UNCERTAINTY PRINCIPLES FOR THE CHEREDNIK
TRANSFORM
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ABSTRACT. We shall investigate two uncertainty principles for the
Cherednik transform on the Euclidean space a; Miyachi’s theorem
and Beurling’s theorem. We give an analogue of Miyachi’ theorem
for the Cherednik transform and under the assumption that a has
a hypergroup structure, an analogue of Beurling’s theorem for the
Cherednik transform.

1. INTRODUCTION

Uncertainty principle for the Fourier transform on R was first formu-
lated as Heisenberg’s inequality and Hardy’s theorem in 1930’s. Then
various generalizations have been studied. Many of variants of uncer-
tainty principles follow from the following three theorems, which we
call master theorems for uncertainty principles.

Theorem 1.1 (LP-L9 Morgan’s theorem). Let a,b > 0, p,q € [1,00
a>2and >0 with1/a+1/8=1 and (aa)l/a(bﬁ)l/ﬂ > (sin(3 (8 —
1))Y8. If a measurable function f on R satisfies e*!” f € LP(R) and
eb‘mﬁf € LY(R), then f =0 almost everywhere.

Theorem 1.2 (Miyachi’s theorem). Let a,b > 0 and ab = 1/4. If a
measurable function f on R satisfies the conditions f(x)e‘””z € L*(R)+

! e
L'(R) and log C(1+|)\|)Nd)\<ooforsomeO<C,N<oo, then

—o0

f is a constant multiple of e %",

Theorem 1.3 Generahzed Beurhngs theorem). Let f € L*(R) and
N > 0. Then/ / ||f vl >l drdy < oo if and only
EEARETY 2
if f may be written as f x) = P(x)e ", where a > 0 and P is a

polynomial of degree < (N —1)/2.

LP-L7 Morgan’s theorem on R was obtained in [9] for p = ¢ = 0o and
generalized on R? in [1] for general p, ¢ € [1,00]. Miyachi’s theorem on
R was obtained in [8] and generalized on R? in [5]. Beurling’s theorem,
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which is the case of N = 0 in Theorem 1.3, was found by Beurling and
a proof was given in [7]. A generalization of Beurling’s theorem for the
Fourier transform on R¢ was obtained in [2]. These theorems are also
extended to generalized Fourier transforms F on non-Euclidean spaces
such as Heisenberg groups, semisimple Lie groups, Jacobi transforms,
Dunkl transforms, et cetera. We refer [1], [5], [12] and the references
therein. The common key to obtain extensions of uncertainty principles
for F is a slice formula, that is, the generalized Fourier transform F is
decomposed as a composition of the Euclidean Fourier transform and
the so-called Radon transform. By this formula these extensions resolve
into the Euclidean cases. For example, see §3 in [5] for a generalization
of Miyachi’s theorem.

In this paper we shall discuss analogous results for the Cherednik
transform on the Euclidean space a, which has no slice formula at
present. However, we have a sharp estimate of the heat kernel ob-
tained in [13]. Hence, by using the heat kernel to express the decay of
functions, we can reconstruct uncertainty principles for the Cherednik
transform. In the previous paper [3] the first and the second authors
obtained LP-L? Morgan’s theorem for the Cherednik transform. Here,
we shall obtain Miyachi’s theorem for the Cherednik transform (see
§3). As for generalized Beurling’s theorem, a substantial amount of
difficulty is anticipated. In §4 we shall obtain a partial result on Beurl-
ing’s theorem for the Cherednik transform.

2. HARMONIC ANALYSIS ASSOCIATED WITH THE
CHEREDNIK OPERATOR

In this section, we review on basic results on harmonic analysis asso-
ciated with the Cherednik operator, which are due to Opdam [10, 11].

Let a be a FEuclidean space of dimension d equipped with an inner
product (.,.) and R be a root system in a. Let W denote the associated
Weyl group, which is generated by orthogonal reflections s, € O(a)
along hyperplanes ker a for « € R. Let k = (ky)aer be a non-negative
multiplicity function, that is, k, = 0 and k, = kg if @« € W 3. Choose a
set R of positive roots in R and put a, = {z | Va € Ry, (o, x) > 0}.
We denote by a7 its closure and put

:% Z koo

aeRT

Let £ € ac. The Cherednik operator T¢ is the differential-difference
operator on a defined by

Tef(2) = 0cf (0) + Y hag— ooy {f(2) = f(raz)} = (0. O f (2),

aERT

where O is the directional derivative along {. For any &, n € ag,
[T¢,T,] = 0. Then there exists a neighborhood U of 0 in a and a
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unique holomorphic function (A, ) — Gy(x) on ac X (a+iU) such that
TeGr(z) = (A, §) Gi(z) (VEE€ a)
G (0) = 1.

For A € a, G, is real and strictly positive. Moreover, the following
estimate holds on ac X a:

(@) |Ga(2)] < Gry (),
(1) (b) |Ga(x)] < Go(z)emaxw (o),
() Golw)~ ] (14 (e2))el=r),
aERH‘,(a,x)ZO

where R is the set of positive indivisible roots and z* is the unique
conjugate of = in a; .
Let 1 denote the measure on a defined by

) dp(a) = ] [2sinn %7

acRt

2k

2 sinh dx.

Let f be a nice function on a, say f belongs to the space C°(a). The
Cherednik transform of f is defined by

FIO) = / £ (2)Gin(—2)dp(z).

When f is W-invariant, it can be rewritten as
FIN = [ @)F-a(-a)du(o)
at

where .
Fy(z) = W] Z Ga(w - ),
weW

which satisfies the same estimates (1) (b), (¢) of G on ac X a.

Let C%(a), R > 0, denote the space of C'® functions on a vanishing
outside the ball B = {z € a : ||z|| < R} and let H(a) denote the
space of holomorphic functions h on ac such that, for every integer
N >0,

sup (1 + [[Al)Ye FEON )| < oo

AEac
The Paley-Wiener theorem and the Plancherel formula hold for the
Cherednik transform F on a:

Theorem 2.1. F is an isomorphism of C%(a) onto H(a) for every
R > 0 and there exists a measure dv on a such that

[ F@)g-a)duta) = [ FrO)FgOr).
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Let p/¥ (z,y), t > 0, denote the WW-invariant heat kernel on a x a and
put hy(z) = [W|~'pl¥ (0,x). Then h; is the W-invariant function on a
such that

Fhy(\) = e~ tUNIP+1o11%)
Moreover, h; is strictly positive and satisfies for all ¢ > 0 and z € a,
ho(@) ~ 75 TT (L4 (o, @) )1+t + |, z)|)fthee?

046723

) % e~ Hlel?=(pt)— Iz

b

where v = 3"z ka-

3. MIYACHI'S THEOREM
We shall obtain an extension of Miyachi’s theorem for the Cherednik

transform. We define the measure dyx on a by

(4)  dpz = Maer+ | tanh(a, z)[*e H (1 4+ (v, z)|)FeTheat gy,
aERér

Here Il cr+|tanh(a, z)|?*= corresponds to the asymptotic behavior of

du(x) around z = 0 (see (2)), similarly, Haeng(1+|(a7 x)|) and HQGRJ

(1 + |(v, )|)k=T*2= correspond to the polynomial parts of Go(x) and

hy(x) with a fixed ¢ respectively (see (1), (3)). We put

L™(a) + L' (a,dgz) = {fi + f2; f1 € L™(a), fo € L'(a,dyz)}.

Theorem 3.1. Let a,b > 0 and ab = 1/4. Suppose [ is a measurable
function on a, satisfying

(A) f(x)hf/aa(x) € L™(a) + L' (a,dyx)

F(HNe N
(B) /logJr d\ < oo for some 0 < C, N < o0.
a C+IADY

Then f 1s a constant multiple of hyja,.

Proof. The first condition (A) implies that fh1_/14a = u + v, where

u € L*®(a) and v € L'(a, dyx) and hence, f = hyjsqu + hyijsqv. For the
first term, it follows from (1) (a) that for all A = £ +in € ac,

F (b pa) V)] < o / 10 (2) Gy ()1 ()

= cFhualin) = el
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For the second term, first we suppose that max,cw (wn, z) = (n,z) >
(p,x™) for z € a. Then it follows from (3) and (1) (b), (¢) that

| F(h1/4av) (N)] Sc/|U(x)|e_(/”fL”L)—allfL‘|2 H (1 + |(a, )|kt

czERO+

X (1+ [(a, ) )e D) () dr

SC/|U(I)| H (tanh | (v, 2)|) %= (1 + | (o, 2)])keFh2a+1

—_ +_ 2 2
o e=tllet=n/2al? g . ll? /40

SCHU“Ll(R,dkz)@b”n”Q-

On the other hand, if (n,2%) < (p,at) for =z € a, since Gy(x) is
bounded and e~ll#l” < ce=(0=™) for & € a, it easily follows that
| F (P /aav) (V)| < €l|v]l o1 my ey < e’

Hence, F(f)()\) is entire and it satisfies |F(f)(\)] < ee’l"l” for all
A € ac and (B). Here we consider F(z) = F(f)(2)e?l*I /C. Then it it
easy to see that F'(z) satisfies the assumption of the following lemma.

Lemma 3.2. Suppose F(z) is an entire function on C* and there exist
constants A, B > 0 and N > 0 such that

|F ()]
IF(2)] < AePIROIP gpg / logt ————dr < oo.
wo ()Y

Then F' is a constant function.

Proof. When d = 1, this lemma was obtained by [8]. Let us suppose
that d > 1 and put H(z,) = F(z1, 22, - , 24). Then there exists a £ C

R4 with positive measure such that for each (w9, 3, -+, 24) € E,
> H(zy)|
log* |—dx < 00.
[ o G e
Hence H(z;) is constant. Since F' is entire, F' is also constant. U
Therefore, F(f)(A\)e!”/C is constant and F(f)(\) = ce !IN*. This
implies that f(z) = chyjsa(2). O

Remark 3.3. The process of the above proof is same as in [4] for
the Jacobi transform on [0, o). Since the Jacobi function ¢$(z) sat-
isfies the Harish-Chandra integral formula (see [6], §3), for example,
oa(z) = [, e=PHER gL in the case of symmetric spaces, it follows
that |¢27(z)] < e )% if 2 > 0 and I\ — p > 0 (see [6], Lemma
11). Hence we can remove the term J],cr+(1 + [(o, z)[) from (4) (see
[4], §3). However, in our setting, it is not known that F)(x) satisfies

the Harish-Chandra integral formula. Hence the estimate (1)(c) is used
even if (A — p,z™) > 0.
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4. BEULING’S THEOREM

In this section we shall consider a version of Beuling’s theorem for the
Cherednik transform under some assumptions. As said in §1, several
generalized Beuling’s theorems are known for non-Euclidean Fourier
transforms F, and in each case, to prove the generalized Beuling’s
theorem, one uses the fact that F is compatible with a convolution
structure such that F(f x g) = Ff - Fg. Hence, in what follows, we
suppose a hypergroup structure on a,, that is, there exists a positive
function K(z,y,z) on a3 for which

() BB = [ @K (5.2)dn(2)

at
As well-known, the Jacobi functions on [0,00) and the spherical func-
tions on semisimple Lie groups satisfy this property. However, for the
Dunkl kernels, K are not positive in the generic case. By using the
kernel K (x,y,2), we can define a translation f,(x) by

/ F(2)K (2, y, 2)dp(z) = / FFOE(y)Fa(x)dv(N)
and a convolution f * g(x) by
[yl / £ (9)g: () duly / FFNFgN) Fa(x)dv(N)

for suitable functions f, g on a,. Especially it follows that
F(f=g9)(A) = FFA)Fg(A)
for A € a. Then the following lemma easily follows.

Lemma 4.1. Fort >0 and z,y € a,

e [ (b)) P (a)dn(o) = By (2)

at

Under the assumption (A) we shall prove the following.
Theorem 4.2. Suppose that f € L*(a) is W-invariant and satisfies

o [ @IF @A) < .
Then f = 0.

Proof. We use the same arguments used in the proof of Proposition2.2
in [2]. As in their first step, we see that f € L'(ay,dp) and Ff €
L'(a,,dv). We put g = f hy and show that g = 0. Since Ff €
L'(ay,dv), it follows that

/ Foly)et WP du(y) < oo
a4
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and since f € L'(ay,du), it follows that ||F ]|« < oo and thus,
(6) Fgl)] < e,

Lemma 4.1 and the fact that 7 (he)(iy) F(he) (y) = 1 yield that
[ i)

<[ [ RS R0 ()

[ [ R F R @ F R )il

:Ct// FfN) @I F f(y)ldply)
// y 2)||Ff(y)|Fy(x)du(z)dv(y) < oc.

Moreover, it follows from (6) and F,(z) < cel®l¥l that for each ¢ > 2,

[ [ sl

- /” RE /| L / IR @)

S/HfL‘ISR|g($)|</|y|201% A ”y”2dl/( )

v FSIE ) ) dne)
<cllgllosanm) + 4 » /| s R < .

We note that (6) implies that g admits an holomorphic extension to ac
and |g(2)| < cezl#I". Moreover, for all z € a, and € of modulus 1,

9(e%2)] < / FG)IIE w00 () ()
< / Fg(y)| Fangn (y)dv(y)
<o / Fo) | Faly)du(y),

where, in the last step we use the asymptotic behavior of F,(x), =,y €
a, obtained in [13], Remark 3.1. Since g and Fg are W-invariant, all
integrals over a, appeared in the previous arguments can be replaced
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by the ones over a. Then, by defining a function G on a as

6= [+ [ s ),

we can deduce that ¢ = 0 as in the proof of Proposition 2.2 in [2]. O

Remark 4.3. In order to obtain a generalized Beurling’s theorem for
the Cherednik transform as Theorem 1.1 in [2], we need to estimate
the following integral.

e—t||y||2/ M}r (z)dp(z).

L+ [z~

At present we have no idea to estimate this integral.
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