
L1 ESTIMATES FOR MAXIMAL FUNCTIONS AND RIESZ

TRANSFORM ON REAL RANK 1 SEMISIMPLE LIE GROUPS

Takeshi KAWAZOE

Abstract. Let G be a real rank one semisimple Lie group and K a maximal compact
subgroup of G. Radial maximal operators for suitable dilations, the heat and Poisson
maximal operators, and the Riesz transform, which act on K-biinvariant functions on G,
satisfy the Lp-norm inequalities for p > 1 and a weak type L1 estimate. In this paper,
through the Fourier theories on R and G we shall duplicate the Hardy space H1(R) to a
subspace H1

s
(G) (s � 0) of L1(G) and show that these operators are bounded from H1

s
(G)

to L1(G).

1. Introduction. Let G be a real rank one connected semisimple Lie group with �nite
center, G = KAN an Iwasawa decomposition of G, and dg = dkdadn a corresponding
decomposition of a Haar measure dg on G. Let L1loc(G==K) denote the space of locally
integrable, K-biinvariant functions on G and Lp(G==K) (0 < p � 1) the subspace of
L1loc(G==K) consisting of functions with �nite Lp-norm on G. In the following, if we
say that T is an operator on G, it means that T is an operator acting on these spaces.
The �rst problem we shall treat in this paper is concerned with the Abel transform on
G. For f 2 L1(G==K) the Abel transform Ff of f is de�ned by

Ff(x) = e�x
Z
N

f(axn)dn (x 2 R);

where A is parametrized as fax;x 2 Rg (for the de�nition of � see (3) below). We let
F 1
f (x) = e�xFf (x). Then the integral formula for the Iwasawa decomposition of G (cf.

[6, p.373]) yields that f 2 L1(G) if and only if F 1
jf j 2 L

1(R), and thus,

Proposition 1.1. If f 2 L1(G), then F 1
f 2 L

1(R).

The reverse of this proposition is not true: even if F 1
f is well-de�ned for f 2 L1loc(G==K)

and it belongs to L1(R), f does not always belong to L1(G==K). The �rst problem we
o�er is the following,

Problem A. For f 2 L1loc(G==K) �nd a condition on F 1
f under which f belongs to

L1(G==K).

We next consider a problem concerning with a maximal operator on G. Let � :
G ! R+ denote the K-biinvariant function on G induced by the distance function on
X = G=K (cf. [13, p.320]). For each r 2 R+ we let B(r) = fg 2 G;�(g) � rg and �B(r)
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the characteristic function of B(r). The Hardy-Littlewood maximal operator MG
HL on

G is de�ned as follows: for f 2 L1loc(G==K)

(MG
HLf)(g) = sup

0<r<1
jB(r)j�1(jf j � �B(r))(g) (g 2 G):

This de�nition makes sense for f 2 Lp(X) (p � 1). Clerc and Stein [3] and Str�omberg
[11] have shown the following,

Theorem 1.2. MG
HL satis�es the Lp-norm inequalities for p > 1, and a weak type L1

estimate, that is, for all � 2 R+ and all f 2 L1(X)

jfg 2 G; (MG
HLf)(g) > �gj �

c

�
kfkL1(G);

where c is independent of � and f .

We here de�ne a radial maximal operator on G as an analogue of the one on R. We �x
� 2 C1c (G==K), the space of C1, compactly supported K-biinvariant functions on G,
and suppose that � is su�ciently zero at the origin of G. The radial maximal operator

MG;]
�;� (� � 0) on G is de�ned as follows: for f 2 L1loc(G==K)

(MG;]
�;� f)(g) = sup

0<r<1
(1 + r)��j(f � �]r)(g)j (g 2 G);

where the dilation �]r (r 2 R+) of � is given by

�]r(g) = jB(r)j�1�(a�(g)=r) (g 2 G):

This dilation is di�erent from the one used in [7] and see x6 for other dilations. Since

MG;]
�;� f � cMG

HLf pointwisely, MG;]
�;� also satis�es the property stated in Theorem 1.2.

As Folland and Stein have shown in their book [5], when a Lie group G is of homo-
geneous type, a radial maximal operator MG

� on G is bounded from the atomic Hardy

space H1
1;0(G) to L

1(G). More precisely, integrability of the maximal function MGf
= sup�M

G
� f where the supremum is taken over � in a suitable class, is equivalent to

that f belongs to H1
1;0(G) (see [5, Chapter 3]). At present, we have no de�nition of

the (atomic) Hardy space on G on whichMG;]
�;� is bounded. The second problem, which

was also treated in [7], is the following,

Problem B. Find a subspace of L1(G==K) on which MG;]
�;� is bounded to L1(G==K).

These two problems look unrelated each other. However, the answers obtained in this
paper indicate that they are deeply related. Let C(�) (� 2 R) be the Harish-Chandra's
C-function. Since C(�) has a meromorphic extension on C, the following de�nition of
the Fourier multiplier C1+ on R makes sense:

(C1+F )
�(�) = C(��� i�)�1F�(�) (� 2 R);

where F� denotes the Euclidean Fourier transform of F . Let H1(R) be the H1-Hardy
space on R (cf. [10, Chap.3]). Then our answer of Problem A can be stated as
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Answer A. If C1+F
1
f 2 H

1(R), then f 2 L1(G==K).

Let Qs (s � 0) denote the Fourier multiplier on R de�ned by

(QsF )
�(�) =

�
1 + j�j

j�j

�s
F�(�) (� 2 R):

We set
H1
s (G==K) = ff 2 L1loc(G==K);QsC

1
+F

1
f 2 H

1(R)g

and kfkH1
s (G)

= kQsC
1
+F

1
f kH1(R). Answer A means that H1

0 (G==K) is a subspace of

L1(G==K) and moreover, the fact that (j�j=1 + j�j)s satis�es the H�ormander condition
on Fourier multiplier yields that H1

s (G==K) (s > 0) is a subspace of H1
0 (G==K) (see

x4). Our answer of Problem B is given as follows.

Answer B. For � > 0, MG;]
�;0 is a bounded operator of H1

2+�(G==K) to L1(G==K) and

MG;]
�;1+� is one of H1

0 (G==K) to L1(G==K).

In order to understand a true character of C1+F
1
f we need the Fourier analysis on G,

so we refer to the Warner's book [14]. Let ��(g) (g 2 G; � 2 R) be the zonal spherical
function on G where the dual space of the Lie algebra of A is identi�ed with R. Then,

for f 2 L1(G==K) the Fourier transform f̂(�) of f is de�ned by f̂(�) =
R
G f (g)��(g)dg.

The inversion formula is of the following form: for f 2 C1c (G==K)

f (g) =

Z
R

f̂(�)��(g)jC(�)j
�2d�;(1)

in which case, f̂ (�) is a holomorphic function of exponential type. Hence, by regarding
each K-biinvariant function on G as an even function on R, by substituting the expan-
sion of �� (see (5) and (6) below) into (1), and then, by shifting the integral line R to
R+ i�, we can rewrite (1) as follows ([14, p.356]):

f (x) = e��x
Z
R

f̂(�)�(�; x)C(��)�1ei�xd� (x 2 R+)(2)

= e�2�x
1X
m=0

e�2mx

Z
R

C(��� i�)�1�m(�+ i�)f̂ (�+ i�)ei�xd�:

Since (Ff )
�(�) = f̂(�) and �0 � 1 ([14, Proposition 9.2.2.3 and 9.1.5]), the leading

term corresponding to m = 0 in the right side of (2) is nothing but e�2�x(C1+F
1
f )(x).

Roughly speaking, Answers A and B can be restated as follows: if the leading term of

e2�xf(x)(x 2 R+) belongs to H
1(R), then f and MG;]

�;1+�f belong to L1(G==K).
We state the organization of this paper. In x3 we shall obtain a key lemma for the

integrability of f satisfying C1+F
1
f 2 H1(R). Then the proof of Answer A and some

basic properties of H1
s (G==K) are given in x4. In x5 we shall obtain some criteria by

which we can judge whether a radial maximal operator is bounded from H1
s (G==K) to

L1(G==K). Actually, we apply a criterion toMG;]
�;� and obtain the proof of Answer B in
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x6. Moreover, we consider the same problem for the heat and Poisson maximal operators
MG

H;� and M
G
P;� (� � 0) on G, which are de�ned as follows: for f 2 L1loc(G==K)

(MG
H;�f)(g) = sup

0<r<1
(1 + r)��j(f � hr)(g)j (g 2 G);

(MG
P;�f)(g) = sup

0<r<1
(1 + r)��j(f � pr)(g)j (g 2 G);

where ĥr(�) = e�(�
2+�2)r and p̂r(�) = e�(�

2+�2)1=2r. As shown by Stein [9] in great
generality these operators also satisfy the property stated in Theorem 1.2. In x6 we
shall show that MG

H;0 (resp. MG
P;0) is a bounded sublinear operator of H1

1+�(G==K)

(� > 0) (resp. H1
1=2(G==K)) to L1(G==K) and moreover, MG

H;1 and MG
P;2 are ones of

H1
0 (G==K) to L1(G==K). In x7 we shall treat the Riesz transform RG on G which are

de�ned as follows: for f 2 L1loc(G==K)

(RGf)(g) = (jrj(��)�1=2)(f)(g) (g 2 G);

where � is the Laplacian on G and jrj2(h) = �(h2) �2�h � h for h 2 C1(G). As
studied by Anker [1] and Lohou�e [8] RGf is deeply related with MG

P;�f , especially, the

L1-norm of MG
P;�f is controled by the one of RGf . Therefore, we can expect that the

(Hardy) space H1
s (G==K) might be useful to obtain an L1 estimate for RG. Indeed, we

shall prove that RG is bounded from H1
1=2(G==K) to L1(G==K).

2. Notations. Let G be a real rank one connected semisimple Lie group with �nite
center and G = KAN an Iwasawa decomposition of G. Let a be the Lie algebra of A and
F = a

� the dual space of a. Let H be the unique element in a satisfying 
(H) = 1 where

 is the positive simple root of (G;A) determined by N . We parametrize each element
in A, a, and F as ax = exp(xH), xH, and x
 (x 2 R) respectively. In what follows
we often identify these spaces with R and also Fc, the complexi�cation of F , with C
without making mention of the identi�cation. We put F(s) = f� 2 Fc; j=(�)j < sg
(s 2 R+) and A+ = fax;x 2 R+g. Then, according to the Cartan decomposition
G = KCL(A+)K of G and the action of the Weyl group of (G;A) on A, every K-
biinvariant functions f on G are determined by their restriction to CL(A+) and hence,
they are identi�ed with even functions on R. We denote them by the same letter, that
is, if g 2 Kax(g)K and x(g) 2 R+,

f(g) = f(ax(g)) = f (x(g)) = f (�x(g)):

Let dg (resp. dk and dn) denote the Haar measure on G (resp. K and N), normalized
as
R
K
dk = 1 and the following integral formula holds for all integrable, K-biinvariant

functions f on G: Z
G

f(g)dg =

Z 1

0

f (x)D(x)dx;

where D(x) = (sinhx)m1(sinh 2x)m2 (x 2 R+), m1 and m2 are the multiplicities of 

and 2
 respectively. We put

� =
m1 +m2 � 1

2
and � =

m1 + 2m2

2
:(3)
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Then the order of D(x) is given by

D(x) �

�
x2�+1 (0 < x � 1)

e2�x (1 < x <1);
(4)

where the symbol " � " means that the ratio of the left side and the right side is
bounded below and above by positive constants. Let L1loc(G==K) denote the space of
locally integrable, K-biinvariant functions on G. Let Lp(G==K) (0 < p � 1) and
C1c (G==K) denote the subspaces of L1loc(G==K) consisting of, respectively, functions
with �nite Lp-norm on G and C1, compactly supported functions on G. Henceforth,
for each normed space V we denote the norm of v 2 V as kvkV , excepting that G==K
is abbreviated by G and the L1-norm is denoted by kvk1.

We recall the bases of the Fourier analysis on G and refer to [4] and [14]. Let ��(g)
(� 2 F , g 2 G) be the zonal spherical function of G. The Harish-Chandra expansion of
�� is given as

��(x) = e��x
�
�(�; x)C(�)ei�x +�(��; x)C(��)e�i�x

�
(x 2 R+)(5)

and furthermore, �(�; x) has the so-called Gangolli expansion:

�(�; x) =
1X
m=0

�m(�)e
�2mx (� 2 F ; x 2 R+)(6)

([14, 9.1.4 and 9.1.5]). Their explicit forms and some basic properties of C(�), �(�; x),
and �m(�), which will be used in the following arguments, are summarized in [4, x2 and
x3], and a sharp estimate for the derivatives of �m(�) will be obtained in the appendix

of this paper (see x8). For f 2 L1(G==K) the Fourier transform f̂(�) (� 2 F) of f is
de�ned by

f̂(�) =

Z
G

f (g)��(g)dg (� 2 F):

From the Riemann-Lebesgue's lemma on G ([4, Lemma 11]) it follows that f̂ (�) is an

even holomorphic function on F(�) satisfying jf̂ (�)j ! 0 as j�j ! 1 in CL(F(�)) and
hence,

sup
�2CL(F(�))

jf̂(�)j � kfkL1(G):

When f is in C1c (G==K), the Paley-Wiener theorem on G ([14, 9.2.3]) implies that

f̂(�) is an even holomorphic function on Fc of exponential type, in which case, the
Fourier inversion formula:

f (g) =

Z
R

f̂(�)��(g)jC(�)j
�2d� (g 2 G)(7)

and the Plancherel formula:Z 1

0

jf(x)j2D(x)dx =

Z 1

0

jf̂(�)j2jC(�)j�2d�(8)
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hold. Thereby, the Fourier transform f 7! f̂ of C1c (G==K) is uniquely extended to an
isometry between L2(G==K) and L2(R; jC(�)j�2d�) ([14, Theorem 9.2.2.13]).

We now introduce some operators on G and R. In what follows most of operators on
G and R are denoted by scripts: A, B, C, : : : , exceptingM and T . Especially, AB : : : Cf
means that A(B(: : : (C(f)))) and AG an operator on G.

For s 2 R we de�ne the Abel transform F s
f of f 2 L1loc(G==K) as

F s
f (x) = es�xFf (x) = e(s+1)�x

Z
N

f(axn)dn (x 2 R)

and the Fourier multipliers Cs+ and � s
m (m 2 N) on R as

(Cs+F )(x) =

Z
R

C(��� is�)�1F�(�)ei�xd� (x 2 R);

(� s
mF )(x) =

Z
R

�m(�+ is�)F�(�)ei�xd� (x 2 R);

where F� denotes the Euclidean Fourier transform of F . Of course, these de�nitions
make sense if the integrals of the right sides exist. Since f̂ (�) = (Ff )�(�) (� 2 Fc) for
f 2 C1c (G==K) ([14, Proposition 9.2.2.3]), the relation

(F s
f )
�(�) = f̂(�+ is�)(9)

holds if the both sides exist for � 2 Fc. We here suppose f 2 C1c (G==K) and we observe

that on F(�), f̂(�) is holomorphic and rapidly decreasing, C(��)�1 is holomorphic and
tempered, and �m(�) is holomorphic and uniformly dominated by a polynomial of m
([14, Proposition 9.1.7.2 and p.334]). Hence, by substituting the expansions in (5) and
(6) into (7), by changing the order of integration and summation, and by shifting the
integral line from R to R+ i�, we can deduce that

f(x) = e��x
Z
R

f̂(�)�(�; x)C(��)�1ei�xd� (x 2 R+)(10)

= e��x
1X
m=0

e�2mx(� 0
mC

0
+F

0
f )(x)

= e�2�x
1X
m=0

e�2mx(� 1
mC

1
+F

1
f )(x):

This manipulation is valid provided that f̂(�) is holomorphic on F(�) and satis�es

sup0����
R
R+i�

jf̂(�) C(��)�1jd� <1. In this case, since j�m(�)j � cm2� (m 2 N) if

=(�) � � (see Proposition 8.3 below) and
P1

m=0 e
�2mx m2� � x�(2�+1) as x! 0 and

� 1 as x!1, the right side of (10) is dominated by e�2�x (1 +D(x))=D(x) (see (4)).
We then de�ne

L(G==K) = ff 2L1loc(G==K); f̂ is holomorphic on F(�) and

kfkL(G) = sup
0����

Z
R+i�

jf̂(�)C(��)�1jd� <1g:
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3. A key lemma.

Lemma 3.1. Let T be a sublinear operator of R satisfying the following properties:
there exists � > 0 such that for each (1,2,0)-atom a with supp(a) � [x0 � `; x0 + `]

(a) kTakL2(R) � kakL2(R);

(b) j(Ta)(x)j � `�jx� x0j
�(1+�) if jx� x0j � 2`:

Then there exists a positive constant c = c� such that for any F 2 H1(R)

ke�2�x
1X
m=0

e�2mx(T� 1
mF ) �DkL1(R+) � ckFkH1(R):(11)

Proof. We abbreviate k � kL2(R) as k � k2. We �rst observe that kTakL1(R) �
R
jx�x0j�2`

j(Ta)(x)jdx +
R
jx�x0j>2` j(Ta)(x)jdx � (2`)1=2kak2 + `�

R
jx�x0j>2` jx�x0j

�(1+�)dx � c,

because a is a (1,2,0)-atom. Hence T is a bounded sublinear operator of H1(R) to
L1(R). Let F 2 H1(R). Since �0 � 1 (cf. [14, 9.1.5]), the term corresponding to
m = 0 in the left side of (11) is dominated as

ke�2�x(TF ) �DkL1(R+) � ckTFkL1(R) � ckFkH1(R):(12)

In estimating the rest terms, by substituting a (1,2,0)-atomic decomposition of F (cf.
[5, Theorem 3.30]) it su�ces to show that for any (1,2,0)-atom a on R,

ke�2�x
1X
m=1

e�2mx(T� 1
ma) �DkL1(R+) � c:(13)

We notice that �m(� + i�) (� 2 F) satis�es the H�ormander condition with the con-
stant cm4� (see Corollary 8.4 below) and therefore, the multiplier theorem obtained by
Taibleson and Weiss [12, Theorem 4.2] asserts that � 1

ma is a (1,2,0,1/2)-molecule with
k� 1

makH1(R) � cm2�. Moreover, the proof of Theorem 2.9 in [12] yields that � 1
ma has

a (1,2,0)-atomic decomposition such that

� 1
ma =

1X
k=0

dmk b
m
k ;

where jdmk j = c2�k=2m2� and, if we denote by x0 the center of the support of a and we

put �m = k� 1
ma=m

2�k�22 , bmk is a (1,2,0)-atom on R supported on the interval Imk =
fx; jx � x0j � 2k�mg. Let `mk = jImk j. Since a and �ma are (1; 2; 0; 1=2)-molecules on

R, it follows from the proof of Theorem 4.2 in [12] that �m = m4� k�mak
�2
2 � ckak�22

and �m = m�4�kjx � x0j�mak22 � kak�22 , that is,

�m � kak�22 and `mk � 2kkak�22 :(14)
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We now split the region of integration in (13) into (0; 1] and (1;1). The integral over
(1;1) is estimated as

Z 1

1

1X
m=1

e�2mxj(T� 1
ma)(x)je

�2�xD(x)dx

�c
1X
m=1

e�2mkT� 1
makL1(R)

�c
1X
m=1

e�2mm2� <1:

On the other hand, the estimate for (0; 1] is obtained as follows:

Z 1

0

1X
m=1

e�2mxj(T� 1
ma)(x)je

�2�xD(x)dx

� c

Z 1

0

1X
m=1

e�2mx
1X
k=0

jdmk jj(Tb
m
k )(x)jD(x)dx

� c

1X
k=0

1X
m=1

Z 1

0

e�2mx2�k=2m2�j(Tbmk )(x)jx
2�+1dx

= I1 + I2;

where I1 is the integral over the region D1: 0 < x � 1, jx � x0j � 2`mk and I2 is the

integral over the region D2: 0 < x � 1, jx � x0j < 2`mk . Since `mk � 2kkak�22 by (14)

and
P1

m=1 e
�2mxm2� � x�(2�+1) (0 < x � 1), the property (b) of T yields that

I1 � c

1X
k=0

2�k=2
1X
m=1

2k�kak�2�2

Z
D1

e�2mxm2�x2�+1jx�x0j
�(1+�)dx

� c

1X
k=0

2�k=22k�kak�2�2

Z
jx�x0j>c2kkak�2

2

jx� x0j
�(1+�)dx

� c

1X
k=0

2�k=2 <1:

In obtaining the estimate of I2 we break the integral over D2 as

Z
D2

=
1X
j=0

Z
2�j�1<x�2�j

jx�x0j�2`mk ;x0�3`mk
+

Z
0<x�1

jx�x0j�2`mk ;x0>3`mk

and we denote the corresponding terms by I21 and I22 respectively. As for I21, if the
integral does not vanish, we see that 2�j�1 � x0 + 2`mk � 5`km � c2kkak�22 by (14)

and moreover, kTbkmk2 � kbkmk2 � c(`km)
�1=2 � 2�k=2kak2 by the property (a) of T .

8



Therefore, taking the maximal values of e�2mx and x2�+1 in the integrand and applying
the Schwarz inequality to the integral, we can estimate I21 as

c

1X
k=0

2�k=2
X

2�j�c2kkak�2
2

 1X
m=1

e�m2�jm2�2�j(2�+1)
!
2�j=22�k=2kak2

�c

1X
k=0

2�k=2

0
@ X
2�j�c2kkak�2

2

2�j=2

1
A 2�k=2kak2

�c
1X
k=0

2�k=2 <1:

As for I22, if the integral does not vanish, we see that x � x0 + 2`mk � 5x0=3 and x �
x0 � 2`mk > x0=3. Therefore, we can deduce that

I22 � c

1X
k=0

2�k=2
 1X
m=1

e�2mx0=3m2�

!
(5x0=3)

2�+1kTbmk kL1(R)

� c

1X
k=0

2�k=2 <1:

This completes the proof of the lemma. �

Remark 3.2. Let T be as in Lemma 3.1. Let T�;D denote a pseudo-di�erential
operator with the symbol ��;D(x; �) de�ned by e�2�x �(� + i�; x) D(x) if x 2 R+

and 0 otherwise. Then from (6) the conclusion of Lemma 3.1 can be restated as kT�;D
TFkL1(R) � ckFkH1(R) for all F 2 H1(R). Especially, taking the identity operator as

T , we see that T�;D is a bounded linear operator of H1(R) to L1(R). On the other
hand, it follows from Proposition 8.3 below that

j(
d

d�
)M��;D(x; �)j � c(1 + j�j)�M

for M = 0; 1. If the same estimate were also true for the derivative of x, or a modulus
continuity of x, we would obtain the boundedness of T�;D directly from Th�eor�eme 9 in
Coifman and Meyer [2].

4. L1-condition. As stated in Theorem 1.1, F 1
f is integrable on R if f is integrable on

G. However, the reverse is not true. In this section we obtain a condition of F 1
f under

which f is integrable on G.
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Theorem 4.1. Let us suppose that C1+F
1
f is well-de�ned for f 2 L1loc(G==K) and it

belongs to H1(R). Then f belongs to L1(G==K). In particular,

kfkL1(G) � ckC1+F
1
f kH1(R);

where c is independent of f .

Proof. We �rst prove the inequality for f 2 L(G==K) with kC1+F
1
f kH1(R) <1, in which

case we see from (10) that

f (x) = e�2�x
1X
m=0

e�2mx(� 1
mC

1
+F

1
f )(x) (x 2 R+):

By taking the identity operator as T in Lemma 3.1 we can deduce that

(15) kfkL1(G) = kfDkL1(R+) � ckC1+F
1
f kH1(R):

For a general f 2 L1loc(G==K) with kC1+F
1
f kH1(R) <1 we approximate f by functions

in L(G==K). Let  0 be an even C
1 function on R with

R
R
 0(x)dx = 0 and put  (�)(x)

=  0(x)e
��x for � 2 R+. Since  

�
0 (��) is an even holomorphic function of exponential

type, the Paley-Wiener theorem on G yields that there exists �(�) 2 C1c (G==K) such

that (�(�))^(�) =  �0 (��). Let  (�)� (x) = ��1  (�)(��1x) for � 2 R+. Then F 1
�(�)

(x)

=  
(�)
� (x) because (F 1

�(�)
)�(�) = (�(�))^(� + i�) =  �0 (�(� + i�)) = ( 

(�)
� )�(�), and

moreover, f��(�) 2 L(G==K) and C1+F
1
f��(�) = (C1+F

1
f )� 

(�)
� . We here note the following,

Lemma 4.2. Let F be in H1(R). Then F �  
(�)
� 2 H1(R) for 0 < � < 1 and

kF � F �  (�)� kH1(R) ! 0 (�! 0):

Proof. We refer to the notations and the results in Folland and Stein [5, x2]. Since
k (�)k(1) � c for all 0 < � < 1, it follows from Lemma 3.31 in [5] that there exists N � 1

such that sup0<�<1 (M(N)(F � 
(�)
� ))(x) � c(M(1)F )(x). Especially, (M(N)(F � 

(�)
� ))(x)

� c(M(1)F )(x) and thus, F �  
(�)
� 2 H1(R) by Theorem 3.30 in [5]. The rest of the

proof follows from the same argument as in the proof of Theorem 3.33 in [5]. �

Hence, C1+ F 1
f��(�) = (C1+F

1
f ) �  

(�)
� 2 H1(R) and kC1+ F 1

f� C1+ F 1
f��(�)kH1(R) ! 0

as � ! 0. On the other hand, since f� �(�) 2 L(G==K), it follows from (15) that
kf� �(�)kL1(G) � c kC1+ F 1

f��(�)kH1(R). Therefore, f� �
(�) converges to a function h in

L1(G==K). Clearly, h must be f , because (�(�))^(�) !  �0 (0) = 1 as �! 0. So, letting
� ! 0, we obtain the desired inequality for f . This completes the proof of Theorem
4.1. �

We now de�ne the Hardy space H1
s (G==K) (s � 0) on G. Let Qs (s � 0) denote the

Fourier multiplier of R de�ned by

(QsF )
�(�) =

�
1 + j�j

j�j

�s
F�(�) (� 2 R):

10



De�nition 4.3. For s � 0

H1
s (G==K) = ff 2 L1loc(G==K);QsC

1
+F

1
f is well-de�ned and is in H1(R)g

and kfkH1
s (G)

= kQsC1+F
1
f kH1(R).

Theorem 4.4. If s0 � s � 0, then H1
s0(G==K) � H1

s (G==K) � L1(G==K) and for all
f 2 H1

s0(G==K)
kfkL1(G) � ckfkH1

s (G)
� c0kfkH1

s0
(G);

where c and c0 are independent of f .

Proof. Theorem 4.1 asserts that kfkL1(G) � ckfkH1
0 (G)

. Let Rs denote the Fourier

multiplier on R de�ned by (RsF )
� (�) = F�(�)(j�j= 1+ j�j)s (� 2 R). We notice that

(j�j= 1 + j�j)s (s � 0) satis�es the H�ormander condition and thus, Rs is a bounded
linear operator on H1(R) (see [12, Theorem 4.2]). Therefore, for all f 2 H1

s0(G==K),
kfkH1

s (G)
= kRs0�s Qs0C

1
+F

1
f kH1(R) � ckQs0 C

1
+F

1
f kH1(R) = kfkH1

s0
(G). �

Theorem 4.5. For s � 0, H1
s (G==K) \ L(G==K) is dence in H1

s (G==K).

Proof. We retain the notation used in the proof of Theorem 4.1 and suppose that

f 2 H1
s (G==K). Since QsC

1
+F

1
f 2 H1(R) and Qs C

1
+F

1
f��(�) = QsC

1
+(F

1
f �  

(�)
� ) =

(QsC1+F
1
f )�  

(�)
� (cf. [4, Theorem 5]), it follows from Lemma 4.2 that f � �(�) 2

H1
s (G==K) \L(G==K) and kf � f � �(�)kH1

s (G)
! 0 (�! 0). �

Remark 4.6. H1
0 (G==K) contains all f 2 C1c (G==K) with

R
G
f(g)dg = 0. Indeed,

we suppose that supp(f ) � B(r), and we observe that f̂ (�) is holomorphic on Fc of
exponential type r and C(��)�1 is holomorphic and temperd on the upper half plane
(cf. [14, 9.2.3] and [4, Lemma 8]). We here recall the technique used in the proof of
the Paley-Wiener theorem (cf. [14, 9.2.3]). Hence, shifting the integral line R of the

integral
R
R
C(��� i�)�1f̂(�+ i�) ei�xd� de�ning C1+F

1
f to R+ i� (� ! +1), we can

deduce that supp(C1+F
1
f ) � (�1; r]. Thereby, kC1+F

1
f kL2(R) = ke�x(C0+F

0
f )kL2(R) � e�r

kC0+ F 0
f kL2(R) = e�rkfkL2(G) by the Plancherel formulas on R and G, and similarly,

kx(C1+F
1
f )kL2(R) � c(1+re�r) kfkL2(G). On the other hand, since �i� � 1 and C(�i�) =

1 (cf. [4, x3 and Lemma 8]), we have
R
R
(C1+F

1
f )(x)dx = C(�i�)�1f̂ (i�) =

R
G
f (g)dg

= 0. These follow immediately that C1+F
1
f is a (1,2,0,1/2)-molecule on R and hence, in

H1(R) (see [12, Theorem 2.9]).

5. Criteria for boundedness. We �x 0 < r1 < r2 � 1 and a function �(r; g) on
(r1; r2) � G satisfying �(r; �) 2 L1(G==K) for each r 2 (r1; r2). We de�ne a radial
maximal operator TG�;r1;r2 on G as follows: for f 2 L1loc(G==K)

(TG�;r1;r2f)(g) = sup
r1<r<r2

j(f � �(r; �))(g)j (g 2 G):

In this section we obtain some conditions on � under which TG�;r1;r2 is a bounded sub-

linear operator of H1
s (G==K) (s � 0) to L1(G==K).
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Let Br1;r2 be the set of all functions �(r;�) on (r1; r2) �R for which there exists a
continuous function � = �� on R such that

(a1) �(�) 2 L1(R);(16)

(a2) lim
j�j!1

�(�) = 0;

(b) j(
d

d�
)M�(r;�)j � rM�(r�) (M = 0; 1; 2);

and B+
r1;r2 the subset of Br1;r2 de�ned by replacing (16)(a1); (a2) with

(a1) ��(�) 2 L1(R);(17)

(a2) lim
j�j!1

��(�) = 0:

Lemma 5.1. If �̂(r; �+ i�) 2 Br1;r2 , then the maximal operator de�ned by supr1<r<r2
j(F 1

�(r;�) �F )(x)j of F 2 L1loc(R) satis�es the Lp(R)-norm inequalities for p > 1, and a

weak type L1(R) estimate.

Proof. Since (F 1
�(r;�))

�(�) = �̂(r;� + i�) (see (9)), it follows from (16) of �̂(r; � + i�)

that jxMF 1
�(r;�) (x)j � j

R
R
(d=d�)M �̂(r;�+ i�)� ei�x d�j � k�kL1(R)r

M�1 (M = 0; 1; 2)

and thus, jF 1
�(r;�)(x)j � cr�1(1+ r�1jxj)�2 (x 2 R). This inequality easily yields

that supr1<r<r2 j(F
1
�(r;�) � F )(x)j � c(MHLF )(x) (x 2 R), where MHL is the Hardy-

Littlewood maximal operator on R. Hence the desired results follow from those for
MHL (cf. [5, Theorem 2.4]). �

Lemma 5.2. If �̂(r;� + i�) 2 B+
r1;r2, then for each (1,2,0)-atom a on R with supp(a)

� [x0 � `; x0 + `],

sup
r1<r<r2

j(F 1
�(r;�) � a)(x)j � c`jx� x0j

�2 if jx� x0j � 2`;

where c is independent of a.

Proof. The moment condition
R
R
a(x)dx = 0 and the mean value theorem yield that

for x 2 R+

(F 1
�(r;�) � a)(x) =

Z
R

F 1
�(r;�)(x � y)a(y)dy

=

Z
R

�
F 1
�(r;�)(x� y)� F 1

�(r;�)(x� x0)
�
a(y)dy

=

Z `

�`

�
d

dx
F 1
�(r;�)(x� y0)

�
(x0 � y)a(y)dy;
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where y0 is on the line segment from y to x0. Since (dF 1
�(r;�)=dx)

�(�) = i��̂(r;� + i�)

(see (9)), it follows from (16)(b) and (17) of �̂(r; �+ i�) that

j(x�y0)
2 d

dx
F 1
�(r;�)(x�y0)j = j

Z
R

(
d

d�
)2
�
��̂(r; �+ i�)

�
ei�(x�y0)d�j

� 2r

Z
R

j�(r�)jd�+ r2
Z
R

j��(r�)jd�

= 2k�kL1(R) + k��kL1(R):

Let jx�x0j � 2`. Since jx0�yj < ` and y0 is located between y and x0, we have jx�y0j >
` and thus, jx� x0jjx� y0j

�1 � 1+ jx0 � y0jjx� y0j
�1 � 2. Therefore, if jx� x0j � 2`,

supr1<r<r2 j(F
1
�(r;�)� a)(x)j � cjx� x0j

�2 R
R
jx0 � yjja(y)jdy � c`jx� x0j

�2. �

Proposition 5.3. If �̂(r;�+ i�) 2 B+
r1;r2 , then T

G
�;r1;r2

is a bounded sublinear operator

of H1
0 (G==K) to L1(G==K).

Proof. From Theorem 4.5 it su�ces to obtain the boundedness for f 2 H1
0 (G==K) \

L(G==K). Since (f� �(r; �))^(�) = f̂ (�)�̂(r;�) = f̂ (�)(F 0
�(r;�))

�(�) (cf. [4, Theorem

5]), the same manipulation as in (10) yields that for x 2 R+

(f � �(r; �))(x) = e�2�x
1X
m=0

e�2mx(F 1
�(r;�) � (�

1
mC

1
+F

1
f ))(x)

and thereby,

(TG�;r1;r2f)(x) � e�2�x
1X
m=0

e�2mx sup
r1<r<r2

j(F 1
�(r;�) � (�

1
mC

1
+F

1
f ))(x)j:(18)

Since �̂(r;� + i�) 2 B+
r1;r2

, Lemmas 5.1 and 5.2 imply that the maximal operator

supr1<r<r2 j(F
1
�(r;�)� F )(x)j of F 2 L1loc(R) satis�es the properties (a) and (b) in Lemma

3.1. Therefore, the result follows from Lemma 3.1 and De�nition 4.3. �

Let B�
r1;r2 (� 2 R) be the set of all functions �(r; �) on (r1; r2) �R for which there

exists a continuous function � = �� on R such that

(a1) ��+1�(�) 2 L1(R);(19)

(a2) lim
j�j!1

��+1�(�) = 0;

(b) j(
d

d�
)M�(r;�)j � rM+��(r�) (M = 0; 1; 2):
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Proposition 5.4. If �̂(r; �+ i�) 2 B�
r1;r2 (� � 2), then TG�;r1;r2 is a bounded sublinear

operator of H1
� (G==K) to L1(G==K).

Proof. As we have deduced (18), we see that for f 2 H1
� (G==K) \L(G==K)

(TG�;r1;r2f)(x) � e�2�x
1X
m=0

e�2mxj(T� 1
mQ�C

1
+F

1
f )(x)j (x 2 R+);

where T is a maximal operator on L1loc(R) de�ned by

(TF )(x) = sup
r1<r<r2

Z
R

F�(�)
�

j�j

1 + j�j

��
�̂(r; �+ i�)ei�xd� (x 2 R):

Then, as in the proof of Proposition 5.3 it su�ces to show that (j�j=1+ j�j)� �̂(r; �+ i�)

2 B+
r1;r2 . Indeed, it follows from (19)(b) of �̂(r;�+ i�) that for M = 0; 1; 2

j(
d

d�
)M

 �
j�j

1 + j�j

��
�̂(r;�+ i�)

!
j

� c

MX
m=0

jr�(
d

d�
)M�m

�
j�j

1 + j�j

��
j � jr��(

d

d�
)m�̂(r; �+ i�)j

� c

MX
m=0

�(� � 1) : : : (� �M +m+ 1)jr�j��M+mrM�m � rm�(r�)

� crM	(r�)�(r�);

where 	(�) = (�(��1)j�j��2+�j�j��1+ j�j�). Therefore, if we de�ne � in (16) and (17)

by 	�, the above calculation and (19)(a1); (a2) imply that (j�j=1 + j�j)� �̂(r; �+ i�) 2
B+
r1;r2 . �

Let B�;+
r1;r2 (� 2 R) be the set of all functions �(r; �) on (r1; r2) �R for which there

exists a continuous function � = �� on R such that

(a1) ��+1�(�) 2 L1(R);(20)

(a2) lim
j�j!1

��+1�(�) = 0;

(b1) j�(r;�)j � �(r�);

(b2) j(
d

d�
)�(r; �)j � r��(r�);

(b3) j(
d

d�
)2�(r;�)j � r2+��(r�):

14



Proposition 5.5. Let r1 � 1 and � � 2. If �̂(r; � + i�) 2 B�;+
r1;r2 , then TG�;r1;r2 is a

bounded sublinear operator of H1
��1+�(G==K) to L1(G==K) for � > 0.

Proof. We �rst notice that under the assumption that r1 � 1 and � � 2, �(r; �) in
B�;+
r1;r2 also satis�es

(b4) j�(r;�)j � r��1�(r�);

(b5) j(
d

d�
)M�(r;�)j � rM+��(r�) (M = 0; 1; 2):

In what follows we modify the proofs of Lemmas 5.1 and 5.2. As in the proof of
Theorem 4.4, Rs (s 2 R) denotes the Fourier multiplier on R de�ned by (RsF )�(�) =
F�(�)(j�j=1 + j�j)s (� 2 R). Since (R��1 F 1

�(r;�))
�(�) = �̂(r;� + i�) (j�j=1 + j�j)��1,

we see from (a), (b2), and (b4) of �̂(r; �+ i�) that

j(R��1F 1
�(r;�))(x)j � cx�1

�
(� � 1)k���2�kL1(R) + k���1�kL1(R)

�
(21)

and similarly from (a) and (b5) that

j(R�F
1
�(r;�))(x)j � crx�2

�
�(� � 1)k���2�kL1(R) + �k���1�kL1(R) + k�

��kL1(R)

�
:

We here �x r and x, and we observe that (RzF
1
�(r;�))(x) makes sense for z 2 C with

� � 1 � <(z) � � and, as a function of z, it is holomorphic on � � 1 < <(z) < �.
Moreover, j(RzF

1
�(r;�))(x)j � r�1k�kL1(R) by (a) and (b1), and when <(z) = � � 1

(resp. �), (Rz F
1
�(r;�))(x) satis�es the same inequality for z = � � 1 (resp. �) obtained

above. Therefore, Three Lines Lemma (cf. [9, p. 69]) yields that j(R��1+� F 1
�(r;�))(x)j �

cr�jxj�(1+�) (0 � � � 1). Since j(R��1+� F 1
�(r;�))(x)j � r�1 k�kL1(R), we have j(R��1+�

F 1
�(r;�))(x)j � cr�1(1 + r�1jxj)�(1+�) (0 � � � 1). In particular, if 0 < � � 1, the

maximal function de�ned by supr1<r<r2 j((R��1+� F 1
�(r;�)) �F )(x)j of F 2 L1loc(R) is

pointwisely dominated by c(MHLF )(x) and hence, is bounded on L2(R).

We next observe that (a) and (b5) imply that �̂(r;�+ i�) 2 B�
r1;r2

and thus, Lemma
5.2 and the proof of Proposition 5.4 yield that for each (1,2,0)-atom a on R with supp(a)
� [x0 � `; x0 + `],

j((R�F
1
�(r;�)) � a)(x)j � c`jx� x0j

�2(�(� � 1)(2k���2�kL1(R) + k�
��1�kL1(R))

+ �(2k���1�kL1(R) + k�
��kL1(R)) + 2k���kL1(R) + k�

�+1�kL1(R))

if jx � x0j � 2`. On the other hand, we notice that if jx0 � yj � ` and jx � x0j � 2`,
then jx� x0jjx � yj�1 � 1 + jx0 � yjjx� yj�1 � 2 and thereby, from (21) that

j((R��1F 1
�(r;�)) � a)(x)j = j

Z
R

(R��1F 1
�(r;�))(x� y)a(y)dyj

� cjx� x0j
�1 �(� � 1)k���2�kL1(R) + k�

��1�kL1(R)
�
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if jx � x0j � 2`. Moreover, j((RzF
1
�(r;�)) � a)(x)j � kRz F 1

�(r;�)k1 kakL1(R) � r�1

k�kL1(R) for � � 1 � <(z) � �. Then, applying Three Lines Lemma again, we see that

for 0 � � � 1, j((R��1+� F 1
�(r;�)) � a)(x)j � c`� jx� x0j�(1+�) if jx� x0j � 2`.

We have therefore proved that if 0 < � � 1, the maximal operator de�ned by
supr1<r<r2 j((R��1+� F 1

�(r;�)) �F )(x)j of F 2 L1loc(R) satis�es the properties (a) and

(b) in Lemma 3.1. Since (TG�;r1;r2f)(x) (x 2 R+) is dominated by

e�2�x
1X
m=0

e�2mx sup
r1<r<r2

j((R��1+�F 1
�(r;�)) � (�

1
mQ��1+�C1+F

1
f ))(x)j;

the desired result follows from Lemma 3.1, De�nition 4.3 and Theorem 4.4. �

6. Maximal operators. We apply the criteria obtained in the previous section to some
radial maximal operators. Actually, as �(r; g) in x5, we shall take �\r(g), �

]
r(g), �

[
r(g),

hr(g), and pr(g) respectively (see A�E below). For simplicity, we denote henceforth
the set of bounded sublinear operators of H1

s (G==K) to L1(G==K) by (H1
s ; L

1) and
that on Lp(G==K) by (Lp; Lp). We also say that an operator T of L1(G==K) is of weak
type (1; 1) provided there exists a constant c such that

jfg 2 G; j(Tf)(g)j > �gj �
c

�
kfkL1(G)

for all f 2 L1(G==K) and for every � > 0.

A. Let A\
�(G) (� 2 R) be the set of all functions � 2 L

1(G==K) satisfying j(d=d�)M

�̂(�)j � (1+ j�j)�� (� 2 F(�)) for M = 0; 1; 2.

De�nition 6.1. For f 2 L1loc(G==K)

(MG;\
�;0 f)(g) = sup

�2A\
�(G)

0<r<1

j(f � �\r)(g)j (g 2 G);

where �\r(g) =
R
R
�̂(r�)��(g)jC(�)j

�2d�.

Theorem 6.2. If � > 2, then MG;\
�;0 2 (H1

0 ; L
1).

Proof. We easily see that if � > 2, �̂(r�) belongs to B+
0;1 and hence, by Proposition 5.3

we have the desired result. �

B. Let AN (G) (N 2N) be the set of all functions � 2 CN (G==K) whose restriction
on A satis�es supp(�) � [�1; 1], k(d=dx)n�k1 � 1 (0 � n � N ), and �(x) = O(xN ).

De�nition 6.3. For � � 0 and f 2 L1loc(G==K)

(MG;]
N;�f )(g) = sup

�2AN (G)
0<r<1

(1 + r)��j(f � �]r)(g)j (g 2 G);

where �]r(g) =
1

jB(r)j�(
�(g)
r
).
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Theorem 6.4. (1) MG;]
N;� is in (Lp; Lp) for p > 1 and of weak type (1,1),

(2) If N � 6, then MG;]
N;0 2 (H1

� ; L
1) for � > 2,

(3) If N � 4 and � > 1, then MG;]
N;� 2 (H1

0 ; L
1).

Proof. (1) is obvious from Theorem 1.2 because MG;]
N;�f is pointwisely dominated by

MG
HLf . To prove (2) and (3) we �rst obtain the following,

Lemma 6.5. Let � 2 A2N(G) (N 2N). Then, for M = 0; 1; 2

j(
d

d�
)M (�]r)

^(�+ i�)j � crM (1 + r)s(1 + jr�j)�2s (0 � s � N ):

Proof. We recall that j(d=d�)m��+i�(x)j � xm�i�(x) � xm (� 2 F ; x 2 R+), �� is
an eigenfunction of the Laplace-Beltrami operator 
 on G with eigenvalue �p(�) =
��2 � �2, and the radial component of 
 on R+ is of the form D�1 � (d=dx(D � d=dx)).
For these facts we refer to [4], Lemma 14, Proposition 3, and x2 respectively. We now
apply them to the integral de�ning the Fourier transform (�]r)

^(�+ i�) and thereby, we
can deduce that for each m;n 2 N and 0 � n � N

j(
d

d�
)m
�
p(�+ i�)n � (�]r)

^(�+ i�)
�
j

�

Z 1

0

j
n�]r(x) � (
d

d�
)m��+i�(x)jD(x)dx

� cjB(r)j�1rm
Z r

0

j

�
D(x)�1

d

dx
(D(x)

d

dx
)

�n
�(
x

r
)jD(x)dx:(22)

For simplicity, we put D = D�1(dD=dx) and �(x) = �(x=r) (r 2 R+), and we observe
that (d=dx)p�(x) � r�2Nx2N�p � r�2nx2n�p if 0 < x � r, D(x) � (1 + x)=x, and
(d=dx)qD(x) � cx�q�1e�2x if q > 0. Hence we have

k(
d

dx
)2n�k1 � cr�2n;

k(
d

dx
)p� � (

d

dx
)qD �Dsk1 � cr�2n if p+ q + s < 2n and q > 0,

k(
d

dx
)p� �Dsk1 � cr�2n(1 + r)s if p+ s = 2n:

Then, by using these estimates to handle the derivatives of �(x=r) in (22) we can deduce
that j(d=d�)m(p(�+ i�)n � (�]r)

^(�+ i�))j � crm�2n(1+ r)n. Especially, letting m = 0,
we obtain the inequality forM = 0 and s = n. Since jp(�+ i�)n� (d=d�)m (�]r)

^(�+ i�)j
is dominated by j(d=d�)m (p(� + i�)n� (�]r)

^(� + i�))j + c
Pm

i=1 j(d=d�)
i (p(� + i�)n)�

(d=d�)m�i (�]r)
^(�+i�)j, the rest inequalities follow by induction and interpolation. �

As for (2) let � 2 AN (G) (N � 6). By Lemma 6.5, (�]r)
^(�+ i�) 2 B+

0;1 if 0 < r � 1

and B�
1;1 (2 < � � 3) if 1 < r <1. Therefore, from Propositions 5.3, 5.4, and Theorem

4.4 it follows that MG;]
N;0 2 (H1

� ; L
1) for � > 2. As for (3) let � 2 AN(G) (N � 4). Since

(1 + r)�� (�]r)
^(�+ i�) 2 B+

0;1 (� > 1) by Lemma 6.5, it follows from Proposition 5.3

that MG;]
N;� 2 (H1

0 ; L
1) for � > 1. �

C. Let AN (G) be the same as in B. We here introduce a dilation which preserves
the L1-norm on G (see [7]).
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De�nition 6.6. For � � 0 and f 2 L1loc(G==K)

(MG;[
N;�f )(g) = sup

�2AN (G)
0<r<1

(1 + r)��j(f � �[r)(g)j (g 2 G);

where �[r(g) =
1
r

1
D(�(g))D(

�(g)
r )�(�(g)r ).

Theorem 6.7. (1) MG;[
N;� is in (Lp; Lp) for p > 1 and is of weak type (1,1),

(2) If N � 6, then MG;[
N;0 2 (H1

� ; L
1) for � > 1,

(3) If N � 4 and � > 2, then MG;[
N;� 2 (H1

0 ; L
1).

Proof. It is easy to verify that k�[rkL1(G) = k�[1kL1(G) and moreover, �[r(x) � c�]r(x) if

0 < r � 1 and �[r(x) � ce�2�x (x 2 R+) if 1 < r < 1. Therefore, as in [7, Theorem

3.4], it follows that MG;[
N;� is in (Lp; Lp) for p > 1 and of weak type (1; 1). We now

suppose that � 2 A2N(G) and we observe that for each 0 � n � 2N and 0 � x � r,
(d=dx)n�(x=r) � cr�2Nx2N�n and

(
d

dx
)nD(

x

r
) � cr�n

�
r + x

x

�n
D(

x

r
) � cx�nD(

x

r
);

(
d

dx
)nD(x)�1 � c

�
1 + x

x

�n
D(x)�1:

Then the same argument as in the proof of Lemma 6.5 yields that for M = 0; 1; 2,

j(
d

d�
)M (�[r)

^(�+ i�)j � crM (1 + r)s(1 + jr�j)�2s (0 � s � N);

and therefore, the desired result follows. �

D. The heat maximal operator MG
H;� (� � 0) on G is given as follows.

De�nition 6.8. For � � 0 and f 2 L1loc(G==K)

(MG
H;�f )(g) = sup

0<r<1
(1 + r)��j(f � hr)(g)j (g 2 G);

where hr(g) =
R
R
e�(�

2+�2)r��(g)jC(�)j
�2d�.

Theorem 6.9. (1) MG
H;� is in (Lp; Lp) for p > 1 and of weak type (1,1),

(2) MG
H;0 2 (H1

� ; L
1) for � > 1,

(3) MG
H;1 2 (H1

0 ; L
1).

Proof. (1) is well-known (cf. [9, p.73] and [1, Corollary 3.2]). Since ĥr(� + i�) =

e��
2re�2i��r, we see that ĥr2(�+ i�) 2 B+

0;1 if 0 < r � 1 and B2;+
1;1 if 1 < r < 1, and

moreover, (1 + r2)�1ĥr2(� + i�) 2 B+
0;1. Therefore, (2) follows from Propositions 5.3

and 5.5, and by changing r2 to r, (3) follows from Proposition 5.3. �

E. The Poisson maximal operator MG
P;� (� � 0) on G is given as follows.
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De�nition 6.10. For � � 0 and f 2 L1loc(G==K)

(MG
P;�f)(g) = sup

0<r<1
(1 + r)��j(f � pr)(g)j (g 2 G);

where pr(g) =
R
R
e�(�

2+�2)1=2r��(g)jC(�)j�2d�.

Theorem 6.11. (1) MG
P;� is in (Lp; Lp) for p > 1 and of weak type (1,1),

(2) MG
P;0 2 (H1

1=2; L
1),

(3) MG
P;2 2 (H1

0 ; L
1).

Proof. As shown by Stein [9, p.48], it is well-known that MG
P;� is in (Lp; Lp) for p > 1

and of weak type (1,1). Let us recall the calculation in [9, p.49] and modify it slightly:
the subordination formula gives an integral representation of f � pr such as

(f � pr)(g) =
1

r2

Z 1

0

(f � hy)(g)�(
y

r2
)dy (g 2 G);

where �(y) = 1=(2�1=2)e�1=4yy�3=2, and the integral by part yields the estimate of
(1 + r)�2(f � pr)(g) such as

j
1

(1 + r)2r2
j

Z 1

0

�Z y

0

1

1 + s
(f � hs)(g)ds

�
d

dy

�
(1 + y)�(

y

r2
)
�
dyj

� sup
0<y<1

1

y

Z y

0

1

1 + s
j(f � hs)(g)jds �

1

(1 + r)2r2

Z 1

0

yj
d

dy

�
(1 + y)�(

y

r2
)
�
jdy

� C(MG
H;1f)(g);

where C = ky�kL1(R)+ k(1+y)y �d�=dykL1(R). Therefore, it follows from Theorem 6.9

that MG
P;2 2 (H1

0 ; L
1). Let MG;0

P;0 (resp. MG;1
P;0 ) denote the maximal operator de�ned by

replacing sup0<r<1 in the de�nition ofMG
P;0 by sup0<r�1 (resp. sup1<r<1). Obviously,

MG;0
P;0 is dominated by cMG

P;2 and hence,M
G;0
P;0 2 (H1

0 ; L
1) as remarked above. Especially,

MG;0
P;0 2 (H1

1=2; L
1) by Theorem 4.4. On the other hand, we observe from the proof of [1,

Corollary 6.3] that kMG;1
P;0 fkL1(G) � ckTG1=ppfkL1(G), where p(�) = �2 + �2 and TG1=pp

is the Fourier multiplier on G de�ned by De�nition 7.1 below. Then, since p(�+ i�)�1=2

(j�j=1+ j�j)1=2 satis�es the H�ormander condition, Theorem 7.2 below yields that TG1=pp
2 (H1

1=2; L
1) and hence, MG;1

P;0 2 (H1
1=2; L

1). �

7. Other operators.

A. We shall de�ne the Fourier multiplier on G corresponding to an even bounded
function m(�) on F .
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De�nition 7.1. For f 2 L1loc(G==K)

(TGmf )(g) =

Z
F
f̂(�)m(�)��(g)jC(�)j

�2d� (g 2 G):

We easily see that TGm 2 (L2; L2) by the Plancherel formula on G. We now suppose
that m(�) has a holomorphic extension on F(�) and there exists s � 0 such that

sup
0����

km�;sk <1; where m�;s(�) = m(�+ i�)

�
j�+ i(� � �)j

1 + j�+ i(� � �)j

�s
:

Then by the same manipulation as in (10) we see that for f 2 L(G==K), TGmf has the
expansion:

(TGmf )(x) = e�2�x
1X
n=0

e�2nxTm�;0�
1
nC

1
+F

1
f (x) (x 2 R+)

= (T�;DTm�;s)(QsC
1
+F

1
f )(x)D(x)

�1;

where Tw is the Fourier multiplier on R de�ned by (Tw F )� (�) = w(�)F�(�) (� 2 R)
and T�;D is the pseudo-di�erential operator given in Remark 3.2. Since T�;D is a
bounded operator of H1(R) to L1(R), we can obtain from De�nition 4.3 and Theorem
4.5 that

Theorem 7.2. Letm(�) be an even holomorphic function on F(�). If there exists s � 0
such that sup0���� km�;sk <1 and Tm�;s is bounded on H1(R), then TGm 2 (H1

s ; L
1).

B. We last treat the Riesz transform on G, and we henceforth use the standard
notation as in [9]. Especially, we denote the Laplacian on G by � and the covariant
di�erentiation on G by r. We put jrj2(h) = �(h2) �2�h � h for h 2 C1(G). Then
the Riesz transform RG on G is given as follows:

De�nition 7.3. For f 2 L1loc(G==K)

(RGf )(g) = (jrj(��)�1=2)(f )(g) (g 2 G):

RGf is a K-biinvariant function on G. Indeed, (��)�1=2 = TG1=pp where p(�) =

�2 + �2 and we notice that for h 2 C1(G), jrhj2(g) =
Pn

m=1 jXihj
2(g) (g 2 G), here

fXi; 1 � i � ng is denoted as an orthonormal basis of the Lie algebra g of G and each
Xi is regarded as a left (or right) invariant di�erential operator on G, and furthermore,
if h is K-biinvariant on G, jrhj2(g) is simply expressed as cj(d=dx)h(ax)j

2 provided
�(g) = x (cf. [4, x2]).
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Theorem 7.4. (1) RG is in (Lp; Lp) for p > 1 and of weak type (1,1),
(2) RG 2 (H1

1=2; L
1).

Proof. (1) is well-known (see [1, Corollary 5.2]). As for (2) we may assume that f 2
H1
1=2(G==K) \ L(G==K) and then, we have

((��)�1=2f)(x) = e�2�x
1X
m=0

e�2mx(T1=pp�;0�
1
mC

1
+F

1
f )(x) (x 2 R+):

As remarked after De�nition 7.3, in order to obtain the estimate of RGf it su�ces to
calculate the action of d=dx on the right side of the above equation. Actually, d=dx
acts on e�2�x, e�2mx, and (T1=pp�;0 �

1
mC

1
+F

1
f )(x), so we denote the results by (I1f)(x),

(I2f)(x), and (I3f)(x) respectively. Since P (� + i�)�1=2(j�j=1 + j�j)1=2 satis�es the
H�ormander condition, it follows from Theorem 7.2 that kI1f �DkL1(R+) � ckfkH1

1=2
(G).

Similarly, since (d=dx) (T1=pp�;0 �
1
mC

1
+F

1
f )(x) = (T1=pp�;0�(i�) �

1
mC

1
+F

1
f )(x) and p(� +

i�)�1=2(i�) satis�es the H�ormander condition, we have kI3f � DkL1(R+) � ckfkH1
0 (G)

.
In obtaining the estimate for I2f , we rewrite it as follows:

(I2f )(x) = e�2�x
1X
m=1

(�2m)e�2mx(
1mQ1=2C
1
+F

1
f )(x) (x 2 R+);

where 
1m is the Fourier multiplier on R de�ned by

(
1mF )
�(�) = �m(�+ i�)p(�+ i�)�1=2

�
j�j

1 + j�j

�1=2
F�(�) (� 2 R):

We here observe from (25), (26) and Lemma 8.1 below that for M = 0; 1,

j(
d

d�
)M�m(�+ i�)j � cm2�+1(1 + j�j)�M

�j2�� i�j

mjm+ �� i�j

and hence,

j(
d

d�
)M

 
�m(�+ i�)p(�+ i�)�1=2 �

�
j�j

1 + j�j

�1=2!
j � cm2��1j�j�M :

Therefore, �m(�+ i�)p(�+ i�)�1=2 � (j�j=1 + j�j)1=2 satis�es the H�ormander condition
with the constant cm4��2. We now repeat the proof of Lemma 3.1 when T is the
identity operator, in which case we replace � 1

m and F by 
1m and Q1=2C
1
+F

1
f respectively.

Fortunately, the extra order ofm that appears in the di�erentiation of e�2mx is canceled,
because the operator norm cm2� of � 1

m is changed to cm2��1 of 
1m. So the exactly
same proof of Lemma 3.1 is valid in this case and it follows that kI2f � �kL1(R+) �

ckQ1=2C
1
+F

1
f kH1(R) = ckfkH1

1=2
(G). This completes the proof of (2). �

Remark 7.5. Theorem 6.11(2) also follows from Theorem 7.4(2) and [1, Corollary 6.3].

21



Remark 7.6. Let R = Ti�=j�j be the Riesz transform on R and Q the Fourier multiplier
on R de�ned by

(QF )�(�) =
�
�2 + 4�2

�2

�1=4
� ei2

�1 tan�1(2�=�) �
�

j�j
� F�(�) (� 2 R):

We observe that e�i2
�1 tan�1(2�=�) � �=j�j� (�2 + 4�2)�1=4 (1 + j�j)1=2 satis�es the

H�ormander condition and hence, if QF 2 H1(R), then Q1=2F 2 H1(R). Especially,

De�nition 4.3 and Theorem 7.4(2) yield that if f 2 H1
1=2(G==K), then

kRGfkL1(G) + kQC
1
+F

1
f kL1(R) � ckQC1+F

1
f kH1(R):(23)

We now suppose that f 2 L1loc(G==K) satis�es kRGfkL1(G)+kQF
1
f kL1(R)<1. If we

take X1 in a in the remark after De�nition 7.3, we see that jrhj(axg)� j(d=dx)h(axg)j
(g 2 G) for h 2 C1(G), and thereby,

kRGfkL1(G) =

Z
A

Z
N

j(RGf)(axn)je
2�xdndx

�

Z
A

Z
N

j
d

dx
((��)�1=2f )(axn)je2�xdndx

�

Z
A

j
d

dx

Z
N

((��)�1=2f )(axn)dnje2�xdx

= k
d

dx
F�1
(��)�1=2f

� e2�xkL1(R) = kRQF 1
f kL1(R);

because (� + 2i�)(�2 + 2i��)�1=2 = ei2
�1 tan�1(2�=�) � (�2 + 4�2=�2)1=4. Therefore, the

assumption on f yields that QF 1
f 2 H

1(R) and

kQF 1
f kH1(R) � c(kRGfkL1(G) + kQF

1
f kL1(R)):(24)

If we let �! 0 formally, then F 1
f goes to an even function f on R, RG to R on R, and

C1+, Q to the identity operators on R, so from (23) and (24) we can recover the classical
result: kfkH1(R) � kRfkL1(R) + kfkL1(R) (cf. [10], p. 123).

We last restrict our attention to functions f 2 L(G==K) such that QC1+F
1
f 2 L

1(R)

(see x2 and Remark 7.6), and we de�ne

L1(G==K) = ff 2 L(G==K); kfkL1(G) = kfkL(G) + kQC1+F
1
f kL1(R) <1g

and

H1(G==K) = ff 2 L(G==K); kfkH1(G) = kfkL(G) + kQC1+F
1
f kH1(R) <1g:
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Obviously, H1(G==K) � L1(G==K) and kRGfkL1(G) + kfkL1(G) � ckfkH1(G) (see

(23)). We now suppose that f 2 L1(G==K) and we recall the proof of Theorem 7.4(2).

Especially, j(RGf)(x)j = j
P3

k=1(Ikf )(x)j (x 2 R+) where

(I1f)(x) + (I3f)(x) = e�2�x
1X
m=0

e�2mx(T i(�+2i�)

(�2+2i��)1=2
� 1
mC

1
+F

1
f )(x) (x 2 R+)

= e�2�x
1X
m=0

e�2mx(� 1
mRQC

1
+F

1
f )(x);

I2f(x) = e�2�x
1X
m=1

(�2m)e�2mx(
1mQ1=2C
1
+F

1
f )(x):

Therefore, we can deduce that for x 2 R+

j(RQC1+F
1
f )(x)j � e2�xj(RGf)(x)j+

1X
m=1

e�2mxj(� 1
mRQC

1
+F

1
f )(x)j

+
1X
m=1

2me�2mxj(
1mQ1=2C
1
+F

1
f )(x)j:

Since k(Q C1+F
1
f )
�k1�kQ C1+F

1
f kL1(R)�kfkL1(G) and k(C

1
+F

1
f )
�kL1(R) � kfkL(G) �

kfkL1(G), it follows that j(� 1
m R Q C1+F

1
f )(x)j� cm

2� kfkL1(G) and similarly, j(
1m Q1=2

C1+F
1
f )(x)j = j(
1m Q1=2 Q

�1) (Q C1+F
1
f )(x)j � cm2��1 kfkL1(G) (see x2 and the proof

of Theorem 7.4(2)). Hence we have,

Z 1

1

j(RQC1+F
1
f )(x)jdx � c

Z 1

1

j(RGf)(x)jD(x)dx+ ckfkL1(G)
1X
m=1

m2�

Z 1

1

e�2mxdx

� c(kRGfkL1(G) + kfkL1(G)):

On the other hand, since

j(RQC1+F
1
f )(x)j = j

Z
R

i(�+ 2i�)

(�2 + 2i��)1=2
f̂(�+ i�)C(��� i�)�1ei�xd�j (x 2 R)

= e�xj

Z
R

i(�+ i�)

(�2 + �2)1=2
f̂(�)C(��)�1ei�xd�j

� ckfkL(G)e�x;

it follows that
R 1
�1 j(RQC1+F

1
f )(x)jdx � ckfkL1(G). Then, we can deduce that kR Q

C1+F
1
f kL1(R) � c(kRGfkL1(G) + kfkL1(G)). In particular, kfkH1(G) = kfkL(G) + kQ

C1+F
1
f kH1(R) � c(kfkL(G) + kQ C1+F

1
f kL1(R)+ kR Q C1+F

1
f kL1(R)) � c(kRGfkL1(G) +

kfkL1(G)). We have therefore proved the following,
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Theorem 7.7. f 2 H1(G==K) if and only if f 2 L1(G==K) and RG 2 L1(G==K).
Especially,

kfkH1(G) � kRGfkL1(G) + kfkL1(G):

8. Appendix. We shall obtain an estimate for the derivatives of �m(�) (see (6)),
which yields the H�ormander condition of �m. In what follows we denote �m by �2m
and refer to the notation and the proof of Lemma 7 in Flensted-Jensen [4]. Actually,
�m (m 2 N) is recurrently de�ned by �0 = 1, �2n+1 = 0 (n 2 N) and

4m(m� i�)�2m(�) =

m�1X
k=0

(2k � i�+ �)4 ((�� �) + �mk (2� + 1)) �2k(�);

where �mk = 0 for k � m+1(mod 2), �mk = 1 for k � n(mod 2). For eachm 2 N we put

Ck(�) = 4k(k � i�) and Rk(�) = 4�(2k � i�+ �);

where � = �� � if k � m+ 1 and � = � if k � m. Then it follows that

�2m(�) = Cm(�)
�1

m�1X
k=0

Rk(�)�2k(�)

=
R0(�)

Cm(�)

m�1Y
k=1

�
1 +

Rk(�)

Ck(�)

�
:

Therefore, if we put ck(�) = jCk(�)j, rk(�) = jRk(�)j and

b0(�) = 1 and bm(�) = cm(�)
�1

m�1Y
k=0

bk(�)ck(�) for m � 1,

we easily see that

j�2m(�)j � bm(�) =
�j�� i�j

mjm� i�j

m�1Y
k=1

�
1 +

rk(�)

ck(�)

�
:(25)

Lemma 8.1. Let � = � + i� and suppose that � � �. Then there exists a positive
constant c such that for all m 2 N

m�1Y
k=1

�
1 +

rk(�)

ck(�)

�
� cm2�+1:

Proof. Since � � �, we have j2k + �+ � � i�j=jk + � � i�j � 2 and thereby,

�
k
rk(�)

ck(�)

�2
� (2�)2:
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Then it follows that
m�1Y
k=1

�
1 +

rk(�)

ck(�)

�
� exp

 
m�1X
k=1

rk(�)

ck(�)

!

� exp

0
BB@� X

k�m
1�k�m�1

2k�1 + (�� �)
X

k�m+1
1�k�m�1

2k�1

1
CCA

� c exp ((�+ �� �)logm)

� cm2�+1
�

Lemma 8.2. Let =(�) � 0 and �x M 2 N. Then there exists a positive constant c
such that for all m 2 N

(1) j(
d

d�
)M

R0(�)

Cm(�)
j � c

r0(�)

cm(�)

1

(1 + j�j)M
;

(2) j(
d

d�
)M
�
1 +

Rk(�)

Ck(�)

�
j � c

�
1 +

rk(�)

ck(�)

�
1

(k + j�j)M+1
(M � 1):

Proof. (1)

j(
d

d�
)M

R0(�)

Cm(�)
j = cj

m� �

Cm(�)(m � i�)M
j

� c
r0(�)

cm(�)
j

m� �

(�� i�)(m� i�)M
j

� c
r0(�)

cm(�)

1

(1 + j�j)M
:

(2) For M � 1

j(
d

d�
)M
�
1 +

Rk(�)

Ck(�)

�
j = cj

k � �

Ck(�)(k � i�)M
j

� c

�
1 +

rk(�)

ck(�)

�
j

k � �

((k2 + �(2k + �))� (k + �)i�)(k � i�)M
j

� c

�
1 +

rk(�)

ck(�)

�
1

(k + j�j)M+1
: �

We now suppose that � = =(�) � 0 and observe by Lemma 8.2 that

j(
d

d�
)�2m(�)j = j(

d

d�
)
R0(�)

Cm(�)

m�1Y
k=1

�
1 +

Rk(�)

Ck(�)

�
+
R0(�)

Cm(�)
(
d

d�
)
m�1Y
k=1

�
1 +

Rk(�)

Ck(�)

�
j

� cbm(�)

0
@(1 + j�j)�1 + m�2X

j=0

(1 + j + j�j)�2

1
A

� cbm(�)(1 + j�j)�1:(26)

Hence, by Lemma 8.1 and the above estimate we can deduce the following,
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Proposition 8.3. Let M = 0; 1. If =(�) � �, then there exists a positive constant c
such that for all m 2 N

j(
d

d�
)M�2m(�)j � cm2�(1 + j�j)�M :

Corollary 8.4. Suppose that � � �. Then there exists a positive constant c such that
for all m 2 N

R2M�1
Z
R<j�j�2R

j(
d

d�
)M�2m(� + i�)j2d� � cm4�

for M = 0; 1 and R > 0.
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