , a and b . If $ab > 1/4$, then $f = 0$, and if $ab = 1/4$, then f is a constant multiple of e^{-ax^2} . Recently, an analogue of Hardy's theorem was established on Lie Groups by various people, where the heat kernel on Lie groups play an essential role to control the decay of f

*Department of Mathematics, Keio University at Fujisawa, Endo, Fujisawa, Kanagawa, 252-8520, Japan. *e-mail:* kawazoe@sfc.keio.ac.jp, supported by Grant-in-Aid for Scientific Research (C), No. 16540168, Japan Society for the Promotion of Science

†LMAM, School of Mathematical Sciences, Peking University, Beijing, 100871 P. R. China. *e-mail:* liujm@math.pku.edu.cn, supported by National Natural Science Foundation of China, Project No. 10371004.

and, in the case of $ab = 1/4$, to express a unique function up to a constant multiplication. We refer to [9] and the references there for more information. Moreover, Hardy's theorem was generalized for the Fourier-Jacobi transform (see [1] and [3]) and, as an application, Andersen pointed out that Hardy's theorem on $SU(1, 1)$ does not hold unless the K -type of f is fixed: Let $G = SU(1, 1)$, and for $g \in G$ let $g = k_\phi a_x k_\psi$, $0 \leq x$, $0 \leq \phi, \psi \leq 4\pi$, denote the Cartan decomposition of g . Let h_t denote the heat kernel on G and for integrable functions f on G let $\tilde{f}_{n,m}$, $n, m \in \frac{1}{2}\mathbb{Z}$, the spherical Fourier transform of f corresponding to the K -type (n, m) (see (12) below). We suppose that a measurable function f on G and its spherical Fourier transform $\tilde{f}_{n,m}$ on \mathbb{R} satisfying

$$|f_{n,m}(g)| \leq Ah_{1/4a}(g) \quad \text{and} \quad |\tilde{f}_{n,m}(\lambda)| \leq Be^{-b\lambda^2} \quad \text{for all } n, m \in \frac{1}{2}\mathbb{Z} \quad (2)$$

for some positive constants A, B, a and b . Then, $f = 0$ if $ab > 1/4$, however, there are infinitely many linearly independent functions on G satisfying the above condition if $ab = 1/4$ (see Corollary 4.3).

In this paper, we restrict our attention to functions on G with K -types (n, m) , $n, m = 0, 1, 2, \dots$, and we show that the condition (2) under $ab = 1/4$ determines a function on G uniquely in the following sense: In the classical case the condition (1) under $ab = 1/4$ guarantees the limit

$$\lim_{x \rightarrow \infty} e^{ax^2} f(x) = c$$

and then f is uniquely determined as $f(x) = ce^{-ax^2}$. On $SU(1, 1)$, similarly, the condition (2) under $ab = 1/4$ guarantees the limit

$$\lim_{x \rightarrow \infty} h_{1/4a}(x)^{-1} f(k_\phi a_x) = F(\phi)$$

and then f is uniquely determined by using the Fourier coefficient of F . Here $F \in H^2(\mathbb{T})$ and is real analytic. Moreover, the L^2 -norm of F on \mathbb{T} coincides with the L^2 -norm of the principal part of f on G and the Fourier coefficients $\{d_n; n = 0, 1, 2, \dots\}$ of F satisfy

$$\sum_{n=0}^{\infty} |d_n|^2 \left(1 + \sum_{k=0}^{n-1} ke^{2b(2k+1)^2}\right) < \infty.$$

In Theorem 5.1 we shall give a characterization of F .

2. Notation. Let $G = SU(1, 1)$ and A, K the subgroups of G of the matrices

$$a_x = \begin{pmatrix} \operatorname{ch}x/2 & \operatorname{sh}x/2 \\ \operatorname{sh}x/2 & \operatorname{ch}x/2 \end{pmatrix}, \quad x \in \mathbb{R} \quad \text{and} \quad k_\phi = \begin{pmatrix} e^{i\phi/2} & 0 \\ 0 & e^{-i\phi/2} \end{pmatrix}, \quad 0 \leq \phi \leq 4\pi$$

respectively. According to the Cartan decomposition of G , each $g \in G$ can be written uniquely as $g = k_\phi a_x k_\psi$ where $0 \leq x, 0 \leq \phi, \psi \leq 4\pi$. Let $\pi_{j,\lambda}$ ($j = 0, 1/2, \lambda \in \mathbb{R}$) denote the principal series representation of G . Then the (vector-valued) spherical Fourier transform $\pi_{j,\lambda}(f)$ of f on G is defined as $\pi_{j,\lambda}(f) = \int_G f(g) \pi_{j,\lambda}(g) dg$, where dg a Haar measure on G . In the following, we shall consider functions f on G satisfying

$$f(a_x) = f(a_{-x}), \quad x \in \mathbb{R}$$

and we identify f with an even function on \mathbb{R} , which is denoted by the same symbol f . Under this restriction, we may suppose that $\pi_{j,\lambda}(f)$ is supported on $j = 0$ and $\lambda > 0$ and the K -types (m, n) of f is supported on $m, n \in \mathbb{Z}$ (cf. [6] and [8, §8]).

Before introducing the explicit form of the spherical Fourier transform of f on G , we shall recall the theory of the Jacobi transform on \mathbb{R}_+ (see [4] and [5]). Let $\alpha, \beta, \lambda \in \mathbb{C}$ and $x \in \mathbb{R}$ and consider the differential equation;

$$(L_{\alpha, \beta} + \lambda^2 + \rho^2) f(x) = 0, \quad (3)$$

where $\rho = \alpha + \beta + 1$ and

$$L_{\alpha, \beta} = \frac{d^2}{dx^2} + ((2\alpha + 1)\operatorname{cth}x + (2\beta + 1)\operatorname{th}x) \frac{d}{dx}.$$

Then, for $\alpha \notin -\mathbb{N}$, the Jacobi function of the first kind with order (α, β)

$$\phi_\lambda^{\alpha, \beta}(x) = F \left(\frac{\rho + i\lambda}{2}, \frac{\rho - i\lambda}{2}; \alpha + 1; -\operatorname{sh}^2 x \right) \quad (4)$$

is a unique solution of (3) satisfying $\phi_\lambda^{\alpha, \beta}(0) = 1$ and $d\phi_\lambda^{\alpha, \beta}/dx(0) = 0$. For $\lambda \notin -i\mathbb{N}$, the Jacobi function of the second kind with order (α, β)

$$\Phi_\lambda^{\alpha, \beta}(t) = (e^t - e^{-t})^{i\lambda - \rho} F \left(\frac{\rho - 2\alpha - i\lambda}{2}, \frac{\rho - i\lambda}{2}; 1 - i\lambda; -\operatorname{sh}^{-2} t \right) \quad (5)$$

is another solution of (3). Then $\Gamma(\alpha + 1)^{-1}\phi_\lambda^{\alpha, \beta}$ is entire of α, β , and for $\lambda \notin i\mathbb{Z}$, we have the identity

$$\frac{\sqrt{\pi}}{\Gamma(\alpha + 1)}\phi_\lambda^{\alpha, \beta}(t) = \frac{1}{2}\left(C_{\alpha, \beta}(\lambda)\Phi_\lambda^{\alpha, \beta}(t) + C_{\alpha, \beta}(-\lambda)\Phi_{-\lambda}^{\alpha, \beta}(t)\right), \quad (6)$$

where $C_{\alpha, \beta}(\lambda)$ is the C -function given by

$$C_{\alpha, \beta}(\lambda) = \frac{2^\rho \Gamma(i\lambda/2)\Gamma((1+i\lambda)/2)}{\Gamma((\rho+i\lambda)/2)\Gamma((\rho-2\beta+i\lambda)/2)} \quad (7)$$

(see [4, (2.5), (2.6)]). For convenience we assume $\alpha > -1$ and $\beta \in \mathbb{R}$ in the following. Then $C_{\alpha, \beta}(-\lambda)^{-1}$ has only simple poles for $\Im \lambda \geq 0$ which lie in the finite set $D_{\alpha, \beta} = \{i(|\beta| - \alpha - 1 - 2m); m = 0, 1, 2, \dots, |\beta| - \alpha - 1 - 2m > 0\}$. We denote the residue of $(C_{\alpha, \beta}(\lambda)C_{\alpha, \beta}(-\lambda))^{-1}$ at $\gamma \in D_{\alpha, \beta}$ by

$$d_{\alpha, \beta}(\gamma) = -i\text{Res}_{\lambda=\gamma}(C_{\alpha, \beta}(\lambda)C_{\alpha, \beta}(-\lambda))^{-1}.$$

Let f be a compactly supported C^∞ even function on \mathbb{R} . We define the Jacobi transform $\hat{f}_{\alpha, \beta}(\lambda)$ by

$$\hat{f}_{\alpha, \beta}(\lambda) = \frac{\sqrt{2}}{\Gamma(\alpha + 1)} \int_0^\infty f(x)\phi_\lambda^{\alpha, \beta}(x)\Delta_{\alpha, \beta}(x)dx, \quad (8)$$

where $\Delta_{\alpha, \beta}(x) = (2\text{sh}x)^{2\alpha+1}(2\text{ch}x)^{2\beta+1}$ (see [4, (3.2)] and [5, (2.12)]). Then the inversion formula and the Plancherel formula respectively given as follows:

$$\begin{aligned} f(x) &= \frac{\sqrt{2}}{\Gamma(\alpha + 1)} \left(\int_0^\infty \hat{f}_{\alpha, \beta}(\lambda)\phi_\lambda^{\alpha, \beta}(x)|C_{\alpha, \beta}(\lambda)|^{-2}d\lambda \right. \\ &\quad \left. + \sum_{\gamma \in D_{\alpha, \beta}} \hat{f}_{\alpha, \beta}(\gamma)\phi_\gamma^{\alpha, \beta}(x)d_{\alpha, \beta}(\gamma) \right) \end{aligned} \quad (9)$$

and

$$\begin{aligned} \int_0^\infty |f(x)|^2\Delta_{\alpha, \beta}(x)dx &= \int_0^\infty |\hat{f}_{\alpha, \beta}(\lambda)|^2|C_{\alpha, \beta}(\lambda)|^{-2}d\lambda \\ &\quad + \sum_{\gamma \in D_{\alpha, \beta}} |\hat{f}_{\alpha, \beta}(\gamma)|^2d_{\alpha, \beta}(\gamma) \end{aligned} \quad (10)$$

(see [4, Theorem 4.2, (5.1)] and [5, Theorem 2.3 and Theorem 2.4]).

Let $h_t^{\alpha,\beta}$ denote the heat kernel for the Jacobi transform, that is, an even function on \mathbb{R} satisfying

$$(h_t^{\alpha,\beta})_{\alpha,\beta}^{\wedge}(\lambda) = e^{-t(\lambda^2 + \rho^2)}, \quad t, \lambda \in \mathbb{R}. \quad (11)$$

We return to harmonic analysis on $SU(1, 1)$. Let $n, m \in \mathbb{Z}$ and $\psi_{\lambda}^{n,m}(g)$ ($\lambda \in \mathbb{R}$, $g \in G$) denote the matrix coefficient of $\pi_{0,\lambda}(g)$ with K -type (n, m) . Let f be a compactly supported C^{∞} function on G . We define the scalar-valued spherical Fourier transform $\tilde{f}_{n,m}(\lambda)$ by

$$\tilde{f}_{n,m}(\lambda) = \int_0^{\infty} f(x) \psi_{\lambda}^{(n,m)}(x) \Delta_{0,0}(x) dx. \quad (12)$$

We recall that the explicit form of $\psi_{\lambda}^{n,m}(g)$ is given by using the Jacobi function (4) (cf. [5, (4.17)] and [6, (3.4.10)]): For $g = k_{\phi}a_xk_{\psi} \in G$,

$$\psi_{\lambda}^{n,m}(g) = (\operatorname{ch} x)^{n+m} (\operatorname{sh} x)^{|n-m|} Q_{n,m}(\lambda) \phi_{\lambda}^{|n-m|, n+m}(x) e^{in\phi} e^{im\psi},$$

where

$$Q_{n,m}(\lambda) = \begin{pmatrix} -1/2 - i\lambda/2 \mp m \\ |n-m| \end{pmatrix}. \quad (13)$$

and $\mp m$ is equal to $-m$ if $m \geq n$ and m if $m \leq n$. Hence from (8) and (11) it follows that

$$\begin{aligned} \tilde{f}_{n,m}(\lambda) &= 2^{-2(n+m)-2|n-m|} Q_{n,m}(\lambda) \\ &\times \left(f(x) (\operatorname{sh} x)^{-|n-m|} (\operatorname{ch} x)^{-(n+m)} \right)_{|n-m|, n+m}^{\wedge}(\lambda). \end{aligned} \quad (14)$$

We shall consider the case of $n = m$. Let F be a compactly supported C^{∞} even function on \mathbb{R} . We put

$$f(g) = F(x) (\operatorname{ch} x)^{2n} e^{in(\phi+\psi)}, \quad g = k_{\phi}a_xk_{\psi} \in G. \quad (15)$$

Then letting $\alpha = 0, \beta = 2n$ in (10) and (13), we see that

$$\begin{aligned} \int_0^{\infty} |f(x)|^2 \Delta_{0,0}(x) dx &= \int_0^{\infty} |\tilde{f}_{n,n}(\lambda)|^2 |C_{0,0}(\lambda)|^{-2} d\lambda \\ &+ \sum_{k=0}^{|n|-1} (k + 1/2) |\tilde{f}_{n,n}((2k+1)i)|^2. \end{aligned} \quad (16)$$

(see [6, (4.21)] and [8, Theorem 8.2]). This is nothing but the Plancherel formula for central compactly supported C^∞ functions on G . We denote by f_P and ${}^\circ f$ respectively the principal part and discrete part of f on G ;

$$f = f_P + {}^\circ f.$$

Then (16) corresponds to the relation $\|f\|_{L^2(G)}^2 = \|f_P\|_{L^2(G)}^2 + \|{}^\circ f\|_{L^2(G)}^2$.

3. Asymptotic behavior of heat kernels. When $\alpha \geq \beta \geq -1/2$, the asymptotic behavior of $h_t^{\alpha,\beta}(x)$ is well-known (see [1] and [3, Theorem 3.1]), in particular,

$$h_t^{0,0}(x) \sim t^{-1} e^{-\rho^2 t} e^{-\rho x} e^{-x^2/4t} (1+t+x)^{-1/2} (1+x). \quad (17)$$

In this section we shall treat the case of $\alpha, \beta = 0, 1, 2, \dots$, and we shall investigate a leading term of $h_t^{\alpha,\beta}(x)$ when $x \rightarrow \infty$. In the following, we fix $t > 0$ and we denote $a = 1/4t$ for simplicity.

For an even function f on \mathbb{R} let $W_\mu^\sigma(f)$, $\mu \in \mathbb{C}$, $\sigma > 0$, denote the Weyl type fractional integral of f , which is defined by

$$W_\mu^\sigma(f)(y) = \Gamma(\mu)^{-1} \int_y^\infty f(x) (\operatorname{ch} \sigma x - \operatorname{ch} \sigma y)^{\mu-1} d(\operatorname{ch} \sigma x) \quad (18)$$

for $\Re \mu > 0$ and is extended to an entire function in μ (see [4, (3.10), (3.11)]). Then it is known that

$$\hat{f}_{\alpha,\beta}(\lambda) = \mathcal{F} \left(2^{3\alpha+3/2} W_{\alpha-\beta}^1 \circ W_{\beta+1/2}^2(f) \right),$$

where \mathcal{F} denotes the Euclidean Fourier transform (see [4, (3.7), (3.12)]). Therefore, letting $\alpha = \beta = 0$, it follows from (11) that

$$W_{1/2}^2(h_t^{0,0})(x) = \frac{1}{2^2 \sqrt{t}} e^{-t} e^{-ax^2} \quad (19)$$

and moreover, letting $\alpha = m, \beta = n$, $2^{3m+3/2} e^{t(m+n+1)^2} W_{m-n}^1 \circ W_{n+1/2}^2(h_t^{m,n})$ does not depend on m, n . Hence, it follows that

$$h_t^{m,n} = 2^{-3m} e^{-t((m+n+1)^2-1)} W_{-1/2-n}^2 \circ W_{n-m}^1 \circ W_{1/2}^2(h_t^{0,0}). \quad (20)$$

Lemma 3.1. *For $n = 0, 1, 2, \dots$,*

$$W_{-n}^2 \circ W_n^1(f)(x) = \sum_{l=0}^{n-1} c_l^n (\operatorname{ch} x)^{-(n+l)} W_l^1(f)(x), \quad (21)$$

where $4c_l^n = c_l^{n-1} - (n + l - 2)c_{l-1}^{n-1}$. In particular, $c_0^n = 2^{-2n}$, $|c_{n-1}^n| = 2^{-2n}(2n - 3)!!$, $c_l^n > 0$ if l is even and $c_l^n < 0$ if l is odd, and

$$|c_l^n| \leq \frac{(2n - 3)!!}{2^{2n}(n - 1 - l)!} \quad (0 < l \leq n - 1).$$

Proof. Since

$$W_{-1}^2 = \frac{1}{2\text{sh}2x} \frac{d}{dx} = \frac{1}{4\text{ch}x} W_{-1}^1,$$

(21) and the recursive relation $4c_l^n = c_l^{n-1} - (n + l - 2)c_{l-1}^{n-1}$ follows from the induction on n . In particular, $4c_0^n = c_0^{n-1}$ and $4c_{n-1}^n = -(2n - 3)c_{n-2}^{n-1}$, and thus, $c_0^n = 2^{-2n} > 0$ and $|c_{n-1}^n| = 2^{-2n}(2n - 3)!!$. The signature of general c_l^n follows from the recursive relation. Since $4^{n-1}(2n - 3)|c_{l-1}^{n-1}| \leq 4^n|c_l^n|$, it follows that $4|c_l^n| \leq |c_l^{n-1}| + 4(n + l - 2)|c_l^n|/(2n - 3)$ and thus, $4|c_l^n| \leq (2n - 3)|c_l^{n-1}|/(n - l - 1)$. This means that

$$|c_l^n| \leq \frac{(2n - 3)!!}{2^{2(n-l-1)}(n - l - 1)!(2l - 1)!!} |c_l^{l+1}| = \frac{(2n - 3)!!}{2^{2n}(n - 1 - l)!}. \blacksquare$$

Lemma 3.2. *Let $p, q \geq 0$ and suppose $q = 0$ if $p = 0$. Then there exists a positive constant c such that for all $l = 0, 1, 2, \dots$, and $x \geq \max(1, 1/a)$,*

$$W_l^1(e^{-ax^2-px}x^q) \leq c2^{-l}(2a)^l e^{l^2/4a} e^{-ax^2-(p-l)x} x^{q-l}.$$

Here, if $l \geq 1$, then $(2a)^l x^{-l}$ can be replaced by $\Gamma(l)^{-1}(2a)^{-1}x^{-1}$. Moreover, if $2^{-l}e^{l^2/4a}$ is replaced by 2^{-2l} , then the lower bound follows.

Proof. The case of $l = 0$ is obvious, so we may suppose that $l \geq 1$. Since $2\text{sh}x \leq e^x$, $s + x \leq (1 + s)(1 + x) \leq 2x(1 + s)$ for $x \geq 1, s \geq 0$, and $e^{-px}(1 + s)^q \leq c$, it follows from (18) that

$$\begin{aligned} \Gamma(l)W_l^1(e^{-ax^2-px}x^q) &= \int_x^\infty e^{-as^2-ps}s^q(\text{ch}s - \text{ch}x)^{l-1}\text{sh}sd s \\ &= e^{-ax^2-px} \int_0^\infty e^{-as^2-ps-2axs}(x + s)^q \left(2\text{sh}(s/2 + x)\text{sh}(s/2)\right)^{l-1} \text{sh}(s + x)ds \\ &\leq ce^{-ax^2-(p-l)x}x^q \int_0^\infty e^{-as^2+(l/2+1/2)s-2axs}(\text{sh}(s/2))^{l-1}ds \end{aligned} \tag{22}$$

$$\begin{aligned}
&\leq c2^{-l}e^{-ax^2-(p-l)x}x^q \int_0^\infty e^{-as^2+ls-2axs}ds \\
&= c2^{-l}e^{l^2/4a}e^{-ax^2-(p-l)x}x^q(2ax)^{-1},
\end{aligned}$$

where we used the fact that $-as^2 + ls = -a(s - l/2a)^2 + l^2/4a$. Since $\text{sh}x \leq xe^x$, the integral in (22) is also estimated as

$$\leq c2^{-l}e^{l^2/4a}c \int_0^\infty e^{-2axs}s^{l-1}ds = c2^{-l}ce^{l^2/4a}\Gamma(l)(2ax)^{-l}.$$

Therefore, we can deduce the first estimate.

We note that $\text{sh}x \geq xe^x/2$ for $0 \leq x \leq 1/2$. Since $0 \leq 1/2ax \leq 1/2$ and $s + x \geq x$ for $s, x \geq 0$, it follows that

$$\begin{aligned}
\Gamma(l)W_l^1(e^{-ax^2-px}x^q) &\geq c2^{-2l}e^{-ax^2-(p-l)x}x^q \int_0^{1/2bx} e^{-as^2-(p-l)s-2axs}s^{l-1}ds \\
&\geq c2^{-2l}e^{-ax^2-(p-l)x}(2ax)^{-l} \int_0^1 e^{-s}s^{l-1}ds.
\end{aligned}$$

Since $\Gamma(l)^{-1} \int_0^1 e^{-s}s^{l-1}ds$ is bounded below, the lower estimate follows. \blacksquare

Lemma 3.3. *Let $p, q \geq 0$ and suppose $q = 0$ if $p = 0$. Then there exist a positive constants c such that for all $l, n = 0, 1, 2, \dots$, and $x \geq \max(1, 1/a)$,*

$$\begin{aligned}
&|W_{-1/2}^2((\text{ch}x)^{n+l}W_l^1(e^{-ax^2-px}x^q))| \\
&\leq c2^n(2a)^{-l}e^{l^2/4a}e^{-ax^2-(n+1+p)x}x^{q-l}((n+l)x^{-1/2} + x^{1/2}).
\end{aligned}$$

Here, if $l \geq 1$, then $(2a)^{-l}x^{-l}$ can be replaced by $\Gamma(l)^{-1}(2a)^{-1}x^{-1}$. Moreover, if $2^n e^{l^2/4a}$ is replaced by 2^{n-l} , then the lower bound follows.

Proof. Since $W_{-1/2}^2 = W_{1/2}^2 \circ W_{-1}^2$, it follows that

$$\begin{aligned}
&W_{-1/2}^2 \circ ((\text{ch}x)^{-(n+l)}W_l^1) \\
&= \frac{1}{4}W_{1/2}^2 \circ (-(n+l)(\text{ch}x)^{-(n+l+2)}W_l^1 + (\text{ch}x)^{-(n+l+1)}W_{l-1}^1). \quad (23)
\end{aligned}$$

Therefore, we need to estimate

$$W_{1/2}^2((\text{ch}x)^{-(n+l+2)}W_l^1(e^{-ax^2-px}x^q)), \quad l = -1, 0, 1, 2, \dots$$

Substituting the estimate obtained in Lemma 3.2, we see that for $l \geq 0$,

$$\begin{aligned}
& W_{1/2}^2((\operatorname{ch}x)^{-(n+l+2)} W_l^1(e^{-ax^2-px} x^q)) \\
& \leq cc_0 \int_x^\infty e^{-as^2-(n+2+p)s} s^{q-l} (\operatorname{ch}2s - \operatorname{ch}2x)^{-1/2} 2\operatorname{sh}2s ds \\
& \leq cc_0 e^{-ax^2-(n+p)x} \int_0^\infty e^{-as^2-(n+p+2ax)s} (s+x)^{q-l} (\operatorname{ch}2(s+x) - \operatorname{ch}2x)^{-1/2} ds,
\end{aligned}$$

where $c_0 = c2^n(2a)^l e^{l^2/4a}$. We note that, if $l \geq q$, then $(s+x)^{q-l} \leq x^{q-l}$, and if $l \leq q$, then $(s+x)^{q-l} \leq (2x(1+s))^{q-l}$ and $e^{-ps}(1+s)^{q-l} \leq e^{-ps}(1+s)^q \leq c$. Therefore, applying [3, (3.1)] to $(\operatorname{ch}2(s+x) - \operatorname{ch}2x)^{-1/2}$, we have

$$\begin{aligned}
& \leq cc_0 e^{-ax^2-(n+1+p)x} x^{q-l} \int_0^\infty e^{-ax^2-(n+1+2ax)s} \left(\frac{1+2(x+s)}{s(x+s)} \right)^{1/2} ds \\
& \leq cc_0 e^{-ax^2-(n+1+p)x} x^{q-l} \left(\frac{1}{x} + 1 \right)^{1/2} \int_0^\infty e^{-2axs} \frac{1}{\sqrt{s}} ds \\
& \leq cc_0 e^{-ax^2-(n+1+p)x} x^{q-l-1/2}.
\end{aligned} \tag{24}$$

When $l = -1$, we note that $|W_{-1}^1(e^{-ax^2-px} x^q)| \leq c(1+x)^{q+1} e^{-ax^2-px} (\operatorname{sh}x)^{-1}$. Hence, (24) is replaced by

$$\begin{aligned}
& \leq c2^n e^{-ax^2-(n+p)x} \int_0^\infty e^{-as^2-(n+p+2ax)s} (s+x)^{q+1} (\operatorname{ch}(s+x) - \operatorname{ch}x)^{-1/2} ds \\
& \leq c2^n e^{-ax^2-(n+1+p)x} x^q \int_0^\infty e^{-2axs} \frac{1}{\sqrt{s}} ((x+s)(1+2(x+s)))^{1/2} ds.
\end{aligned}$$

The last integral is dominated by $x^{1/2}$. Substituting these estimates to (23), we can deduce the desired upper estimate. Other desired estimates follow from Lemma 3.2 and the arguments used in [3, Theorem 3.1]. ■

When $p = q = 0$ and $l = 0$, we have the following refinement.

Lemma 3.4. *For all $n = 0, 1, 2, \dots$,*

$$W_{-1/2}^2((\operatorname{ch}x)^{-n} e^{-ax^2}) = c_0 (\operatorname{ch}x)^{-n} h_t^{0,0}(x) + O\left(2^n n e^{-ax^2-(n+1)x} x^{-1/2}\right)^{1)},$$

¹ $f = O(g)$ means that $|f(x)/g(x)| \leq C$ when $x \rightarrow \infty$. If C depends on some parameters γ , then we use the symbol $f = O_{(\gamma)}(g)$.

where $c_0 = 2^2 \sqrt{t} e^t$.

Proof. Since $e^{-ax^2} = c_0 W_{1/2}^2(h_t^{0,0})$ (see (19)), the case of $n = 0$ is obvious and moreover, for $n \geq 1$, it follows that

$$\begin{aligned} & c_0^{-1} W_{-1/2}^2((\operatorname{ch}x)^{-n} e^{-ax^2}) \\ &= - \int_x^\infty \frac{d}{d\operatorname{ch}2s} \left(((\operatorname{ch}x)^{-n} - (\operatorname{ch}s)^{-n}) W_{1/2}^2(h_t^{0,0})(s) \right) (\operatorname{ch}2s - \operatorname{ch}2x)^{-1/2} d\operatorname{ch}2s \\ & \quad + (\operatorname{ch}x)^{-n} h_t^{0,0}(x) \\ &= - \int_x^\infty ((\operatorname{ch}x)^{-n} - (\operatorname{ch}s)^{-n}) e^{-as^2} (\operatorname{ch}2s - \operatorname{ch}2x)^{-3/2} 2\operatorname{sh}2s ds + (\operatorname{ch}x)^{-n} h_t^{0,0}(x). \end{aligned}$$

We note that for $0 \leq x \leq s$,

$$(\operatorname{ch}x)^{-n} - (\operatorname{ch}s)^{-n} \leq \frac{n(\operatorname{ch}s - \operatorname{ch}x)}{\operatorname{ch}x(\operatorname{ch}x)^n}.$$

Therefore, the similar argument in the proof of Lemma 3.3 (or [3, Theorem 3.1]) yields that the last integral is dominated by $2^n n e^{-ax^2 - (n+1)x} x^{-1/2}$. \blacksquare

Now we shall obtain the asymptotic behavior of $h_t^{m,n}(x)$ as $x \rightarrow \infty$. It follows from (19), (20) and (21) that

$$h_t^{m,n} = c_0^{-1} 2^{-3m} e^{-t((m+n+1)^2 - 1)} \sum_{l=0}^{n-1} c_l^n W_{-1/2}^2((\operatorname{ch}x)^{-(n+l)} W_{l-m}^1(e^{-ax^2})). \quad (25)$$

Since

$$W_{-m}^1(e^{-ax^2}) \sim_{(m)} (2ax)^m e^{-ax^2 - mx^2},$$

Lemmas 3.4 implies that, when $x \rightarrow \infty$, the term corresponding to $l = 0$ contributes to the asymptotic behavior of $h_t^{m,n}(x)$:

Proposition 3.5. *We fix $t > 0$ and $m, n = 0, 1, 2, \dots$. Then for $x, ax \geq 1$*

$$h_t^{m,n}(x) \sim_{(t,m,n)} e^{-\rho^2 t} e^{-\rho x} e^{-x^2/4t} (1+x)^{m+1/2}. \quad (26)$$

² $f \sim g$ means that there exist positive constants c_1, c_2 such that $c_1 f(x) \leq g(x) \leq c_2 f(x)$. If c_1, c_2 depend on some parameters γ , then we use the symbol $f \sim_{(\gamma)} g$.

Next we shall consider the behavior of $(\text{ch}x)^n h_t^{0,n}(x)$. Let $\epsilon > 0$ and we suppose that

$$x \geq \frac{1}{2} \log \left(\frac{1}{2^\epsilon - 1} \right) = x(\epsilon),$$

that is, $\text{ch}x \leq 2^{-1+\epsilon}e^x$ if $x \geq x(\epsilon)$ and $x \rightarrow \infty$ if $\epsilon \rightarrow 0$. Then it follows from (25), Lemmas 3.3 and 3.4 that

$$\begin{aligned} & (\text{ch}x)^n h_t^{0,n}(x) \\ = & 2^{n\epsilon} e^{-t((n+1)^2-1)} \left(c_0^n h_t^{0,0}(x) + O \left(\sum_{l=1}^{n-1} |c_l^n| e^{l^2/4a} \Gamma(l)^{-1} e^{-ax^2-x} n x^{-1/2} \right) \right). \end{aligned}$$

We note that $e^{l^2/4a} \leq e^{(n-1)^2/4a}$ and

$$\sum_{l=1}^{n-1} |c_l^n| \Gamma(l)^{-1} \leq \sum_{l=1}^{n-1} \frac{(n-1)!}{2^{n+2}(n-l-1)! \Gamma(l)} = 2^{-4}(n-1).$$

Hence, it follows that

$$\begin{aligned} & (\text{ch}x)^n h_t^{0,n}(x) \\ = & 2^{n\epsilon} e^{-t((n+1)^2-1)} \left(c_0^n h_t^{0,0}(x) + O \left(e^{(n-1)^2/4a} e^{-ax^2-x} n^2 x^{-1/2} \right) \right) \\ = & 2^{n\epsilon} 2^{-2n} e^{-t((n+1)^2-1)} h_t^{0,0}(x) \left(1 + O \left(n^2 2^{2n} e^{(n-1)^2/4a} x^{-1} \right) \right). \end{aligned} \quad (27)$$

Letting $x \rightarrow \infty$, we have the following.

Proposition 3.6. *We fix $t > 0$ and $n = 0, 1, 2, \dots$. Then,*

$$\lim_{x \rightarrow \infty} \frac{(\text{ch}x)^n h_t^{0,n}(x)}{h_t^{0,0}(x)} = 2^{-2n} e^{-t((n+1)^2-1)}. \quad (28)$$

4. Hardy's theorem. We keep the notations in the previous section. We recall the proof of Hardy's theorem for the Jacobi transform of (α, β) , $\alpha \geq \beta \geq -1/2$ (see [1] and [3]). Then it is easy to see that Hardy's theorem for the Jacobi transform of (m, n) , $m, n = 0, 1, 2, \dots$, also holds:

Theorem 4.1. *Let $m, n = 0, 1, 2, \dots$, and let f be a measurable function on \mathbb{R}_+ satisfying*

- (i) $g(x) = O_{(m,n)}(h_{1/4a}^{m,n}(x))$,
- (ii) $\hat{g}_{m,n}(\lambda) = O_{(m,n)}(e^{-b\lambda^2})$.

If $ab > 1/4$, then $g = 0$, and if $ab = 1/4$, then g is a constant multiple of $h_b^{m,n}(x)$.

Applying this theorem, we have Hardy's theorem on $SU(1, 1)$ for a fixed K -type (see the example in [7]).

Theorem 4.2. *Let f be a measurable function on G of K -type (n, m) , $n, m = 0, 1, 2, \dots$, satisfying*

$$(i) \quad f(x) = O_{(n,m)}\left(h_{1/4a}^{|n-m|, n+m}(x)(\operatorname{sh}x)^{|n-m|}(\operatorname{ch}x)^{n+m}\right),$$

$$(ii) \quad \tilde{f}_{n,m}(\lambda) = O_{(n,m)}\left(Q_{n,m}(\lambda)e^{-b\lambda^2}\right).$$

If $ab > 1/4$, then $f = 0$, and if $ab = 1/4$, then f is a constant multiple of $h_b^{|n-m|, n+m}(x)(\operatorname{sh}x)^{|n-m|}(\operatorname{ch}x)^{n+m}$.

Proof. Let $g(x) = f(x)(\operatorname{sh}x)^{-|n-m|}(\operatorname{ch}x)^{-(n+m)}$. Then

$$g(x) = O_{(n,m)}(h_{1/4a}^{|n-m|, n+m}(x))$$

and

$$\hat{g}_{|n-m|, n+m}(\lambda) = 2^{2(n+m)+2|n-m|}\tilde{f}_{n,m}(\lambda)Q_{n,m}^{-1}(\lambda) = O_{(n,m)}(e^{-b\lambda^2})$$

(see (14)). Then Theorem 4.1 implies that, if $ab > 1/4$, then $g = 0$, and if $ab = 1/4$, then g is a constant multiple of $h_b^{|n-m|, n+m}(x)$ and thus, f is the desired form. ■

Let $L_{0+}^2(G)$ denote the subspace of $L^2(G)$ consisting of all f of the form

$$f = \sum_{n,m=0}^{\infty} f_{n,m},$$

where $f_{n,m}$ is of K -type (n, m) .

Corollary 4.3. *Let f be in $L_{0+}^2(G)$ and satisfy for all $n, m = 0, 1, 2, \dots$,*

$$(i) \quad f_{n,m}(x) = O_{(n,m)}(h_{1/4a}^{0,0}(x)),$$

$$(ii) \quad \tilde{f}_{n,m}(\lambda) = O_{(n,m)}(e^{-b\lambda^2}).$$

If $ab > 1/4$, then $f = 0$, and if $ab = 1/4$, then f is of the form

$$f(g) = \sum_{n=0}^{\infty} a_n h_b^{0,2n}(x) (\operatorname{ch} x)^{2n} e^{in(\phi+\psi)}, \quad (29)$$

where $g = k_\phi a_x k_\psi$ and $a_n \in \mathbb{C}$.

Proof. Proposition 3.5 implies that

$$h_t^{|n-m|,n+m}(x) (\operatorname{sh} x)^{|m-n|} (\operatorname{ch} x)^{m+n} \sim_{(m,n)} h_t^{0,0}(x) (1+x)^{|m-n|} \quad (30)$$

for $x, ax \geq 1$. Hence $f_{n,m}(x) = O_{(n,m)}(h_{1/4a}^{|n-m|,n+m}(x) (\operatorname{sh} x)^{|n-m|} (\operatorname{ch} x)^{n+m} (1+x)^{-|n-m|})$ and $\tilde{f}_{n,m}(\lambda) = O_{(n,m)}(e^{-b\lambda^2}) = O_{(n,m)}(Q_{n,m}(\lambda) e^{-b\lambda^2})$ (see (13)). Hence Theorem 4.2 implies that, if $ab > 1/4$, then $f_{n,m} = 0$, for all $n, m \in \mathbb{Z}$, and thus $f = 0$. If $ab = 1/4$, then $f_{n,m}$ is a constant multiple of $h_b^{|n-m|,n+m}(x) (\operatorname{sh} x)^{|n-m|} (\operatorname{ch} x)^{n+m}$. Since $f_{n,m}(x) = O_{(n,m)}(h_{1/4a}^{0,0}(x))$, it follows that $|n-m| = 0$ (see (30)). Thereby, f must be of the desired form. \blacksquare

5. Main theorem. We retain the notations and suppose that

$$f(g) = \sum_{n=0}^{\infty} a_n h_b^{0,2n}(x) (\operatorname{ch} x)^{2n} e^{in(\phi+\psi)} \in L^2_{0+}(G).$$

We recall that

$$\tilde{f}_{n,n}(\lambda) = a_n 2^{-4n} e^{-b((2n+1)^2 + \lambda^2)} \quad (31)$$

(see (11) and (14)). Then letting $t = b = 1/4a$ in (16), we obtain the L^2 -norm of f on G as follows.

$$\begin{aligned} \int_G |f(g)|^2 dg &= \sum_{n=0}^{\infty} |a_n|^2 \int_0^{\infty} |h_b^{0,2n}(x) (\operatorname{ch} x)^{2n}|^2 \Delta_{0,0}(x) dx \\ &= \sum_{n=0}^{\infty} |a_n|^2 2^{-8n} e^{-2b(2n+1)^2} \\ &\quad \times \left(\int_0^{\infty} e^{-2b\lambda^2} |C_{0,0}(\lambda)|^{-2} d\lambda + \sum_{k=0}^{n-1} (k+1/2) e^{2b(2k+1)^2} \right). \end{aligned} \quad (32)$$

We define the partial sum f_N , $N = 0, 1, 2, \dots$, of f as

$$f_N(g) = \sum_{n=0}^N a_n h_b^{0,2n}(x) (\operatorname{ch} x)^{2n} e^{in(\phi+\psi)}.$$

Then Proposition 3.6 implies that

$$\begin{aligned} \lim_{N \rightarrow \infty} \lim_{x \rightarrow \infty} h_b^{0,0}(x)^{-1} f_N(k_\phi a_x) &= \sum_{n=0}^{\infty} a_n 2^{-4n} e^{-b((2n+1)^2-1)} e^{in\phi} \\ &= \sum_{n=0}^{\infty} d_n e^{in\phi} = F(\phi), \end{aligned} \quad (33)$$

where $d_n = 2^{-4n} e^{-b((2n+1)^2-1)} a_n$. Obviously, (32) implies that

$$\|F\|_{L^2(\mathbb{T})} = c \|f_P\|_{L^2(G)} \quad \text{and} \quad \sum_{n=0}^{\infty} |d_n|^2 \left(1 + \sum_{k=0}^{n-1} k e^{2b(2k+1)^2} \right) \sim \|f\|_{L^2(G)}^2. \quad (34)$$

Since $\sum_{n=0}^{\infty} |d_n|^2 < \infty$ and $\sum_{n=1}^{\infty} |d_n|^2 (n-1) e^{2b(2n-1)^2} < \infty$, there exists a positive constant C such that $|d_n| (1+n)^{1/2} e^{b(2n-1)^2} \leq C$ for all $n = 0, 1, 2, \dots$. This means that F is real analytic and

$$|a_n| 2^{-4n} (1+n)^{1/2} e^{-b(2n+1)^2} e^{b(2n-1)^2} \leq C$$

for all $n = 0, 1, 2, \dots$. Hence (31) implies

$$\tilde{f}_{n,n}(\lambda) = O((1+n)^{-1/2} e^{-b(2n-1)^2} e^{-b\lambda^2}).$$

We introduce a subspace $A_b^2(\mathbb{T})$ of $H^2(\mathbb{T})$ as follows:

$$\begin{aligned} A_b^2(\mathbb{T}) &= \{F(\phi) = \sum_{n=0}^{\infty} d_n e^{in\phi} \in H^2(\mathbb{T}) ; \\ \|F\|_{A_b^2(\mathbb{T})}^2 &= \sum_{n=0}^{\infty} |d_n|^2 \left(1 + \sum_{k=0}^{n-1} k e^{2b(2k+1)^2} \right) < \infty \}. \end{aligned}$$

For $F(\phi) = \sum_{n=0}^{\infty} d_n e^{in\phi} \in A_b^2(\mathbb{T})$, we define a function f on G as (29) with $a_n = 2^{4n} e^{b((2n+1)^2-1)} d_n$. Then (32) and (34) imply $\|f\|_{L^2(G)} \leq c \|F\|_{A_b^2(\mathbb{T})}^2$.

Clearly, $|f_{n,n}(x)| = |a_n| h_b^{0,2n}(x) (\operatorname{ch} x)^{2n} = O_{(n)}(h_b^{0,0}(x))$ and (31) implies $\tilde{f}_{n,n}(\lambda) = O_{(n)}(e^{-b\lambda^2})$. Moreover, $\lim_{N \rightarrow \infty} \lim_{x \rightarrow \infty} h_b^{0,0}(x)^{-1} f_N(k_\phi a_x) = F(\phi)$.

Finally, we have the following theorem.

Theorem 5.1. *Let $ab = 1/4$. Let f be in $L_{0+}^2(G)$ and satisfy for all $n, m = 0, 1, 2, \dots$,*

- (i) $f_{n,m}(x) = O_{(n,m)}(h_{1/4a}^{0,0}(x))$,
- (ii) $\tilde{f}_{n,m}(\lambda) = O_{(n,m)}(e^{-b\lambda^2})$.

Then, as an L^2 -function on \mathbb{T} ,

$$(iii) \quad \lim_{N \rightarrow \infty} \lim_{x \rightarrow \infty} h_b^{0,0}(x)^{-1} f_N(k_\phi a_x) = F(\phi)$$

exists and $F \in A_b^2(\mathbb{T})$. Here $\|F\|_{L^2(\mathbb{T})} = c \|f_P\|_{L^2(G)}$ and $\|F\|_{A_b^2(\mathbb{T})} \sim \|f\|_{L^2(G)}$. Let $F(\phi) = \sum_{n=0}^{\infty} d_n e^{in\phi}$ denote the Fourier series of F . Then f is uniquely determined as a central function

$$f(g) = \sum_{n=0}^{\infty} d_n 2^{4n} e^{b((2n+1)^2-1)} h_b^{0,2n}(x) (\operatorname{ch} x)^{2n} e^{in(\phi+\psi)},$$

where $g = k_\phi a_x k_\psi$, and each $\tilde{f}_{n,n}(\lambda)$ satisfies

$$\tilde{f}_{n,n}(\lambda) = O((1+n)^{-1/2} e^{-b(2n-1)^2} e^{-b\lambda^2}).$$

Conversely, if $F \in A_b^2(\mathbb{T})$, then there exists a function $f \in L_{0+}^2(G)$ such that f satisfies (i), (ii) and (iii).

Remark 5.2. (1) We note that, if $f \in L_{0+}^2(G)$ is of the form in (29) and F is given by (iii), then $|f(g) - h_b^{0,0}(x)F(\phi)|$, $g = k_\phi a_x k_\psi$, is dominated as

$$\left(\sum_{n=0}^{\infty} |a_n| 2^{n\epsilon} e^{-t((n+1)^2-1)} n^2 e^{(n-1)^2/4a} \right) h_b^{0,0}(x) x^{-1}$$

(see (27)). Therefore, if this sum is finite, then we can replace (iii) by

$$(iii)' \quad \lim_{x \rightarrow \infty} h_b^{0,0}(x)^{-1} f(k_\phi a_x) = F(\phi),$$

and deduce that $f \in L^1(G)$ and $f(x) = O(h_b^{0,0}(x))$.

(2) In Corollary 4.3 we can replace the condition (i) by

$$(i)' \quad f(x) = O(h_{1/4a}^{0,0}(x)),$$

because $(i)'$ implies (i). Also, in Theorem 5.1, it is true if we ignore the last statement of the existence of f for $F \in A_b^2(\mathbb{T})$. As remarked in (1), in order to construct $f \in L_{0+}^2(G)$ from $F \in A_b^2(\mathbb{T})$, which satisfies $(i)'$, (ii) and (iii), it is necessary to control the series in (1).

(3) In Corollary 4.3 and Theorem 5.1, if we replace the condition (i) by

$$(i)'_P \quad (f_P)_{m,n}(x) = O_{(n,m)}(h_{1/4a}^{0,0}(x)),$$

then $a_n = 0$ for $n \neq 0$, that is, f is K -biinvariant. Actually, since $\tilde{f}_{m,n} = (f_P)_{m,n}^\sim$, $(i)'_P$ and (ii) imply that f_P is of the form in (29). Since f_P has no discrete part, (32) implies that a_n must be 0 if $n \neq 0$.

References

- [1] Andersen, N., *Hardy's theorem for the Jacobi transform*, Hiroshima Math. J., Vol. 33, 2003, pp. 229-251.
- [2] Hardy, G. H., *A theorem concerning Fourier transform*, J. London Math. Soc., Vol. 8, 1933, pp. 227-231.
- [3] Kawazoe, T. and Liu, J., *Heat kernel and Hardy's theorem for Jacobi transform*, Chin. Ann. Math., Vol. 24B:3, 2003, pp. 359-366.
- [4] Koornwinder, T.H., *A new proof of a Paley-Wiener type theorem for the Jacobi transform*, Ark. Mat., Vol. 13, 1975, pp. 145-159.
- [5] Koornwinder, T.H., *Jacobi functions and analysis on noncompact semisimple Lie groups*, in Special Functions: Group Theoretical Aspects and Applications, Askey, R. A., et al (eds), D. Reidel Publishing Company, Dordrecht, 1984, pp. 1-85.
- [6] Sally, P., *Analytic Continuation of The Irreducible Unitary Representations of The Universal Covering Group of $SL(2, \mathbb{R})$* , Memoirs of the Amer. Math. Soc., Num. 69, Amer. Math. Soc., Providence, Rhode Island, 1967.

- [7] Sarkar, R. P., *A complete analogue of Hardy's theorem on semisimple Lie groups*, Colloq. Math, Vol. 93, 2002, pp. 27-40.
- [8] Sugiura, M., *Unitary Representations and Harmonic Analysis*, Second Edition, North-Holland, Amsterdam, 1990.
- [9] Thangavelu, S., *An Introduction to the Uncertainty Principle: Hardy's Theorem on Lie Groups*, Progress in Mathematics, Birkhäuser, Boston, 2003.