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ABsTRACT. In the first part of this paper, we obtain sharp upper and lower bounds for
the heat kernel associated with Jacobi transform. In the second part, by using the sharp
estimate of the heat kernel, we get some analogues of Hardy’ Theorem for Jacobi transform,
which asserts that a even function f on R and its Jacobi transform can not both be ”very
rapidly decreasing”.

1. INTRODUCTION

Jacobi functions ¢ (t) of order (o, B)(a # —1,—2,...) is the even C'*°-function on

R which equals 1 at 0 and which satisfies the differential equation
(L+ X+ (a+ B+ 1)%)¢a(t) =0, (1.1)

where
2

d d
L= proi ((2ac+ 1) cotht + (2ﬂ+1)tanht)£ (1.2)
The functions ¢y (t) can be expressed by using Gaussian hypergeometric function as
1 | . N
oA(t) = F(5(p—iA), 5(p+id);a + 1; —sinh™1),
where p=a + 3+ 1.
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In this paper, we obtain the sharp upper and lower bounds for the corresponding
heat kernel, i.e. the kernel of e~*’, when o > 3 > —%. For certain discrete values of
«, (3, L has an interpretation as the radial part of the Laplace operator on rank one
symmetric space, the sharp estimates of the corresponding heat kernel was obtain in
[4], [7] and [1].

In the second part we discuss the analogue of Hardy’ Theorem for Jacobi trans-
form. The Hardy’s theorem|[8] asserts f and its Fourier transform Ff can not both
be ”very rapidly decreasing”. More precisely, if |f(x)] < Aexp(—alz|?) and |f(y)| <
Bexp(—f|y|?) and af > %, then f = 0. Here we use the Fourier transform defined by

Fiw = [ " f(w)e e,

M. G. Cowling and J. F. Price[3] get an LP-version of Hary’ theorem which says: suppose
that 1 < p,q < oo and one of them is finite. If a measurable function f on R satisfies
1e2® f (@) || Lo (r) < oo and ||€”® f(z)|| Lr ) < co and ab >  then f = 0 almost everywhere.
Recently, an analogue of Hardy’s theorem and Cowling and Price’ theorem were
established for some Lie Groups (see [2], [5], [10] and [11] ).
In this paper, we will establish the corresponding theorem for Jacobi transform. By
using the sharp estimate of the heat kernel, we we get a more precise result (Theorem

4.3) than what obtained for some Lie Groups.

2. NOTATIONS AND PRELIMINARIES

We have the following elementary estimates(see [9]):

Lemma 2.1. Assume that o > (3 > —%, A=p+v, u,v € R. Then

| Putiv] < |pi|

x| < C(1 4 t)etlI=r), for allt > 0,\ € C.

The Jacobi transform is defined by

) = / OINOINOL (2.1)
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where

A(t) = (2sinh )% (2 cosh ) 2P+, (2.2)

Let S denotes the set of even rapidly decreasing function on R. We have the inversion

formula(See [6] and [9]):
Lemma 2.2. Fora> 3> -1 and a # —%, f € (cosht)™"S(r > p), t € R, then
1 [,
10 =5 [ TR Ol

where c—function c¢(X) is defined by

207D (4 1)T(3N)

c(A) = . 2.3
RS NG R 9
Let LP(RT, A(t)dt) (1 < p < o) be the set of even functions on R such that
= ([ roram ) <.
The space L™ (Rt, A(t)dt) is defined in the obvious way.
For f € (cosht)~"S(r > p), the Jacobi transform f — f has a factorization
f=F(Fy), (2.4)

where F is the classical Fourier transform and f — F} is the Abel transform. The
fractional integral operator is used to give the inversion of the Abel transform. Let

Rp >0, 7> 0, the integral operator f — W/ f is defined by
1 oo
Wif(s)= TG0 / f(t)(cosh 7t — cosh 7s)*~'d cosh rt. (2.5)
K Js

Then W has analytic continuation to all complex p: if n=0,1,2,...,, Ry > —n, then

N G L G
Wif(s) = F(u+n)/s d(cosh 7t)"

f(t)(cosh Tt — cosh7s)* T Ldcoshrt.  (2.6)
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We have the following facts

W, W, =Wi,,, (2.7)
dn
=)t 2.

Wi, = (=1 d(cosh Tt)" (2.8)

The Abel transform F; can be expressed by

atl 1
Fp=2Yig 2T (a + 1)W§_ﬁwg+%f, (2.9)
and it can be inverted by

f=27%"373(D(a+ D)TIW2, W, s(Fy), (2.10)

3. HEAT KERNEL
By the use of Jacobi transform, one has
et f=hyxf

for all t > 0 and f € L?(A), where * denote the convolution associated with Jacobi

transform and h; is given by

1 o0
@) = 5o [ e @) 2 (3.1)
™ Jo
Let
2, 2 1 2, 22
)= F et )N () = P e O 3.2
ge(w) = F7I( @) = = (3.2)

then by (2.4) and the inversion formula (2.10) of Abel transform, we have
8a_L1 1 _
he =273 273 (D(a + 1)) 1W3ﬁ_%wia+ﬁ(gt). (3.3)

In the following we will use the following simple facts: there are positive constants

C1 and Cy such that for all z, h > 0 we have

h(z + h)

h($+h) r+h
YWiz+h '

r+3h < cosh(z 4+ h) — coshz < C
e < cosh(z + h) — coshx < 21+$+h6

(3.4)

Now will prove the following sharp estimate for the heat kernel hy(z).
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Theorem 3.1. Fora > (3> —%, o # —%, and t > 0, we have
2 m2
hy(z) ~ t= e PP (1 4 1) 3 (1 + ). (3.5)

Here f ~ g means there exist positive constants C1 and Cg such that Ci1g < f < Cayg.

We divide the proof in four steps:
Step 1. Let K, (t,z) = W' (g:)(z), then we have

Lemma 3.2. Forn=20,1,2,...,t>0,
2
Ko(t,y) ~ 1772 P (L 4 )" (1L 4 ). (3.6)

Proof. By (2.8),

dn 1 2 y?
K,(t,y)=(-1)" —Pt=),
(1) = (1) G (e )
Let
1 2 y2
K, (t,y) = — e Pt T o, (L, y).
(t,y) \/m(%) € an(t,y)
It is easy to see that
2t doy,
n t, - N n t, - . - t?
g1 (t,y) Smhya( y) by dy( y)

with ag(t,y) =0, a1(t,y) = y/sinhy. Then just as in [4], we have
am(t,y) ~ e (1Lt y)(L+y+6)"7

This completes the proof of (3.6).
Step 2. We have

Lemma 3.3. Fora> 3> 1,1t>0,

1 y2
Wy 5(00)(y) ~ 1O D et =Py (1 4 g 4y P=1(1 4 y). (3.7)
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Proof. Since the proof is similar to that in [4], we only give a sketch. The case of
a — (3 be an integer has been proved in Step. 1. Now we assume that « — 3 =n — a,

where 0 < a < 1, then
Wla—i—,@(gt) = W;Win(gt) = WI(KTL)

then by (3.6), and the fact sinhy ~ y(1 + y)~'e¥, we have

1 00 dcoshy
1 = K, (t
W_a_h@(gt)(x) F(CL) /:c ( 7y) (coshy — cosh x)l—a,
~ t_”_%e_p%_("_l)m_%ll (3:8)

where
* whh? dh
I = (D=0 (g b (z + h 3.9
! /0 ¢ (L4t +ath)™ o+ )(cosh(x+h)—coshx)1_“ (39)
Now we only need to prove
I ~ TR (1 4t o) (1 4 1) (3.10)

First by (3.4), and use the simple inequalities 1 + z+h+¢ < (1 +x +t)(1 + h) and
l+z+h<(1+2z)(1+h), we have

I < CelM1I2 (1 4 g4 )11 4 2) 1,

where
> a whth? 1 T+h
I, = —(n—f)h— 2200 | pn agp,
2 /0 c (1+h) h,l—a(1+a:+h,)
ft>1+x,

> atl 1

[2§/ e—("—%)h(1+h)”hl_adhgC~t“(1+x+t)—“.
0

Ift<l+ax,and x > 1,

> 2zn 1 a —a
IggC/O e hl_athC’t (14+z+1)
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Ift<l+xandz<1,

12<o/

< “h R,
o2y / et M) /
=Ct* ~Ct*(1+z + t)—“

— h“ dh

—a

Now we have proved that

I < Celm1 o201 4t 4 )" 9711 4 1)
On the other hand, by (3.4), it is easy to see that

I > CeWHD2 (1 4 g 4 )" 1(1 4 2)1 1)

where

> zhth? 1
I = / O (i ).
0

We have the following estimates for I5:

I, > / R
0
~ 141+ z/Vt+2Vt(n — a)) ™2

and

I Z/OO Sk S gy,
0

Vi
2/ e
0

~ 29t%/2(1 4 \/5(2% tn—a)C

2zh
it

(3.11)

(3.12)

(3.13)

(3.14)

Just as in [4], we let A1 = {(z,t) : 0 <z < landt > 2%}, Ay = {(z,t): 1 <z <t

Az = {(z,t) : 0 <t < wandt < 22}. Then {(x,t) : z,t > 0} = A; U Ay U A3.

(.T,t) € A17

"1+ z/Vt+2Vtn —a)) 22 ~ 214+ 8) "%~ (1 + )% (1 4+ + )72

For
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And for (z,t) € Ax U As,
w2 (1 + ﬁ(% tn—a) "~ (1+2)"(1+z+t)"°
Then from (3.12), (3.13) and (3.14) we get
I > CeT1H0Te (1t 4 gm0 (1 + 1), (3.15)

And from (3.11) and (3.15) we get (3.10).
Step 3. Let Ju(t,y) = W2, W2, 5(Fn,)(y), then
Lemma 3.4.

1 ( 1
Vart 2t

Proof. Since

Tnt,y) ~ o Pnertt—de—(omBrY (] g 4 y)r=PHnol(1 L) (3.16)

d 1 d 1

dcosh?y) - (_2coshtdcoshy) - (2cosht

W2 = (- wi)"

It is easy to see that

Jn(tvy) - (COShy)zn 1W a+pB— I(th)(y)+ (COShy)zn 2W a+6— 2(th)( )
an
T feoshg)n T Whaigon(Fu)(y)  (3.17)
for some positive constants a1, as, ..., a,. Since

— F
(COSh y)zn_k W—a—i—,@—k( ht)(y)

~ gy e T Ay T ()
So from (3.17) we have
2t 2t
Jnt7 ~ (a 7’”_1—‘—@ 7’”_2_‘_..._'_0}”
1 1 bt a— n a— n—
— (2 ) Btn ,—p't—Y7 —(a—F+2 )y(1+t+y) B+ 1(1+y)
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Then the (3.16) is followed from the fact that

( o ot
a, —_— —_—
“"(+t+y) (1+t+y)

Step 4. Now we can prove the final result (3.5). Let 8+ % =n—a,with0<a<1,

)n—1+a2( )”_2+---+anNC’

then
hi(z) = WaW2, W2, 5(Fn,)(x) = WZ(Jul(t,-))(2)

Using Lemma 3.4, similar as in Step 2, we have
1 o d cosh 2y
h = — I (t
() I'(a) /m n(t9) (cosh 2y — cosh 2z)1-@
~ t—a—i—,@—n—1/26—p2t6—(a—,3+2n—2)m—fl—ili

where
o0 22 + h)dh
7 = —(a B+2n—2)h— h+h 14+t e~ B+n—1 (.’17
! /0 (I+t+o+h) (cosh2(z + h) — cosh 2x)1~
Since
1 < 1+x+h6_2w_h
cosh2(x + h) —cosh2z = = 2h(x + h)
we have
I} < Cem1Ha2e(] 4gp 4 )@= Atn=1(1 4 )1}
where

° v 1 x+h
I = —(a B+2n—a— l)h,—2 h+h 14+ h)o B+n adh
3 (1 P (T

Just the same as in Step 2, we can prove that
L<Ct*(1+t+z)" "

So we have

z2
he(z) < Ct=oLe™Pt=Po=S5 (1 4 t + 2)° 3 (1 + ).
Similarly we can prove that
he(z) > Ct=ole=r t=pa= (1+t+x)o‘ 3(1+2)

This completes the prove of Step 4, also completes the proof of the Theorem.
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4. HARDY’S THEOREM FOR JACOBI TRANSFORM
We need the following lemma of [11]

Lemma 4.1. Let h be an entire function on C such that

h(z)| < Ce®’",  zecC
Ih(t)| < Cem@t” teR
for some positive constants a and C'. Then h(z) = C’onst.e“”z, zeC

let H; be the even function on R which satisfies

E{t()\) = e_tA2

Y

then from Theorem 3.1, we have
Hy(z) = e " thy(x) ~ e P 5 (1 +t +2)°72 (1 + )

we have

Theorem 4.2. Suppose f is a measurable function on [0, 0] satisfing

F()] < AH . (x)

[fV)] < Bexp(=bA”),  A€R

for some positive constants A, B, a and b. If ab > i, then f =0 a.e. If ab =

f:CH% a.e.

(4.2)

(4.3)

then

Proof. First since by the condition (4.2), f()) is well defined for all A € C, and f is an

entire function on C. Moreover,
FO < [ 15@)6r(0) Aw)ds

< c/ooo H (z)pisa(z)A(z)dx

= CH 1 (i3)) = e (V" < Ceis A
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since ab > %, we have

If(N)] < CetaF < Ce™F | for A e C

FO)] < e PP < e for A e R,

So by Lemma 4.1, we have f(\) = Ce="" = C'e~1a* for A € C. If 4ab > 1, then

~

f =0, hence f =0, a.e. If 4ab=1, then f = C’H% a.e.

From this theorem, by using the estimate in Theorem 3.1, we have

Theorem 4.3. Suppose f is a measurable function on [0,00], for some a;(i = 1,2,3),

b > 0 it satisfies

If ()] < Ae=027=m2% (] 4 g)as (4.4)

IF(V)] < Bexp(=bJA?), A€eR (4.5)

for some positive constants A, B. If a1b > i or if a1b = % and as > p, or if a1b = i,
ay = p and az < Oz+%, then f = 0 a.e.. If a1b = i, ay = p and az = Oz+%, then

f=CHy(t).

Now we will give an LP-version of the Hardy’s theorem. We still need the following

lemma(see[5]),
Lemma 4.4. Let h be an entire function on C such that

Ih(z)| < Ce®®)° e

1) e ) < C,

for some positive constants a and C. Then h(z) is a constant on C. Moreover if p < oo,

then h(z) = 0.

Now we have



12 TAKESHI KAWAZOE, JIANMING LIU

Theorem 4.5. Let 1 < p,q < oo, and f is a function on [0,00) such that

a 2 2 A
1€ ()| zr(a)y < C, N1l FN) | Lageny-2) < C

for some positive constants C, a and b such that ab > %, then f =0 a.e. Moreover, if

ab = i,p< 2 we also have f =0 a.e.

Proof. Let ab > %, using the estimates of ¢, in Lemma 2.1, we have

FO) < / T O 1A @t

< c/ £ (1) emot et ISA=P) (1 4 1) A(t)dt
0

A

S ||f(t)eat2 ||pc[/ (e—at2+t(|§>\|—P)(1 + t))P’A(t)dt] '
0
If ab > }, we can choose a’ € (0,a) such that a’b > } and
(e—(a—a’)tQ—t(p)(l + t))p'A(t) <C,

then

1
7

lf(A)] < c[/ooo(e—a’t2+t|8>\|)p'dt] »

1 oy (2 oo I |SA|[\2 7
— e7a7|SAl [/ (e_a t—57) )p dt] P
0

A

< eqar|SAP [/Oo (e—a’(t—%)Q)p’dt] »
PSS (4.6)
If ab = i and p < 2, i.e. p’ > 2, then
ePH1L+1)"A) < C,

so we also have (4.6) with o’ = a.

Let A(A) = e £()), then

(V)] < Certr (7
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By the condition (4.4), since et M7 < b

A lq < 1 F N, < ©

If ¢ < 0o, by Lemma 4.4, we have h(\) = 0 hence h = 0 and f = 0 a.e. If ¢ = 00, we
get h(A) = C, f(A) = Ce" | then f(x) = CHy(z). If 4ab > 1 of if 4ab =1 and p < 2,
by (4.1),

Hy(2)e™ ~ @37 e=p7(1 4 b4+ )23 (1 + 2) & LP(A),

so we also have f(z) = 0. This proves the Theorem.
For the proof of Theorem 4.5, it is easy to see that we have the following corollary

Corollary 4.6. Let 1 < p,q < oo, and f is a function on [0,00) such that
let " @) lzaay <C e F Moo= < €

for some positive constants a and b such that b > p(1 — %), then f =0 a.e.
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