Difference formula for Jacobi functions and
the Calderon identity

By

Takeshi Kawazoe

§1. Introduction

We briefly recall the continuous wavelet transform and the corresponding
Calderén identity. Let H*(R) denote the subspace of L?(R) consisting of

all L? functions f on R such that f(A) =0if A < 0. We fix ¢ € L'(R)
satisfying the so-called admissibility condition:

oo |ol: 2
Cy :/ Md)\ < 00,
0

and we define the wavelet transform W, on H?(R) by

(Wof) (0.6 = [ f@)e i e = e (1,6 €R). (1)

oo

Then for any f € H*(R),
£@) = o [ Wen) (e (et — e 2

This inversion formula is equivalent to the so-called Calderdén identity: For

any f € H*(R),

o d
f:/o QtOQf(f)%a (3)
where 1
Qu(f) = F b, thlz) =0 (t)

and Q7 is the adjoint operator of Q; (cf. [M, p.16]). The formal proof of
(2) (or (3)) is carried out by taking Fourier transforms at both sides and the
precise one can be fond in [FJW, Theorem 1.2].
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In [GMP] Grossmann-Morelt-Paul pointed out a group-theoretical inter-
pretation of the wavelet transform. Let Gy be the AN-group consisting of
all matrices of the form

o e1‘/2 0 1 6 et/2 get/Z
aine = < 0 eft/2 ) < 0 1 > = ( 0 67t/2 (u,§ € R)

Then dtd¢ is a left invariant Haar measure on Gy and. if we define
(T(arng) f) (x) = e f(e”'x =€), [ e H(R).

(T, H*(R)) is an irreducible unitary representation of Gy. In this scheme, we
can rewrite (1) and (2) as

(Wi f) (8,€) = (f, T(ame)h)

and
£@) = = [, [ 40 T @uic)) (D @uic)) (o), (@)

where (-, -) is the inner product of L*(R). This formula (4) means that T is a
square-integrable representation of Gy in the sence that the matrix coefficient
(f, T(ammg)r) is square-integrable on Gy, so the theory of continuous wavelet
transforms is based on the one of square-integrable representations of locally
compact groups. We here note that Gy = AN is a subgroup of G = SL(2,R)
and 7' is a restriction of the limit of holomorphic discrete series Tl /2 of G to

Gy (see (21)):
(f T(aeine)p) = (f, Tyyalaiic) )

and, as a representation of G, T} /2 1s not square-integrable.

As T'said in the first paragraph, we can prove (4) by taking Fourier trans-
forms at both sides, that is, by using Fourier analysis on N = R. The aim of
this paper is to replace the Fourier analysis on R by Fourier series on T. Ac-
tually, this replacement is done by changing G' = SL(2,R) to G = SU(1,1),
(T1/2,H2(R)) to (112, H*(T)), and N to the maximal compact subgroup
K 2 T of G (see §4). As a consequence, we expect a wavelet transform

associated to the K A-subset of G: For any f € H*(T),
flz) = C/K /A<f7 1o (koar)y)) (T1/2(/€9at)¢) (x)D(t)dOdt, (5)
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where dg = D(t)dfdtd’ is a Haar measure on G = KAK. If this formula
(5) is true, the matrix coefficients (f,T1/2(kga;)1)) are square-integrable on
KA and they satisfy orthogonality relations. However, since 77/, is not
square-integrable on G, we have some difficulties: How to find ¢ for which
(f,T1)2(kgar)1p) is square-integrable on KA with respect to D(t)dfdt? How
about their orthogonality relations? In order to construct a 1) satisfying
these properties we shall condsider differences of matrix coefficients of T,
(see (19), (16), and (17)). Then, these differences are square-integrable on
K A and they satisfy some orthogonality relations. Hence, as we expected,
we have the K A-wavelet transform (5) on H?('T) modulo a finite dimensional
subspace.

The organization of this paper is the following. In §2 we define Jacobi
polynomials (and functions) and we obtain some integrals. We define the
desired differences of Jacoi functions in §3. The difference formulas and their
orthogonality relations are given by Theorems 1, 2, and 3. In §4 we recall
the representation theory of SU(1,1) and the isomorphic group SL(2,R).
We write down matrix coefficients of the holomorphic discrete series and the
limit of holomorphic discrete by using Jacobi polynomials. In §5 we generalize
the Calderén identity (3) on R. Especially, we introduce the one on T and
we obtain some identities on H?(T) associated to the differences of Jacobi
polynomials (see Theorem 5). Finally, in §6 we give a group-theoretical
interpretation of the Calderon identities obtained in §5. The identity on
H?*(R) yields the AN-wavelets transform (4) and the one on H*(T) does the
desired K A-wavelet transform (5) modulo a finite dimensional subspace of
H?*(T) (see Theorem 7).

This type of transforms is also studied in [AV1,2] for the case of SO(3,1).

§2. Notation.

We define the classical Jacobi polynomial G, (o, v;z) (n =0,1,2,...,v #
—-1,-2,...,—n+1) by
Gula,viz) = oFi(-n,a+niyiz)

= ﬁxl—'y(l — x)ﬁ/—add% (x'y—l-n—l(l B x)a‘*'n—'y) | (6)



where 5 F] is the hypergeometric function, and we put

1—=

n

1 —
R(o"ﬂ)(x):Gn <p1a+1, > =,k <—n,n+p;o¢+1; 2$>a (7)

where p = a4+ 4+ 1. If o, 3 > —1, then R(*?(z) is a polynomial of degree
n satisfying R (1) = 1 and

R = +(i ; i; E:S)— B)’ ®)

Their orthogonality relations are given by
1
[ RO @) RO (@)1 = 2)°(1 4+ ) = 5,409, o)
-1

where

AleB) 20, (@+1), (B+1)
" c(a+B+2)
(n+p), (+1), (f+n+1), (n+1), (p+1)
2n+p). (@+n+1), (F+1), (n+p+1)

(cf. [FK2, §2]). Moreover, doing an integration by parts, from (6) we have

/1 RO (2)(1 = 2)°(142)Pdz = 0 (0 < k <n — 1) (10)

and if 3 > 0,

1
[ = / RED (1) (1 — 2)°(1 + 2)* Lz
J -1

204-1-[3(_1)71,7 (Oé + ’1)(7n(:’:_’ :)1)7 (ﬁ) (11)

We define the Jacobi function RLO"B) (u € C) by

RO(z) = 2Fi(—p,p+pra+1;(1—2)/2) (12)

o 1_1, n
_ a3 a,B
- D ()
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where

b)) — ’ (a + 1)
n - . )
, (=), (p+p)
D(a;lﬁ) — (_:U‘_i-n)v (:U‘+p+n) (13)
& ,(@+1+n), (n+1)
In what follows we normalize Rl(f"ﬁ) as
¢l (r) = BIO(1 — ?)PTD2pe RO (1 — 297, (14)
where
s — 1 (atpt ) (@ ft+p+1) (15)
g (a4 1) (e +1), (p+B+1)

§3. Difference formula for Jacobi functions.

We consider differences of (ﬁfﬁ’ﬁ)(r) (see (14)) with respect to o and f3.
Then we deduce their square-integrability and orthogonality relations.
We first prove the following formula.

Theorem 1 (Difference Formula). Let Q(x) = \/z(z + 1).
(i) If > 0,8> =1, and pu(pn — 1) > 0, then

Qo+ ) (r) — Qo+ B+ )l (r)
= Qu— 1)L () = QB+ p+ 1) 1D (1),
(il) If a > 0,8 > —1, and pu(p+ 1) > 0, then

QUB+ p+ e (r) = Qu+ Dgin" " (r)
= Qla++u+ g ) — Qo+ W™ ()



Proof. We shall prove (i). As for (ii) we can apply the exactly same process
in (i) (cf. [K, Lemma 4.1]). For simplicity, we put

G =Qa+p), p=Qa+p+n), 3=Qn—-1), ¢ =Q(B+p+1).

We substitute the normalized Jacobi functions at both sides with (14) and
their expansions of (12). We compare the coefficients of (1—72)(3+1/2(—p)a=1
r?" in each side. Then, to obatin the desired equation, it suffices to show

that

qlB(a+1,B)C(a+1,B)D(a+1ﬁ) _ qZB(a—LB)C(a—l,B)D(a—LB)

Iz % pyn—1 Iz 2 My
a+1,8+2 a+1,8+2 a+1,3+2 a+1,8+2
= qu;(l,—Z )C,L(L—Q ) (Di—z,n—1 ) - D;(L—Z,’I‘L—Z ))
—1,842 —1,842 —1,842 (a—1,84+2)
_q4BfIq B+ )C;(;,a B+2) (D/(;Xn B+2) Dufjcn_l ) _

Furthermore, from (13) and (15) this equation is equivalent to

u+a—|—ﬁ+n_ —p+n—1
q1 ot n q2
—pn+n)(p+a+pB+n
= (—p+n-1) <( >(oz-|—n >—(n—1)>

(_M+n_1ﬂu+p+n»'

+w+a+ﬁ+m(m+n—n—

The right side equals

eu+mm+a+ﬁ+ny_m—1M)

oa+n n

(—M+”—1><

+(n+ o+ B +n) <(O‘+na_i>rgo‘+”> . (_”+7’_173(M+P+n))

MO ot )t — 1)

a—+n
—p+n—1
TR T g+ 2n(p o+ B+ )
ut+a+pg+n —p+n—1
= @ — 2 :
a—+n n

This completes the proof of (i).



We denote
A1¢La’ﬁ)(7’> _ Q(a + M)¢La+l’ﬁ)(7’) _ Q(a 1B+ MMELQ—LB)(T) (16)

and

Do @D (1) = QB+ p+ 1) () — Q(u+ 1ol (r).  (17)

Theorem 2 (Square-integrability). Let o, 3 > —1 and p=0,1,2,....

. Y 2 A4r B 2

) /0 () =" = Cpvarprl)
. ! o 2 Ar B

(ii) /0 (Aﬂ?fx, m@’)) mdr =202+ B +1),

4r

Proof. (i) is clear from (9) and (14). We shall prove (ii). As for (iii) we can
apply the exactly same process in (ii) (cf. [K, Lemma 4.2]). As before, we

put
dy= Q(u—1) and dy=Q(B+pt1).
The difference formula (i) in Theorem 1 yields that

! 2 A4r
— (a.B)
I = /o <A1¢H (T)) (1— rz)zdr
1
—(« a+1, a+1,3 _
—  9-(a+p+1) /_1 (dBB;(L_Zl B+2)Rl(l_+21 +2)(m)2 11— 2)
— d4BlSa71’ﬁ+2)Rl(ffl"3+2)($)>2 (14 2)" (1 —2)* da.
We here note that
(R(QH"BH)(@)z (1 + x)/o’+1<1 _ x>a+1
(

n—2

R a+1,ﬁ+2)<$> - R(cx—l—l,ﬂ—i—Z)(_ )
— R a+1,5+2) -) . n—2 n—2 . 1 - B+2 1 . a+1
) i (1+2)2(1 - 2)
FREENIID () REEI (1) (1 4 ) (1 — 2)o T,
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Since +1,8+2) (a+1,8+2)
R (2) - RS (1)

n— n—2

(14 x)

is a polynomial of degree < p — 2 and R ath ﬁ+2)( ) satisfies (10) and (11),
we have

1
/_1 (R(a+1ﬁ+2)(x))2 (1+ a:)ﬂﬂ(l _ x>a+1dx _ R,z(x,oi—;17ﬁ+2)(_]->[(a+1 B+2)

n—2 n—2
Similarly,
1
[ RS @) R ) (L ) (L - ) de
_ Rl(ff;l ﬂ+2)(_1) [;(za 1,8+2)
and

i

! - 2 a— a— a—
/_ 1 (RO (@) (14 2)" (1 = @) Mo = REV (=) 1042,
Thereby,

I = 2(a+ﬂ+3)<(d Bl 6+2>)2 ROELAD(_q), plot1p+2)

= H—

—8dydy BLH T Bloml i) RIATLIA (qy | pla-1.0+42)

H— Iz
2
+4 (d4Blga—1,6+2)) Rl(La 1, [3—1—2)( 1) . [lga—l,6+2)

_ 2—(a+ﬂ+3)d33£‘3§;1a5+2)Rl(lfi-glﬂ-i—?) (_ 1)

(a41,842) r(a+1,6+2) a—1, a—1,
x (ds BYEN T 1IN g, Bl o) (o ot)
_|_2—(a+[3+1)d B(a—l,ﬁ+2)](a—17ﬁ+2)

n

( d3B(“+1 ﬁ+2)Rl(;$1,6+2)( 1)+ dy B(a 1/3+2)R(a 1/3—1—2)( 1))
- Il+[2-

After doing a tedious calculation with (8), (11), and (15), we have
I=0 and L=22u+p3+1).

This completes the proof of (ii).



Theorem 3 (Orthogonality). Let o, o/, 3 > =1 and p, ' =0,1,2,.. ..

(i) If p # g/, then

4r

! (a,3) r (a.8) r r =
/0 gb,u ( )¢M' ( )(1—7‘2)d 0

(i) If |p — @] > 2 and a4+ pp = o/ + i/, then

2r .
sdr =0 (1=1,2).

[ sdrorisds

Proof. (i) is clear from (9) and (14). We shall prove the case of i = 1 in (ii).
As for i = 2 we leave it to the readers (cf. [K, Lemma 4.3]). We may suppose
that > ¢/ (o > «), and we first form the integral in (ii) as

[ (B9 @)1 - 2) ~ RE@) - Po(e)
X (14 z)P71 (1 — z)lete2=1 gy
where
Pu(e) = (14a) 0020 = 2)=@02A 0D ( /(1 - ) /2)
= RS (@)1 - 2) — GRY T (@),
The difference formula (i) in Theorem 1 yields that
Py(z)(1+z)™!

is a polynomial with degree p’. Since

R(a+1,[3)($)(1 — ) Py(x)-(1+ 2)P (1 — w)(a+a’)/2—1

o
RfﬂwﬁﬁU%@XP+®*'U—$W“MBA)0+$VU—$W””
and
o —a = ;o —a p+
—1= —120, pt—o——l="0— 1<y



by the assumption on y, 1/, we obtain from (10) that
1 /
/ ROFLA () (1 = )+ Pu() - (14 2)7 (1 — 2)(e+a)/2 24y = ,
-1

Similarly, since

R(a_l’fg)(g;) Py(x)- (1+ 93)/3_1(1 _ x)(a+a’)/2—1
= RPM@) (Pole)(142) ™ (1= 2) @) (1 )’ (1 — )@Y
and Co—a oty
W+ S
we have

1 oo
[ R Bl (14 ) (= )P = 0
This completes the proof of (ii).
§4. SU(1,1) and SL(2,R).

We briefly recall the representation theory of SU(1,1) and the isomorphic
group SL(2,R). Especially, we define the holomorphic discrete series T,
(h € Z/2,h > 1/2) and the limit of holomorphic discrete series T} /», and
then we give explicit forms of their matrix coefficients (see [Sa] and [Su]
for general references). Then we understand that the normalization (14) of
Rl(l‘?"ﬂ) is based on the matrix coefficients of T}, (see (19)).

Let G = SU(1,1), the subgroup of GL(2,C) consisting of all matrices of

the form
_ o ﬁ 2 2 _
o= (5 )b =10 =1
Then
G=KAN and G=KAK,
where

ei0/2 0
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. _ [ cosht/2 sinht/2 \
A={a= ( sinht/2 cosht/2 ) it € R},

o (1wiee g2 )
N_{”f_< i€/2 1—if/2>’5€R}'

We denote the Haar measures K, A, and N by dky = (1/4m)d0, da; = dt, and

dng¢ = d§ respectively, where df, dt, and d¢ are Lebesgue measures. Then a
Haar measure dg on G is given by

1
dg = —e**dkyda,dng = D(t)dkodadky, (18)

21
where 0 < ¢ < 4m, s, £ € R; 0< 60,0 <4n,t >0, and

4 -
D(t)dt = sinhtdt = (1_—:42)2dr (r = tanht/2).
Let Hp(D) (h > 1/2) denote the weighted Bergman space on the unit
disk D;
Hp(D) ={F:D — C; F is holomprphic on D and

IFIG = 2h =)™ [IPEP0 2"z < oo},

and Hi2(D) the H*> Hardy space on D with norm ||F||%/2 = limp,_y1 2 || F7.
By taking the boundary value functions on the unit circle T, H; /(D) co-
incides with the H? Hardy space H*(T) on T with L*norm. We denote
by (-, )5 the inner product of H; (D). Then an orthonormal basis {ef:n =
0,1,2,...} is given by

20~ (Gdn)

Let h € Z/2 and h > 1/2. For any g € G, we define the operator Tj,(g) on
Hh(D) by

(Tu(9)F)(z) = (B +a) *'F (Zéii) K ( 5 : ) |

Then (T}, Hy(D)) is an irreducible unitary representation of G; the holpmor-
phic discrete sereis for h > 1/2 and the limit of holomorphic discrete series
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for h = 1/2. According to the above orthonormal basis, matrix coefficients
(Th(g)el, et ), (g € G) of T, are explicitly given as follows: For n > m,

(Ti(9)ens €mdn
e—z‘(m9+n0’) <Th(at)eh eh >h

n’ -m

iy J . (n+1), (n+2h)

= e

(n—m)'\, (m+1), (m+2h)
< (1= )" (=r)" "y Py (—m.n + 2hsn — m + 131%),

where g = kpaikg, t > 0, and r = tanht/2. For m > n, we replace n and m
by m and n respectively. Hence,

<Th,(g)627 e%)h — efi(m0+n,9’)¢(n—m72h71)(_T) (n > TH). (19)

m

It is easy to see that

(Th(ac)en, epnl < I ™" D (=r)| < 1, (20)

m

and (Tj,(g)el, el )y, is square-integrable on G, equivalently, ¢p("=™2h=1 (1) is

m m

square-integrable on (0, 1) with respect to 4r/(1 — r?)?dr, if and only if h >
1/2. Furthermore, (19) and (20) are also valid for » € R and h > 1/2,
because of the analytic continuation of the irreducible representations of the
universal covering group of SU(1,1).

The Cayley transform

d:G=SU(1,1) - G =SL(2,R),

1 1 1
_ 1 _

gives an isomorphism between G and G. We put

~ ~ etl? 0
A=0(A). ar = P(ar) = 0 et/

and

N = &(N), ﬁf:@(ng):G f)

12



Let h € Z/2 and h > 1/2. For each function f on D we define a function
Ey(f) on the upper half-plane C* by

(En()) (2) = Vw2~ D (z +0) 2 f(U7(2)),

where

14z
Z b

1—=z
is a complex analytic diffecomorphism of D onto C*. If we put H,(CT) =
En(Hi(D)), then H,(CT) (h > 1/2) is the weighted Bergman space on C*
defined by

v:D—CT, U(z)=C(z) =

H,(CT) ={F :C" — C; F is holomprphic on C* and

IFE = (2h= )7 [ |F )Py dedy < oo},

and H,/2(C*) the H? Hardy space on C* with norm HFHf/2 = limy 12 || F|7.
By taking the boundary value functions on R, H;/>(C") coincides with the
H? Hardy space H?(R) on R with L?-norm. Here we put

Tilg) = Bn o Tw(@™(9)) 0 " (9 € ).

Then (T}, H,(CT)) is an irreducible unitary representation of G. Actually,

the operator Ty, (g) on H;(C™) is given by

BarIe) = e (S0 = (0 0) e

cz+d

Clearly {E(e);n =0,1,2,...} is an orthonormal basis of H,(C*) and

(Ti(9) En(er), Enlep))n = (Tu(®@H(g)ep ep)n (9 € G). (22)

§5. Calderom identity.

We formulate the Calderén identity on subspaces of L*(R) and L*(T).
Especially, we introduce some identities associated to the differences of Jacobi
polynomials.
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Let (S,dm) be a pair of a subset S of R and a positive measure dm on S,
and W a measurable subset of R. Let Q; (t € S) denote a Fourier multiplier
defined by

(@) ) =@ F

and suppose that for A € W,
@I <C and [ ja(Pdm() = 1. (23)

where C' does not depend on t. Let L2 (R) denote the subspace of L*(R)

consisting of all L? function f on R such that supp(f) C W. Then for any

f= [ Qo @i f)dmit) (24)

where (:);‘ is the adjoint operator of Q,. The formal proof follows by taking
Fourier transforms at both sides;

[ (@ o @)Y Ndm(t) = FO) [ a()Pdm(t) = FO) - (x e W),

and the precise one follows as in [FJW, Thorem 1.2]. As an example of (24),
we have (3):

Remark 4 (Calder’on identity on R). We take (S,dm) = ((0, o0), dt/t) and
W = (0,00). We fix ¢ € L*(R) satisfying

0 . d\
| oES =1 (25)
0
and we define

Q)= e ) =50 (3) >0

~

Since G(\) = ¢y(A) = ¥ (tN). it follows that

dt
= =

A< Il and [ (a0 Pdm() = [T @RS =1

14



Therefore, ¢, satisfies (23), and the Calderdn identity (3) on H*(R) = L% (R)
follows from (24).

Next we shall consider the case of T. Let (S,dm) be as above, and W a
subset of Z. Let Q; denote a Fourier multiplier defined by

(Qi(N)" (n) = qu(n) f(n)

and suppose that for n € W,

lg:(n)| < C and /Q|%(nn2dnmt)::1, (26)

where C' does not depend on t. Let L%.(T) denote the subspace of L?(T)
consisting of all L? function f on T such that supp(f) C W. Then for any
f € Liy(T),

7= [ @oQi(Hm). (27)

where Qf is the adjoint operator of ();. The formal proof follows by taking
Fourier series at both sides;

Qo @) m)dm(t) = Fo0) [ lan(m)Pdm(t) = fn) (n € W),

and the precise one follows as in [FJW, Theorem 1.2].

Now, as an example of (27), we introduce some identities associated to
the differences of Jacobi polynomials (see (16) and (17)). We fix m € N and
> —1. Fort > 0 and n > m, we put

1
G (1) = Argly =)
V22m + B+ 1)
1
dn(n) = Agply (1),
V2(2m + B+ 3)

and inft (2 = 1,2) the corresponding Fourier multipliers. We take (S, dm) =
((0,1),4t/(1 —t?)%dt) and W,, = {n;n > m}. If we put H2 (T) = L3, (T),
then HZ(T) is the subspace of L?*(T) consisting of all L? function f on T

15



such that f(n) = 0 if n < m. Then, (20) and Theorem 2 imply that each
qu;?t satisfies (26) and hence, (27) yields the following.

Theorem 5 (Calderén identities on 'T). Let m € N and 3 > —1. Then, we
have the following identities on H? (T):

1 » : 4r
_ Byt Byt \* . I
Id = /0 Qm,r ] (Qmm) mCh (Z = 17 2)

86. AN- and K A-wavelets. We give a group-theoretical interpretation of
the Calderén identities ontained in §5.
AN-wavelets: Let ¢ be as in Remark 4 and put

Yealr) = e — ) = 0 (““’ - 5) |

Since

(@) @) = (f.tha).

we can rewrite the Calderén identity (3) as

dédt
.

fay= [ [ (Feaeate)

In the scheme of the representation (Tl/z, H?*(T)) of G (see §4), it follows
that

erg.et () = e7'/? (T1/2(atﬁf>¢) (=)
and thereby, for any f € H*(R),
fla) = [ [0 Tiaaie) i e (Tyyaane) ) (w)dts. (28)

This gives a group theoretical interpretation of the Calderén identity (3),
simultaneously, the continuous wavelet transform (2) (see [GMP]).

Remark 6. As we noted in §4, we can deduce the corresponding formula on

G = SU(1,1). Let ¢ be in L*(T) and suppose that Ey2(1) satisfies (25).
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Then for any f € H*(T),

f:/;‘/]'v<f~ T1/2(atn£>¢>1/2T1/2(GltTlf)T/)dtdf.

(29)

K A-wavelets: We shall consider the case of ¢ = 2 in Theorem 5. Let

=0 (h=1/2) and r = tanht. Since
Agin ™M (1)
= (QUm+ 1) (r) = Q(m + 1)y (r)) e
= Q(m+ 1)(Typ(azih_g)er* el*)1)n
—Q(m + V)(Typp(a—tk_o)er/?, e, )1yo
= Jlm+ D) (m+2)(Tha(kear)el/?, el = el3o)iyo

= (el Tuathoar) (lm+ D)+ 2 = €l3) D

we see that for any f =322 a,e™ € H2(T),

0.2 \ 4 N u 1 (n=m=10) (. yinf
(@2 () () g;njﬁg:gxml (r)

= ([, T1j2(koar)m)1 /2,

where

B (m+1)(m+2) / 1/2
'Q/Jm - \J 2<2m T 3> (C:n,z - m+2) .

Therefore, the identity in Theorem 5 implies that for any f € HZ(T),

f= /A/A<f7 T1/2(kGat)¢'7n>1/2T1/2(kaat)ll)mD(t)det.

(30)

Then (30) and the orthogonality relations (ii) in Theorem 3 yield the follow-

ing (see [K, Theorem 4.4]).
Theorem 7 (K A-wavelet transform). Let
P = Z CmWPm,
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where the sum s taken over0 < m < M,m € 2N or0 < m < M,m € 2N+1,
and let ||[9)|2 = X |em|?. Then for any f in the L*-span of {eL/?,n > M +1},

1
[%]]o

f = ~/Ix/A<f’ Tl/Q(keat)w>1/2T1/2(k6at)¢D(t>d0dt.

Theorem 8. Let i) be as above. Then for any f € H*(T),

1
1410

f= /A/N<faT1/2(at”'§)¢>1/2T1/2(atn5)¢dtdf-

Proof. As noted in Remark 6, it suffices to show that

[T 1B P =

Proposition 9. Let notation be as above. Then,

N ) odA [0 i —m| > 2,

Proof. Let 3 =2h —1 > 0 and recall that

(n+1)

En(el)(A) = V2 NCESEY)]

(=1)"e™(20) Ly (2))

(cf. [Sa, p.79]). Here L is the Laguerre polynomial defined by

L) = CE A ()

n!  daxn
and we note that

L (n+14p)
,(n+1), (B+1)

18
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Since LSLO)(O) = 1, it is easy to see that, if |rn—m/| > 2, say m > 2+m/, then

N By ()" (V)
)

is a polynomial of degree m' + 1 < m. Therefore, the desired integral must
be 0 by the orhogonality relations of the Laguerre polynomials.
Let m = m’ and 3 > 0. We define

h m+1)(m~+2),,
¢m:¢<+—x +2) )

2(2m +3) \m T m2

Then (32) and the similar argument used in the proof of Theorem 2 yield
that
Jo's) 1
En(I)N (V)2 d\
f B P s

_ (m4Dm+2) ey gy
T 22m+3) '2/0 e

e+ ) 43 )
R e

(m+1)(m+2)

T (2m+3) > (8)
, (m+1) . (m+1) , (m+3) |
X (, (77L+1‘|‘ﬁ)L£g)(0> _2J , (m-|-1+ﬂ)\l , (m+3+ﬁ)L£§)(0)

(m+3) )
R )

_ (m+D(m+2) [ (m+1)(m+2) 1
- (QZJ( )ﬂ

(2m + 3) m+1+p6)(m+2+p0)

Therefore, letting § — 0 (h — 1/2), we have

d\

L 1) WS =1

This completes the proof of Proposition 9.
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(31) follows from the definition of ¢ and Proposition 9.

Remark 10. (1) Noting the proofs of Theorem 2 (ii) and Proposition 9,
we have an integral formula between Jacobi and Laguerre polynomials: If
f=2h—1>0and m=0,1,2,..., then

1 4r
047/3 (avﬂ)
/0 O QI (T)mdr
o0 1
— h \A h A -
= [ Bleh) W Buehan) ()
Actually, the both sides are equal to
2 (m+1)(m+2)
(m+1+8)(m+2+p3)

s

(2) The formulas in Theorems 7 and 8 yield that the integrals over KA and
AN coincides for a suitable function f on T. Without using the orthogonality
relations of the Jacobi and Laguerre polynomials, is it possible to deduce the
coincidence? If ¢ has a single K-type, then the coincidence is trivial from the
Iwasawa and Cartan decompositions of G, however, in our case the K-type
of 1 is not single to obatin the square-integrability in Theorem 2.
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