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Abstract. We shall give a simple proof of the weak type L' inequality for
the K-bi-invariant Hardy-Littlewood maximal functions on non-compact real
rank one semisimple Lie groups. For higher rank groups we do under an
assumption which holds for the most parts. And on SU(n,n+k) we introduce
a maximal operator defined by the characteristic function supported on a
cube, and show that the operator also satisfies the weak L' property.

1. Introduction.

The maximal theorem, the strong type LP (p > 1) and the weak type L'
inequalities for the Hardy-Littlewood maximal functions, was first obtained
in the Euclidean space, and then generalized to various spaces. For example,
homogeneous groups and semisimple Lie groups.

On homogeneous groups, an appropriate family of dilations is equipped,
and the Hardy-Littlewood maximal operator is defined by sulg |fl*XxB.r, where

r>

XB,r is a dilation of the characteristic function yp of the unit ball B. Since
the covering lemma, based on the so-called doubling condition, holds on the
group, we can prove the maximal theorem by using analogous arguments
in the Euclidean space. In this process the shape of the domain on which
the characteristic function is supported is not essential, and the fact that
dilations of the domain satisfies the doubling property is essential (see [4,
Chap.2]).

Non-compact semisimple Lie groups are not homogeneous groups. The
L? inequality was first proved by Clerc and Stein [1] for p > 1 and the
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weak type L! inequality by Stromberg [10]. In his proof, Stromberg obtained
deep estimates of the convolution structure, which are based on the Iwa-
sawa decomposition of GG, and carried out a little bit complicated argument.
Therefore, it is worth to simplify his proof or to find a new approach to the
maximal theorem. Recently, the second author [9] gave a simple proof of the
maximal theorem for the Hardy-Littlewood maximal functions associated to
the Jacobi transform. By specializing the Jacobi transform, his result gives a
simple proof in the case of K-bi-invariant functions on real rank one semisim-
ple Lie groups and his estimates are based on the Cartan decomposition of
G.

In this paper, we shall give a further simplified proof of the maximal
theorem for K-bi-invariant functions on semisimple Lie groups. The key
is, since we assume K-bi-invariance, that the pointwise estimate remarked in
[10, Remark 2] can be replaced by the estimate of an integral over K (see (x*)
in Proposition 3.1), which essentially comes from an estimate of the kernel
appeared in the integral formula of the product of zonal spherical functions
(see (x) in Definition 2.1). By this process we can simplify the arguments in
[10] which yield the estimate of o, however, we still apply [10, Lemma 2] for
our conclusion.

This inequality (%) was used by the first author in [7,8] for real rank one
case. For higher rank case we notice that most of all semisimple Lie groups
satisfy the estimate (%) and thereby (xx), so we can give a simplified proof of
the maximal theorem for these higher rank semisimple Lie groups. Actually,
except three simple Lie groups; SL(3,R), SL(4,R), and SO(3,2), all simple
Lie groups satisfy (%) (see Definition 2.1, Remark 2.2, and Proposition 3.1).

The organization of this paper is the following. In §2 we shall recall some
basic facts on the kernel form and we define a class of semisimple Lie groups
satisfying the estimate (x), which includes most of all semisimple Lie groups
(see Remark 2.2). Then, combining () and a sharp estimate of the volume
of the ball, we deduce the key inequality (xx) in §3. The weak type L'
inequality for the Hardy-Littlewood maximal functions easily follows from
this estimate and [10, Lemma 2] in §4 (see Theorem 4.1). In §5 we treat the
case of SU(n,n + k) and we introduce a cubic maximal operator, which is
defined by using the characteristic function supported on a cube, instead of
the unit ball. This operator is one of generalized maximal operators remarked
in [10, Remark 2] and thus, it also satisfies the weak type L' inequality. In
5.2 we shall give an another approach. We obtain the corresponding estimate



(x) inductively and thereby, without using [10, Lemma 2], we prove the weak
type L' estimate simply and directly (see Theorem 5.4). In this sense this
operator is a little better than the Hardy-Littlewood maximal operator.

§2. Kernel form.

Let G be a non-compact connected semisimple Lie group with finite center
and G = KAN an Iwasawa decomposition of G. Let X% denote the set of
positive roots for (G, A), A, the positive Weyl chamber of A, and G =
KCL(A;)K the Cartan decomposition of G. In what follows we identify A
with R™ and we denote the image of A, under the identification by Rf,. We
denote the dual space of the Lie algebra of A by F and we also identify F
with R"”. Each K-bi-invariant function f on G is determined by its restriction
on A as a W-invariant function on A, and thus, as one on A,. We abuse the
following notation:

flg) = flaz) = f(x) (g€ KayK,a, € Ay, x € Ryy).
Especially, the invariant integral on G' can be written as
dg = / A(z)dz,
[ fwis= [ S@A@)

where A(z) = ] (e — eo@),
aeXt
Let ¢, A € F, be the zonal spherical function on G. The kernel form of

the product of two spherical functions is given as

@)oaw) = [ oK (ey, ARz, wy € R

Then the Plancherel formula yields that, for all f € C*(K\G/K)

/n f(2)K(z,y,2)A(z)dz = /ff()\)¢A($)¢A(y)|O()\)|*2d)\
- /]__f()‘)/K(]S/\(awkay)dk|0()\)|*2d)\



Therefore, as a distribution sense, it follows that

K(2.9,2) = [ r@)6a)ex(2) 00| A )

and thereby

o(aza,’) < ola,) < o(azay) if ag,a, € Ay and K(z,y, 2) # 0, (3)
where o is the distance function on G/K (see [5]).

Definition 2.1. We say that G has a fine kernel if the kernel K(x,y, z2)
satisfies

(x) K(z,y,2) < ce”OWOPE (A 4 5(2))", 2,y,2 € Ry,
if o(as),0(ay),0(a,) > 1 and o(aza,’) > 1.

Remark 2.2. When G is of real rank one (n = 1) and not SU(1,1), the
desired estimate follows from the explicit form of K (x,y, z) obtained by [3,
(4.19)], so except SU(1,1) the real rank one semisimple Lie gorups have
fine kernels. For higher rank case, we recall the following Harish-Chandra
expansion of ¢, (z):

or(z) = e P > e D(sA, 2)C(sA). (4)

weW

Especially, if o(z) > 1, it follows from [5] that

Ioa(@)||[CN) | < ce™@ Ne F.

Here we assume that the C-function is integrable far from the wall. On
the wall the C-function has the singularities corresponding to short simple
roots. However, in (4) these singularities are canceled by taking the sum over
W, because the left hand side has no singularities. Especially, if o(z) > 1,
noting that ®(s\, z) is uniformly bounded and its [-th derivative on A has a
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polynomial growth of order [ on o(z), we see that 3, cy € ®(s\, 2)C(s))
is integrable on F and has a polynomial growth of oredr n —1 on o(x). This
means that if the C-fucntion is integrable far from the wall, then e?® ¢, (x),
as a function of ), is integrable on F and has a polynomial growth of oredr
n—1on o(x) > 1. Therefore, (x) follows from (2).

Let d be the dimension of G/K and n the real rank of G/K. When A is
far from the wall, the order of the C'-function is gives as

[C~ A+ A=, Al = 1.

Hence, if d > 3n, the C-function is integrable far from the wall. Therefore,

combining the previous observation for real rank one case, except SU(1,1),
SL(3,R), SL(4,R), and SO(3,2), all simple Lie groups satisfy the estimate
(%)-

§3. A key estimate.

We choose a coordinate of R™ so that p is identified with (p1, p2, -+, pn)
in Ry

p(x) = pra1 + paa + -+ + ptn = (p, ), p € Ry,
and moreover, we denote x € R" by
x:x0ﬁ+f, ro € R, T € R, (5)
p

where (p, ) = 0. Clearly,

A(z) < o) = 2ol 4 e R (6)

and, if = is far from the boundaries of Rf,, then

A(z) ~ 202, (7)

where the symbol ” ~ ” means that the ratio of the left hand side to the
right hand side is bounded above and below by a positive constant.
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Let B(r), r > 0, denote the ball with radius r centered at the origin:

B(r)={g9e€G; o(g) <r}

and |B(r)| the volume of the ball. We define a K-bi-invarinat function 7 on
G by

1

"9 = TBG )

(9 € G). (8)
Lemma 3.1. Let S,,_; be the unit sphere in R™ and dw the surface measure
on S,_1. We fix ¢ > 0. Then, for » > 0
/ e—ellPlr—pre)) gy o (1 4 )~ (-1/2,
Sn_lﬁRTVLV
Proof. Let 6 > 0 be a sufficiently small constant and Sﬁ’fl the intersection of
Sn—1 and the cone defined by C,; = {z € Ryy; [|plll|z|| — (p, z) < |lp|l||l=] }

Then the integration outside of Sﬁ’fl is dominated below and above by
e~llellr - As for the integration over ngl, we see that

/SP(; efc(HPHT‘*(pJ‘w))dw ~ / e*CHP”T(l*COSQw)dw

n—1
_ 2
~ / o—cllellro g

~ (14r)~=D2 g

Lemma 3.2. When r > 1,

IB(r)| = / A(2)dz ~ lelrp(n=/2,
o(az)<r

Proof. When the real rank of G is one, the estimate is obvious from (6). We
suppose that the real rank of GG is greater than one.



B = [ AG:

< / 02002 1,

llzlI<r

_ / o~ 2pllll =, 2ol .,
lzll<r

= /r (/ 6—2(|Ip|t—(p,tw>)dw> e2llelltp(n=1) 14
0 Sn_lﬁR;V

~ / " 2elitp(n=1)/2 g4

0
o~ 2lolirp(n=1)/2

Let 6 > 0 be a sufficiently small constant and Sﬁfl the surface domain defined
in the proof of Lemma 3.1. We put D’ = {z =tw ; r—1/2 <t <71, w€
SP Y. Since D?? < B(r) and D?? is far from the boundaries of R, it
follows from (7) that

B) = [ Al
o(az)<r
> c/ e2(07) 1
D&
= c/r (/ 62(|pllt<p,tw>)dw> e2llplltp(n=1) 34
r—1/2 \Js*2,

> ¢ / 2oty (n=1)/2 gy
r—1/2

~ el -n/2 g

Proposition 3.3. We suppose that G = SU(1,1) or G has a fine kernel and
0 < < L. Then, for all a,,a, € Ay,0(aza,") > 2

(%) /K |B(o(azka,))|  dk < Cef2p(w)ef(\lpll\lwfyll%p,mfy))||x —y|" L

In particular, for all a,,a, € A}



/ T(o(agkay))dk < ce=2@ = (Plle=vl=(a=) (1 4 ||z — y||)n~!
K

Proof. Since o(aza,') > 2, if o(a,) <1, then o(a;) > 1 and

|B(o(aka,))| ™ ce 2elle—yll ||z — )|~ (n-1)/2

IA N

ce2lPlllell < pe=20() o =(lollllo—yll—(p2—y))

On the other hand, if o(a,) < 1, the same argument yields (x%). Thereby,
we may assume that o(a,),o(a,) > 1.

When G = SU(1,1), we can obtain (xx) from a direct calculation (cf. [7,
Lemma 2.5]). Hence, we may assume that G has a fine kernel and thus, we
can apply (x) to prove (k):

/K |B(agka,)| " dk

_ /A+ |B(o(a.))| 7 K (2, y, 2)A(2)dz

< ce(paty) / e~ 2ellll]| ||~ (=D/2)| 5| =1 l02) g
(asa; ") <o()<olar ay)

_ oty / Tl ot 3y ( / 62(|p||t<p,tw>>dw> 0
lle—yll Sn—1NRY,

llz+yll
~ e Pty / o lolitn—1 g
llz—yll
—(px+y) —llpllllz—y n—1
ce Y llelll H||x_y||

ce=200) o= (ollle=yl=(p2=u) || _ o |n=1.

Next we shall estimate 7. When o(a,a, y 1) > 2, the assertion follows from
(#*). Hence, we may assume that o(a,a;") < 2. If o(a;) < 1, then the right
hand side is bounded. Since 7 < 1, the desu"ed estimate is clear. Therefore,
we shall consider the case that a(ax 1) <2 and o(a,) > 1.

We fix an element ay in A such that a(ao) > 4. Since T is continuous as
a function of x, o(aza,') <2, and o(agaza,’) > 4 — 2 = 2, it follows that



/T(axka;)dkw/ T(aoazka, " )dk
K K

< CefZ/J(erlOgao)ef(llp\lllwrlogaOfyIIf(p,erIOgaOfy))||x +logag — y||" !

~ ce 2@ ellle-yl~ba=9)) (1 4 ||z — y|)m L. O

For the real rank one groups we have a little bit better estimate, which
will be used in §5.

Corollary 3.4. We suppose that G is of real rank one. Then for any ¢ > 0

/ e ZHapolaskey) g < 20T pleylif g — y| > 2.
K
Proof. Since 7(g) ~ €219 it follows that

/K e (2Hepolackay) gp. < /KT(a(axkay))dke’ep”(“’”“;l) < e Fremerleyl O
Conjecture. The estimate (%) in Proposition 3.3 holds for any semisimple
Lie groups.

§4. Weak type L' inequality.

The Hardy-Littlewood maximal operator on G is defined by

Mysf(g) = sup wﬁ [, 1fahan, gec

r>0

for f € L'(K\G/K). We define the local (resp. global) maximal operator

MYy, (resp. Mj;;) with supremum restricted to the balls of redius 0 < r < 1
(resp. 7 > 1). Then we easily see that

Mupf(g) < My f(9) + My f(9), g€G

and



My f(9) < 7+f(9),
where 7 is defined by (8).

Theorem 4.1. We suppose that G = SU(1,1) or G has a fine kernal. Then
the maximal operator My, is of strong (L?,LF), 1 < p < oo, and satisfies
the weak type L' inequality: for any € > 0 and f in L'(K\G/K)

/{mGR"W i Mprf(z)>e}

Proof. Clearly, My, is of strong (L*, L™), so we may suppose that p < oo.
We shall prove the theorem for My, and Mj;; respectively. As for the
local maximal operator MY, we can apply the same argument used in the
Euclidean case, and we can deduce that MY, is of strong (L?, L?), 1 < p < oo,
and it satisfies the weak type L' inequality.

As for M};;, since 7 belongs to LF for all py > 1, [1, Lemma 2] yields
that M};; is of strong (L?,L?), 1 < p < oo. When p = 1, it follows from (1)
that

M (@) < er xf1(e) < [ ([ rlaska,)dk ) [F@IA@)y

Here we take a sufficiently small 6 > 0, and we devide the domain of inte-
gration as Rf, = Dy U D5, where

Di={yeRy; |2 -9l <d(xo—yo)}
and Dy = Rfj, — D;. On D;, we note that

. 1/2
1z — g1

5 2
-y
o = o= oo = ol (14 LI gy g I

2|x0—y0|'

Therefore, since 7(a,kay,) < T(aga,"), it follows from Lemma 3.2 that
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C/ e 2oyl — o ||~ =172 £ () | Ay)dy

Dy

< ¢ / e=2lel(zo=yo+E=7I/2lzo=yoD) | ) — o 1=(0=1)/2| £ ()| A (y)e =20V dy
Dy

= H1>T<F1(ZU),

IN

where * is the convolution on R" and

Hi(z) = e 2elzol 31 /200 | 1 =(-1/2 By () = | £(y)|A(y)e 209,

On Dy we recall that ||Z — g|| > 0(zo — yo). If 9 — yo < 0, then ||p||||x —
yll = (p.z =) > llpllllz — yll, and if 2o — yo > 0, then

lollle = yll = (o.x—9) > lolllle -yl (1_1/J1+M)
> il =yl (1 = 1/VT59)

= dllpllllz —yll, 0<d"<1.

Therefore, by using the ineqaulity in Proposition 3.3, we see that

0672<p,m>/ 6*(|Ip\|llmfy\|f<p,wfy>)||x — " Y f ()| A(y)dy
Do

ce—20) / e~ lelllz=vll)1 22 — o ||" =Y £ () | A(y)dy
Do

= ce 2P L5 Fy(x),

IN

where

Hy(x) = e "INz | Fy() = | (y)|Aly).

Since / e~ Pzl z||" = dx < oo, it follows that
R”
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HyiPy(a)de < [ 1) A)dy = el f]).
R" R},

Hence, we have deduced that

T |f|(x) < cH1%Fy(x) + ce_2<p”">H2>T<F2(x) = Ji(z) + Jo(x).

In order to obtain the weak L' estimate for M} it is enough to show
the estimate for each J; and J, respectively. As for .J; we can apply Lemma,
2 in [10] and as for J;, since

il = [ e HyiFy(a)Aw)da < el £,
W
it satisfies the weak L! inequality.
This completes the proof of the theorem. O

§5. A cubic maximal operator.

In this section we shall define a cubic maximal operator M in the case of
SU(n,n+k) and we shall prove that M satisfies the weak type L' inequality
as in Theorem 4.1. This result follows from Strémberg’s criteria in [10,
Remark 2], however, we shall give an inductive and simple proof. We retain
the notations used in [5].

5.1. Let G =G, = SU(n,n+k) (n € N,k € NU{0}) and G,, = K,,A,N,,
the Iwasawa decomposition of G,,: A, is the set of all matrices of the form

On,n diag(tla t27 e atn) On,k
a = exp Hy, H, = | diag(ty,ta,---, 1) Onn On
Ok,n Ok,n Ok,k

for any t = (t1,t9,-+-,t,) € R" and K,, = S(U(n) x U(n+k)). As in §2, we
identify A,, and F,,, the dual space of the Lie algebra of A,, with R". If we
define a; € F,,, 1 < i < n, by o;(H;) = t;, then

Yt ={a;,20; (1<i<n),a;ta; (1<i<j<n)}
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and

2k a = q;,
mey = 1 o = 2067;,
2 a = o; * o;.
where m,, is the multiplicity of a. The weight A = A,, and p = p,,, half the
sum of the positive roots, are respectively given as follows:

Ant) = IT (e = e7®) = o)t

acXt
where
o(t) = n(2k+1) H (sinh 2¢;)?F sinh 2t; = gn(Zk+1) H Aq(t;)
i—1 i=1
w(t) = n H COSh 2tz — COSh 2t]) = 2n(n71)/2 det (COSh tZZ(Jil)) )
i<j
and

pn(t) = (E+14+2n—=1)t+(k+1+2(n—2)ta+---+ (k+ 1),
= pn,ltl + pn,2t2 + -+ pn,ntn

We note

p1=piq=k+1

We denote the zonal spherical function and Harish-Chandra’s C'-function
of G,, by ¢7(g) and C™(s) (s € R™) respectively. For their explicit forms we
refer to [3] and [6]. Then Hoogenboom [6] deduced the following reduction
formulas: For t = (t1,t9,---,t,) and A = (A, A, -+, Ay) € R}y,

A det (4,(t))
LA =2 w(®)

(1) =

and
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CTAM)C () -~ CT (M)
A
(—1)n(=1/2 det (A7)

cm(\) =

where

A:(—l) n(n—1)/292n(n—1) ﬁ(k+]ng )

We now introduce a cubic maximal operator M¢ on G. Let D(r) (r > 0)
denote the domain in Rjj, defined by

D(r):{t:(tlat%"'atn)ER%V; t1+t2++tn§’r}

and x, the characteristic function of D(r). We regard x, as a K-bi-invariant
function on G. Then the maximal operator M is defined by

Mcf(g)zsgp xr x| fl(9), 9€G

1
r>0 [D(r)|
for f € LY(K\G/K).

5.2. In order to obtain the weak L' inequality for M, we shall apply the
same process used in §4 (see 5.3 below). In this process we need to estimate
the following integral: For s € R,z,y € R,

/ coshy (agkay,) =2 dk,
K

where cosh,, is the K-bi-invariant function on G,, defined by

cosh,(a;) = cosh(ty) cosh(ty) - - -cosh(t,), t=(ti,t1,---,t,) € Ry

In this subsection, applying a result in [2], we shall estimate the integral.
We first calculate the spherical Fourier transform of cosh;,**.

Lemma 5.1. For any € > 0 and A = (A, Ag, -+, \y) € R},

(Coshf(’”J“(”fl)“))A () = (Coshfz(lerE))A (A1) -+ (coshfZ(lere))A (An)-
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Proof. For 7,72, -, v, > n+ k, we put
F(t) = (cosht;) ™" (cosh ty) ™7 - .- (cosh t,) ~*™.

By definition, the spherical Fourier transform Fof Fis given by

PO) = [ F@)éio)dg = [ F@einA 0t
| v
[Tic; (A2 =A%)
x / (cosht,) 27 - (cosh £,) 2™ det (o, (t;)) o (£)w(?)dt.

We here note that

det (¢, (t;)) w(t)(cosh ;)" (cosh ty) ™72 - - - (cosh ¢,,) 727
= det (dy,(t;)) - det (cosh t?(j_l)) (cosht;)™2™ ... (cosht,)~*"
= Z Sgn(0)¢AU(1) (tl)qs)\g(z) (tZ) e d)/\o(n) (tn)

o€Sy
x Y sgn(o)(cosh t1) X W=D=2m . (cosh ¢, ) Ao (W72

o' €Sn

When the real rank of G, is one (n = 1), the spherical Fourier transform
F,(\), A € R, of F, = cosh™* is given by

I'(s + (A = p1)/2)T (s + (=i — p1)/2)
['(s)? ’

~

E(A) = (cosh )" (1) =

where s > p; =k + 1 (see [2, p.120]). Especially, if v — 3 > py, then

vaﬁ()‘)
- /Qsi(t)(cosh )28 (cosh t) " 2TA (t)dt
C(y =B+ (N=p1)/2)T(y— B+ (—iX — p1)/2)
[(y —B)?
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Py = =D+ A= p)/2T(y = (n = 1) + (=iA = ) /2)
Py —(n-1))°

(4= Bk = p/2) +¥)
B

= BB TI (40 =B —k—p/2)* +X2),

where
2—2(n—1-p)
(R e

Therefore, since o(t) = ¢ [] A1(), F(\) can be written as
i=1

B =

B
Hi<j ()\ZZ - )‘3)
xS sgn(o) (cosh === (n,)) -+ (cosh =20 ==D) " ()

n—a’ (1)

x > sgn(o’) 7H (4(’)/1 —o'()+1—k—p/2)*+ )\3(1))

o k=1
n—o’(n) , ,
!
<o (40 =o' () + 1=k = p1/2)° + X)) -
If vy = v = -++ =1, =, then the last sum is equal to
n—o’(1)
> _sgn(d’) (4(7 —o' () +1—k—p/2)" + )\3(1))
o' k=1

Ay =o' (n)+1—k—pi/2)* + Ai(n))

X
—

k=1
n—1
= ;sgn(T) kl:Il (4(7 —1+1-k—p/2°+ )\3(1))
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-2

3

1:[( —(n—1)+1—k—p/2)? +)\3(n71))-1
= det (ﬁ (4(7 (n—i)+1—k—ﬂl/2)2+)\§)>
~ -,

Finally, letting y =n+k+e=p; + (n—1)+¢, € > 0, we obtain the desired
result. O

As an application of this lemma, we can deduce the following inequality.

Proposition 5.2. Let notation be as above. Then, for z,y € R},

/ COShn(axkay)_Qp"’ldk' < 66—29(90)6—2(\902—2/2|+2|:v3—y3\+~~~+(n—1)|xn—yn\)‘
K

Proof. We easily see that, if ||z|| < 1, then cosh,(a,azka,) ~ cosh,(aka,)
and e 2P(3+%) ~ ¢=20(*)  Thereby, we may assume that z,y are far from the
boundaries of R},. It follows from (1), Lemma 5.1 with ¢ = n — 1, and the
Fourier inversion formula for G; that

/ cosh,, (a ka,) " dk

_ /qsA Jéa(y) (cosh, 2 +20 1) (N)|CA)[2dA

/ / det (¢x, (z;))  det (b, (y;))
[Tic; (A = AD) i (AZ = A7)

X (Coshf (’”Jr(n*l))) (Ap)--- (COShl 2prtn= 1)))/\ (An)

Ci(A) -G () |7
d\y -+ -d),
‘ Hz<y( _A?) '
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= Zngn o)sgn (o)

/¢A1 O (Tan)) On (Yo (1)) Oxn (Yo (m))
X (cosh1 (or+(n= 1))) OVIERE ((:oshfZ(leWl)))A (An)

|C1(>\1)|72 CIAR) [P dA - - dy

1

= (y Z Z Sgn Sgn ) /[( C()Sh1 (ama(l) klayc,/(l) ) —2(p1 +E)dk1
1

X oo /K cosh1(axo(n)klaya,(n)))_Q(“*E)dkl.
1

\

For © = (%1, 29, -+, x,) and y = (y1,Y2, "+, Yn), We put

w; = max(z;,y;), v; = min(z;,y;).

Then, Corollary 3.4 yields that

/ cosh, (a ka,) " dk
K
1 1
—
w(z) w(y)

(coshy, u) 27 (coshy, u) 2D (cosh,, v)2* V.

Here, we recall that x,y are far from the boundaries of € R}, and thereby

1
(m) (y)

—2((n—D)z1+(n—2)z2++2n_1)

(cosh,, )2V (cosh,, v)?Y

—2((n=Dy1+(n—2)y2++yn-1)

< e
X672(n7 )(ul+“2+"'+“n)62(”*1)(U1+U2+“'+Un)
< ce~Mn=Nur+(n=2uz+Fun—1) o =2(|22 —y2[+2[x3—ys[+-+(n—=1)|2n —yu)
Hence

/ coshy, (a ka,) " dk
K

C(COShn U) —2p1 6_4((n_1)ul +(n—2)u2+"'+un71)6—2(|:1:2 —yo|+-t+(n—1)|Tn—yn|)

IAINA

co=20(0) o= 272 —ys| +2|r3—ya |+ +(n=1) n —yn )
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This completes the proof of Proposition 5.2. 0.

5.3. Now we shall obtain the weak type L' inequality of the cubic maximal
operator M¢. First we note the following.

Lemma 5.3. Let notation be as above. Then

|D(T)|Xr(t) < C(COShn t)*2pn,1 (7" > n2),

Proof. Let D'(r) be the domain in R}, defined by

2n—-1)+1 < t < r—n(n-1),
2n—2)+1 < t, < 2(n-1),

3 S tn—l S 47

1 < t, < 2

Clearly, D'(r) C D(r) and |t; —t;| > 1 if t € D'(r) and i # j. Hence,

LG RGL

r—n(n—1) 2(n—1) 2
= c/ eZP"’ltldtl/ e2Pn2t2qt, . . / e2Prmntn gt
2(n—1)+1 2(n—2)+1 1

= et

Since e *"x,.(t), s > 0, is dominated by cosh, *(¢), the lemma follows. O

We note that
(COShn t)_an,l < Cef2p(t)672(t2+2t3+---+(n71)tn)
and w(t) = e~ 22+t +n=Dt) gatisfies the contitions (I) and (II) in [10,
Remark 2]. Therefore, M¢ satisfies the weak type L! inequality as remarked

in [10]. Here, we shall give a simple and direct proof based on Proposition
5.2, and we don’t use Lemma 2 in [10].

Theorem 5.4. The maximal operator M is of strong (L?, LF), 1 < p < oo,
and satisfies the weak type L! inequality: for any € > 0 and f in L'(K\G/K)
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{zeRY,; Mo f(x)>e}

Proof. We note that the L' norm of y, /|D(r)| equals 1 and cosh %P1 +2(n=1)
belongs to LP° for all po > 1. Hence, as in the proof of Theorem 4.1, it is
enough to show that a global part of M satisfies the weak type L' estimate.
Proposition 5.2 and Lemma 5.3 yield that

1
syﬁpr IR | f](z)

ccosh, 2% x| f|(x)

ce‘%(m)/ 6_2("”2—?/2|+2|"33_y3|+"'+(n_1)‘x"_ynD|f(y)|A(?J)dy

IN

IN

< e @ H ().

Here o' = (3,73, ...,,) and, as a function on R" !,

H(z') = /RE*’ |fA](y1, 2")dyy,

where E(z') = e 2z2l2lesl+-+=Dleul) and « is the convolution on R" 1.
Clearly, ||H|[p1 @) < [|E||Li@s)l|flli. We denote p = py + p/, where
po(z) = pnix1, and thus, p(z) = po(x1) + p'(z'). Since

/ A(x)dx
{wERY, ; e~ H(@)>)}

/ / 6290(501)(13:1 20" (@) 0!
Rr-1 {21>0 ; e=200=1) S\ /e=20" (") H(2!)}

_ H(a') ||f||1
_ /R — o' <

IN

the weak type L' estimate follows. O
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