L' ESTIMATES FOR MAXIMAL FUNCTIONS AND RIESZ
TRANSFORM ON REAL RANK 1 SEMISIMPLE LIE GROUPS

TaKkesHI KAWAZOE

ABSTRACT. Let GG be a real rank one semisimple Lie group and K a maximal compact
subgroup of G. Radial maximal operators for suitable dilations, the heat and Poisson
maximal operators, and the Riesz transform, which act on K-biinvariant functions on G,
satisfy the LP-norm inequalities for p > 1 and a weak type L' estimate. In this paper,
through the Fourier theories on R and G we shall duplicate the Hardy space H'(R) to a
subspace H!(G) (s > 0) of L' (G) and show that these operators are bounded from H!(G)
to L1(G).

1. Introduction. Let G be a real rank one connected semisimple Lie group with finite
center, G = KAN an Iwasawa decomposition of GG, and dg = dkdadn a corresponding
decomposition of a Haar measure dg on G. Let L] (G//K) denote the space of locally
integrable, K-biinvariant functions on G and LP(G//K) (0 < p < o) the subspace of
L}, .(G//K) consisting of functions with finite LP-norm on G. In the following, if we
say that 7' is an operator on G, it means that T' is an operator acting on these spaces.
The first problem we shall treat in this paper is concerned with the Abel transform on

G. For f € L'(G//K) the Abel transform Fy of f is defined by

Fy(z) = epx/Nf(axn)dn (x € R),

where A is parametrized as {a,;x € R} (for the definition of p see (3) below). We let
F}(l‘) = ¢’ Fy¢(x). Then the integral formula for the Iwasawa decomposition of G (cf.

[6, p.373]) yields that f € L'(G) if and only if F|1f| € L'(R), and thus,

Proposition 1.1. If f € L'(G), then F; € L'(R).

The reverse of this proposition is not true: even if F} is well-defined for f € L], (G//K)

and it belongs to L' (R), f does not always belong to L'(G//K). The first problem we

offer is the following,

Problem A. For f € L} (G//K) find a condition on F} under which f belongs to
LYG//K).

We next consider a problem concerning with a maximal operator on G. Let o :
G — Ry denote the K-biinvariant function on G induced by the distance function on
X = G/K (cf. [13,p.320]). Foreachr € Ry welet B(r) = {g € G;o(g) < r} and x p(y)
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the characteristic function of B(r). The Hardy-Littlewood maximal operator MY, on
G is defined as follows: for f € L] (G//K)

loc

(M) = s [BO)IT I vae)e) (9 € G,

This definition makes sense for f € LP(X) (p > 1). Clerc and Stein [3] and Stromberg
[11] have shown the following,

Theorem 1.2. M$, satisfies the LP-norm inequalities for p > 1, and a weak type L'
estimate, that is, for all o € Ry and all f € LY(X)

{9 € G:(M§1)(9) > o}l < If e

where ¢ 1s independent of a and f.

We here define a radial maximal operator on GG as an analogue of the one on R. We fix
¢ € CX(G/]/K), the space of C*, compactly supported K-biinvariant functions on G,
and suppose that ¢ is sufficiently zero at the origin of G. The radial maximal operator

Mf,;ﬁ (e > 0) on G is defined as follows: for f € I (G//K)

loc

(MEEN(9) = s (1) x D)9l (g€ @),

where the dilation ¢! (r € Ry) of ¢ is given by

ot(g) = 1B(r)| " dlao(yyr) (9 €G).

This dilation is different from the one used in [7] and see §6 for other dilations. Since
Mf”jf < ecM§, f pointwisely, M(f”j also satisfies the property stated in Theorem 1.2.
As Folland and Stein have shown in their book [5], when a Lie group G is of homo-
geneous type, a radial maximal operator Mg on G is bounded from the atomic Hardy

space ngo(g) to L'(G). More precisely, integrability of the maximal function MY f
= sup, Mgf where the supremum is taken over ¢ in a suitable class, is equivalent to
that f belongs to ngo(g) (see [5, Chapter 3]). At present, we have no definition of

the (atomic) Hardy space on G on which Mf’eﬁ is bounded. The second problem, which
was also treated in [7], is the following,

Problem B. Find a subspace of L'(G//K) on which M(f”j is bounded to L'(G//K).

These two problems look unrelated each other. However, the answers obtained in this
paper indicate that they are deeply related. Let C(A) (A € R) be the Harish-Chandra’s
C-function. Since C'(\) has a meromorphic extension on C, the following definition of
the Fourier multiplier C_li_ on R makes sense:

(CLF)~(\) = C(=A—ip) 'F~(\) (A€ R),

where F~ denotes the Euclidean Fourier transform of F. Let H'(R) be the H'-Hardy
space on R (cf. [10, Chap.3]). Then our answer of Problem A can be stated as
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Answer A. IfCLF; € H'(R), then f € L'(G//K).
Let Qs (s > 0) denote the Fourier multiplier on R defined by

(QUF)*()) = (1“”) F~(3) (A\eR).

We set
H{(G//K) ={f € Li,.(G//K); Q,CL F; € H'(R)}

and |[f]lg1a) = 195 cl FlHHl(R)- Answer A means that H}(G//K) is a subspace of
LY(G//K) and moreover, the fact that (J\|/1 + |\|)* satisfies the Hormander condition
on Fourier multiplier yields that H!(G//K) (s > 0) is a subspace of Hj(G//K) (see

§4). Our answer of Problem B is given as follows.

Answer B. Ford >0, Mf(’)ﬁ is a bounded operator of Hy  s(G//K) to L'(G//K) and

M,y is one of HY(G//K) to L'(G//K).

In order to understand a true character of C_li_F} we need the Fourier analysis on G,
so we refer to the Warner’s book [14]. Let ¢x(g) (g € G, X € R) be the zonal spherical
function on G where the dual space of the Lie algebra of A is identiﬁed with R Then
for f € L'(G//K) the Fourier transform f( ) of f is defined by f = [ f( g)dg.
The inversion formula is of the following form: for f € CEO(G//I&)

1) f(g) = /R F(N)ox(@)[C(N)[2dx,

in which case, f(/\) is a holomorphic function of exponential type. Hence, by regarding
each K -biinvariant function on G as an even function on R, by substituting the expan-
sion of ¢y (see (5) and (6) below) into (1), and then, by shifting the integral line R to
R + ip, we can rewrite (1) as follows ({14, p.356]):

2 @)= / FNBO2)C(=N) " eMdN (x € Ry)

_2/1132 —me/ P (/\_I_Zp)f(/\_l_lp)ez)\xd/\

Since (Ff)~(A) = f(/\) and 'y = 1 ([14, Proposition 9.2.2.3 and 9.1.5]), the leading
term corresponding to m = 0 in the right side of (2) is nothing but e_sz(C}i_F})(x).
Roughly speaking, Answers A and B can be restated as follows: if the leading term of
e?P f(z)(x € Ry) belongs to H'(R), then f and M¢ 1+5f belong to L'(G//K).

We state the organization of this paper. In §3 we shall obtain a key lemma for the
integrability of f satisfying C_li_F} € H'(R). Then the proof of Answer A and some
basic properties of HY(G//K) are given in §4. In §5 we shall obtain some criteria by
which we can judge whether a radial maximal operator is bounded from H!(G//K) to

LY(G//K). Actually, we apply a criterion to Mf’eﬁ and obtain the proof of Answer B in



§6. Moreover, we consider the same problem for the heat and Poisson maximal operators

Mfie and Mge (e > 0) on G, which are defined as follows: for f € L], (G//K)

(M5 H)lg) = sup (L+r)"|(f*he)(9)] (9 €G),

O0<r<oo

(ME )= sw (14T (Fep)(a) (0 €C)

where h,(\) = e~ (AT and pr(N) = e=(W+0M)' 1 A5 shown by Stein [9] in great
generality these operators also satisfy the property stated in Theorem 1.2. In §6 we
shall show that MHO (resp. Mgo) is a bounded sublinear operator of H| ;(G//K)

(6 > 0) (resp. Hl/z(G//Ix)) to L'(G//K) and moreover, .7\4H71 and MP,Z are ones of

H}(G//K) to LY(G//K). In §7 we shall treat the Riesz transform RY on G which are
defined as follows: for f € L], (G//K)

(REf)(9) = (IVI(=2)"%)(H)lg) (9€G),

where A is the Laplacian on G and |V|?*(k) = A(h?) —2Ah - h for h € C*®(G). As
studied by Anker [1] and Lohoué [8] RY f is deeply related with Mgef, especially, the

L'-norm of Mgef is controled by the one of R¢f. Therefore, we can expect that the

(Hardy) space H}(G//K) might be useful to obtain an L' estimate for RY. Indeed, we
shall prove that RY is bounded from Hll/z(G//K) to LY(G//K).

2. Notations. Let GG be a real rank one connected semisimple Lie group with finite
center and G = K AN an Iwasawa decomposition of G. Let a be the Lie algebra of A and
F = a* the dual space of a. Let H be the unique element in a satisfying v(H) = 1 where
~ is the positive simple root of (G, A) determined by N. We parametrize each element
in A, a, and F as a, = exp(eH), *H, and zv (¢ € R) respectively. In what follows
we often identify these spaces with R and also F., the complexification of F, with C
without making mention of the identification. We put F(s) = {\ € F;|S(N)| < s}
(s € Ry) and Ay = {a,;2¢ € Ry}, Then, according to the Cartan decomposition
G = KCL(A4)K of G and the action of the Weyl group of (G,A) on A, every K-
biinvariant functions f on G are determined by their restriction to C'L(A4+) and hence,
they are identified with even functions on R. We denote them by the same letter, that
is, if g € Ka,) K and z(g) € Ry,

f(9) = flawy) = flz(g9) = f(—z(g)).

Let dg (resp. dk and dn) denote the Haar measure on G (resp. K and N ), normalized
as [ & dk = 1 and the following integral formula holds for all integrable, K-biinvariant

functions f on G:
/ f(g)dg = / fa

where D(x) = (sinh )™ (sinh22)™2 (¢ € R4), my and mg are the multiplicities of v
and 2+ respectively. We put
my +mg — 1 my + 2me

(3) a=——""— and p= 5



Then the order of D(x) is given by

gratl (0<a<])
et (1 <2< o0),

@) D) ~ {

where the symbol 7 ~ 7 means that the ratio of the left side and the right side is
bounded below and above by positive constants. Let L] (G//K) denote the space of
locally integrable, K-biinvariant functions on G. Let LP(G//K) (0 < p < oo) and
C*(G//K) denote the subspaces of L}, (G//K) consisting of, respectively, functions
with finite LP-norm on G and C'°°, compactly supported functions on . Henceforth,
for each normed space V we denote the norm of v € V as |[v]|v, excepting that G//K
is abbreviated by G and the L*-norm is denoted by ||v||oc-

We recall the bases of the Fourier analysis on G and refer to [4] and [14]. Let ¢5(g)
(A € F, g € G) be the zonal spherical function of G. The Harish-Chandra expansion of
¢ 1s given as

(5) oa(x) =e" P <(I)(/\,$)C(/\)€i)‘x + CI>(—/\,:1:)C(—/\)6_M“7> (r € Ry)

and furthermore, ®(\, ) has the so-called Gangolli expansion:

(6) B\, z) = i T (Me ™2™ (N € F.z € Ry)

m=0

([14, 9.1.4 and 9.1.5]). Their explicit forms and some basic properties of C(\), ®(\, x),
and I'y, (A), which will be used in the following arguments, are summarized in [4, §2 and
§3], and a sharp estimate for the derivatives of I';,,(A) will be obtained in the appendix
of this paper (see §8). For f € L'(G//K) the Fourier transform f(/\) (A€ F)of fis
defined by

ﬂmzéﬂmm@@ (\e 7).

From the Riemann-Lebesgue’s lemma on G ([4, Lemma 11]) it follows that f()) is an
even holomorphic function on F(p) satisfying |f(A\)| — 0 as |A\| = oo in CL(F(p)) and
hence,

sup  FO] < (£l (-
AECL(F(p)

When f is in C°(G//K), the Paley-Wiener theorem on G ([14, 9.2.3]) implies that

f(A) is an even holomorphic function on F. of exponential type, in which case, the
Fourier inversion formula:

(7) f@wiéﬂ»m@mmw*w (g€@)
and the Plancherel formula:
(®) AMU@WD@szlmMMWWMN”M
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hold. Thereby, the Fourier transform f — f of C(G//K) is uniquely extended to an
isometry between L?(G//K) and L*(R,|C(\)|72d)\) ([14, Theorem 9.2.2.13]).

We now introduce some operators on GG and R. In what follows most of operators on
G and R are denoted by scripts: A, B, C, ..., excepting M and T. Especially, AB...Cf
means that A(B(...(C(f)))) and A an operator on G.

For s € R we define the Abel transform F} of f € L,.(G//K) as

loc
Fi(x) = P Fy(x) = elstee /Nf(axn)dn (x € R)
and the Fourier multipliers C} and I';, (m € IN) on R as

(C3F)(z) = /RC(—/\—is,o)_lFN(/\)eMl’d/\ (z € R),

(FﬁnF)(:z;):/Rl“m(/\—l—is,o)FN(/\)e”‘xd/\ (x €R),

where F'™ denotes the Euclidean Fourier transform of F. Of course, these definitions
make sense if the integrals of the right sides exist. Since f(A) = (F¢)~(A) (A € F.) for
feCx(G//K) (]14, Proposition 9.2.2.3]), the relation

(9) (F7)~(A) = f(A+isp)

holds if the both sides exist for A € F,.. We here suppose f € C°(G//K) and we observe
that on F(p), f(/\) is holomorphic and rapidly decreasing, C(—\)~! is holomorphic and
tempered, and I';,(\) is holomorphic and uniformly dominated by a polynomial of m
([14, Proposition 9.1.7.2 and p.334]). Hence, by substituting the expansions in (5) and
(6) into (7), by changing the order of integration and summation, and by shifting the
integral line from R to R + ip, we can deduce that

(10) f(z) = e—ﬂfAf(A)@(A,x)C(_A)—lei*fdA (z € Ry)

= e Py e (IO CLFY) ()

m=0
e

=72y eI (L), CLF} ) (2).

m=0

This manipulation is valid provided that f(/\) is holomorphic on F(p) and satisfies
SUPg<¢<) fR—i-iﬁ |f(N) C(=\)"1|d)\ < oo. In this case, since |T'p,(N)] < em?® (m € N) if
() > p (see Proposition 8.3 below) and Y °°_ e 72 2@ ~ =20+ a5 3 5 0 and
~ 1 as @ — oo, the right side of (10) is dominated by e~2* (1 + D(z))/D(z) (see (4)).
We then define

L(G//K) ={f eL,.(G//K); f is holomorphic on F(p) and

1fllece = sup / FONC(=0)1d) < ool
0<E<p JR+1¢



3. A key lemma.

Lemma 3.1. Let T be a sublinear operator of R satisfying the following properties:
there exists € > 0 such that for each (1,2,0)-atom a with supp(a) C [xg — {, 20 + (]

(a) ||Tallr2ry < lallz2(ry,
(0) [(Ta)(z)| < |z — 20| if |2 — o] > 20.

Then there exists a positive constant ¢ = ¢, such that for any F € H'(R)

oo

(11) le=20" Z e "I, F) - D piryy < cl|F| -

m=0

Proof. We abbreviate || - |[z2(r) as || - |[2. We first observe that ||Ta| 1 (gr) < f|x_x0|<2£
|(Ta)(x)|de + f|x_x0|>2£ (Ta)(z)|dz < (20)12|a)|s + (¢ f|x—1;0|>24 |z — 20|~ (+9dz < ¢,
because a is a (1,2,0)-atom. Hence T is a bounded sublinear operator of H'(R) to

LY(R). Let F € H'(R). Since Ty = 1 (cf. [14, 9.1.5]), the term corresponding to
m = 0 in the left side of (11) is dominated as

(12) [e™***(TF) - Dlpr(my) < ellTFllzr ) < el Fllm wy-

In estimating the rest terms, by substituting a (1,2,0)-atomic decomposition of F (cf.
[5, Theorem 3.30]) it suffices to show that for any (1,2,0)-atom « on R,

oo

(13) le=2r Y e (T Ty a) - Dllpamy) < e

m=1

We notice that T',, (A + ip) (A € F) satisfies the Hormander condition with the con-
stant cm*® (see Corollary 8.4 below) and therefore, the multiplier theorem obtained by
Taibleson and Weiss [12, Theorem 4.2] asserts that I} a is a (1,2,0,1/2)-molecule with
| hall rrry < em?®. Moreover, the proof of Theorem 2.9 in [12] yields that I} a has
a (1,2,0)-atomic decomposition such that

[e%e)

1 _ mim

Fma_§ dk k>
k=0

where |d}*| = 27 k22 and, if we denote by zg the center of the support of a and we
put o, = ||[Tha/m?®||;%, b7 is a (1,2,0)-atom on R supported on the interval I} =
{z;]z — 29| < 2%0,,}. Let (7 = |II*|. Since a and I',a are (1,2,0,1/2)-molecules on
R, it follows from the proof of Theorem 4.2 in [12] that o, = m*® Hfmaﬂz_z > cHaH2_2
and o, = m™4||x — 29| nall3 < HaHZ_Z, that is,

(14) om ~ llally* and £ ~2%ally?,



We now split the region of integration in (13) into (0, 1] and (1,00). The integral over
(1,00) is estimated as

/ Ze—m|(Tr;a)(x)|e—2ﬂfp(x)dx
1 m=1

<e Y e M| T all L wy

m=1
e

<c Z e MM < oo,

m=1

On the other hand, the estimate for (0, 1] is obtained as follows:
1 oo
[ 30 e el D e
0 =1
1 oo o
= C/O Yo eIy NPT ) (2)|D(x)da
m=1 k=0

oo oo 1
<ey Z/O e~2mE =R 220 | (Th ) () 2+ d

k=0 m=1

=1 + Iy,

where I is the integral over the region Dq: 0 < & < 1, |¢ — z¢| > 2(]" and I, is the
integral over the region Dy: 0 < « < 1, |[x — x¢| < 2(}". Since (' ~ 2’“”@”2_2 by (14)
and >0 eI ~ (2ot (0 < 2 < 1), the property (b) of T' yields that

o0 [oe]
I < CZZ—k/ZZ 2keHaH2—26/ €—2mxm2ax2a—|—1|x_x0|—(1—|—e)dx
k=0 m=1 Dy

oo
< CZQ—k/ZleHaHz—Ze/ |$ . x0|—(1—|—e)dx
k=0 |z —zo|>c2"[|a]|3

SCiQ_k/Z < 00.

k=0
In obtaining the estimate of I; we break the integral over D, as
>0
/ - E :/ 27t e <27 ‘|’/ o<a<1
D2 oY |o—xo|<26 w0 <3L} |z —z0| <247 20 >34

and we denote the corresponding terms by Iy; and Iz, respectively. As for Iy, if the
integral does not vanish, we see that 27771 < zq + 207" < 5k < cZkHaH2_2 by (14)
and moreover, ||TbF ||, < ||bF, |l < ¢(€5)71/% ~ 27%/2||a||, by the property (a) of T.



20+1

Therefore, taking the maximal values of e72™% and z in the integrand and applying

the Schwarz inequality to the integral, we can estimate [5; as

CZQ—k/z Z (Ze—mZ_JmZQQ—j(Za—i—l)) 2—]‘/22—k/2HaH2
k=0

2= <c2k (a3 7 \M=1

<c) 27k DA e [P
k=0

279 <e2*|lall3?

§c§:2_k/2 < 0.

k=0

As for I, if the integral does not vanish, we see that + < x¢ + 207" < 52¢/3 and = >
xg — 207 > xq/3. Therefore, we can deduce that

Iy <c) 27k (Z e—2mx0/3m2a) (520/3)* | T 11 (m)
k=0 m=1

§c§:2_k/2 < o0,

k=0

This completes the proof of the lemma. O

Remark 3.2. Let T be as in Lemma 3.1. Let T p denote a pseudo-differential
operator with the symbol ¢ p(x, \) defined by e /% ®(\ + ip,z) D(x) if = € Ry
and 0 otherwise. Then from (6) the conclusion of Lemma 3.1 can be restated as ||[Ts p
TF|| 1wy < ¢||F|lpi(r) for all F € H'(R). Especially, taking the identity operator as
T, we see that T p is a bounded linear operator of H'(R) to L'(R). On the other
hand, it follows from Proposition 8.3 below that

d

(=) oe.p(e, )] < e(1+A)TH

for M = 0,1. If the same estimate were also true for the derivative of x, or a modulus
continuity of , we would obtain the boundedness of Ty p directly from Théoreme 9 in
Coifman and Meyer [2].

4. L'-condition. As stated in Theorem 1.1, F} is integrable on R if f is integrable on
GG. However, the reverse is not true. In this section we obtain a condition of F} under
which f is integrable on G.



Theorem 4.1. Let us suppose that C F1 is well-defined for f € Lj, (G//K) and it
belongs to H'(R). Then f belongs to Ll(G//Ix) In particular,

£z ) < ellCy Frllmewy,
where ¢ 1s independent of f.
Proof. We first prove the inequality for f € L(G//K) with HC_li_F} |z (r) < o0, in which
case we see from (10) that

oo

fla) = c70m 3 e PmHILCLFN(0) (v € Ry).

m=0

By taking the identity operator as T' in Lemma 3.1 we can deduce that
(15) Iy = IfDllerry) < lCiFylla -

For a general f € L}, .(G//K) with ||C} F} ¢l 71 (r) < 00 we approximate f by functions
in L(G//K). Let ¢ be an even C™ functlon on R with [ tg(x)dz = 0 and put »( ()

= tpg(x)eP” for € € R4. Since ¢5 (e\) is an even holomorphic functlon of exponential
type, the Paley-Wiener theorem on G yields that there exists ¢(9 € C®(G//K) such

that (6(9)M(\) = ¥g(e)). Let o§7(x) = 671 (I(571x) for § € Ry. Then Fl, ()
@<>Mwmew$»%>::w@vu+uo=¢mwA+w»—<w%w»,md

moreover, fx¢'9 € L(G//K) and CLF f*¢< 5 = (CL Fl)*;/):) We here note the following,

Lemma 4.2. Let F be in HY(R). Then F+ ! € HY(R) for 0 < ¢ < 1 and

|F = Fx g my =+ 0 (e—0).

Proof. We refer to the notations and the results in Folland and Stein [5, §2]. Since
1991y < cfor all 0 < € < 1, it follows from Lemma 3.31 in [5] that there exists N > 1
such that supg 5«0 (M(N)(F*;/)((;E)))(x) < o(M1yF)(x). Especially, (M(N)(F*¢£E)))($)
< ¢(M1)F)(z) and thus, F * ¢£E) € H'(R) by Theorem 3.30 in [5]. The rest of the
proof follows from the same argument as in the proof of Theorem 3.33 in [5]. O
Hence, C} Ff oo = (C_li_F}) * ¢£E) € H'(R) and [|CL F1 CLF wr) — 0
as € — 0. On the other hand since fx ¢l9 € L(G//K), it follows from (15) that
1F ¢ raca) < e lC]
LY(G//K). Clearly, h must be f, because (¢(D)N(N\) — 157 (0) = 1 as € — 0. So, letting

e — 0, we obtain the desired inequality for f. This completes the proof of Theorem
4.1. O

We now define the Hardy space H!(G//K) (s > 0) on G. Let Q; (s > 0) denote the
Fourier multiplier of R defined by

(r)- Therefore, fx 9 converges to a function h in

@wawz(%%ﬂ)F%» (\eR).
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Definition 4.3. For s >0
HNG//K)={fec L] (G//K), QSC}FF} is well-defined and is in H'(R)}

and || fllara) = 1QsCLF} lm (r)-

Theorem 4.4. Ifs' > s> 0, then H,(G//K) C HX(G//K) C L'(G//K) and for all
f € HL(G//E)
1fllze e < ellfllmra) < Nflla )

where ¢ and ¢ are independent of f.

Proof. Theorem 4.1 asserts that HfHLl(G) CHfHHl(G) Let R, denote the Fourier

multiplier on R defined by (RsF)~ (A) = FY(AN)(JA|/ 1+ ]A])? (A € R). We notice that
(IM/ 1+ |A])? (s > 0) satisfies the Hormander condition and thus, R, is a bounded
linear operator on H'(R) (see [12, Theorem 4.2]). Therefore, for all f € H.(G//K),

12y = IRs—s QuCiFillmr) < cllQv CLFfllm@®) = Ifluy ) O

Theorem 4.5. For s >0, HI(G//K)N L(G//K) is dence in H:(G//K).

Proof. We retain the notation used in the proof of Theorem 4.1 and suppose that
f € H}(G//K). Since Q,CLF} € H'(R) and Q, CLF} ., = Q.CL(F}+ ) =
(QSC_li_F})* ;/)EE) (cf. [4, Theorem 5]), it follows from Lemma 4.2 that f x ¢(9 €
HYG//K)NL(G//K) and ||f — f * gb(E)HHl(G) —0(e—0). O

Remark 4.6. H)(G//K) contains all f € C*(G//K) with [ f(g)dg = 0. Indeed,

we suppose that supp(f) C B(r), and we observe that f( ) is holomorphic on F, of
exponential type r and C(—\)~! is holomorphic and temperd on the upper half plane
(cf. [14, 9.2.3] and [4, Lemma 8]). We here recall the technique used in the proof of
the Paley-Wiener theorem (cf. [14, 9.2.3]). Hence, shifting the integral line R of the

integral [p C(—X\— ip) L f(N +1ip) €2 d) defining C_li_F} to R+ 1in (n — +o00), we can
deduce that supp(C_li_F}) C (—o0,r]. Thereby, HC_li_F}HLz(R) = Hpr(CiF}))HB(R) < el
[fes F](C)HLQ(R) = e[| fllz2(ay by the Plancherel formulas on R and G, and similarly,
H:I;(C_li_F})HLz(R) < c(1+7e”") || fllL2(G)- On the other hand, since ¢;, = 1 and C(—i,o) =
1 (cf. [4, §3 and Lemma 8]), we have fR(C_li_F})(x)dx = C(—ip) 1f (ip) = [ f(

= 0. These follow immediately that C1 F} is a (1,2,0,1/2)-molecule on R and hence in
H'(R) (see [12, Theorem 2.9]).

5. Criteria for boundedness. We fix 0 < r; < 5 < oo and a function ¢(r,g) on
(ri,re) x G satisfying ¢(r,-) € L'(G//K) for each r € (ry,ry). We define a radial
maximal operator T on G as follows: for f € L}, (G//K)

1,72

(Tgn, mf)9) = sup |(f*&(r,)(9)l (g€ G).

ri<r<rsg

In this section we obtain some conditions on ¢ under which Tfr -, 18 a bounded sub-

linear operator of H}X(G//K) (s > 0) to L'(G//K).
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Let By, ,, be the set of all functions 3(r,A) on (r1,r2) xR for which there exists a
continuous function ©® = ©3 on R such that

(16) (a1) O(\) € L'(R),
(az) |)‘1|i£>n O\ =0,

B) M AN < PO (M = 0.1,2),

and Bt . the subset of B, ., defined by replacing (16)(a1), (az) with

1,72

(17) (a1) AO(N) € LY(R),
(az) |)‘1|i£>n AO(N) = 0.

Lemma 5.1. If qg(r,/\ +ip) € By, 1y, then the mazimal operator defined by sup, ...,
|(Fé(r ) «F)(z)| of F € L} _(R) satisfies the LP(R)-norm inequalities for p > 1, and a

loc

weak type L' (R) estimate.

Proof. Since (Fé(r.))N(/\) = qg(r,/\ + ip) (see (9)), it follows from (16) of qg(r,/\ + ip)
that |:1;MF(;(T7.) (x)| < | fgld/d)M b(r N +ip) e d)| < 1Ol L ryr™ " (M =0,1,2)
and thus, |F;(r.)(:1;)| < o711+ r712|)7? (2 € R). This inequality easily yields
that sup, ..., |(F;(r.) « F)(2)] < e(MprF)(z) (x € R), where My, is the Hardy-

Littlewood maximal operator on R. Hence the desired results follow from those for

My (cf. [5, Theorem 2.4]). O

Lemma 5.2. If qg(r,/\ +ip) € B

s then for each (1,2,0)-atom a on R with supp(a)
C o — L,z + 0],

iug |(F¢%(r7.) xa)(x)] < clle —xo|™? if |x — xo| > 20,

where ¢ 1s independent of a.

Proof. The moment condition fR a(x)dx = 0 and the mean value theorem yield that
for z € R4

(Pl = e) = [ Flge e = v)atu)dy
= [ (Floote =) = Pl = 20)) alo)dy

_ /é (%Fé(n,)(x — yo)> (zo — y)aly)dy,

—L

12



where yg is on the line segment from y to xg. Since (quls(r .)/d:zj)N(/\) = i/\qg(r,/\ +ip)
(see (9)), it follows from (16)(b) and (17) of qg(r,/\ + ip) that

d d . :
. 2 1 . — 2 . iA(z—yo)
=90 5 Fleey (o)l =1 [ (50 (36004 ip)) X0

X

§2r/ |®(r/\)|d/\—|—r2/ IAO(rA)|dA
R R
=201 ®) + [\ Ol L1 (r)-
Let |# —xo| > 2(. Since |xg—y| < { and yo is located between y and o, we have |z —yq| >

¢ and thus, |v — 2¢||x — yo|™! < 1+ |xo — yollz — yo| ™! < 2. Therefore, if |z — 2| > 20,
SUP,, <<y [(Fy(* @)(2)] < clv — 20|72 [ |20 — ylla(y)ldy < ellz — x|~ O

Proposition 5.3. If qg(r,/\ +1ip) € B;"M,y then Tgrl’m
of HY(G//K) to L'(G//K).

Proof. From Theorem 4.5 it suffices to obtain the boundedness for f € H}(G//K) N
L(G//K). Since (f= o(r, DN = FON(mA) = FONFS,)*(\) (cf. [4, Theorem
5]), the same manipulation as in (10) yields that for € Ry

18 a bounded sublinear operator

(f*d(r, ) () = €207y 2™ (Fl, ) # (DLCLF)) (@)
m=0
and thereby,
(19) (TS 3™ s [(Fl« (TCLFD)@))
m=0 1 rre

Since qg(r,/\ +ip) € Bt

oo Lemmas 5.1 and 5.2 imply that the maximal operator
SUDP . << |(F¢1(r,~)* F)(2)] of F € L} .(R) satisfies the properties (a) and (b) in Lemma

loc

3.1. Therefore, the result follows from Lemma 3.1 and Definition 4.3. [
Let BS , (& € R) be the set of all functions 3(r, \) on (ry,72) x R for which there

1,72
exists a continuous function ©® = ©3 on R such that

(19) (a1) NT'O(N) € LY(R),
(az) |>‘1|im ATLO(N) =0,
d

(0) 1) BN < r¥H0(rN) (M =0,1,2),

13



Proposition 5.4. If qg(r,/\ +1p) € Bfl o
operator of Hy (G//K) to LY(G//K).

Proof. As we have deduced (18), we see that for f € H}(G//K) NL(G//K)

(6 > 2), then T¢ iy 18 @ bounded sublinear

oo

(T8, ) (@) < 72073 2™ (T, QsCLF} ()] (v € Ry),

m=0

where T is a maximal operator on L], _(R) defined by

(TF)(z)= sup /FN(A)( Al >6$(m+¢p)emdA (z € R).
ri<r<re JR 1—|—|/\| ’

Then, as in the proof of Proposition 5.3 it suffices to show that (|\]/1+|A])® &(r, A\ +ip)
€ B"' . Indeed, it follows from (19)(b) of qb(r,/\ + ip) that for M =0,1,2

&
() ((1'le) <%<r,A+zp>) |

IA
o

&
P () G A+ )

M
mz:: 1+ |\l
M
<e ) S(E=1).. (8= M+ m+ AP EmpMEm e ()
m=0
< erMT(rA)0(ri),

where W(\) = (§(6—1)A[P72+8A° =1 4-|\|?). Therefore, if we define © in (16) and (17)
by O, the above calculation and (19)(ay), (az) imply that (|A|/1 + |A])° qg(r Atip) €
BT O

r1,72°

Let Bt (6 € R) be the set of all functions 3(r, ) on (rq1,72) x R for which there

1,72
exists a continuous function ©® = ©3 on R such that

(20) (1) ANTrO(N) € LY(R),
(az) |A1|im ML\ =
(b1) [B(r, M) < O(rA),
(bs) )B(r, )| < r5®(rA)

()0
(bs) 1?8 0| < 0000

14



Proposition 5.5. Let ;1 > 1 and 6 > 2. If qg(r,/\ +ip) € BYY | then T s a

r1,T2/ O,T1,72

bounded sublinear operator of Hi . (G//K) to L'(G//K) for e > 0.

Proof. We first notice that under the assumption that ry > 1 and § > 2, 3(r,\) in
B%7  also satisfies

1,72

(ba) |B(r N < r°71O(rN),

(bs) |(ddA)M@(r A < rMPerN) (M =0,1,2).

In what follows we modify the proofs of Lemmas 5.1 and 5.2. As in the proof of
Theorem 4.4, Rs (s € R) denotes the Fourier multiplier on R defined by (R F)™(\) =

F=(M(A/L+AD? (A € R). Since (Ro—1 Fy, ))™(A) = S(r, A +ip) (IA/14+ A,
we see from (a), (by), and (by) of ¢(r, A + ip) that

(21) (Rs—1Fyp)(@)] < ca™ (6 = DN 20 pum) + X710 (r))
and similarly from (a) and (bs) that
(RsFjr)(@)] < era™ (8(8 = DN 20|y + 3IX° 1Ol i(my + VOl (w)) -

We here fix r and z, and we observe that (R, F;(r ))( x) makes sense for z € C with
d —1 < R(z) < § and, as a function of z, it is holomorphic on § — 1 < R(z) < 4.
Moreover, |(R. F;(r P@)] < r~ YOl 1 (ry by (a) and (by), and when R(z) = § — 1
(resp. 4), (R. F¢(r ))( x) satisfies the same inequality for z = § — 1 (resp. §) obtained

above. Therefore, Three Lines Lemma (cf. [9, p. 69]) yields that |(Rs—1+ Fé(r7.))(:1;)| <
cr6|:1;|_(1+6) (0 <e<1). Since |(Rs—1+¢ F;(r ))(:1;)| < pt 1©|[21(r), we have |(Rs—14.
Fé(r7.))(:1;)| < er N1+ 7 He|)TUF) (0 < e < 1). In particular, if 0 < € < 1, the
maximal function defined by sup, ., ... [((Rs—14 Fl(r ) *F) ()] of F € L . (R) is
pointwisely dominated by ¢(MpyF)(x) and hence, is bounded on L*(R).

We next observe that (a) and (bs) imply that qg(r,/\ +ip) € B? , and thus, Lemma

1,7

5.2 and the proof of Proposition 5.4 yield that for each (1,2,0)-atom ¢ on R with supp(a)
C [xo =l x0 + 1],

((RsFy () % a)(@)] < ellx — 20|72 (8(8 = D)2V 20|11 my + X' 1i(w))
+ 62N 71O iy + MO (ry) + 2N O Ly + AT O 11 (w))

if |x — x| > 20. On the other hand, we notice that if |xg — y| < £ and |z — 9| > 20,
then |x — zgllz —y|™! <1+ ]zg —y|lz — y|~! <2 and thereby, from (21) that

(Rs_1Fl, ) *a)(a |—|/ (Rs_1Fl ) — y)a(y)dyl

< cle — 2o ((6 = DN T2O | iy + AT O i (wy)
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if |x — x¢] > 2¢. Moreover, |((R2F¢%(r7.)) « a)(z)] < ||R. Fé(r,.)Hoo lallprmy < 77t
1Oz (r) for § =1 < R(z) < 4. Then, applying Three Lines Lemma again, we see that
for 0 <e <1, [((Rs—1+e Fé(n.)) «a)(x)] < el |z — zo| U i |2 — 20| > 2.

We have therefore proved that if 0 < ¢ < 1, the maximal operator defined by
SUP, crery [(Ro—14e Fé(n.)) *F)(z)| of F € L} (R) satisfies the properties (a) and

loc
(b) in Lemma 3.1. Since (Tgr17r2f)(:1:) (x € Ry) is dominated by

oo

TN e s [(RomiweFh) * (1, Q514 CLE})) ()],

m=0 ri<r<rg

the desired result follows from Lemma 3.1, Definition 4.3 and Theorem 4.4. [

6. Maximal operators. We apply the criteria obtained in the previous section to some
radial maximal operators. Actually, as ¢(r,¢) in §5, we shall take ¢%(g), ¢%(g), #°(g),

T

hy(g), and p,(g) respectively (see A~E below). For simplicity, we denote henceforth
the set of bounded sublinear operators of H!(G//K) to LY (G//K) by (H!,L') and
that on LP(G//K) by (L?, L?). We also say that an operator T of L'(G//K) is of weak
type (1,1) provided there exists a constant ¢ such that

{9 € GITH@] > o} < “Nfllurce

for all f € L'(G//K) and for every a > 0.
A. Let AE(G) (6 € R) be the set of all functions ¢ € L'(G//K) satisfying |(d/d\)™
SO < (14 AN (A€ F(p) for M =0,1,2.

Definition 6.1. For f € L] (G//K)

loc
(M f)g) = swp |(f*2)(9)] (9€G),
pcAL(G)
O<r<<oo

where $1(g) = [ o(rA\)oa(9)|C(V)[72d\.
Theorem 6.2. If § > 2, then Mgéu € (Hj,LY).
Proof. We easily see that if § > 2, qg(r/\) belongs to By __ and hence, by Proposition 5.3

0,00
we have the desired result. O

B. Let Ax(G) (N € N) be the set of all functions ¢ € C™(G//K) whose restriction
on A satisfies supp(¢) C [—1,1], [|(d/dz)"d|lec <1 (0 <n < N), and ¢(z) = O(a).

Definition 6.3. Fore >0 and f € L} (G//K)

loc

(MJEf)g) = sup (L+7)"(f*6i)(g) (g€ Q)
A

16



Theorem 6.4. (1) M](V;:f is in (LP, LP) for p > 1 and of weak type (1,1),
(2) If N > 6, then M2 € (HY, L') for § > 2,
(3) If N >4 and e > 1, then M$'F € (HY, LY.

Proof. (1) is obvious from Theorem 1.2 because M](\i’ff is pointwisely dominated by
ME, f. To prove (2) and (3) we first obtain the following,

Lemma 6.5. Let ¢ € Ayn(G) (N € N). Then, for M =0,1,2
d

()
Proof. We recall that |(d/d\)" drqip(x)] < a™dip(z) < 2™ (A € F,x € Ry), ¢y is
an eigenfunction of the Laplace-Beltrami operator 2 on G with eigenvalue —p(\) =
— A% — p?, and the radial component of Q on Ry is of the form D~ (d/dz(D - d/dx)).
For these facts we refer to [4], Lemma 14, Proposition 3, and §2 respectively. We now
apply them to the integral defining the Fourier transform (¢%)"(\+ip) and thereby, we
can deduce that for each m,n € Nand 0 <n < N

™ (D4 i0)" - (617 + )|

M)A +ip)| < er™ (T4 (1 +[rA) 7 (0 < s < N).

< [ 10m6e) - ()" brsanle DG e
(22) < s [11(Dt ! o) el DD

For simplicity, we put D = D™!(dD/dx) and ®(z) = ¢(z/r) (r € Ry), and we observe
that (d/dz)P®(x) ~ r=2Ng2V=P < p=2ng2n=p if 0 < ¢ < r, D(2) ~ (1 + 2)/x, and
(d/dx)1D(z) < ca~ 1 1e™2% if ¢ > 0. Hence we have
d
g, < a2

Y

x
d d

H(%)Pq).(%)qD.DSHOO§cr_2" ifp+qg+s<2nandqg>0,
d

ICE P Do < ™ (14 0)" i pts=2n.

dx

Then, by using these estimates to handle the derivatives of ¢(x/r) in (22) we can deduce
that |[(d/d\)™(p(A+ip)" - (65) (N +ip))| < er™=27(1 +r)". Especially, letting m = 0,
we obtain the inequality for M = 0 and s = n. Since |p(A+ip)" (d/d\)™ (%) (N +ip)]
is dominated by [(d/d\)™ (p(\-+ip)" (60N + ip))| + S0y [(d/dN) (p(A+ ip)" )
(d/d\)™=" (62) (N +ip)], the rest inequalities follow by induction and interpolation. [

As for (2) let & € AN(G) (N > 6). By Lemma 6.5, (¢2)"(\ +ip) € BJ:I fo<r<i1
and Bfoo (2 <§<3)if 1 <r < oco. Therefore, from Propositions 5.3, 5.4, and Theorem
4.4 it follows that M](V;:g € (H;, L") for 6 > 2. Asfor (3) let ¢ € Ay(G) (N > 4). Since
(1+7)7¢ (8NN +1ip) € Bg:oo (e > 1) by Lemma 6.5, it follows from Proposition 5.3
that M](V;:f €(H}, LYY fore>1. O

C. Let Ay(G) be the same as in B. We here introduce a dilation which preserves
the L'-norm on G (see [7]).
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Definition 6.6. Fore >0 and f € L} (G//K)

loc

(M2 F)g) = sw (1+1)7|(f+82)(9)| (g€ G),
AN

where qbi(g) = %D(;(g))D(U(rg))ﬁb(a(rg))'

Theorem 6.7. (1) M](V;:Eb is in (LP, LP) for p > 1 and is of weak type (1,1),
(2) If N > 6, then My € (H},L') for § > 1,

() If N >4 and e > 2, then My, € (H}, L"),

Proof. 1t is easy to verify that HﬁbiHLl(G) = qumﬂ((;) and moreover, ¢.(z) < cof(z) if
0<r<1and @’ (z) < ce™?* (z € Ry)if 1 < r < co. Therefore, as in [7, Theorem
3.4], it follows that M](V;:Eb is in (LP,L?) for p > 1 and of weak type (1,1). We now
suppose that ¢ € Ayn(G) and we observe that for each 0 < n < 2N and 0 <z < r,
(d/dz)"d(x[r) ~ cr 2N z2N=m and

orpE) s o (FEE) D) < (),

@ O\ . ;
(%)"D(:p)_l <o (1 Z x>nD(:1;)_1.

Then the same argument as in the proof of Lemma 6.5 yields that for M =0, 1,2,

d

I(J)M(sbi)A(A +ip) <erM14+ ) (14 [rA)72 (0< s < N),

and therefore, the desired result follows. O

D. The heat maximal operator Mge (e > 0) on G is given as follows.

Definition 6.8. Fore >0 and f € L} (G//K)

loc

(M )= swp (1+07IF #h)(g) (g€ G,

where h,(g) = [ e~ 703 (g)|C (V)] 2dN.

Theorem 6.9. (1) Mf  is in (L?,L?) for p > 1 and of weak type (1,1),

(2) Mij, € (Hj,L') for § > 1,

(8) Mf, € (Hg,L').

Proof. (1) is well-known (cf. [9, p.73] and [1, Corollary 3.2]). Since iLr(/\ +ip) =
e_>‘2re_2ip>‘r, we see that }AL,,Q(/\ +1p) € Bg:l if0<r<1and Bi’:o if 1 <r < oo, and

moreover, (1 + rz)_lﬁrz(/\ +1p) € Bg:oo. Therefore, (2) follows from Propositions 5.3
and 5.5, and by changing r% to r, (3) follows from Proposition 5.3. O

E. The Poisson maximal operator Mge (e >0) on G is given as follows.
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Definition 6.10. For e >0 and f € L} (G//K)

loc

(MB. f)lg) = 053500(1 +r)7 N xpe)(9)] (9 € G),

where pr(g) — fR 6_(A2+p2)1/2r¢)\(9)|C(/\)|_2d/\-

Theorem 6.11. (1) Mge is in (LP, LP) for p > 1 and of weak type (1,1),
(2) M]g,o S (H11/27L1);
(8) Mg, € (Hg, L').

Proof. As shown by Stein [9, p.48], it is well-known that Mge is in (L?,LP) for p > 1
and of weak type (1,1). Let us recall the calculation in [9, p.49] and modify it slightly:
the subordination formula gives an integral representation of f * p, such as

oo =% [ (Fem@etids (o€ 6)

where ¢(y) = 1/(27/?)e™"/*y=3/2 and the integral by part yields the estimate of
(1+7)72(f * p,)(g) such as

el [ ([ e ra@as) £ (@ nech) al
< o [Tl @l s [ (0 we) by

o<y<oo Y Jo 1+
< C(Mg,f)(9),

where C' = ||y¢|| v (r) + ||(1 +y)y - do/dy| 11 (r)- Therefore, it follows from Theorem 6.9
that Mgz € (Hy,LY). Let Mgbo (resp. Mgbl) denote the maximal operator defined by
replacing supg ., in the definition of Mgo by supg,«q (resp. sup ., ). Obviously,
Mgbo is dominated by c]\fg2 and hence, Mgbo € (HJ, Ll_) as remarked above. Especially,
Mgbo € (Hll/z, L'} by Theorem 4.4. On the other hand, we observe from the proof of [1,
Corollary 6.3] that HMgbl e < CHTS\/];JCHM(G), where p(\) = A\? + p? and Tﬁ\/ﬁ
is the Fourier multiplier on G defined by Definition 7.1 below. Then, since p(A+ i,o)_l/2
(JA|/1 4+ |A])!/? satisfies the Hormander condition, Theorem 7.2 below yields that TG

/P
€ (Hll/z,Ll) and hence, Mgbl € (Hll/z,Ll). O

7. Other operators.
A. We shall define the Fourier multiplier on G corresponding to an even bounded
function m(A) on F.
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Definition 7.1. For f € L] (G//K)
TSN = [ FNm)are)C (g€ 6.

We easily see that TS € (L2, L*) by the Plancherel formula on G. We now suppose
that m(\) has a holomorphic extension on F(p) and there exists s > 0 such that

oLy
s < 9 h s /\ = /\‘I_ . .
e < where me.(3) = m(d+ i) (A

Then by the same manipulation as in (10) we see that for f € £L(G//K), TS f has the
expansion:

(T f)(x) = 6_2”; € T, o [,CLF(2) (2 € Ry)

= (Te,pTm, . )(Q:C1.Fy)(x) D(x)™",

where T, is the Fourier multiplier on R defined by (T, )~ () = w(A\)F~(N) (A € R)
and Ts p is the pseudo-differential operator given in Remark 3.2. Since Ty p is a
bounded operator of H'(R) to L'(R), we can obtain from Definition 4.3 and Theorem
4.5 that

Theorem 7.2. Let m(\) be an even holomorphic function on F(p). If there exists s > 0
such that supyce<, ||[meql| < 0o and T, , is bounded on H'(R), then TG ¢ (H, LY).

B. We last treat the Riesz transform on G, and we henceforth use the standard
notation as in [9]. Especially, we denote the Laplacian on G by A and the covariant
differentiation on G by V. We put |[V|*(h) = A(h?) —2Ah - h for h € C*°(G). Then

the Riesz transform R on G is given as follows:

Definition 7.3. For f € L] (G//K)

(REF)(g) = (IVI(=2)"2)(f)lg) (g€ Q).
RYf is a K-biinvariant function on G. Indeed, (—A)™1/? = Tﬁ\/_ where p(\) =
A 4 p? and we notice that for h € C(G), |Vh|*(g9) = >0 _, |X:h*(9) (g € G), here
{Xi;1 <i < n}is denoted as an orthonormal basis of the Lie algebra g of G and each
X, is regarded as a left (or right) invariant differential operator on G, and furthermore,
if h is K-biinvariant on G, |Vh|?(g) is simply expressed as c|(d/dz)h(a;)|* provided
olg) = (cf. [4, 2)).
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Theorem 7.4. (1) RY is in (LP, LP) for p > 1 and of weak type (1,1),
(2) RY € (H{,,L").

Proof. (1) is well-known (see [1, Corollary 5.2]). As for (2) we may assume that f €
Hll/z(G//K) NL(G//K) and then, we have

(=2)712f)(@) = 27 3 e (Ty, o TLCLFN () (v € Ry).

As remarked after Definition 7.3, in order to obtain the estimate of RC f it suffices to
calculate the action of d/dx on the right side of the above equation. Actually, d/dx
acts on e 2P, 72T and (Thy 5o F,}lc_li_F})(x), so we denote the results by (I1 f)(x),
(I, f)(z), and (I3f)(x) respectively. Since P(X\ + ip) '/2(|\|/1 + |A])!/? satisfies the
Hormander condition, it follows from Theorem 7.2 that ||I1 f - D1y r,) < el fllgr (-

1/2
Similarly, since (d/dx) (Tl/\/m F%C_li_F})(:Jc) = (Tl/\/m(i)\) F%C_li_F})(:Jc) and p(\ +
ip) "2 (i)\) satisfies the Hormander condition, we have || I3 f - Dl < dlfllmia)-
In obtaining the estimate for I f, we rewrite it as follows:

oo

(Lf)(@) = €720 Y " (=2m)e™ " (7,,Q12CLF})(2) (v € Ry),

m=1

where v} is the Fourier multiplier on R defined by

Al

1/2 .
1+|A|> F~(\) (MeR).

(Y F)~(N) = Do (A + ip)p(\ +ip) 1/ (

We here observe from (25), (26) and Lemma 8.1 below that for M = 0,1,

d . —um PI2p =i
—\MTL < em? 1+ I\)M
|(dA) (At ip)| Sem™@ (1 +[A]) mlm + p— i)

and hence,

d

. . ALY 1y
|(5)M (Pm(A‘HP)P(/\‘I'@P) Lz (m | < em® AL

Therefore, T, (A + ip)p(A +ip) 12 - (JA]/1 + |\])}/? satisfies the Hérmander condition
1a=2  We now repeat the proof of Lemma 3.1 when T is the
identity operator, in which case we replace I\, and F by ~1, and Ql/zc_li_ F} respectively.

with the constant cm

Fortunately, the extra order of m that appears in the differentiation of e 72" is canceled,
because the operator norm c¢m?® of I} is changed to em?®~1 of 4L . So the exactly
same proof of Lemma 3.1 is valid in this case and it follows that |[Iof- Allp1(r,) <

cHQl/QC_li_F}HH1(R) = CHfHH}/Q(G)' This completes the proof of (2). O

Remark 7.5. Theorem 6.11(2) also follows from Theorem 7.4(2) and [1, Corollary 6.3].
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Remark 7.6. Let R = T}y /5 be the Riesz transform on R and Q the Fourier multiplier
on R defined by

/\2—|—4 1/4 -1 -1 A N
(QF)~(\) = (T”) T ) (e R),

We observe that =27 tan™ (2/2) . ) /| \]. (A2 4+ 4p?)~ M4 (1 4 |A])Y/? satisfies the

Hérmander condition and hence, if QF € H'(R), then Q1,2 F € H'(R). Especially,
Definition 4.3 and Theorem 7.4(2) yield that if f € Hl/z(G//K), then

(23) IR fll e ey + I1QCLFf Il wy < cll QCLFill e vy

We now suppose that f € L] (G//K) satisfies HRGfHH(G)—I—HQF} l1r) < oo. If we
take X7 in a in the remark after Definition 7.3, we see that |Vh|(ayg) > |(d/dx)h(azq)|
(9 € G) for h € C°(G), and thereby,

HRGfHu(G):// (R £)(apn)|e?® dndx

//| 12 £y (apn)|e*P® dnda
/ / “12 f)(aun)dn|e*r dx

deF( 1A) zg € @ = IRQF; 1wy

—1

because (A + 2i,0)(/\2 + 2i,0/\)_1/2 — 27 tan T (2p/ ) (/\2 + 4,02//\2)1/4. Therefore, the
assumption on f yields that QF} € H'(R) and

(24) 1QF | wr) < (IRl + 1QF 22 w))-

If we let p — 0 formally, then F} goes to an even function f on R, R“ to R on R, and
CL, Q to the identity operators on R, so from (23) and (24) we can recover the classical

result: ||f|lmwr) ~ |Rflevwr) + [|fllerm) (cf. [10], p. 123).

We last restrict our attention to functions f € L(G//K) such that QC_li_F} e L'(R)
(see §2 and Remark 7.6), and we define

LUG)IK) ={f € LIG//E ) |flcre) = Iflciey + 11QCLFfllna(r) < oo}

and

HUG//K) ={f € LIG/|K): || flla(o) = I fll ey + 1 QCLFyllm(my < oo}
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Obviously, H'(G//K) c LY(G//K) and HRGfHL1(G) + [ fllcicay < el fllura) (see
(23)). We now suppose that f € £L1(G//K) and we recall the proof of Theorem 7.4(2).

Especially, [(R9f)(x)| = | Si_,(Iuf)()] (x € Ry) where

oo

(Lif) (@) + (Lf)(x) = e 2" Z e 2T _iagzipy I Cl Ff)( z) (z € Ry)

0 (A2 +42ipx)1/2

=720y e (I, RQCLF} (),
m=0

Lf(x) =e 2" Y (=2m)e > (v, Q1 2CLF} ) ().

m=1

Therefore, we can deduce that for + € Ry

(RQCLF})(x)] < 25 |(REF) ()| + Y e ™I, RQCLF})()]

m=1

+ ) 2me (1), Q1 2CLF)(2).
m=1
Since [[(Q CLF})™ [l </1Q CLF} |l r) N fllcr () and [[(CLEFF )™ lpvmy < Iflleca) <
1 Fll 21 Gy, it follows that [(I), R Q C_li_F})(:I;)|§cm2a | fll 21 () and similarly, |(~,, Q1/2

CLE(@)] = (3}, Qujs @) (Q CLEN(w)] < em® = [[fll v (see §2 and the proof
of Theorem 7.4(2)). Hence we have,

/ (RQCLF})(x)|de < c/ (R £)()| D(x)dz + el| fll cry Y mza/ (=2 s
! m=1 1

1
< (IR fll ey + 1 fllcrce)-

On the other hand, since

(A +2ip) . 21 ide
|(RQClFf |—|/ 02 +2i /\))l/zf(/\—l—l,o)C(—/\—zp) e AdN| (z € R)

x /\—I_Zp A —1 _idx
| [ S IC A ey

1/2

< CHfHﬁ(G)ep )

it follows that f_loo |(RQC_1|_F})(:1;)|d:1; < ¢||fllzi(a).- Then, we can deduce that |[R Q
CLFHvmy < IR fllLvay + fllercay). In particular, || fllara) = IIfllc + 119
CLFHImm) < clllfllee +11Q CLF iyt IR Q CLFH 1ury) < c(IRE fllri(a) +
| fllz1(c))- We have therefore proved the following,
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Theorem 7.7. f € HY(G//K) if and only if f € LY(G//K) and RY € LY(G//K).
Especially,
1112y ~ IR fllpicay + 1 Fll oy

8. Appendix. We shall obtain an estimate for the derivatives of I';,(\) (see (6)),
which yields the Hormander condition of T',,,. In what follows we denote I',, by I's,,

and refer to the notation and the proof of Lemma 7 in Flensted-Jensen [4]. Actually,
'y (m € N) is recurrently defined by I'p = 1, I'3,,41 = 0 (n € N) and

m—1

dm(m —iNTam(N) = 3 (2k = id+ p)d((a — B) + 67 (26 + 1)) Tar (V).

k=0
where §;* = 0 for k = m +1(mod 2), §;* = 1 for k = n(mod 2). For each m € N we put
Ci(N) =4k(k —i)\) and Rg(\) =462k — i\ + p),
where 0 = a — fif k=m+1and § = p if £ = m. Then it follows that

1

Tom(A) = Cr (N7 ) Re(MT2x(N)

e
<AA)> ) (” ng

Therefore, if we put cgx(A) = |Cr(N)], rg(N) = |Rx(N)| and

(
0 e

Chn
Ry
Cm

bo(A\) =1 and b,(N) = cm(/\)_1 "i__f bi(AN)cg(A) form > 1,

we easily see that

_ole—iN re(A)
(25) Do (M| < b (V) = Y H1 (1 + ck(A)> .

Lemma 8.1. Let A = £ + iy and suppose that n > p. Then there exists a positive
constant ¢ such that for all m € N

T3

k=1

Proof. Since n > p, we have |2k + p+n — i&|/|k +n — €] < 2 and thereby,

() <o
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Then it follows that

m—1

[T (1+ 25 <o 5 T’“(A))

k=1 cx(A) = )

Lemma 8.2. Let J(\) > 0 and fir M € N. Then there exists a positive constant ¢
such that for all m € N

GV o) G =1
Proof. (1)
d a Ro(N) |, m—p
N e = e — !
ro(\) m—p
S ) =i =i
CT()(/\) 1
T em(A) (T [ADM
(2) For M > 1
d Re(N)Y, k—p
" (1+ 2y ) | = e Lo
rE(A) k—p
<<(1+ 2 e ram e o rmE
(1 " ”) L __ o
(A) /) (k4 [A)MH!
We now suppose that n = J(\) > 0 and observe by Lemma 8.2 that

d d Ro(\) T7 Ri(N)\ RV, d 3 Ri(\)
om0 =1 ey 1T (14 6y ) + eyt 11 (e

(26) < cbm(A)(1 4 [A])7

Hence, by Lemma 8.1 and the above estimate we can deduce the following,
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Proposition 8.3. Let M = 0,1. If S(\) > p, then there exists a positive constant ¢
such that for all m € N

d

|(5)Mrzm(/\)| < em® (14 \))7M,

Corollary 8.4. Suppose that n > p. Then there exists a positive constant ¢ such that

for allm e N
d
R [ (M (€ 4 i) < et
r<jgl<zr A

for M =0,1 and R > 0.
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