Real Hardy spaces on real rank 1 semisimple
Lie groups
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Abstract

Let G be a real rank one connected semisimple Lie group with finite
center. We introduce a real Hardy space H'(G//K) on G as the space
consisting of all K-bi-invariant functions f on G whose radial maximal
functions My f are integrable on G. We shall obtain a relation between
H'(G//K) and H'(R), the real Hardy space on the real line R, via
the Abel transform on G and give a characterization of H'(G//K).

1. Introduction. In the study of the classical Hardy spaces on the unit
disk and the upper half plane, real variable characterizations of their bound-
ary values are called the real variable method. In the 1970’s these boundary
values were completely characterized by various maximal functions without
using the complex variable method and their atomic characterizations were
also given at the same time. This was a significant breakthrough in harmonic
analysis. Nowadays, this fruitful theory of real Hardy spaces, which are de-
fined by maximal functions and atoms, has been extended to the spaces of
homogeneous type: A topological space X with measure p and distance d is
of homogeneous type if there exists a constant ¢ > 0 such that for all x € X
and r > 0

p(B(z,2r)) < cpu(B(x, 1)),
where B(xz,r) is the ball defined by {y € X | d(z,y) < r} and p(B(z,r)) the
volume of the ball (cf. [2, §1]).

When the space X is not of homogeneous type, little work on real Hardy
spaces on X has been done. In this paper, looking at the example of a
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semisimple Lie group G as a space of non-homogeneous type, we shall con-
sider real Hardy spaces on G. Actually, when X = G, p(B(z,r)) has an
exponential growth order as r goes to infinity and hence G is not of homo-
geneous type. We shall introduce a real Hardy space on GG by using a radial
maximal function on G. Our goal is to give an atomic characterization of
the space and to obtain a relation with the real Hardy space H!(R) on R.
We shall overview some results obtained in the previous papers [7], [8], [9]
and state our main theorem. Let GG be a real rank one connected semisimple
Lie group with finite center and G = KAN = KCL(A")K respectively
an Iwasawa and the Cartan decompositions of G. Let dg = dkdadn =
A(a)dkdadk’ denote the corresponding decompositions of a Haar measure
dg on G. In this paper we shall treat only K-bi-invariant functions on G.
Since A is identified with R as A = {a,;2 € R}, all K-bi-invariant func-
tions can be identified with even functions on R. We also denote A(a,) by
A(z) for z > 0 and extend it as an even function on R. Then the one di-
mensional space R with normal distance and weighted measure A(x)dx is
not of homogeneous type, because A(x) ~ e*?l as |2| — oo, where p is a
positive constant determined by a group structure (see (??), (??), (??)). Let
LP(G//K) denote the space of all K-bi-invariant functions on G' with finite

I[P-norm:
1= ([ 1P A v 1)

and L .(G//K) the space of all locally integrable, K-bi-invariant functions
on G.

We shall introduce a real Hardy space on G by using a radial maximal
function. As in the Euclidean case, to define a radial maximal function we
need to define a dilation ¢;, t > 0, of a function ¢ on GG. Let ¢ be a positive

compactly supported C'*°, K-bi-invariant function on G such that

/¢(9)d9:/ d(x)A(x)dx = 1.
G 0
We define the dilation ¢, of ¢ as

1 1 x T
L ()e(t)
Clearly, ¢; has the same L'-norm as ¢: ||¢||1 = ||¢[|; and, for 1 < p < oo, it
gives an approximate identity in LP(G//K) (see [3, Lemma 16]). Since this

dilation has the same properties as in the Euclidean case, it is quite natural
to introduce a radial maximal function Myf on G as

(Myf)(9) = (f*¢)(9)l (g€ @)

sup |
0<t<oo



As shown in [7, Theorem 3.4], this maximal operator M, satisfies the so-
called maximal theorem: A/, is bounded on LP(G//K) (1 < p < o0) and
satisfies the weak type L' estimate. Now we define the real Hardy space
H'(G//K) on G analogously as in the real Hardy space H'(R) on R:

H'(G//K) ={f € Lioo(G//K) ; Myf € L'(G//K)}
and the norm is given by

1F L (c) = ([ Mo f]1-

The aim of this paper is to characterize H'(G//K).
For a compactly supported C'*°, K-bi-invariant function f on G, we shall
define the Abel transform F}, s € R, of [ as

Fi(z) = e”(H's)’”/ f(agn)dn.
N

This integral over NNV is explicitly given by a composition of generalized Weyl
type fractional integrals (see [11, Corollary 3.3] and (?7)). Especially, we
put

W+(f):Ff1

and denote by W_ the inverse operator of W, which is given by a com-
position of Weyl type fractional derivatives (see (??), (??)). Let f denote
the spherical Fourier transform of f on G and F~ the Euclidean Fourier
transform of F on R. Both f and (F7)~ are regarded as functions on the
dual space F of the Lie algebra of A, which is identified with R. Then they
are extended to holomorphic functions on F., the complexification of F, of
exponential type and

F+is) = (F)"(N), A€F,

(cf. [11, (3.17)]). Let C()\) denote Harish-Chandra’s C-function (see (77))
and M¢, the Euclidean Fourier multiplier corresponding to C,(A) = C'(A+ip):

Mc, (F)~(A) = C(A +ip) F~(N).
We here define
W_(H'(R)) = {f € Li,.(G//K) ; W,.(f) € H'(R)}

and also W_(Mc, (H'(R))) by replacing the condition that W, (f) € H'(R)
in the above definition with Mgpl oWi(f) € H'(R).

3



Theorem A. Let notations be as above.
W_(Mc,(H'(R))) € H'(G//K) c W_(H'(R)).

This is one of the main results in [8]. However, the proof was a little bit

complicated, because to obtain the first inclusion we used the Harish-Chandra
expansion of the zonal spherical function and also the Gangolli expansion (see
(7?), (??)). Thereby, to sum up the estimates of each expanded terms we
required a sharp estimate and a deep theory of H' Fourier multipliers on R.
In this paper we shall give a simple proof based on fractional calculus on G.
Actually, Theorem A follows from the next Theorem B: We define a maximal
operator Mt and a fractional operator W} on R by Definition 3.2 and (??)
respectively, and n € N and the set D by (??) and (?7?) respectively.

Theorem B. There exist 0 < ¢; < ¢y such that for all f € H'(G//K)

cllflme < DD IME o WE, o (F)(@)(the)™ || pyry < el £llma),
m=0¢eD
where F' = W, (f).

We next introduce atomic Hardy spaces on GG. In the Euclidean space the
atomic Hardy space HJ, ,(R) coincides with H'(R) (cf. [6, Theorem 3.30],
(15, §2 in Chap.3]). However, it may not be true in our setting, because
the Lebesgue measure dz is replaced by the weighted measure A(x)dz. We
denote the interval [xy — 7,z + 7] by R(xg, ) and set the volume by

Rz, )| = / " A(w)dz.

o—"r

We say that a K-bi-invariant function a on G is a (1, 00, 0)-atom on G pro-
vided that there exist xy > 0 and r > 0 such that

(1) supp(a) C R(xo,r),
(i)) lalloo < [R(wo,7)|7,

(447) / a(x)A(z)dz = 0.
0
Here a is identified with a function on Ry. Then H ((G//K) is defined by

H),o(G//K)={f=>_ X\a;; a;is (1,00,0)-atom on G and 3, |A;| < oo}



and the norm is given by
1f Il iy = inf D A,

where the infimum is taken over all such representations f = ). A\ja;. More-
over, we define H;;fo(G//K) (e > 0) and H;B(G//K) by replacing (i7) and
(i) of the above definition of (1, 00, 0)-atom a on G, respectively, with

(i)e Nallo < |R(zo,m)| ™' (1 +1)7°

and -
(i) , / a()A()dz = 0 if r < 1.
0

Clearly, for € > 0,
HW(G/K) C Hyo(G//K) € Hyy(G//K).

We define a truncated maximal operator ]\/[qlf’C on G as

(Mg f)(g) = sup |(f*d)(9)] (9 €0G).

0<t<1

In [9] we essentially proved that My° is bounded from H;;B(G//K) to
LY(G//K). As for My, we shall prove that M, is bounded from H.J,(G//K)
N W_(H'(R)) to L'(G//K). This means that H%(G//K) n W_(H'(R))
C H'(G//K). Finally, as a refinement, we have the following main theorem.

Theorem C. Let notations be as above. Then
HY(G//K) = H5(G//K)nW_(H'(R)).

Furthermore, H;’f,U(G//K) NW_(H'R)), € > 0, is dense in W_(H'(R))
and especially, H'(G//K) is dense in W_(H'(R)).

This paper is organized as follows. We recall some basic notations in
§2. Then we shall define a radial maximal function Myf on G in §3 and
obtain a key formula which reduces M, f to a Euclidean maximal function
MG (W, (f)) on R (see Proposition 3.3). Theorem B follows from this formula
and fractional calculus on G and R in §4 (see Theorem 4.6). As an easy con-
sequence of Theorem B, we can obtain a simple proof of Theorem A (see Re-
mark 4.7), and moreover, a norm-equivalence between || f[| 1 (¢ and || M f||1
+ [[Wo(f)|lmr(r) (see Theorem 4.9). In §5 we introduce atomic Hardy spaces
on G. Then the inclusion H;C’;B(G//K) NW_(H'(R)) c H'(G//K) follows
from the estimates obtained in §4 and [9] (see Proposition 5.9). Next we
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shall consider a (1, 0o, +)-atomic decomposition of functions f in H'(G//K)
(see Proposition 6.2). Then, combining with Theorem A, we can deduce
our main Theorem C (see Theorem 6.5 and Theorem 6.6). In §7 we shall
consider (H', L')-boundedness of other operators on G; singular integrals,
modified heat and the Poisson maximal operators (see Definition 7.2) and
the Riesz transform on G (see Definition 7.8). We summarize some calcula-
tions and make a comment on the dual space of W_(H'(R)) in §8. In §8.A,
we shall obtain a sharp estimate of I';;,(A), meromorphic functions appearing
in the Gangolli expansion of a spherical function (see (??7)), and in §8.B,
we shall obtain a norm-equivalence among some Euclidean maximal opera-
tors. In §8.C, we shall introduce a dual space of W_(H'(R)) as a pull-back
of BMO(R) via the complex Fourier-Jacobi transform on G (see (?7) and
Definition 8.7). In this paper we introduce many real Hardy spaces on G as
subspaces of L'(G//K). We refer the reader to the figure in §8.D for the
understanding of main relationship among them.

2. Notations. Let G be a real rank one connected semisimple Lie
group with finite center and G = K AN an Iwasawa decomposition of G.
Let a be the Lie algebra of A and F = a* the dual space of a. Let v be the
positive simple root of (G, A) determined by N and H the unique element
in a satisfying v(H) = 1. Let m; and my denote the multiplicities of v and
27 respectively. We put

m1+m2—1 m2—1

=T Py

We parameterize each element in A, a, and F as a, = exp(zH), zH, and
zy (x € R) respectively. In what follows we often identify these spaces
A,a,F with R and their complexifications with C. We put A, = {a,;x €
R.}. Then, according to the Cartan decomposition G = KCL(A,)K of G,
every K-bi-invariant functions f on GG are determined by their restrictions to
CL(A;) and hence, they are identified with even functions on R. We denote
them by the same letter, that is, if ¢ € Ka,) K with o(g) € Ry, then

f(9) = flaatg) = fo(g)) = f(=0o(9))- (3)
Let dg denote the Haar measure on G. We denote by L. .(G//K) and

loc
LP(G//K), respectively, the spaces of locally integrable and p-th power in-
tegrable K-bi-invariant functions on G. Let C°(G//K) denote the space
of compactly supported C'°°, K-bi-invariant functions on G. Then for f €

L'(G//K) the Cartan decomposition of G yields that

/Gf(g)dgz/ooof(x)A(x)dx,
6

p=a+3+1. (2)



where
A(z) = ¢(shx)?*™ (sh2x)? ) 2 > 0. (4)
We note that the order of A(x) is given by

g2t ifo<zr <1
e2re if 1 <z < oo,

A~ { 5)
where the symbol “ ~ 7 means that the ratio of the left side and the right
side is bounded uniformly below and above by positive constants. We extend
A(x) as an even function on R. By using this weight function A(z) the LP-
norm || f||, of f on G can be rewritten as in (??). We denote the Euclidean
LP-norm on R by || - || z»(w)-

Let 2 denote the Laplace-Beltrami operator on G and ¢, (A € F) the
normalized zonal spherical function on G, that is, the K-bi-invariant eigen-
function of ) satisfying

Qor=—(A+p)px and  5(0) = 1.

By restricting ¢, to A, ¢x(z), © € R, is a solution of

—2 + ((2a + 1)cthz + (26 + 1)tha) %, (6)

dx?
which satisfies ¢,(0) = 1 and ¢} (0) = 0. Hence, if « ¢ —IN, it is explicitly
given by the Jacobi function of the first kind with order («, 3):
pH+iA p—i\

2 72 7

ox(xz) =F < a4+ 1; —sh2x> .

Clearly, ¢,(z) is even with respect to A,z and it is uniformly bounded on
x € R if X is in the tube domain

Fp) = {A € F; [SA[ < p}

(cf. [5, Lemma 11]). For A\ ¢ —iN, let ®(\, x) denote another solution, which
is given by the Jacobi function of the second kind with order («, 3):

p— 20 —1i\ p—il
2 T2

D\, x) = (e® — e O PF ( 1 — i) —sh_2x> . (7

Then for A ¢ Z, ¢,(z) has the so-called Harish-Chandra expansion:
pa(z) = e 7 (B(X, 2)C(N)e™ + B(—A, 2)C(=A)e ™), (8)
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where

C(\) = [(a+1) 2T (%) r (1 J;M)

. 9
2\/m r AN+ p r IAN+p—203 )
2 2
We denote the Gangolli expansion of ®(\, z), x > 0, as
O\, x) = Z L (N)e™2me, (10)

m=0

For some basic properties of py(z), ®(\, z), and the recursive definition of
[ (A) we refer to [3, §2, §3] and [17, 9.1.4, 9.1.5].

For f € L'(G//K) the spherical Fourier transform f(\), A € F, of f is
defined by

F) = / F(9)er(9)ds. (11)

Then f () is even and continuously extended on F(p), which is holomorphic
in the interior and

SO < Ifll, A e Flp).

For f € O°(G//K) the Paley-Wiener theorem (cf. [3, Theorem 4]) implies
that f(A) is holomorphic on F. of exponential type. Furthermore, it satisfies
the inversion formula

fa) = [ Feala)icm) 2y
and the Plancherel formula
| ir@paws = [T iFnrew
0 0

Therefore, the spherical Fourier transform f — f of C>°(G//K) is uniquely
extended to an isometry between L*(G//K) = L*(Ry, A(z)dz) and L*(R.y,
|C(A)|72d) (cf. [3, Proposition 3], [17, Theorem 9.2.2.13]).

For f € C°(G//K) we define the Abel transform F}, s € R, of f as

Fi(x) = e”(Hs)m/ f(azn)dn. (12)



Then the Euclidean Fourier transform (F7)~(A) is holomorphic on F. of ex-
ponential type, because F}(f) € C2°(R), and coincides with the spherical
Fourier transform:

FO +isp) = (F5)~(\), XeF. (13)

(cf. [11, §3]). Especially, F} is even on R. The integral over N in (??) can
be explicitly rewritten by using a generalized Weyl type fractional integral
operator W¢: For o > 0 and p € C, we define W7(f)(y), y > 0, as

W0 = for i | s (o = choy)*d(chos), (1)

where n =0if Ry >0and - n < Ru< —n+1,n=0,12---,if Ru <0
(see [11, (3.11)]). Koornwinder [11, Corollary 3.3] obtains that for x > 0,

F})(x) = W,_ ﬁoWﬁ+1/2(f)( z)
= / f(s)A(z, s)ds, (15)
where A(z, s) is given by
1 1 1 chs — chx
B—1/2 _ a—1/2p (L 4 L.
(sh2s)(chs) (chs — chx) F (2 + 3, 5 B;a+ St >
— (sh2s) / (ch2s — ch2w) /2 (chw — char)®=5" (shw)duw (16)

(see [11, (2.18), (2.19), (3.5)]). We note that for 0 <y < s, and 0 < z < s,
|A(, 5)| < ceP=2%(sh2s)(ths)?*~! < ce(ths)?®. (17)
In the following, for simplicity, we denote W, (f)(x) = F}(|z]), that is,
Woll)(@) = Wy 0 Wi, o) ([al). o € R (18)
and for a function F on R,
W_(F)(x) = W2 (5,179 0 Wiy (e F), x € R,. (19)

Then W_o W, (f) = fand Wy oW (F)=F. For f € L'(G//K), W.(f)
belongs to L'(R), because (?7) and the integral formula for the Iwasawa
decomposition of G yield that

W (Dl < 171 (20)



(cf. [11, (3.5), (2.20)]). Hence W, (f)~(A), A € F, is well-defined and

fA+ip) = Wo(f)*(), A€F. (21)

For f,g € L'Y(G//K), since f xg € L'(G//K) and (f * ¢)"(\) = f()\)f]()\)
(cf. [3, Theorem 5]), it follows that

Wi(f*g)=W,(f)*Wy(g), (22)

where the symbol “x” in the left and right hand sides denotes the convolution
on G and on R respectively. We denote them by the same symbol. We
say that a function F' on R is W-smooth if W_(F) is well-defined and
continuous. Then, for W -smooth functions F, G on R with compact support
such that e F and e ?*( are even, it follows that

W_(F «G) = W_(F) « W_(G).

Let (Xy, || - l:), ¢ = 1,2, be normed spaces and T : X; — X, a sublinear
operator. We use the symbol ||z{||; ~ [|T(x1)||2 if there exist constants
0 < ¢; < ¢y such that ¢f|z1]|1 < ||T(x1)||2 < |21y for all z; € X;. We
denote by [-] the Gauss symbol and by f = O(g) the Landau symbol. We
use letters ¢, C', ¢1, ¢, - -+ to denote many different constants.

3. Maximal functions and a reduction formula. We shall introduce
a radial maximal function My4f on G and give a reduction formula, which
relates Myf with a maximal function of W, (f) on R. We suppose that ¢
is a positive C'*°, K-bi-invariant function on G such that, after identifying it
with an even function on R, it is supported on [—1, 1],

00 1
| ewnwds =1, [ o@enwis < . (23)
0 0
and furthermore, there exists M € N such that
¢(x) = O(z*M). (24)

For t > 0 we define a dilation ¢; of ¢ as

o) =505 (7) ¢ (3):

As mentioned in §1 this dilation keeps the L'-norm of ¢ and gives an ap-
proximate identity in LP(G//K), 1 < p < co. We here introduce the radial
maximal function My f on G as follows.
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Definition 3.1. For f € L. .(G//K),

(Myf)(g) = sup [(f*d)(g)l, g€G.

0<t<oo

As shown in [7, Theorem 3.4 and Theorem 3.5], M, satisfies the maximal
theorem and || f||, < |[Myf||p, if the both sides exist, for 1 < p < co. Next,
by using W, (¢;), we define a maximal function on R as follows.

Definition 3.2. For F € L .(R),

loc

(MG'F)(x) = sup |(F+W.,(¢))(2)], «€R.

0<t<oo

Since W, (f x &) = Wi(f) * Wi(é) (see (??)) and W, is an integral
operator with a positive kernel (see (??), (?77?)), it follows that

sup [Wo(f) * Wi(o)(z)| = sup [Wi(f*¢)(w)]
0<t<oo 0<t<oo
< (s 1F+al) )

This fact and (??) yield a relation between M, and MJ:
Proposition 3.3. For f € L. (G//K),

loc

(MGW.(f))(@) < Wi (Myf)(z), z€R.

In particular,
IMEWL (Pl ) < el My flls
if the both sides exist.
In what follows we shall prove that the maximal operator M f‘ character-
izes H'(R), that is, F' € H'(R) if and only if MZ*(F) € L'(R) (see Theorem
3.7 below). We first obtain some properties of W, (¢;)~(\) = ¢:(A +ip) (see

(?77?)), which guarantee that W, (¢;) behaves like a dilation on R. Let A be
the same in (??) and N € N.

Lemma 3.4. There exists a constant ¢ such that for all t > 0, A € R,
0<n<Nand 0 <k <M,

‘ <%>nét(A + Zp)‘ <ct"(1+ t)k(l + |t)\|)—2k.

Proof. For simplicity, we denote ¢ = A¢ and vy = ¢, that is

V() = tAl(x)d} (%)
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and moreover, we put for u,7 € N
@y = (LY e . 2
o = () v

We recall that, by identifying a K-bi-invariant function f on G with an
even function on R, the Laplace-Beltrami operator  acts on f as Q(f) =
-1 (Af,)l -D. f/ + f//, where

D(r) = A'(x)A(x)_l = my(cthx) 4+ 2my(cth2x)
(see (??), (??)). Then it is easy to see that for each k,

u=0

where Q¥ (z) is a polynomial with degree < k of (d/dz)* 'D(z) -2t (1 < ¢ <
k). We note that

d\" . 1+ x| ife=1
‘(%) Diz) -2 50{1 if (> 1.

Since ¢ is supported on [—1, 1], we may suppose that |x| < ¢. Thereby, we
can deduce that |QF(z)| < ¢(1 +¢)*. Then the argument used in the proof
of [8, Lemma 6.5] yields the desired estimate. m

Lemma 3.5. There exists a constant ¢ such that for all t > 1, A € R,
and 0 <n <N,

‘(;ﬁ\) d)t()\+zp)‘ < et™(1+ |tA]|)~BMFatl/2)

Proof. Substituting the Harish-Chandra and Gangolli expansions of ¢
(see (??7) and (?7?) respectively) with (??), we can expand ¢;(\) as

Qgt(A):%/OOOA< >¢>< e dﬂC—/A z)px(tr)dz

/0 1 A(z)p(z)e ™ (BN, tz)C (M) + d(=\, tz)C(=N)e ) dx
= I(A) +1(=X),
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where

1

I\ = A(z)p(x)e "D\, tx)C(N) e dx
= S L) /0 A(2)(x)ePme2mtz M g
= > TuNCNIn(N). (25)

In order to obtain the desired estimate of ¢,(\ +ip), we first estimate I, (),
& = £(A+1ip), in (??) and combine it with estimates for I',,,(§) and C(£).
Then we sum up these estimates of I, (€)C/(&) 1, (€) with respect to m.

As for I,,,(A+1ip), since (pA)(z) = O(x?MF22FL) (see (?7), (?7)), integra-
tion by parts yields that for 0 <[ < 2M,

@00 (45) 1+ i)
= ) [ A @ e
= @ [ oneeneon (L) o,
= @0 [ (L) (@A)t e

and it is dominated by

l

Y (o))" [

p=0 0

() (62

e~ 2mEo)te gy (26)

Let 0 < § < 1 and set B5(p) = (I —p) +2a+1+0 (0 < p <) We
take a constant C such that |z|%®e < C for allz € Ry and 0 < p < I
Then, since 2(m + p) > 1 for all m, (d/dx)P((pA)(x)z") - e"Hm+Ptw in (77)
is estimated for 0 < z < 1 as

EIRCNES

Cc|x|2M+2a+1+nfp7ﬂ5(p)((m + p)t)*ﬁs(P)
cClz| ™ ((m + p)t)~H),

- C|2(m + p)ta| @)

IA A
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Therefore, the integral over [0, 1] is finite and (??) is dominated by ¢"~(2a+1+9)
(m + p)~(22+1+9)  Hence, we have

d n
‘(ﬁ) Im()\+ip)‘ < Ctn—(2a+1+6)(m_|_p)—(2a+1+6)(1 + |t)\|)_2M

As for I,,(—(A+ip)), we can repeat the exactly same process after replac-
ing e=2(mto)tr by e=2mtz - However, when m = 0, we have no exponential term
in (??) and thus, we cannot take 35(p) for Iy(—(\+ip)) as before. In this case
we note that Io(—(\ + ip)) is nothing but the Euclidean Fourier transform
(@A)~ (tA) of (¢pA)(z) and thus, it is rapidly decreasing with respect to [tA].
Hence, we have for arbitrary n' > 0,

d n
— ) I, (+ ]
(45) I+ i)
i 4= (20+140) (m + p)—(2a+1+5)(1+|t)\|)—2M ifm>0

On the other hand, for £ = £(A+ip), I',,(£) and C'(€) satisfy the following
estimates (see Proposition 8.2 in §8 and [3, Theorem 2]): For each n € N

a nf‘m(:i:()\+ip)) < ¢(1 4 m)2+o/2, (28)
() \

4 nC’(;I:()\—i—ip)) < (14 |\|)lart/zn), (29)
() \

Therefore, letting n' = 2M + a + 1/2 and substituting (??), (??) and (?7?)
into (?7), we see that for ¢ > 1

d\" ) n (2M+a+1/2) - (1+6/2)

‘<ﬁ> I(i()\Jrzp))‘ < et™(1+[tA])” mzo (1+m)”
< et™(1 4 |tA]) "M FatL/2)

This completes the proof of the lemma. m

Lemma 3.6. Let notations be as above.

(1) ¢(A+ip) =1 as|tA| =0,
(2) |p(A+ip)| >1/2 if 0 < [tA] < 2.
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1
Proof. (1) We note that ¢, (A\+ip) = / A(x)Patip(tr)A(zr)dr and ¢;, = 1.
0
Hence ¢,(ip) = 1 by (??) and it follows from [3, Lemma 11, Lemma 14] that

bih+ia) =11 = | [ 60)AE) (prvilts) — pi(e)) da
A [ o@a@)| (55) ervantnhos

< 0 /0 b(2)2A () da.

IN

dz, 0< N < A

(2) We note that the last term is dominated by [tA[/4 (see (77)). Therefore,
if 0 < [tA] < 2, then [¢:(A+ip)| = [(pe(A+1p) = 1) +1] > —1/2+1=1/2. m

We here put £(t,\) = ¢;(\ +ip) = W (¢;)~(\) and refer to §8.B. Then
Lemmas 3.4, 3.5, and 3.6 imply that ¢(¢,\) belongs to the class Ay oy for
all N € N (see Definition 8.4) and, furthermore, Lemma 3.6 (2) implies that
((t, \) satisfies the assumption (??) in Theorem 8.6. Since M, = MJ (see
Definitions 3.2 and 8.5), Theorem 8.6 yields the following,.

Theorem 3.7. Let ¢ be as above and suppose that M > 2. Then F €
H*(R) if and only if MJ}F € L'(R):

1F |l ry = |MGF || (w)-

4. Real Hardy spaces on G. Let ¢ be the same as in the previous
section (see (?7),(??)) and My, MGt the corresponding radial maximal oper-
ators on G and R respectively (see Definitions 3.1 and 3.2). In this section
we shall define two real Hardy spaces Hj(G//K) and W_(H'(R)) on G and
give a relation between them. Especially, we shall give a simple proof of
Theorem A based on fractional calculus.

We introduce the real Hardy space Hj(G//K) on G as follows.

Definition 4.1. We define
HY(G//K) = {f € LL(G//K) ; Myf € LNG//K)}

loc
and |1f ) = 1Mo f s
Since || f||l1 < ||Myf||1, it follows that

HYG//K) C LNG//K).

15



Let My, s > 0, denote the Euclidean Fourier multiplier corresponding to
(A +ip)*:

M (F)*(0) = (A+ip) F~ ().

We introduce a pull-back of H'(R) to G via W, (see (??)) and M:
Definition 4.2. For s > 0, we define

W_(M_(H'(R))) = {f € Li.o(G//K) ; My o W,.(f) € H'(R)}

and gie the norm by |[My o Wo.(f)|lnrw). We denote W_(Mo(H'(R))) by
W_(H'(R)).
An easy consequence of Proposition 3.3 and Theorem 3.7 is the following.

Corollary 4.3. Let M > 2. There exists a positive constant ¢ such that
W () lmwy < cllfllaye) for all f € Hy(G//K) and thus,

H,(G//K) c W_(H'(R)).

We shall conversely control the Hj-norm of f by using W, (f). Before
starting the argument we shall obtain some basic properties of the Eucliden
fractional integral operators W and W:‘ on R, which correspond to the
case of « = = —1/2 and 0 = 1 in (?77?) and (??) respectively: For p € C
and y > 0,

(="

R

dxm

F(M + n) (iU - y)ﬂJrn*ldx (30)

and

W,f‘(f)(y)— Tt ) dy / flx y) e, (31)

where n = 0if Ry > 0and —n < Ry < —n+1,n=0,1,2,---, if Ru <
0. Let 0 < p < 1 and let f be an integrable function on R,. Then, by
changing the order of integration and by using integration by parts, we see
that Wt o WR (f) = fif f'(x)z~* is integrable, and W&, o WR(f) = f if
f(x)z#~! is integrable. Moreover, if f, g are integrable functions on R.; such
that f(x)z#~1, ¢’ are integrable and ¢(0) = lim g'(x) =0, then

Lemma 4.4 Let f, f' be integrable on x > 0 and 0 < p < 1.
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(1) Fory <0,

|5 s = R )@+ [ WD) )B (s

T

where B (x,s) is smooth on 0 < x < s and there exists a constant ¢ > 0 such
that

|B,(z,s)] <cx’' forall0 <z <s. (33)

2) For v >0,

/ e s =) #ds = oo (W) + [ 6)C(s)as ).

where C'(x,s) is smooth on 0 < x < s and there exists a constant ¢ > 0 such
that

/ |C(z, s)|dx < ¢ for all s > 0. (34)
0
(3) Let g be a smooth function.

WR(f - g)(x) = WR(f / \D,(, 5)ds,

where Dy(x, s) is smooth on 0 < x < s and there ezxists a constant ¢ > 0 such
that

|Dy(z,8)| < c¢sup |¢g'(t)] forall0 <z <s.
z<t<s

Especially, if g is supported on [0,1] or g is constant on [1,00), then Dy(x, s)
=0forl<x<s.
(4) For v >0,

WE () (e) = oo (W@ + [ 1009 )

where C(x, s) is smooth on 0 < x < s and satisfies (77).
Proof. We note that

/00 f'(s)s7"(s —x)Hds
= [ e P ) (5 - )t

oo

= WE (f)(z)2” - F(s) ((57 = a7)(s — 2)™) ds
cWi(f)(x)anL 00Wf{#(f)(s)B (x,8)ds



where

B,(z,s) = —W:{ (((87 — ") (s — m)‘”)’x[x,oo» (s)

- /s(<,)/t'7—1(t — x)—ﬂ _ M(t’Y _ x’y)(t _ 1‘)_“_1) (S . t)“_ldt.

T

Since y — 1 <0 and (7 —27)/(t —x) < ~yz"~ ! for 0 < z < t, it follows that

1B, (z, 5)| < caﬂl/ (F— 2) (s — £)" 2t ~ 271,

x

(2): We note that

/ f'(s (s —x) *ds

= / f'(s)e” (e7(=2) 1)) (s — ) "ds

— (Wﬁ(f)(x) v [T s ),

where
Clz,s) = (7 = 1)(s — 2) ™) Xia00)(5)-
Therefore,
/s IC(z,s)|dz = c/s| (e —1)(t — 2)™) |at
0 < csgilp (e —1)(t—2)*| < ¢
z<t<s
(3): Since

(f(s)g(s))

it follows that

WE(f - 9)(o)
- / () (s ) ds
= +/L/ f(s N (s —x)"* tds



where
Dy(x,5) = Wi ((g(t) — g(x)) (t = 2) " Xfwoo) (1)) (5)
— c/s <M> (t— 2) (s — t)dt

t—x

< csup |¢'(¢ |/ (t — )" (s — )" dt.
z<t<s

Then the desired result follows.
(4): We put C(z,s) = e™(e™* — e %) (s —z)~%1 in (?7). Since

/ |, s)|da = / e 7" — 1z * lds < / (1= e ")z " 1dz,
0 0 0

C(x, s) satisfies (77). m
We shall deduce the local and global forms of the Weyl type fractional
operator W_ in (??). In what follows, for simplicity, we put

a—0F =n+9, n=|a—pf,

Br1/2 =48, w=[F—1/2 (36)
Furthermore, we denote
n=n+n', =040, sa=a+1/2=n+4 (37)
and
D ={0,6,0",6+0}. (38)

Clearly, from the explicit values of a, 3 (cf. [5, Table 1 in p.265]), we may
suppose that § = 0. However, for the sake of the Fourier-Jacobi analysis (cf.
[4]) we dare not take 6 = 0.

Proposition 4.5. (1) If F is W, -smooth and supported on 0 < x < 1,

then
(W_(F)()]
< CZ <$_23“+m+§WR(m+f)(F)($) + / |WP(m+§)(F)(S)|A:n,§(J;7S)d8> ,
m,& z

where the sum is taken over 0 < m < n and § € D, and A}, o(x,s) =0 and
A, (x,5) satisfies

0< AL e(x,s) <a 2t forall 0 <z <. (39)
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(2) If F is W -smooth, supported on x> 1 and F, F' are integrable, then

[W_(F)(z)|
< cz ((x—25a+m+§WRm+§)(F)(x)+/ IWF(m%)(F)(s)IA?m,g(x,s)ds
m,€ T

w2 [T ()6 () o o)
T U ST U M TO RS IS

where Af;l,o(x, s) =0 and Afn (z,s) >0 for j =2,3,4, and Amg(x, s) satis-
fies (??) and there exists a posztwe constant ¢ such that for j = 3,4,

/0 A‘Z;n’g(a:, s)dx < c for all s > 0. (40)

Proof. We shall consider the case of 0 < 6,0 < 1. Other cases easily
follows from the same argument. In the following we use the same letters
B,(z,s) and C(z,s) to denote different functions satisfying (??) and (??)
respectively.

(1): Let F be differentiable and supported on [0,1]. For o > 0, Lemma
4.4 (1) yields

< dF
o (F - hos — chox)’sh
W2s(F)(z) C/:v T hon (s)(chos — chox) ’shosds

~ /00 F'(s)(s — 2)™(s + 2)"ds

= cx "WR(F / WER(F _s(x, s)ds

and for p € N, Lemma 4.4 (3) gives
WR(zPF)(z) = co PWE(F)(x) + /00 WR(F)(5)Dy»(z,5)ds.
Therefore, combining these equations, we have
Wz PF)(z) ~ o PPOWR(F)(z) +27° / N WR(F)(8)Dyv(z, 5)ds

+/oo s PWER(F)(s)B_s(w, s)ds

+/:° (/oo WR(F)(£)Dy (s, t)dt> B_y(x, 5)ds.
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Since [D,-»(z, 5)| < co 7!, [B_s(r,5)| < cr 01 and

¢
|/ D,»(s,t)B_s(x,s)ds| < ca:_5_1/ sP s ~ g~ PHO-1
for 0 < x < s, it follows that
Ws(xPF)(z) ~ = PO WR(F / WE(F)(s)B_(p15)(x, s)ds. (41)

We here apply W7 (o > 0) to (??). Repeating the above argument, we see
that
W (2= PHOWR F)(z)

= Ccx (p+5+5l)W 5+5/ / WR5+5’ ( )Bx_(p+5+5') (1‘7 S)dS

and
5' (/ WE(F p+6)($a3)d5>
— / WR(F W“5,B p+5)) (x,8)ds
= [ W (P (W By a3}
Since

‘Wéfli (Wf;ny(pM)) (a:, S)‘ < cp~ (PHO) 120"+ _ . —(p++0")—1
for 0 <z < s (see [10, Lemma 3.1, Lemma 3.4]), it follows that
Wy o Wy F)a) ~ a WH,)WR(H,)(F)@
[ W () B s (o 5)ds. (42)
Now let v = —(a— ) = —(n+46) and ' = —(B8+1/2) = —(0' +
(m

d') (see (?7?)). Since W7,(F)(z) = dF/d(choz) ~ F'(x)/z, it follows that
W (F)(z) ~ > e~ @=m) Fm)(2) and thus

W (e P F)(x) ~ > > emr @M FO(2), (43)



W2, (@ PF) (@) ~ > ) e @ FO(2), (44)

m=0 {=0
Here we note that
Wy o We = W7, 0 (W7 o W) o W7, (45)

Then, combining (??), (??) and (??) in this order, we finally obtain that

WS o WS (e " F)(x)

i

~ZZZZGW””W%mmw

m=0m/=0 £=0 ¢'=0

(2 =m) / W15 (F)(8) B2 +8) (2, S)ds)

! ’

m

~ZZZZ@MWW%wwm

m=0m'=0 =0 ¢'=0
—|—/ WE{(£+§)(F)(5)Bf2sa+§+m (ZU, S)dS) . (46)

Since 0 < x < 1, we can replace 2™ and B_ss 154m by 7 and B_os 510
respectively, the desired result follows.

(2) Let F be differentiable and supported on [1,00). We keep the nota-
tions in (1). It follows from Lemma 4.4 (2) that

< dF
’ = hos — chox) sh
Ws(F)(x) C/a: Thon (s)(chos — chox) °shosds

- / P (@) (14 (s — 2)0)ds

= ce <W55(F)(8) + /:o F(s)C(x,s)ds + F(x)) .

Then, by substituting F' with e7$*F, Lemma 4.4 (4) yields that for £ > 0,
WZs(e™5 F)(x)
= el (ng(p)(x) + / F(s)C(x, 5)ds

4 e / " R(8)e S a, 5)ds + F(m))
= e (EH0o)e <W55(F)(x)—|— / N F(s)C(x,s)ds+F(x)>. (47)
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Let ®(z) be an even C* function on R such that 0 < ®(z) <1, ®(z) =1
if |x] <1/2, and ®(z) =0 if || > 1. We put

Wo(e™F) = Wo(e S F)(1 — ®) + W5(e *°F)®. (48)
We apply W7, to each term in (??). We first substitute (??) into (??) and,

to each resultant term we apply Lemma 4.4 (3) and (??) with o, J,  replaced
by o', ¢, & + do:

!

W (e” ERDTWE(F)(1 - @)) ~ e EF07H070 (WR(5+5’)(F )(@)

+ /OO WR(F)(s)C(z, s)ds + WRé(F)(a;)) (1—®)+ Ky (x) (49)
~ e (SR (W%M,)(F)(x)

o [T E @) C s>ds+wR§<F><x>>,

where, if we denote the first term in the right hand side of (??) by I, (z)(1—®),
then Ki(z) is given by K;(z) = / I, (s)Dy_o(x, s)ds. Here, to deduce the

T

¢
last line, we used Lemma 4.4 (3) and the fact that / C(s,t)Dy_o(z,s)ds

satisfies (?7). Similarly, we have

WU; <6—(§+50)x /:o F(s)C(z, s)ds - (1 — q,)> ~ o= (€048 0 )z
X (/oo F(s) (WE,C) (z,s)ds + /;o (/oo F(t)C(s,t)dt> C(z,s)ds
+ /:O F(s)C(x, s)ds> (1—®) + Ky(z) (50)

~ e (Tt (/OO WER,(F)(s)C(x,s)ds + /:) F(s)C(x, s)ds> ,

where, if we denote the first term in the right hand side of (??) by L(z)(1—®),
then K5 () is given by Ky (z) = / I,(8)Dy_¢(x, s)ds. In this case, to deduce

T

the last line, we used Lemma 4.4 (3), (??) and the facts that WRoWR, (C) ~
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¢
C (see [10, Lemma 3.1]) and / C(s,t)C(z, s)ds satisfies (?7). Therefore,

we see that
W (Wo5(e & F)(1 — @)

o~ o (EHOotS o) (WP(5+5,)(F) (z) + WR(F)(x) + W, (F)(z) (51)
+ /oo (WE(F)(s) + WE(F)(s) + WE(F)(s) + F(s)) C(x, s)ds> .

As for W7, (W,(e $*F)®), we use (??) and note that W7,(e *F)® is
supported on [0, 1]. Hence, (?7?) with -, p replaced by 0, + do respectively
yields that

W (W5(e S F)®)

!

. <e +5”(WR(F)( )+/OOF(S)C(x,S)ds+F(a:))d>>

N (m Iy / WR(F)(s) By (, 5)ds

e / F(s) (WR,C) (2, )ds
+/:o </OOF( ) (WE,.C) (s, t)dt> B_s(z,5)ds
TWR(F / WE,(F)(s)B_s(, s)ds)q>

~ z 7 (W?/(F)(x) + WE(F)(z) + / WE,(F)(s)C(x, s)ds)CI)

—|—/oo (WPQ(F) + WPI(F)) (S)B,(;/ (:L‘, S)dS ) (I)7 (53)

where, if we denote the first term in the right hand side of (??) by I3(z)®,
then K3(z) is given by K3(z) = /s I3(s)Dg(x, s)ds. Here, to deduce the
last line, we used Lemma 4.4 (3), wW(SI,‘ o WR,(C) ~ C and the fact that
/5 C(s,t)B_g(x,s)ds

< cx~"~!. Combining (??) and (??), we can finally
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deduce that
W o W(e S F) ()

o o (EHI0H ) ( F(z) + WER(F)(2) + WR,(F)(2) + WE(F)(z)

+ / " (F(s) + WR(F)(s) + WE(F)(s) + WR(F)(5)) Cla, s)ds>
= (Wi‘, (F)(x) + WE(F)(x) + / TR (F)(5)C s)ds) o
+/;O (WR(F) + WE(F)) (s)B_g(, s)ds - .
We substitute this formula to (??) and note that
W (e P"F)(x) ~ e (motrle zn: e ™)

for x > 1. Then desired result follows from the same argument used in the
previous case. ®

Now let f € W_(M_, H'(R)), where s, = a+1/2=mn+4 (see (77)).
Since the Fourier multiplier M__ satisfies the Hormander condition (cf. [16
§5 in Chap.11]), it is bounded on H'(R) (cf. [16, Theorem 4.4 in Chap.14]).
In particular, F = W, (f) belongs to H'(R). We note that

WE (F)~(N) = (iA)"F~()) (54)

(cf [13, (4.39")]) and thus, M;' o WR, 0 < v < s,, is the the Fourier
multiplier corresponding to (iA)?/(A+ip)*~. Since it satisfies the Hormander
condition, M 'oWE® is bounded on H'(R). Hence, each WX (F') also belongs
to H'(R). Therefore, the condition that f € W_ (I\/I_saHl(R)) guarantees
that for 0 < v < s,,

IWE(F)lrmy = [1M5EVE () ll12my < el s (F) | my

Comparing MZH(WE (F)) with M f, we have the following inequalities.
Theorem 4.6 Let ¢ be as in §3 and M > 2. For f € W_(M_,  H'(R))

—Sa

we put F =W, (f). Then there exist c1,co such that for all 0 < v < s,

c|| Mgt o WE (F)(2)(th) |2y < [1fllmye

Z Z M5} 0 WE 6 (F) (@) (tha) ™€ 11 )
§eD
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Especially,

Hf“Hdl)(G) ~ ZZ |M¢ OWRm+§)(F)(x)(thx)m+§||Ll(R)
¢eD

< Z IWE o (Pl

£ebD
< M (F)l )

and thus, W_(M_, H'(R)) C H (G//K).

Proof. We denote 1), = W, (¢;), where 1); is not a dilation of ¢, however, as
shown in the previous section, W, (¢;) has the same properties as a dilation.
Therefore, we use this notation to abbrebiate W, (¢;). Let ®(x) be the same
as in the proof of Proposition 4.5. We decompose f * ¢, as

frode = W (Wi(fxr) =W _(Fxy)
= W_(Fxtp- @)+ W_(F*¢y- (1— D))

(see (??7)). We apply Proposition 4.5 (1) to F x 1, - ®. Then Lemma 4.4 (3)
and the same argument used in the proof of Proposition 4.5 yield that

sup |W_(F %1 - ® ) <c¢ ZZ( m+§M¢ OWRer,g (£) ()

0<t<oo m—=0¢€D
+ / Mf o WE{(erg)(F)(S)A}mg(x, s)dsA(x))
Similarly, applying Proposition 4.5 (2) to F'x ¢ - (1 — ®), we have
sup |[W_(F %y - (1 —®))(x)|A(x)

0<t<oo

S (M EME o W (F))

m=0¢€D

+ / Mf o WP(m+§)(F)(s)Afn,§(x, s)dsA(x)

IN

e / MF o WE, . o(F)(s) A, ¢(, 5)d5> Xio.1(@)

+ Y (M;L oWR o (F)(x)

m=0¢eD

b MR W (7)) Al 5105 )
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We recall that Afn’g(x, s), j = 3,4, satisfy (??), and for j = 1,2 and 0 < z <
s <1, Afn’g(x, $)A(z) < cx™He L (see (27), (7?)) and thus,

/ Afn,g(x, $)A(z)dx < c/ "N < o™ 0<s< 1.
0 0
Therefore, we can deduce that

e = Moflh = [ sup W (P i) @)IA @)

< SN IMBOWER, L (F)(tha) ™| wy.

m=0¢eD

As for the first inequality in the theorem we recall that

Fxopy(x) = Wi(f*ei)(2)
e "Wo_g o Wiy (f * ¢0)(2)

= ce’”/ f* d(s)A(z, s)ds
and for 0 <y <s,and 0 <z < s,
R —2)s 2a—1— S 20—
W= Az, s)| < ce?~2% (sh2s) (ths) 7 < e (ths) ™7

(see (?7), (??7)). Hence,

WEF) xn()] = [WE(F x ) ()] < ce” / " 1f x uls) e (ths) ds.

x

We take the supremum over 0 < t < co. Since 2a—vy > 2a—s, =a—1/2 >
—1, we can deduce that,

/0 MR o W (F) (x) (tha)Vda

IN

c/ e’ </ M¢f(s)eps(ths)2°‘7ds> (thz)"dx

0 T

< o [T MpE e ds ~ 1 = o
0

This completes the proof of the theorem. m
Remark 4.7. (1) Since

C(=(A+ip)) ~ (L+[A) @2 A eR
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(see [3, Theorem 2]), Theorem 4.6 means that
W_(Mc,(H'(R))) = W_(M_,, H'(R)) C Hy(G//K).

Theorem A in §1 follows from this relation and the one in Corollary 4.3.

(2) Since (thx)™¢ is bounded, it is easy to see that Mg* in Theorem
4.6 can be replaced by My, £ € Ayanr (see Definitions 8.4 and 8.5, and cf.
Theorem 8.6). Especially, Hj(G//K) does not depend on an individual ¢.
We shall skip writing ¢ and denote simply as

HY(G//K) = Hy(G//K), |Iflm @) = Ifllmye

We keep the notations in the proof of Theorem 4.6 and we shall suppose
that ¢ > 1. Since we can transfer the Fourier multiplier I/Vf{7 as

WE (F s apy) = WE(F) s 1hy = F« WE (),

it follows from the proof of Theorem 4.6 that for each C' > 0,

/000 sup |f * ¢ (z)|A(x)dx

t>1
< zz/ sup |[F 5 W, o () (@) da
m=0£€D t21
< ¥ / sup [+ (W, o (1) — Cty) () da
mE;m+€£0 t21
+ d/ sup | F * iy (x)|dz,
0 t>1

where d = ¢(1 + (4n — 1)C). We note that

WE @)~ (\) = Wi(d)™ (WA
= d(A+ip)(ith) - 7. (55)

Since ¢ > 1, Lemma 3.5 implies that each WX (1)~(A), 0 < 7 < 54 =
a + 1/2, belongs to Anan (see Definition 8.4). Moreover, if v > 0, then
WR (¢)~(A) = 0 as [tA| = 0, because it has the term (¢A)7 in (??). Since
(1)~ (A) = du(\ + ip) satisfies Lemma 3.6 (2), we may suppose that for a
sufficiently large C' > 0, each 5,1 ¢(t,\) = Wft(erg)(i/)t)N()\) — CY;’(N) also
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belongs to Ay 2y and satisfies the assumption (??) in Theorem 8.6. Hence,
Proposition 3.7 and Theorem 8.6 yield that, if M > 2 in (?7?), then

/OOO sup |f * ¢u(x)|A(x)dx

t>1

IN

c/ ( Z sup |(Me, o e,) F) (@)] + MfF(x)) dx

0 mogmre£0 21

< ¢ M, . Fllim) + c||MEF|pim) < c||F||lm (56)

> lmye L IILY(R) ¢ L IILHR) = HY(R)
m,&,m+E#£0

(see §8.B for the definitions of Mg, () and Mngrg). We here define a trun-
cated maximal operator M é)oc on G as follows.

Definition 4.8. For f € L] (G//K),

loc

(MY f)(g) = sup |(f*d)(9)l, g€G.

0<t<1

Then (?7) implies that || f[| g1 ) < [|My°flli+cl|F|lm1w). Hence, Corollary
4.3 yields the following.

Theorem 4.9. Let M > 2. For f € H'(G//K) we put F = W_(f).
Then

11y = 1M Flle + I E gy

5. Atomic Hardy spaces on (. In this section we shall introduce
some K-bi-invariant atoms on G' and define the corresponding atomic Hardy
spaces on G, on which the radial maximal operator M, is bounded to L'(G).

For z € R and r > 0, let R(x,r) denote the interval on R centered at x
with radius r and |R(z,r)| its volume with respect to A(z)dx:

T+r

R(x,r) =[x —r,x+7r] and |R(z,r)|= / A(s)ds. (57)
For z € G and r > 0, we also denote the annulus {y € G;|o(z) —o(y)| < r}
= K{as;s € R(o(x),r)} K on G by the same notation R(z,r). Clearly,
R(z,7) = R(ao(),r) for x € G. We put B(r) = R(e,r) if z = e. Obviously,
if o(x) > r, then the volume |R(z, )| of R(z,r) with respect to dg coincides
with |R(o(z),r)|in (?7). Moreover, if o(x) < r, then R(z,r) = B(o(x) + 7).
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Definition 5.1. We say that a K-bi-invariant function a on G is a
(1, 00,0)-atom provided that there exist v € G and 0 < r < o(z) such that

(i) supp(a) C R(z,r)
(i1) Nalloo < [R(z, )" (58)

(i17) /a(g)dg = 0.
G
For e > 0, we say that a is a (1,00,0, €)-atom if we replace (ii) by
(i0)e Nalloo < [R(z,r)| 7 (1 +7)7, (59)

and a (1,00, +)-atom if we replace (iii) by

(474) 1 /Ga(g)dg =0 ifr<1. (60)

Moreover, if x = 0, we call a a centered atom.
We introduce atomic Hardy spaces on G as follows.
Definition 5.2. We define

Hyo(G//K) = {f=) Nai;
a; is a (1,00,0)-atom on G and ), |\;| < oo}

and || f||mL
sentations f = Y. Na;. Similarly, replacing (1, 00,0)-atoms by (1,00,0,¢€)-
atoms and (1, 00, +)-atoms, we define H;TO(G//K) and H;B(G//K) respec-

tively.

Definition 5.3. We define the small Hardy space hl, (G//K) on G by
restricting (1,00, 0)-atoms in the above definition of HJ ,(G//K) to ones
with radius < 1.

Clearly, we have

heoo(G//K) © Ho(G//K) C Hyo(G//K) © Hyy(G//K).

(@ = inf ), |\i|, where the infimum is taken over all such repre-

In what follows we shall characterize the difference between hl, ,(G//K)

and H;;jg(G//K), and then we shall obtain a relation between H;B(G//K)ﬂ
W_(H'(R)) and Hi(G//K). For zp € G and r > 0, let x,, denote the
characteristic function of R(zo,7) on G. For z,y € G, we define

I (z,7y) :/ Xmo,r(x’lky)dk. (61)
K
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Then I,,(x,r,y) is K-bi-invariant with respect to x, y and, as a function of v,
it is supported on R(x, o (xy)+7), where R(x, 0(x¢)+7r) = B(o(x)+0(xg)+7)
if o(x) < o(zg) + r. For simplicity, when xy = e, we skip writing the suffices
Ty = e

Xr = Xeys  1(x,1,y) = Le(z,7,9).

Lemma 5.4. Let x,y € G and o(x) > r. Then

(1) I(z,r,y) < I(z,r ),
(2) B(r)l|R(z,r)| " < I(z,r,2) < [B@2r)||R(z, 1)
(3) Iy (x,ry) < |BRr)||R(@, )™ ifr>1, 0(z) > 1, o(xe) > 7+ 1.

Proof. We regard I(x,r,y) as a function on R, x R,. For a fixed z, as
a function of y, it is supported on |r — y| < r and I(x,r,y) is increasing
onz—1r <y <z Hence (1) is obvious. As for (2), let f be an arbitrary
function in L*(G//K). Then

wrfe) = [ xolea )
= /:Hr I(z,r,s)f(s)A(s)ds.

-r

Therefore, letting f = 1, we see from (1) that
Xr* f(x) = |B(r)| < I(z,r,z)|R(x,r)|.
Similarly, letting f be the characteristic function of R(x, |z —y|), we see that

Xr* f(x) 2 I(z,1,y)|R(z, |z — y|)]

and thus, I(z,7,y) < [Ixellllflleo| Rz, |2 — yDI™" < |B(r)|R(x, |z — y])|~".
Hence

I(x,r x) I(x —r2r,x—r)
I(x,2r,x —r)

|[B@r)[|R(z,r)| .

VANVANRVAN

As for (3), we may suppose that z¢,z,y € A, =2 R, and we use the kernel
form of the product of spherical functions:

wwwﬂwzéme%@w@M@Mz
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(see [4, (4.2)]). Since x > 1,29 — r > 1, it follows that

To+T
I (x,ry) = / K(x,y,2)A(z)dz

o—"r

To+r
< Cepwep(mo+mr)/ eP*dz
To—r
< ce e ~ |B(2r)||R(x, 7))t m
We set
0(9) = |B(1)|""x1(9), g€G, (62)

where y; is the characteristic function of B(1), and for each (not necessary
K-bi-invariant) function f on G, we define a K-bi-invariant function f?,
x € G, as

Pg) = /K /K F(a kgh')dkdK' (g € G). (63)

Proposition 5.5. For f € H;:B(G//K) there exist fo € hl, o(G//K)
and x; € G, \; € R such that

where ||f0||héo,0(G) and ), |\;| are both bounded by ||f||H;,$(G).

Proof. By Definitions 5.2 and 5.3, it is enough to obtain the above de-
composition for a (1,00, +)-atom a on G with radius r > 1. Let B(as(s),7),
x € R,, denote the support of a. We identify K-bi-invariant functions on
G with functions on Ry, so a is supported on R(x,r). Without loss of gen-
erality we may suppose that z,7 € N. Actually, since r > 1, |R(z,r)| ~
|R([x], [r])| uniformly on z > 0 and r > 1. We decompose R(x,r) as

R(z,r) C | J Ity Ir=R(z—r+2k,1),
k=0

and set ay = |I| '|R(z,7)|-a|7,. Then, ay is supported on Iy, ||ag]|oo < [T~

and

2r
a=3" mar, m = |L||R(z, 7).
k=0

Here >, p1p ~ 1. Let 0, = HZI_TM (0 < k <r), where a, . is the element
in A corresponding to x —r +k € Ry (see (77), (?7), (?77?)). Clearly, 0y is
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supported on I, / Or(g)dg = / 0(g)dg = 1, and ||0k||ec < |Ix| "' by Lemma
G G

5.4 (1), (2). Let my = / ax(g)dg and by = (ap — mfy)/2. Then |mg| < 1,
G

by, is supported on Iy, ||bg|ls < [Ix]™", and / br(g)dg = 0. This means that

G
bi is a (1, 00, 0)-atom with radius 1. Therefore, letting

2r 2r
a= Z 240y, + Z By,
pn k=0

we have the desired decomposition of a (1, 00, +)-atom a with r > 1. m
We set
(0) = {Z YU Z |Ai] < o00,2; € G}

Then Proposition 5.5 means that
Hy o(G//K) = hio(G//K) + (0). (64)

Next we shall restrict our attention to centered atoms a and consider a
linear combination of their averaged translations a’,, v € G (see (77?)).

Definition 5.6. We define
HLo(G//E) ={f =) Nal,, ;
a; is a (1,00,0)-centered atom on G, x; € G, and ), |\;| < oo}

and || fllny, (@) =inf 3=, |Ail, where the infimum is taken over all such repre-
sentations f =", )\iaz,mi. Similarly, replacing centered (1, 00,0)-atoms a; by
centered (1,00, 0, €)-atoms, centered (1,00, +)-atoms and centered atoms with
radius < 1 respectively, we define H;’EO(G//K), H});TO(G//K), hio(G//K).

In this definition each atom a; is K-bi-invariant (see Definition 5.1). We
shall consider non-K-bi-invariant cases. Let a; be a centered function on G
satisfying (?7) to (?77?), not necessary K-bi-invariant. Even if a; is not K-bi-
invariant, a;, is K-bi-invariant. Hence, by using such a;, let H ((G//K)
denote the space of all f = 3", A;jal, with z; € Gand 3, |A;| < co. Similarly,
we define Hi;f,O(G//K)h, H(1>;;:0(G//K')h and hl ((G//K)* respectively as in
Definition 5.6.

Proposition 5.7. Let ¢ > 0. We have the following inclusions:

hieo(G//K)' C HYH(G//K) C Hy o(G//K)F C HYW(G/ /K
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| U U U
hio(G//K) C HYo(G//K) C HY o(G//K) C HH(G//K)
U U U U
hio(G//K) CHY(G//K) C HY ((G//K) C HH(G//K).

Proof. The horizontal inclusions are clear from the definitions. We first
prove that each space in the first line contains the bottom one in the second
line.

Lemma 5.8. Let a be a K-bi-invariant function on G supported on
R(z,7) and ||al|lee < |R(x,7)|7'. Let o = 2r if r < 1 andrg = r + 1 if
r > 1. Then there exists a constant ¢ > 0 such that

la/I(z,70, )l < el B(r)]

where ¢ is independent of x,r.
Proof. If r < 1, then Lemma 5.4 implies that for |z — y| < r,

Iz, ro,y) > I(x,ro,z—1)
> I(x—r,rx—r)
> |B(r)||R(z —r,r)["
> |B(r)[|R(w,r)|™".

Similarly, if » > 1, then I(z,7r9,y) > I(x—r,1,z—r) > |B(1)||R(z—r,1)| 1 ~
e~ > |B(r)||R(x,r)|~". Thereby, [la/I(z,70,")||lc < ¢[B(r)|”". m

We recall the relation H;;%O(G) = H;éb,o(G) obtained in [9, Theorem 5.5].
Here Hiéb,o(G) is nothing but H(1>;;:0(G//K')u in this paper and H;;%O(G) con-
tains H;OJB(G//K) by Lemma 5.8. Then, it is easy to see that each space in
the first line contains the bottom one in the second line. Furthermore, since
I(z,r,y) < ¢|R(x,r)|" if r < 1 by Lemma 5.4, it follows that hl ,(G//K)
C hoo o(G//K).

Next we shall prove that each space in the second line contains the bottom
one in the third line.

HY.o(G//K) C HL ((G//K): Let a be a centered (1,00,0)-atom on G
supported on B(r) and # € G. Then a’, is supported on R(x, ), / a’(g)dg =

G
/a(g)dg =0, and [|la}[lc < [R(z,r)|"" |B(2r)| |B(r)|"" by (??), (??) and
a

Lemma 5.4 (2). Therefore, if r < 1, then ||a’ || < ¢|R(z,7)|7!. This means
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that ¢ 'a’, is a (1,00, 0)-atom on G. Let 7 > 1 and o(x) < 2. We may regard
that a” is supported on B(o(z) + r) and we note that ||a’ |l < |B(r)|™' <
c|R(o(x) 4+ r)|~'. Therefore, ¢ 'a’, is a (1,00,0)-atom on G. Let r > 1
and o(x) > 2. In this case, since a is centered, a has an L' non-increasing
denominator |B(r)|™' xp((x) (see [7, 4.4]). Then a can be decomposed as
a =Y. A\a;, where > . |\;| ~ 1 and each q; is a (1, 00, 0)-atom supported on
R(z;,1), x; € N and 0 < x; < r (see the proof of [7, Theorem 4.5]). Hence
az,x is supported on R(z,x;+1) and ||a2795||OO < |R(z;, )| BQ)||R(z,1)| ! <
c|R(x,z; + 1)] 7" by (??), (??) and Lemma 5.4 (3). Therefore, each ¢ 'a;
is a (1,00,0)-atom on G. These observations imply that a € HL ((G//K)
and its norm is bounded by a constant independent of a. Hence the desired
inclusion follows.

hioo(G//K) C bl o(G//K): This is clear from the case of r < 1 in the
above argument.

H;io(G//K) C H;;fo(G//K): Let 7 > 1 and a be a centered (1, 00,0, €)-
atom on G. We repeat the above argument. Since ||al|, has an extra decay
77, |a) |l in o(z) < 2 and [|a] |l in o(z) > 2 also have the same extra
decay. Since r ¢ < ¢(o(z) +r) “ino(x) < 2and r ¢ < z;¢ < ¢(w; +1)°
in o(x) > 2, it follows that a’ and a?m are (1,00,0,¢€)-atoms on G up to a
constant multiplication. Hence the desired inclusion follows.

H;TO(G//K) C H;;B(G//K): Let r > 1 and a be a centered (1,00, +)-
atom on GG. Then Proposition 5.5 means that a is decomposed as a = ) . \;a;,
where ) . |\;| ~ 1 and each g; is a (1,00, +)-atom supported on R(z;,1),
z; € N and |z;| <r. Asin the previous case, since R(z;, 1) has the radius 1,
each a; ., v € G, is also a (1, 00, +)-atom on G up to constant multiplication.
Hence the desired inclusion follows. m

Let ¢ be the K-bi-invariant function on G introduced in §3 and Méoc the

truncated maximal operator in Definition 4.8. Since H;;b,o(G) in [9] coincides
with Hy (G//K)Y, it follows from [9, Theorem 5.3] that

Proposition 5.9. Let M > 2. M, is bounded from H;:%(G//K)ﬁ N
W_(H'(R)) to L'(G//K), that is, there exists a constant ¢ > 0 such that

10l < e (I e + IV (Dl
for all f € HH(G//K)nW_(H'(R)) and thus,

Hlo(G//K)F N W_(H'(R)) € H'(G//K).
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Theorem 5.10. Let M > 2. My is bounded from H;{O(G//K) to
L'(G//K), that is, there exists a constant ¢ > 0 such that

1Mol < el
for all f € H;{O(G//K) and thus,

HW(G//K) C HY(G//K).

Proof. Since H;{O(G//K) C H;:FO(G//K)ﬁ (see Proposition 5.7), it is
enough to prove that H;{O(G//K) C W_(H'(R)) (see Proposition 5.9). We
shall prove that, for all (1,00,0,1)-atoms a on G, [|[W,(a)| g (w) < ¢, where
¢ is independent of a.

Lemma 5.11. Let v € R and 0 > 0. If F is supported on R(xq,r) and
smooth if v < 0, then W (F)(|z|) is also supported on R(xo.7).

Proof. When v = —n, n € N, W7, is a differential operator (d/dchox)”
and thus, the desired result is obvious. Hence, it is enough to consider the
case of v > 0. We denote Fy(z) = F(x + xp). Then it follows from (?77?) that

W (F)(e]) = e / " F(5)(chos — choz) ' shsds

= C/oo Fy(s)(cho (s + zp) — chox)?"'sh(s + x0)ds

T—xo|

= C/OO Fy(s) ((ChO'S — cho(z — zg))chzyg

z—x0|
0 -
+(shos — sho(z — xo))shxo) (shschxo + Chsshx()) ds
= Go(x — xo)chzy + Gi(x — zp)shxy,

where

o0 -1
Go(z) = c/ Fy(s) ((chas — chox)chzy + (shos — shax)shxo)7 shsds
\

z|

and G (z) is defined by replacing shsds with chsds. Since Fj is supported on
B(r), clearly Gy is also supported on B(r). Therefore, W?,(F') is supported
on R(xp,r). m

Let a be a (1,00,0,1)-atom supported on R(zg,r). By (??) and (?7),

lalloo < |R(x0,7)|7" (1 +7)~" and / a(g)dg = 0. We put A = W, (a). Then
G
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A is supported on R(xg,r) by Lemma 5.11 and

/_00 A(x)dr = A~(0) = a(ip) = / a(g)dg = 0.

9] G

Moreover, we recall that |A(z)] < ce®®th(x +1)%||al|~ (see (?7), (?7) and
cf. [10], Lemma 3.4).
Case I: g —r > 1. Since A is supported on R(xg,r) and

To+r

|R(xq,r)| ~ / e dx ~ e**shr,

To—T

it follows that |A(x)| < ce?(®0+7) (e2proshyr) =1 (1 4+ 7) "t < er L.
Case II: xg —r < 1 and r > 1. Since z¢o +r > 1,

xro+T
|R(xo,7)| > c/ 2P dy ~ ?P(T0tT),
1

Therefore, as in Case I, we have [|Al|oo < cr
Case IIl: zg —r < 1, r < 1 and ¢ > 2r. Since xy > 2r, it follows that
To + r > 3 and thus

To+r
|R(x,7)| ~ / ¥ dy < c(zg — 7).
To—T
Then, since (zo+7)/(zo—7) < 3, |A(x)| < eth(zg+r)*> ((xo—7)%r) ! < er

Case IV: g —7r < 1, r < 1 and x5 < 2r. Since zo +r < 3r < 3 and
|R(zo,7)| > |B(r)| ~ |B(3r)|, we may suppose that a is a centered atom
supported on B(3r). Then |A(z)| < ¢(th3r)*|B(3r)[~' < er™l.

These four cases imply that cA is a (1,00,0)-atom on R and ¢ is inde-
pendent of a. m

Theorem 5.12. Let M > 2. Then My is bounded from Hl (G //K) to
LY(G//K), that is, there exists a constant ¢ > 0 such that

1Mo flly < ell flln, e
for all f € HY 4(G//K) and thus,
Heoo(G//K) € HY(G//K).

Proof. Since M, is sublinear and ||[Myf2||; < ||Myf]|1, in order to obtain
the HY, -L' boundedness of My, it is enough to show that there exists a
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constant ¢ > 0 such that ||[Myal|; < ¢ for all centered (1,00, 0)-atoms a on
G. Let B(r) denote the support of a. Here we recall Theorem 4.5 in [7]
and the proof. Since |B(r)| 'xp()(x) is an L' non-increasing denominator
of a, a has a (1,00,0)-atomic decomposition a = . A\;a; on G such that
> 1Ail < ¢, where each atom @; has radius r; < 1. This means that a; is a
(1,00,0,1)-atom on G. Hence, it follows from Theorem 5.10 that || Mya;|| < ¢
and thus, || Mya||; < ¢, where ¢ is independent of a. m

6. Atomic decomposition of H'(G//K). We shall prove that each
function f in H'(G//K) has a (1,00, +)-atomic decomposition on G. This
means that H'(G//K) C H;B(G//K) and then our main Theorem C in §1
follows. In the following, first we shall introduce a space W_(H ;:B(R)a) and
give a (1, 00, +)-atomic decomposition on G for this space. Then, we shall
prove that H'(G//K) C W_(Hy}(R)a) and obtain the desired (1,00, +)-
atomic decomposition for H'(G//K).

We set

To+r
(0, 7) = / tha|* dz (65)

0o—"r

and define H;B(R)a as the space of all F'= )", \;A; such that ) . |\;] < oo
and each A; satisfies

(1) supp(A;) C R(x;,r;)

(i) NWE, (Ai)lloo < da(wi,7s) ™ (66)
(1ii) / Aij(x)dx =0 if r; < 1.

Definition 6.1. We define

W_(Hy(R)a) = {f € Lino(G//K) 5 Wo(f) € Hp(R)a}-

Proposition 6.2. Functions in W,(H;B(R)a) have (1, 00, +)-atomic de-
compositions, that is, W_(HH(R)a) C HY o(G//K).

Proof. Let f € W,(H;;;B(R)a) and F = W, (f) = >, \iA; the decom-
position of F' given by (??). By using the same argument as in the proof
of Proposition 5.5 (see (?7)), we may suppose that r; < 1 in (??). More
precisely, when r; > 1, we decompose the support of A; by using a smooth

decomposition of 1, where each piece is supported in the interval with ra-
dius < 1. Then A4; = Ej A;; and each A;; satisfies (??) with radius < 1 by
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Lemma 6.3 below and Lemma 4.4 (3). Hence, we may suppose r; < 1 to
begin with.

When |z;| < 2r;, A; is supported on B(r}), ri = |z;| + r; < 3r;, and
satisfies (i7) and (i77) with r; < 3, because

do(xiy i) > do(0,7;) ~ Tf““ ~ da (0, 3r;).

Hence, we may suppose that xz; = 0 with r; < 3 or |z;| > 2r;. We recall that
e "W, (f)(x) = F}(x) is an even function on R (cf. [9, (3.6)]). Therefore, in
the decomposition e™”F = . \je ?*A;, the counterparts e”*A;(—x) must
appear in the decomposition. When z; = 0 with r; < 3, we may suppose
that e *"A;(x) is even. Actually, we let

(7" A;(x) + " Ai(—z)) = 2(1 + €*") - e " B;(x).
Then B; is supported on B(r;) and e #*B;(x) is even. Moreover, if r; <

1, then /Bi(a;)dx = 0, because A; satisfies (7ii) originally and the even

property of e ”*F(x) implies that / e** A;(—z)dr = 0. Since r; < 3, B;

—o0
also satisfies (i¢) and 2(1 + €*"¢) ~ 1. Therefore, replacing the left hand side
with the right one, we may suppose that e ?*A;(x) is even if x; = 0 with
r; < 3. Thereby, we can rearrange the decomposition of F' as

F = Z NA; + Z/Lij + Z’YkEka
i j k

where each A; satisfies (i), (i) with z; =0, r; < 3, /Ai(x)dx = 0; each B,

satisfies (i) to (i7) with |z;| > 2r;, r; < 1; each Ej satisfies (i), (7) with
|wk| > 2rg, 7 > 1, and moreover, Y, [Ail + > |1yl + > k| < oo. Since F'
is W, -smooth, finally, we have

= Z Aia; + Zﬂjbj + Z’Y‘fk, (67)
i i k

where a; = W_(A4;), b; = W_(B;) and e, = W_(Ej). Lemma 5.11 implies
that each a;, b;, e, have the same supports as A;, B}, Ej, respectively.

Now we apply fractional calculus in [10] to estimate each a;,b;, e;. For
simplicity, we skip writing the suffices 4, j, k£ and denote the supports of a, b, e
by R(zo, 7). Without loss of generality, we may suppose that z, > 0.

As for e, since e is supported on R(zp,1) and xy > 2, it follows that
g — 1 > 1 and thus, d,(z9,1) ~ 1. Thereby, (:7) and [10, Lemma 3.3] !

If f(z) = O(2®") around « = 0, then W7, (f)(z) = O(a*" "), However, under the
assumption (i) of (??), it follows that W7, (f)(x) = O(z="#).
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imply that on the support of e
le(z)| < c(th) =@/ =208 < pe=20% < ¢|R(z,1)|7!

This means that ¢ 'e is a (1, 00, +)-atom on G.

As for b, we recall that o = 0 or zy > 2r.
Case I. zg — r > 1: Since xy — r > 1, du(xg,r) ~ r. Thereby, (i7) and [10
Lemma 3.3] imply that on the support of b

b(z)] < c(thx)’(o‘“/z) 2l et < e|R(x, )|t

This means that ¢='b is a (1, 0o, 0)-atom on G.

Case II. xog — r < 1: Since r < 1 and xy > 2r, it follows that zqg <r+1 < 2,
o — 1 > 19/2, and xo + r < 3x9/2 < 3. Therefore, dy(xo,7) < e(xg — 1)%7
and thus, on the support of b

b(z)| < e(tha)~OFD =202 =1 (g0 — p) =5 < ¢z — )~ 2Dt
Since (zg +r)/(zo —r) < 3, it follows that
|R(x0,7)| < e(zo + 1) r < (o — 1) 7,
Therefore, |b(z)| < ¢|R(xo,7)|"' on the support. This means that ¢~ 'b is a
(1,00,0)-atom on G.
As for a, since 7o = 0 and r < 1, it follows that d,(0,7) ~ r*=! and
la(z)| < c(thx)~@F2e=200p—Lp=(sat) < oA ()L, (68)

We put
ay(z) = cAlx) 'r X (2), > 0.

Clearly, |a(z)| < a4 (z) and ay is a non-increasing function on R, with finite
L'-norm:

sl = [ ar@A@dr < o
0
Since a is supported on B(r) and / a(g)dg = / A(z)dz = 0, it follows
G —00

that |B(s )|1/ a(z)A(z)dz is also supported on B(r) and

|/ dx— |/ r)dr < cA(s) 't (69)
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Here we used (??7) and |B(s)| ~ A(s)sif s <r <1 (see (?7)). Hence,

|B 7). z)dr < a,(s). (70)
This means that ca, is an L' non-increasing denominator of a satisfying
(??). Then [7, Theorem 4.5] yields that a has a centered (1,00, 0)-atomic
decomposition a = 3. v;a; on G such that 3 |v| < cllay|rra) < cco.
Especially, a € H! (G//K) and [lally (@) < cco.

These three cases imply that all a;, bj, ek in (?7?), and thus f also, belong
to H;B(G//K). This completes the proof of the proposition. m

Theorem 6.4. Let notations be as above. Then

HYG/[K) = HZo(G//KFnW_(H'(R))
Ho(G//K) nW_(H'(R)).

Proof. Because of Proposition 5.9 and Corollary 4.3, it is enough to prove
that H'(G//K) C H;’:B(G//K). First we shall consider the case that 6 =
0" = 0, that is, s, is an integer (see (77)).

Let f € H'(G//K) and put F = W,(f). Then it follows from Theorem
4.6 that |[MJ o WE_(F)(z)(thz)* || L1 r) < oo. We here recall the construc-
tive proof of the atomic decomposition of H'(R): For example, we refer to
[12]. Then, measuring the volume of the dyadic cubes (intervals in the one-
dimensional case) Q? appeared in the Whitney decomposition theorem by
(?77) and keeping the convolution and the dilation, we can easily deduce that
WE (F) has a (1,00, s4)-atomic decomposition with respect to |[thz|**dz:

wER ( Z)\ B,

where B; is supported on R(z;,1;), / Bi(z)z"dz = 0, < k < 54, || Bil|so <
do(zi, )7t and >, | N| < 0o, We set

F=) \N\WXB NA;.
Z

Since s, is an integer and each B; satisfies the s,-th moment condition, it
o0

follows that A; is supported on R(x;,r;) and / A;(z)dx = 0. Moreover,

I 75(1( Moo = | Billoo < dal(zs, ;)" L. Therefore, A; satisfies (?7?7) and thus,

F € HH(R)a. Hence Proposition 6.2 implies that f € H;H(G//K).

41



We shall remove the assumption that 6 = ¢’ = 0 and consider a general
case of 0 < 60,0 < 1. We recall the Fourier-Jacobi analysis (cf. [4]) and
note that all results obtained in the previous sections can be extended to the
Fourier-Jacobi analysis, that is, for arbitrary «, 5 > —1/2. Especially, we
may denote Wy = W and replace “G//K” as “(ov, 3)” such as

HY(G//K) = H'(a, ).

For f € H'(a, 3), we set

F= Wf’ﬁ(f) W, 8° W,@+1/2(f)

"Wy o Wy o W2 o Wi (f)
= Wf’"’(Sg,y(f)),

where p=a + [+ 1 and
Ssar(f) = W o WE(f).

We note that Theorem 4.6 means that

Z M3 o WE (F)|lriry < 00

and thus, Ssg(f) belongs to H'(n,n'). Then, since n,n’ are integers (see
(7)), Ss.e(f) belongs to H;;jf)(n, n') and it has a (1, 0o, +)-atomic decompo-
sition with respect to (n,n’):

Sso(f) = Z i,
where > . |\;| < co. Here

F= Z )\zAza Al = Wf’n’(ai)

and each A; satisfies (??) with respect to (n,n’). We here recall that F' is
originally W, -smooth. Hence, from a constructive proof of atomic decom-

positions WR(nJrn, (F) =>_;\iB; (cf. [4, B in Chap. 3]) it follows that A;

satisfies (??) with respect to («, 3). We let b; = W_(Wf’”,(ai)). Each b; has
the same support as a; by Lemma 5.11 and / bi(g)dg = A7 (0) =0ifr; < 1.

G
Moreover, we see from [8, Lemma 3.4] (or the same arguments in the case of
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6 =08 =0) that ||b;]|oc < ¢|R(z;,7;)| ' Thereby, we see that f =", \b; is
a (1,00, +)-atomic decomposition of f. m

Theorem 6.5. Let € > 0. Then H;;fo(G//K) NW_(H'(R)) is dense in
W_(H'(R)). Especially, H'(G//K) is dense in W_(H'(R)).

Proof. Let f € W_(H'(R)). We approximate f with a rapidly decreasing
function in W_(H'(R)). For example, let us take f; = f x ¢, (see §3).
Since Wi (f1) = Wi(f) * W, (¢:) and W, (¢,) satisfies Lemma 3.6, it is easy
to see that Fy = Wi (fi) € H'(R) and ||f — fillmie) = |F — Fillm®w) =
|F' = FxWi(o)|lmmy — 0ast — 0 (cf. [15, Chap. 3, 5.1 (d)). We fix
a sufficiently small ¢ > 0 and let Fy = W, (f * ¢;) = > ,.; Ai4; denote a
(1,00, 0)-atomic decomposition of Fj. For a sufficiently small £ > 0 and a
finite large index set J C I, we put

Fy=) NA;, Jy={j € J;ir >k}, (71)
1€Jo
where we take x and J for which e ?*F,(z) is even. We here recall a con-
structive proof of the atomic decomposition of H'(R) (cf. [12] and [6, B in
Chap. 3]). Since F} is smooth, each A; is also smooth and if i € Jy,r; < 1,
then
[IWE (Ao < cr; Bt < ppmsap st

and if ¢ € Jy,r; > 1, then
IWE Ailloo < eri . (72)

In particular, |[W® Al < R(x;,r;)~" if supp(4;) = R(xz;,r;). Hence,
each A;, i € Jy,r; < 1, satisfies (??) and thus, Fy € H;;B(R)a. Then, by
Proposition 6.2, we can define f, € H;OJB(G//K) such that W (fy) = Fo.
Since Fy € HY(R), it follows that fo € H%(G//K) N W_(H'(R)) and
i = follmey = |Fy — Follmmy — 0if & — 0 and J — I. This means that
HW(G//K) N W_(H'(R)) is dense in W_(H(R)). Since

Ho(G//K)nW_(H'(R)) ¢ HY(G//K) c W_(H'(R))

(see Proposition 5.9 and Corollary 4.3), in order to obtain the desired density
it is enough to show that f, belongs to H;;TO(G//K).

We keep the atomic decomposition of Fyy in (??). Let I; = R(x;,r;) denote
the support of A;. As in the proof of Proposition 6.2, we may suppose that
z; = 0 or x; > 2r;. We recall that e **Fy is even and I; N —1; = 0 if 0 ¢ I;.
When x; = 0, we put

(e P Ay(x) + e Aj(—x)) = 2(1 + ") - e P By(x).
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Then B, is a (1, 00, 0)-atom on R and e #*B;(x) is even. Since the index set .J,
is finite, changing the coefficient )\; by 2\;e?*" and replacing the left hand side
with the right one, we may suppose that e ?*A;(x) is even if x; = 0. Since

each A; is piecewise W, -smooth, we can define a K-bi-invariant function
a; = W_(A;) on G such that

fo= Z il
icJo

Case 1. z; > 2r; and r; < 1: As in the proof of Proposition 6.2, each a; is a
(1,00, 0)-atom on G up to a constant multiplication.
Case II. x; > 2r; and r; > 1: Since x; > 2r;, it follows that z; + r; > 3 and
x;—1r; > 1. Thereby, |R(z;, ;)| ~ e?@*7i)_ Since .J; is finite, we may replace
A\ia; as

)\iai == )\i€4pri7"f . bi; bz == 6_4pri7"i_eai.

Then, similarly as for (??), we can deduce from (??) that
|billoo < ce™ir7 Am; — 1) "'rt < e|R(wg, mi) |7 h e

This means that a is a (1, 00, 0, €)-atom on G up to a constant multiplication.
Case III. z; = 0 and r; < 1: As in the proof of Proposition 6.2, each a; has a
(1, 00, 0)-atomic decomposition.

Case IV. z; = 0 and r; > 1: Since .J; is finite, we may replace \;a; as

)\Z'Cli = )\ﬁ”i . bi, bz = r;lai.
Then, similarly as for (??), we can deduce from (?7?) that
|b;()| < c(thx) CotDe 200p 2 < cA(z)r, 2. (73)

We set by (r) = A(z)~'r; 1. As in (?7?), using the moment condition, we see
that

1
|B(s)|

S 2

/s W) A)dr < i <y (). 0< s < (74)

Therefore, b, is an L' non-increasing denominator of b; satisfying (?7).
Hence, b; has a (1, 00, 0)-atomic decomposition (see [7, Theorem 4.5]).
These four cases yield that f, € H;fO(G//K). u

Remark 6.6. As in the proof of Theorem 6.4, we set

Sy (f) = W o W7 ()
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for 0 <y <a+1/2,0<~ <p+1/2. Clearly, Sp, is the identity operator
and Soi1/2,841/2 = Wf’ﬁ. Then it follows that

Hl(aaﬁ) - Sfyi,i/’ (Hl(a - 776 - 7,)>

When v = a + 1/2 and ' = 3 + 1/2, this relation is nothing but the one in
Corollary 4.3, because H'(—1/2,-1/2) = H'(R).

7. Other operators. We shall consider (H', L')-boundedness of sin-
gular integrals, heat and Poisson maximal operators My and Mp, and the
Riesz transform R on G.

Let TR = M,, be a Fourier multiplier corresponding to a bounded function
m and K the distribution kernel of M,,, that is, K~ (\) = m(\) and M,,,(F) =
K % F in a distribution sense (cf. [15, Chapter 1, §6]). We put £k = W_(K)
and define an operator T¢ on G as TS (f) = k * f. Then it is easy to see
from (??), Definition 4.2, Theorem 4.6 that ||T5(f)|lw_arw)) = [|[W4(k *
Al = [TV (D)l and TS iy < el Mo, W (TSP ey
= M, o TR(W.(f))|l s (w)- Therefore, we have the following.

Theorem 7.1. Let notation be as above. If TR is bounded on H'(R),
then TS is bounded on W_(H'(R)). Moreover, if M, o TR is bounded on
HY(R), then TS is bounded from W_(HY(R)) to H*(G//K), especially, it is
boundend on H'(G//K).

Let hy(g) and pi(g), g € G,t > 0, denote the heat and Poisson kernels on
G. They are K-bi-invariant functions on G whose spherical Fourier trans-
forms are respectively given by

~

hi(\) = e ") and p(\) = e VA

Definition 7.2. For e > 0 we define the modified heat and Poisson max-
imal operators Mg and Mp on G as follows.

(Mg f)(g) = 053500(1 +1) | (f * he)(9)],
(Mpf)(g) = sup (1+18)°|(f *p:)(9)|-

0<t<oo
For simplicity, we denote MY and MY by My and Mp respectively.

It is well-known that Mg and Mp satisfy the maximal theorem (see [14,
p.73 and p.48], [1, §3 and §6]). Moreover, if we define their truncated max-
imal operators My¢ and MP° by restricting the range of the supremum as
0 <t <1 (cf. Definition 4.8), then they are bounded from H}Q’FO(G//K)n to
L'(G//K) (see [8, Theorem 6.1, Remark 6.5]).
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We here introduce a modified atomic Hardy space H;TN(R), e>0,N=
0,1,2,---, on R by replacing the norm condition ||A]|s < 7! ofa (1,00, N)-
atom A on R with

[Alle < 7M1 +7)" (75)

(cf. Definition 5.1 on G).
Definition 7.3. We define

W_(L'(R)) = {f € Lioe(G//K) s W.(f) € L'(R)}

and
W_(Hn(R)) = {f € Lioo(G//K) s We(f) € HZy(R)}.
We give their norms by [|W,(f)||lrrw) and ||Wi(f)||a1w) respectively.
Clearly,
Ho(G//K)' C L'(G//K) C W_(L'(R))
(see (18) and Definition 5.6). Since H.\y(R) € HL y(R) = H'(R) (cf.
16, (3.30)]), it follows that W_(H1%\ (R)) C W_(H'(R)) € W_(L'(R)) and
hence, Proposition 5.7 and Theorem 6.4 imply that

HI(G//K)HW (Hn(R))
= Ho(G//K)NW_(H y(R)) (76)
= H”(G//K)ﬁﬂW (Hy n(R))-

Theorem 7.4. Let notations be as above. Then Mg s bounded from

HLh(G//K)! ife>1/2
Hl(G//K) NW_(HZT(R))  if0<e<1/2
HYG//K)NW_(HY 3/2(R)) if e=0

to L'(G//K).
Proof. Since M$¢ is bounded from Hclx’;ro(G//K)n to L'(G//K), we may

suppose that ¢ > 1 in the definition of Mg. Let Mﬁg, v € R, denote the
maximal operator on R associated to the Fourier multiplier corresponding
to thy (A +ip)(iN)7:

1 [ _
Mﬁ%(F) = SUPE/ hi(A —|—Z‘p)(i)\)7F’V()\)61)\md}\‘
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For f € LY(G//K) we put F = W, (f). Then the same argument as that
used in the proof of Theorem 4.6 and (??) yield that

n
€ R
IMaflloe < e ) IMGS oW, o (F)lm)

m=0 £€D

S MR ()l (77)

m=0 (€D

if the both sides exist. Let H; denote the heat kernel on R:
Hy(x) = (2t) Ve 2"/4, (78)
Since H,(\) = e~ it follows that
hi(\+ip) = K7 (\),  Ki(x) = Hy(x — 2pt). (79)
Hence, (?77) can be rewritten as
[ Mz fllr CZZIISUW Bmee) (Ke) * Flll 2wy (80)
m=0 £¢D

Lemma 7.5. Lett > 1 and x,u > 0. Then for each v > 0, there exists
a constant ¢ such that

WEHN) < 2 (14 2) o 1)

and ,
R ¢ X 2
144 < — S “iz,
[WZL (K ()] < i (1 + ‘ " Qp‘) t

Proof. Let 0 < <1 and x > 0. We note that

WEH) @) = 2 [ e s

< \/%exz/‘lt/ e 2/4tSJ;xs Fds
0

c 2 T
< —e T/ (1 + —> tH/2,
TV Vi

Then the desired result for H; follows. Since ¢t > 1, by replacing z/v/t by x/t
n (7?), the one for K; follows from (77). m

47



We return to the proof of the theorem:.

Case I: € > 1/2. Since t > 1, Lemma 7.5 with v = 1/2 + ¢ means
that, for 0 < m < n, and & € D |t WE o (Ko (2)] < et (+/2(1 +
el /¢ — 20])=1/2+9. When |5L“|/t > dp, 721+ ]/t — 2p) 7V <
et~ (1 + || /t])) =D < e(1 + |2])~+Y2) ] because t > 1, and when
2|/t < 4p, (D1 + ||$|/t— 20])~(H/D < ot~ (D) < oL+ [a]) /2]
Hence, t—“[WR 5 \(K/)*F| < c®*|F|, where ®(x) = (1+]z])” (1/249) " Since
® belongs to Ll(R) the right hand side of (??) is dominated by ||F||1(r)
This means that Mg, ¢ > 1 and € > 1/2, is bounded from W_(L'(R)) to
LY(G//K). Since H\,(G//K)* C W_(L*(R)) (see (??)), the desired resuls
follows.

Case II: 0 < € < 1/2. Since t~ EVVR(erg)(Kt) is a convolution operator, to

obtain the desired L'-boundedness on W_(H;g{o_e(R)), it is enough to prove

that there exists a constant C' > 0 such that for each centered (1, 00,0, 1—¢€)-
atom Aon R, 0<m <n,and £ € D,

sup =W (K2 + Alll ) < €
>

Let [—r, r] denote the support of A and, for simplicity, we put

K pye(w) = t7WE o (Kp) ().

First, we shall prove that

Kt€m+§( ) < C(l + |x|1/2_6)\1}t(x)7

where ¥, is a Euclidean dilation of ¥(z) = (1 + |z — 2p|)"2. Actually, if
pt > 2|z|, then (|z| — 2pt)? = |z|* + 4pt(pt — |z|) > |x|* + 2p°t* and thus,
it follows from (??), (??) that K;(z) < e ~(aP+20°2)/4t < = (lel/1 =r"t/2 <
ct=! (1 + |z|/t)~2, because t > 1. Thereby, the above estimate is clear. If
pt < 2|z, then, by letting v = 2 in Lemma 7.5, it follows that |Kf,,, ()] <
et~ D (14 |||/t —2p)) 2 < et~ VDN (1 + |||/t — 2p|) 2 < ca™ (/DT
(14 ||z|/t —2p|)~2 for all 0 < m < n and £ € D. Hence we have the desired
estimate. By using this estimate, we see that

| K e * Al2)]

IN

C/M(l + [y ) T(y) |Alz — y)|dy

c(L+ |z +r[27) W, + | Al (2)
c(1+ | + 7|27 ) M (|A]) (@),

ININ
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where MX(F) = sup |¥, x F(z)|. Since ME is bounded on L>(R) and
0<t<oo
|Alloe < 7711 +7)~(=9 it follows that, on |z| < 2r,

IN

[ sl Awlde < e [ MB(A s
|

z|<2r t>1 |z|<2r
c(1+ 77l Al
c(1 4771 4+r)" 079 <0, (82)

IA N

On the other hand, on |z| > 2r, it follows from the moment condition of A
that

Kimse Alw) = [ Kiuelw)Ala - )y

_ /::T(Kf,m%)'(y) (/io Az — s)ds> dy.

Lemma 7.5 with v = 1 +¢, € > 0, and p = 1 yields that [(Kf,, ) (v)]
ot~ 0FI(L + lyl/t = 2p) "9 < e(L + [y[)""+9. Since [|Alln < 7|l
(1 +7)~(0=9) it follows that

SUD [ v+ A()| < 1+ [ = r) 0o (L) 7070 (8)
t>1

Therefore,

1 €
/ sup | K, ¢ % A(z)|dr < / (1+7) dr < C.
\ |z|>2r

x|>2r t>1 (1 + |aj o T|)1+E B

Hence we see that || sup K, ¢ * Al|pyr) < C.
t>1

Case III: € = 0. Let A be a centered (1,00,1,3/2)-atom on R. On |z| <
2r, similarly as for (?7?), we see that

/ sup | K}, e % A(z)|de < C.
\

x‘SQr t>1

y
Moreover, the moment condition of A yields that / A(x—s)ds is supported

—00

/Z (/;A(I—s)ds> dt = 0.
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Then

KO ox Alr) = / x—:r(Kfmﬁ)"(y) ( / 1 ( / : Al — s)ds> dt> dy.

Since [[Alloo < 7711 +7)7%2 Lemma 7.5 with v = 3/2 and p = 2 similarly
yields that

|K,2erg x Alx)| < e(l+ |z — T|)73/27” cre (1+ 7“)73/2. (84)

Therefore, on || > 2r, it follows that

1 1/2
| swile @i < [ Urr)”  w<c
| |z|>2r

z|>2r t>1 L+ |z —r[)3/?

Hence we see that ||sup K7, ¢ * Al r) < C. m
t>1

Remark 7.6. Let ¢ = 1/2. Then M;I/Q is bounded from H;:FO(G//K)ﬁ N
W_(HY'*(R)) to LY(G//K) by Theorem 7.4 (2). In the proof we use a

00,0

(1,00,0,1/2)-atom A, whose L>®-norm has a decay r—'(1+47)~/2. This extra
decay (14 7)~*/? is only used to deduce (??). Clearly, if the first derivative
of K, creates a decay t~!, same as the one for ¥, of a Euclidean dilation of U,
then we do not need use the extra decay. Actually, we may apply a common
argument used to prove that a radial maximal operator M¢ on R is bounded
from HL, ((R) to L'(R) (cf. [4, §3]). However, as shown in Lemma 7.5 (2),
the first derivative of K, creates only ¢ /2 decay. Therefore, we need the
modification of the L*°-norm of A. This situation is the same in the case of
¢ = 0. The second derivative of K; creates a decay t~', not ¢~ (see Lemma
7.5 (2)) and thus, we need an extra decay (1 +7)7%/2 (see (?77)).

Theorem 7.7. Mp is bounded from H'(G//K) to L'(G//K).

Proof. Since M° is bounded from HY' (G//K)* to L'(G//K), we may
suppose that ¢ > 1 in the definition of Mp (see Theorem 6.4). Let MII,‘N,
v € R, denote the maximal operator on R associated to the Fourier multiplier
corresponding to py(A +ip)(iN)Y = Wi (py)~(A) (i)™

Mg (F) =sup| [ p(A+ip)(id) F~(X)e?dAl.

t>1 — 00

Then for f € H'(G//K), we have

[Mp fllie < ZHMpooVV tmro)(F)llo1m
EeD

IN

ﬁMm HM@

Z 1Mp. e (F) |11 m
¢eD
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where FF = W, (f). Since F € W_(H'(R)) (see Theorem 6.4), F' has a
(1,00, 1)-atomic decomposition F' = 3. \;A;. Hence, it is enough to show
that || Mg, ¢(A)] 1w < ¢forall (1,00,2)-atom A. Clearly, we may suppose
that A is centered, that is, supported in [—r,r]. We recall that

t
s Kil(# + a?) e,

A t1p) = KO, Kila) = oy

where K; is the modified Bessel function (see [1, §6]).

Lemma 7.8. Let notations be as above and MY, be the Hardy-Littlewood
mazimal function on R. Then for all F € L*(R) and v > 0,

Mg, (F)(w) < eMy,(F)(2).

In particular, Mrf,‘ﬁ satisfies the mazximal theorem.
Proof. We note that |[W}K,(z)| < cKy(x) (see [1, p.289]) and Ky(z) <

c|z|~1/% e7!*|, Hence we see that
> t (2 (=122 pla—
Mo, (F)la) < C/ )l (2 + (z — y)2)P° P ) eple vl gy,

Here we divide the integral as / + Z/ , where Iy = {y; |z —y| < t*} and
I

Iy = {y: 22 < |z —y| < 284142} |k =1,2,---. Since t3e(+2)"* hag the
maximum at ¢ ~ (¢2 4+ 22)1/4, it follows that

o P(E+(z—y)*)/? erle=vl gy

t
. |F(y)] (& + (z — y)2)*/4
1

¢ |F(y)|dy < cMpy (F)(x).

= 2
t |l —y| <t

Moreover,

t 42 _.0\2\1/2 _
F P+ (@=y)*) = cplz—yl g
W P —

t
c F —d
/I o O Gty

1
F(y)ld
ok+142 /|my|<2k+1t2| (y)|dy

< c2‘k/2MII}L(F)(x).

IN

S C2—k/2

Hence, the desired result follows. m
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Lemma 7.9. Let A be a (1,00, 2)-atom on R supported on [—r,r]. Then
for x > 2r,

R /2 r
Mp (A)(z) < cmax <7|x — P) .

Proof. Since ||A||pyry < 1 and |z —y| > |z —r|if [y| < r, it follows that

. o0 t t
MP,y(A)(UU) < C/OO |A(y)| 2 (z — y)2)3/4dy < Cm-
Especially,
R ri/? . 2
MP,’Y(A)(‘/B) S Cm lf r Z t°.
On the other hand, we note that
Ax WR(E,)(2) = / B + ip) A\ Te=e g,

Since A(A+2ip) = |A||A+2ip|e?, tan @ = 2p/ ), and thus, R((A+ip)%+p?))!/?
= |M"Y2|X 4 2ip|'/2 cos(0/2) > ¢|A|'/? with ¢ > 0, it is easy to see that

1
IDs( A+ ip)| < ce M

1
d. . : L+[A[\2 N
- < L | c

d .. . 51+ || 1 /14| e et}
— A <cl|t t— ctiAlZ
|(d)\) De( +2p)|_c< By + 5 B e

Since A is a (1, 0o, 2)-atom on R supported on [—r, ], it follows that |(d/d\)"
AN < " (n € N) and |(d/dN\)"A(N)| < r"TH)|, n = 0,1,2, by the mo-
ment condition of A. Moreover, since (d/d\)" *A()) is the k-fold integral
of (d/d\)"A(N) over [0,)], it follows that |(d/d\)""FAN)| < roHH AR,
0<k<n=0,1,2. Therefore,

2% A * WWR(Kt)(x)|
00 d2 . . _ S
= ¢ / s (A + i) A)XT) e

00 142 1 /14 A2 s
T e )

T2

s ¢ 242y

IN
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This means that
ror
12 $2+277

A« WR(K) ()] < o

and thus, since ¢ > 1, it follows that
R roo. 2
Mg (A)(z) < ¢ if r < t°.

This completes the proof of the lemma. m

We return to the proof of Theorem 7.7. Since ]\/[g”’7 is bounded on L?(R)
(see Lemma 7.8) and ||Al|; < r='/2, it follows that

M&W(A)(x)dx < r2)|All; < e

|lz|<2r

Moreover, it follows from Lemma 7.9 that

R ri/2 r
MP,v(A)(x)dx S /x>2,« (7|IL' — T|3/2 + P) dx S C.
Hence we obtain that || Mg, (A)||L1(r) < ¢ for all (1,00,2)-atom A. m

We last treat the Riesz transform R on GG. Under the standard notation
in [14] we denote the covariant differentiation on G by V: |[V[*(f) = Q(f?)
=2Qf - f for f € C*(G). Then the Riesz transform R on G is defined as
follows.

Definition 7.10. For f € C:°(G//K)

(Rf)(9) =1IV]o (=) 2(f)(9) (g€ G).

|x|>2r

This operator R also satisfies the maximal theorem (see [1, Corollary
5.2]). We recall that [Vf*(g) = > _ |Xif|?(9) (g € G), here {X;;1 <
i < n} is denoted as an orthonormal basis of the Lie algebra g of G and
each X; is regarded as a left (or right) invariant differential operator on G.
Especially, since f is K-bi-invariant on G, |V f[*(g) is simply expressed as
c|(d/dx) f(az)|? provided o(g) = z (cf. [2, §2]).

Now let £(A\) = iN/\/A(X+ 2ip) and M, the corresponding Fourier mul-
tiplier. Then, since (—)~'/2 is the Fourier multiplier corresponding to
(A2 + p?)~'/2 applying the similar argument used in the proof of Theorem
4.6, we can deduce that

IRy < €32 D IMeo Wiy (Pl .

m=0¢eD
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Since £()\) satisfies the Hormander condition and m + £ < o+ 1/2, Remark
4.7 yields the following.

Theorem 7.11. R is bounded from W_(M¢,(H'(R))) to L'(G//K).

8. Appendix. A. Estimate of I';,,: In [8, Proposition 8.3] we estimate
derivatives of ', (A) when A > p and show that T, (£ +ip) (€ € R) satisfies
Hormander’s condition. Here we shall obtain an estimate of T',, () for A >
—p. We refer to the notations and the proof in [3, Lemma 7] and we denote
Lom by Ty Then the recursive definition of T, () yields that

L] < 2220 H( =) (85)

Here
ce(N) = 4k|k — i\ and () = 4|2k —iX + p),

where k =a — fif k=m+1 (mod 2) and k = p if £ =m (mod 2).

Lemma 8.1. For each 6 > 0, there exists a positive constant ¢ such that
forallm e N and A =& —ip (€ € R),

T, (N)] < em®t,

Proof. For each € > 0 we take ng € N such that 4(p+ng)?/n2 < 4(1+¢)%
We first estimate each k20721, (A\)2cp(N) ™2 = |2k — i\ + p|?/|k — A%
If £ > p+nyp, then
2k +p—iA?  4k* 4+ &2 < 4k? - 4(p + nyg)?
k—iAP (k= pP+& " (k—p? " 0}
If k < p+mnpand p ¢ N, then

e 2 2
|2k+p. iA| < 4k <4(p—|—n0) ‘e

k—id> T (k=p? 7~ (1/2)> ~

< 4(1+¢€)? (86)

If k< p+ng, pe N, and k # p, then

|2k—|—p—i)\|2< 4k*
[k —iAl2 7 (k—p)?

< 4(p—|— 7’L0)2 <ec.

If k< p+nyand k = p, then

2k +p—iA? _ 49 +€ _ (14’
|k —iAl? & - €] '

54



Therefore, substituting these estimates into (??), we have the following.
Case L. p ¢ N: Since

(krk()\)>2§{ 2L +6)8)?  ifk>p+ng

(M) c if k < p+ny,

it follows that, if p +no < m — 1, then

VAN
o)
X
=
RS
= 3
1M
= —
o=
= =
==
N—
I
o)
W
T
B
+
3
o
L
o=
= =
Rl
+
M
L
o=
= =
Rl
N~

k=1 k=p+no
< exp (c(p+n0 —1)+p Z 2(1 + )k
1311:?271
+ (a—p) Z 21 +€)k ™t
12%211%1

< cexp((14€)(p+a—B)logm) < emIF9Ra+D),

Therefore, we see that

T (V)] < bn() < e LS asaeas ¢ g asaa-1
m |m — p[+[¢]|
Clearly, if p+ng > m — 1, then |I';,(N)] < c.
Case II. p € N: In this case there is a possibility that the term correspond-
ing to k = p will appear in the product HZL:_II when p < m — 1. Therefore,
the above estimate is changed as

T (A)] < cﬁ.L, (1 n 1+ |§|> n(+0Cat)=1 < o (1+6)(2a+1)-1
m |m— p| +[¢] €]

In both cases, letting € sufficiently small so as to satisfy (1 +€)(2a+1) — 1
< 2a+ §, we can obtain the desired estimate. m

Let k € N and k& # p if p € N. Applying the above argument for
A= ¢ —ik (£ € R), we see that each [',,(\), & < m — 1, has a pole at
A = —ik. On the other hand, if 3\ # —k, we can deduce the same estimate.
Therefore, the estimate obtained in Lemma 8.1 also holds on the tube domain
F(a,b) = {\ € C;a < I\ < b} where [a,b] does not contain —k (k € N)
except —p if p € N. Hence, Cauchy’s integral formula yields the following.

%)



Proposition 8.2. Suppose that the real interval [a,b] does not contain
—k (k € N) except —p if p € N. Then for each 6 > 0 and n € N, there
exists a positive constant ¢ such that for allm € N and A € F(a,b),

()

Remark 8.3. When IS\ > p, we can replace 4(1 + €)? in (??7) by 4.
Thereby, we can replace the power 2a.+ 6 in (7?7) by 2« (see [7, Proposition
8.3]).

B. Maximal Functions on R: In this section ¢ denotes a compactly

supported C'* function on R with / é(x)dr = 1, and ¢; a Euclidean

dilation:
1, /x
tula) =50 (3) t>0. (88)
We define the radial maximal function My(F') on R as
(MyF)(xz) = sup |F x¢y(z)]. (89)
0<t<oo

Then F € L (R) belongs to H'(R), by the definition, if MzF belongs

loc

to L'(R) (cf. [15, p. 87]). We shall consider another characterization of
H'(R) by using a maximal function associated to a Fourier multiplier M, .,
corresponding to a function m(¢, ) on Ry x R:

Mo,y (F)7(A) = m(t, ) F~(N).

Definition 8.4. We say that m(t, \) is in the class Axr (N, M € N) if
there exists a constant ¢ such that

‘(%)nm(t, A)‘ <c"(L+[IA)™ (0 <n < N).

We define related maximal operators My,, Ma, ,,, M;*; (L > 0) and M,
on R as follows.

Definition 8.5. Let N,M,L € N and suppose that M > 1. For F €
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Ll

loc

(R) and m(t,\) € Ay, we define

MpF() = sup [Mpg)F(@)],

0<t<oo
MAN,MF(:U) = sup MmF(aj),

meAN

—L

M} F(x) = sup sup|F xm(z —y)| (1 + M) :

’ 0<t<oo ycR t
M!F(x) = sup |Fxm(y)l,

lz—y|<t

where my(x) is the inverse Fourier transform of m(t, \).
Clearly, since M > 1, my(z) is well-defined and M,,F(z) < M} F(zx) <
2L M7 F(z) holds pointwise.

Theorem 8.6. Let M, N > 4. Let ((t,\) € Ay and suppose that there
exists ¢ > 0 such that

|6, )] = cltA] (0 < [EA] < 2). (90)

Then ||F||H1(R) ~ ||MZF||L1(R)-

Proof. ||M¢F|| 1) < ¢||F||m(r): By using the atomic characterization of
H'(R), it is enough to show that ||M;Al/, gy < C for all (1,00,0)-atom A
on R. We may suppose that A is supported on [—r,r]. We first note that,
since £(t, \) € Ax s with M > 4, the inverse Fourier transform of £(¢, \) is
dominated by ¢~'(1 + |z/t|?)~" and hence, M, satisfies the maximal theorem
(cf. [8, Lemma 5.1]). Next we note that the Fourier transform A~ (\) satisfies

() o

/0 Y 4(9)ds

because A~(0) = 0 by the moment condition. Therefore, it follows that

<r' (teN).

and

A~ = < cr|Al,

12 My (A)] = ‘ /_ Z AL - (%)26“%)\
(&) )

ot 4 |\t

¢| Mg,y (a* A)| + C/ ch\

cr,

dA

IN

IN
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because || M,y (2%A) || < ¢||z?Alle < cr. This means that |Mq ) (A)(z)] <
rlz|72. Finally, we can deduce that

) iy < [

|z|<2r

| Al|od + c/ —dz < C.
|z|>2r |IL'|
|Fllmw) < c||MeF|[11(r): The proof is quite similar as the one for [15,
Theorem 1 i 1n Chap. 3]. We shall give an outline for a necessary modification
of the proof.

Step 1. [|F|lmm) < ¢||May o F o1 r): Let 1 € C°(R) and / Y(z)dx =

1. Since Ay contains a function m(t, A) = 1,(A) = 1(t), the desired result
follows from [15, Theorem 1 in Chap. 3.

Step 2. Ma, ,, F(z) < My} F(x): We refer to [15, Lemma 2 in p.93 and
1.4 in p.95]. We take L € N such that M;,N > L+ 1 and L > 1. Let
Yo € S(R) satisfy ¢y(A) = 1if [A| < 1 and 9)g(A) = 0 if |A| > 2. Then
there exists a decomposition of 1 of the form: 1 = 3 4, ()), where each
U (k> 0) is supported on 251 < |A| < 281 and |(d/d\)"p(N)] < 2 Fn
For each m(t,\) € Ay n we let

m(t,\) = Zq/ik(m)mm
_ T/Jk t)‘ —k
= Z = A 5(2 t,\)

= Z e (t, A E(27FE, N).

By the assumption (??) it follows that £(27%t, \) > c27F|tA| > 271 if t) €
[2E=1 241 and moreover, |(d/d\)™0(t, )] < ct™ (0 < n < N). Thereby, we
easily see that

d n
— A <et"(1 4+ tA)™Y
(35) (e < e o)

and, if we denote the inverse Fourier transform of 7 (¢, ) by 7.(y), then

2"/t d\" iA
t,A) | — AN
/le/t 77k( ) ) (d}\) e

2k+1 /4
ct”/ (14 [EA)~MdA
2

k:—l/t
S Ct’l’L*lQ*k(M*l)

Y " ee(y)] <

IN
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Since N, M > L + 1, it follows that

(MuF)(2) < sup ) |(F # 1y # b))

>0 =
< s Y [P e = )0l
t>0 k=0 Y —®
< eM;;F(z)- sup i":/oo (1+M>L <1+M>_N
- bL 0<t<oo —00 27k t

k=0
Xt*l . 27k(M71)dy

< M) [ )y 3 e

—00 k=0

o0

< M F(z).

Step 3. [|M;LF||Lir) < c| My F||L1(w): See [15, Lemma 1 in p.93].

Step 4. || M; F|lpmy < || MeF || w): We refer to [15, 1.5 in p.95]. We
put f(x,t) = F *{,(x) where £;(x) is the inverse Fourier transform of /(¢, \).
Then, for |z' — y| < rt, there exists 2/ < z < y such that

()]

We here note that t(d/dx)f = F * (t(d/dx)¢;) and (¢t(d/dz)l;)"(N) = £(t, N)
- (itA). Therefore, (t(d/dx) ¢;)" belongs to Ay 1. The rest of the proof is
same as in [15] if we replace F by Ay, .

These four steps complete the proof of the desired inequality. m

f (1) = fly, )] < rt

C. Dual Spaces of W_(H'(R)): We shall introduce a dual space of
W_(H'(R)). For f € C*(G//K) we define the complex Fourier-Jacobi
transform f as

) = / " H@)B(\, 1) Ad)dr (91)

(see (77), [10, (2)]). Then for real valued functions f,g € C*(G//K), we
can deduce the following Plancherel formula (cf. [10, Theorem 5.1)):

(f, ) 2®y,Ade) = C/_ f()\ +ip)g(A +ip)C (=X —ip) 'dA.

We suppose that f € W_(H'(R)). Since f(\+ip) = W, (f)~(\) (see (7))
and W, (f) € H'(R) by the definition, a dual space of W_(H'(R)) should
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be defined as the space consisting of ¢ such that g\ + ip)C'(=\ — ip)~!
is the Fourier transform of a function in the dual space of H*(R), that is,
BMO(R) (cf. [15, Chap.4]). We shall paraphrase this definition by using
fractional calculus on GG. First we introduce a generalized Riemann-Liouville
type fractional integral operator W;{: For ¢ > 0 and pu € C, W;(F)(y),
y > 0, is defined by

W0 = oy ity | 10)(choy = chra)##~dsho. (92)

['(u+ n)d(cho

where n =0if Ry >0and —n <Ru < —n+1,n=0,1,2,---, if Ru <0.
Similarly as in (16), if we set

Wi (f) = W§+1/z © Wiiﬂ(eﬂmf),
then we see from [11, §3] and [10, Theorem 5.1] that
(f, 92wy ndn) = Wi (F), WiH9A)) 2R an)

(cf. (?7?) for R, ) and equivalently,
GO +ip)C(=A—ip) ™ = e (W' (gA)) (=),

where the symbol “~” in the left (resp. right) hand side denotes the complex
Fourier-Jacobi (resp. the Euclidean Fourier) transform. Hence the following
definition of a dual space of W_(H'(R)) is quite natural.

Definition 8.7. We define
W_(H'(R))" = {f € Li,(G//K) ; W;'(fA) € BMO(R)}.

and || fllw_qrwyy- = W (FA) | saom)-
In this definition f € W_(H'(R))* is required to be W -smooth.

Proposition 8.8. Let notation be as above.
(1) For f e W_(H"(R)) and h € W_(H"(R))*,

/Gf(g)h(g)dg‘ < || fllw_ @y I1Pllw_r my)--

(2) All K-bi-invariant W, -smooth bounded functions belong to W_(H'(R))*.

Proof. (1) is clear from the above observation and the dual inequality
between H'(R) and BMO(R) (see [15. p.146]). As for (2), let f be a K-bi-
invariant W, -smooth bounded function on G. Then W, !(fA) € L*(R) by
(10, Lemma 3.3]. Since L*(R) C BMO(R), f belongs to W_(H'(R))*. m
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D. Real Hardy Spaces: In Definition 7.2 we introduced W_(H;fo(R))
as a subspace of W_(H'(R)). Here we shall define a subspace W_(H})gio(R))

of W_(H_,(R)), which corresponds to Hy o(G//K). Let A be a centered
(1,00,0,¢€)-atom on R and suppose that A is even. For 25 > 0, we define

Agy(2) = W (A(w = 9)) (w0) Azo) ™', = >0, (93)

where W, acts on s and W (F)(zo)A(ze)! = F if 2o = 0. Then, it fol-
lows from [10, Lemma 3.4] that A,, is also a (1,00,0,€)-atom on R. We
introduce a modified atomic Hardy space H};’O(R) on R as the space of all
Y i Ai(Ai gz (x) + Az, (—2)) such that Y |A\;| < 0o, z; > 0 and each A; is an
even centered (1, 00,0, €)-atom on R. Moreover, we define H;E’O(R)a if each
A; furthermore satisfies

IWE,

—Sa

(Dl <ML +1)7" (94)
Since each A, ,, is a (1, 00,0, €)-atom on R, it follows that
Hifo(R)a C Hyp(R) € H(R) € HY(R).
Definition 8.9. We define
W_(H5(R) = {f € Lin(G//K) ; Wi(f) € HZ,(R)}

loc

and give their norms by |Wi(f)||miw). Similarly, we define W,(H;gfo(R)a).

Proposition 8.10. Let notation be as above. Then

Hoo(G//K) € W_(Hy o (R)).

Proof. Let a be a centered (1, 00,0, 1)-atom on G supported on B(r). We
put A = Wy (a). Since A is also supported on B(r) (see Lemma 5.11), it
follows that

We(A) (@) < ce™(thr)*[|all

<
< e (thr)*|B(r)|"' (1 +7)" < e

Moreover, A satisifies the moment condition, because A~ (0) = a(ip) = 0.
Therefore, A is a (1,00, 0)-atom on R. We here note the following.

Lemma 8.11. W, (a ) = Wy (a),, on Ry, that is,
W (a,)(2) = Wi (Wi (a)(y — s)) (z0)A(z0) *, @ >0,

T
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where W, acts on s.
Proof. Let B = W, (a’, ). Since e " A(y), e " B(y) are even, we see that

(eB(y))” (\) = dg(N)
= a(N)ea(wo)
= (7" A(y))” (W)W (e77 cos As) () Awo) ™"
= Wi((e™A(y — 5))™ (M) (z0) Alzo) .

Hence, e " B(y) = W, (e ™ A(y — s5))(20)A(z0)~" and the desired relation
follows. m

Lemma 8.11 and the fact shown before the lemma yield that each a
belongs to W_(H}, ;(R)) and the norm is bounded by a constant independent
of a, zy. Hence, the desired result follows. m

Proposition 8.12. Let notation be as above. Then

W_(Ho(R)a) € Hi o(G//E).

Proof. Let A be an even centered (1,00,0,1)-atom on R supported on
B(r) and moreover, satisfying (??7). Let a = W_(A). Then Lemma 8.11
implies that A, (z) + Az (—z) = Wi(a) )(z). Therefore, it is enough to
show that a has a decomposition a = ), A\;a; such that >, |\;| < ¢ and each
a; is a centered (1,00,0)-atom on G, where ¢ is independent of A. Since A
is a (1, 00,0, 1)-atom supported on B(r) and satisfying (??), as in the proof
of Proposition 6.2, it follows that

la(z)] < eA(z) 'r (1 +r)7!

We put
ai(z) = cAx) " 'r " xp(z), > 0.
Then |a(x)| < a4 (x) and ay is a non-increasing function on R, with finite
o.¢]

L'-norm. Since a is supported on B(r), |B(s)|_1/ ap(x)A(x)dz is also

supported on B(r). For 0 < s < r, it follows from the moment condition
that

r)de = z)dx < c|B srt(1+r) L
Gt moA@ds = s [ Ads < B st
Since |B(s)| ~ A(s)s if s <1 and |B(s)| ~ A(s) if s > 1, it follows that

5 / a0(@)A)dr < ay(s). (95)
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This means that a, is an L' non-increasing denominator of a satisfying
(??). Then [7, Theorem 4.5] yields that a has a centered (1,00, 0)-atomic
decomposition a = ), A\ja; on G such that Y. |Ai| < [|ag||r1(adz). ®

Main relationship among real Hardy spaces defined in this paper (see
Definitions 4.1, 4.2, 5.2, 5.3, 5.8, 7.2, and 8.9) are summarized in the fol-
lowing diagram, where we abbreviate “G//K” as G. The relation between
H'(G//K) and HL, ((G//K) is still open.

Figure 1: Real Hardy Spaces
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