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x1 Introduction.

First we brief the history of continuous wavelet transforms. Originally the
(continuous) wavelet transform, introduced by Morlet around 1980, was the
following one. We denote by H2(R) the closed subspace of L2(R) consisting
of all L2 functions f on R with supp(f̂) � [0;1), and we �x  2 H2(R)
satisfying the so-called admissible condition

c =
Z
1

0

j ̂(�)j2

�
d� <1:

Then the wavelet transform W associated to  is de�ned on H2(R) as

W f(u; v) =
Z
1

�1

f(x)e�u=2 � (e�ux+ v)dx (u; v 2 R):

Theorem 1.1. W is an isometric isomorphism from H2(R) onto L2(R2):
For any f 2 H2(R)

kfk2 =
1

c 
kW fk

2:

Furthermore, for any f 2 H2(R) and x 2 R at which f is continuous,

f(x) =
1

c 

Z
1

�1

Z
1

�1

(W f) (u; v)e
�u=2 � (e�ux+ v)dudv:

In [GMP] Grossmann-Morlet-Paul pointed out the group-theoretical in-
terpretation of the wavelet transformW . Let G be the a�ne group R2 with
multiplication law:

(u; v)(u0; v0) = (u+ u0; e�u
0

v + v0);
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and let (T;H2(R)) be an irreducible unitary representation of G de�ned by

(T (u; v)f)(x) = e�u=2f(e�ux+ v) (f 2 H2(R)):

In this scheme W can be rewritten as

W f(u; v) = hf; T (u; v) i;

where h�; �i is the inner product of H2(R). Furthermore, since dudv is a left
invariant Haar measure on G, Theorem 1.1 yields the square-integrability
and the orthogonality of the matrix coe�cients hf; T (u; v) i of T on G. In
this sense the theory of the continuous wavelet transform W on H2(R) is
nothing but the one of the square-integrable representation (T;H2(R)) of G.

General theory of square-integrable representations of locally compact
groups has been investigated by various mathematicians; Weyl [W] for com-
pact groups, Godement [G] for unimodular locally compact groups, and
Du
o-Moore [DM] for general locally compact groups. Explicit theory based
on the construction of the square-integrable representations was obtained by
Harish-Chandra [HC] for semisimple Lie groups and by Moore-Wolf [MW]
for nilpotent groups.

How to extend the theory of square-integrable representations of locally
compact groups G ? One of the ways is to replace the square-integrability on
G by the one on a quotient space G=H for a closed subgroup H of G. More
generally, �nd a representation (T;H) of G, a measurable subset (S; ds) of
G, and  2 H for which, for any f 2 H

(?) kfk2 =
1

cS; 

Z
S
jhf; T (s) ij2ds:

Then, it is easy to see that the transform de�ned by hf; T (s) i is an isometric
isomorphism fromH onto L2(S; ds), and each f 2 H has an L2 decomposition
in the weak sense:

f =
1

cS; 

Z
S
hf; T (s) iT (s) ds:

For the last decade researches has been done in this scheme and many wavelet
transforms has been constructed on locally compact groups, for example, on
R�

+�SO(n) by Murenzi [M], on R�
+�SO(1; n) by A-J. Unterberger [U], on

R�
+�SO(1; n)�Rn+1 by Bhonke [B], on S�V , V is a vector space and S is
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a subgroup of GL(V ), by De Bi�evre [DB], on SO(2; 1)�R3 by Ali, Antoine,
Gazeau [AAG], on R�

+ � SO(n) � Hn by Kalisa-Tor�essani [KT], Tor�essani
[T1,2], on GL(n;R) by Bernier-Taylor [BT], on SO(2; 1) by Wu-Zhong [WZ],
and on Iwasawa AN groups by Kawazoe [K3] and Liu [L].

In this paper we shall consider the case that G is a semisimple Lie group
and S = KA, where K and A are respectively the maximal compact and
abelian subgroups of G. More precisely, let G be a semisimple Lie group with
�nite center and G = KAK the Cartan decomposition of G. dg denotes a
Haar measure on G and dg = D(a)dkdadk the corresponding decomposition
of dg. Then we take S = KA and ds = D(a)dkda in the above scheme,
and we try to �nd a representation (T;H) of G and  2 H satisfying (?).
Unfortunately, the condition (?) is very strong, so I feel that we have no
answer for T and  . Therefore, we shall consider a weak condition; there
exist constants 0 < C1; C2 <1 such that

(??) C1kfk
2 �

Z
S
jhf; T (s) ij2ds � C2kfk

2

and we shall obtain a su�cient condition on  for which hf; T (s) i satis�es
(??) (see Theorem 3.1). In x4 we shall treat the case of G = SU(1; 1) and
(T1=2;H1=2) the limit of the holomorphic discrete series of G. We note that
T1=2 is not square-integrable on G. Then we shall �nd a  2 H1=2 satisfy-
ing (??). Moreover, we shall deduce that, if we ignore a �nite dimensional
subspace of H1=2, then we can �nd a  2 H1=2 satisfying (?) (see Theorem
4.4). In this process we use the facts that some di�erences of the matrix
coe�cients of T1=2 are square-integrable on R with respect to D(a)da and
moreover, they satisfy a quasi-orthogonality. These facts are summarized in
Lemmas 4.1, 4.2, and 4.3.

After the lecture, the author noticed that J.-P. Antoine and P. Van-
dergheynst [AV1,2] had the same idea and they obtained an example in the
case of SO(3; 1).

x2. Notation.

Let G be a semisimple Lie group with �nite center and G = KAN the
Iwasawa decomposition of G. Let � be the set of roots for (G;A) and �+ the
one of positive roots corresponding to N . Let A+ denote the closed positive
Weyl chamber in A and G = KA+K the Cartan decomposition of G. Let
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dg denote a Haar measure on G, and dk, da, and dn ones for K, A, and, N
respectively. We normalize dk as

R
K dk = 1. According to the Iwasawa and

Cartan decompositions of G, there are decompositions of dg such that

dg = e�(log a)dkdadn = D(a)dkdadk0;

where � = 1
2

P
�2�+ m�� and

D(a) =
Y
�2�+

(sinh�(log a))m� ;

m� stands for the multiplicity of �.

x3. KA-wavelets.

Let (T;H) be a unitary representation of G and

H = ��2K̂H� ;

the K-type decomposition of H. In the following argument we assume that

[T; � ] � 1;

and we denote by K̂T the set of all � 2 K̂ such that [T; � ] = 1. Then, as
a representation of K, (T jK ;H� ) is equivalent with � for each � 2 K̂T . We
choose a complete orthonormal basis of H such that

fe�n; e
�
n 2 H� ; 1 � n � dim �; � 2 K̂Tg

and we denote by I the set of the indexes f(�; n); 1 � n � dim �; � 2 K̂Tg.
For each f 2 H the Fourier expansion of f is given by

f =
X

(�;n)2I(f)

f �ne
�
n;

where f �n = hf; e�niH and I(f) the subset of I consisting of all (�; n) such that
f �n 6= 0. Here we put

IA(f) = f(�; n); (T (�)f)�n = hT (�)f; e�ni is not identically 0 on Ag:
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We say that  2 H is admissible if there exist constants 0 < C1; C2 <1
such that, if (�; n) 2 IA( ),

C1 � c ;�;n =
Z
A
jhT (a) ; e�nij

2D(a)da � C2:

We put
H = ff 2 H; I(f) � IA( )g:

Then, by using the bounded constants c ;�;n we shall de�ne a Fourier multi-
plier M on H as follows. For each f =

P
(�;n)2I(f) f

�
ne

�
n in H 

M f =
X

(�;n)2I(f)

c
�1=2
 ;�;nf

�
ne

�
n:

Theorem 3.1. Let  be admissible in H. Then for any f 2 H 

(1)

C1kfk
2 �

Z Z
KA

jhf; T (ka) ij2D(a)dkda � C2kfk
2;

(2)

kfk2 =
Z Z

KA
jhf;M T (ka) ij

2D(a)dkda;

(3)

f =
Z Z

KA
hf;M T (ka) iM T (ka) D(a)dkda:

Proof. We note that

T (k�1)f =
X

(�;n)2I(f)

f �nT (k
�1)e�n =

X
(�;n)2I(f);(� 0;n0)2I

f �nhT (k
�1)e�n; e

� 0

n0ie�
0

n0 :

Then the orthogonality of the matrix coe�cients of T jK yields that

Z Z
KA

jhf; T (ka) ij2D(a)dkda

=
Z
A

X
(�;n)2I(f)

jf �n j
2jhT (a) ; e�nij

2D(a)da

=
X

(�;n)2I(f)

jf �n j
2
�Z

A
jhT (a) ; e�nij

2D(a)da
�
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Since

kfk2 =
X

(�;n)2I(f)

jf �n j
2 and I(f) � IA( );

(1) easily follows from the de�nition of the admissible vector  . We replace
f by M f in the above calculation. Then jf �n j

2 in the last equation turns to
jf �n j

2c�1 ;�;n and then, c�1 ;�;n cancels the integral over A. Thereby (2) follows.
As for (3) we put H(f) = Spanfe�n; (�; n) 2 I(f)g and de�ne an opertor Q
on H(f) by

h 7!
Z Z

KA
hf;M T (ka) ihh;M T (ka)i D(a)dkda:

Then (2) and the Schwarz inequality yield that Q is bounded and kQk �
kfk2, and thereby, there exists f0 2 H(f) such that Q(h) = hh; f0i and
kf0k = kQk. Since Q(f) = hf; f0i = kfk2 by (2), it easily follows that
f = f0 (cf. [K]). Clearly, Q(h) = hh; fi means (3).

Remark 3.2. When (T;H) is an irreducible square-integrable representation
of G, it is well-known that each  2 H is admissible and satis�es

c ;�;n = d�1T k k2;

where cT is the formal degree of T (cf.[V]). Furthermore, applying the or-
thogonality of the matrix coe�cients on G, we can replace the integrals over
KA in Theorem 3.1 by the ones over G.

x4. Example in SU(1; 1).

Let G be SU(1; 1). Then

K = fk� =

 
ei�=2 0
0 e�i�=2

!
; 0 � � < 4�g;

A = fat =

 
cosh t=2 sinh t=2
sinh t=2 cosh t=2

!
; t 2 Rg;

and A+ = fat; t > 0g. In what follows we put

x = tanh t:
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Let (Th;Hh) (h 2 Z=2; h � 1) be the holomorphic discrete series of G
realized on the weighted Bergman space Hh on the unit disk D = G=K:

Hh = ff : D ! C; f is holomorphic on D and

kfk2h = �(2h� 1)�1
Z
D
jf(z)j2(1� jzj2)2(h�1)dz <1g;

and (T1=2;H1=2) the limit of holomorphic discrete series of G realized on the
Hardy space H1=2 on D:

H1=2 = ff : D ! C; f is holomorphic on D and

kfk21=2 = lim
h!1=2

kfk2h <1g:

For h 2 Z=2; h � 1=2 we denote by h�; �ih the inner product of Hh and we
put

ehn(z) =

 
�(2h+ n)

�(2h)�(n+ 1)

!1=2

zn (n 2 N):

Then fehn;n 2 Ng is an orthonormal basis of Hh. For simplicity we denote

h�; �i = h�; �i1=2 and en(z) = e1=2n (z) = zn:

According to this basis the matrix coe�cients of Th are given as follows (see
[Sa]):

hTh(g)e
h
n; e

h
mih = ei(n�+m�

0)hTh(at)e
h
n; e

h
mih (g = k�atk�0)

= ei(n�+m�
0)M(h;n;m;x);

where for n � m,

M(h;n;m;x) = Ch
n;m(1� x2)h(�x)n�mF (�m;n+ 2h; n�m+ 1;x2);

Ch
n;m =

 
�(n+ 1)�(n+ 2h)

�(m+ 1)�(m+ 2h)

!1=2
1

�(n�m+ 1)

and F (a; b; c;x) is the hypergeometric function, and for m > n we change n
and m by m and n respectively. Since

D(at)dt = sinh(2t)dt =
2x

(1� x2)2
dx;
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M(h;n;m;x) (n;m 2 N) are square-integrable on G if and only if h > 1=2.
Here we note that for n � m,

lim
x!1

(1� x2)�hM(h;n;m;x)

= Ch
n;m(�1)

n�(1�m+ n)�(m+ 2h)

�(2h)�(n+ 1)

= (�1)n
1

�(2h)

 
�(n+ 2h)�(m+ 2h)

�(n+ 1)�(m+ 1)

!1=2

= (�1)nDh
n;m

and for m > n, limx!1(1 � x2)�hM(h;n;m;x) = (�1)mDh
m;n = (�1)mDh

n;m

Then we shall de�ne the normalized matrix coe�cients NM(h;n;m; x) as

NM(h;n;m;x) = (Dh
n;m)

�1M(h;n;m;x)

and the di�erences of the normalized matrix coe�cients DM(h;n;m;x) as

DM(h;n;m;x) = NM(h;n;m;x)�NM(h;n+ 2;m;x):

The key lemmas are the following.

Lemma 4.1. Let notations be as above. Then

DM(h;n;m;x) =
(1� x2)1=2

x

�

 
m

2h
NM(h + 1=2;n;m� 1;x)�

m+ 2h

2h
NM(h+ 1=2;n+ 1;m;x)

!
:

Proof. We realize Th on the circle and let z = ei� (0 � � < 2�) (see [Sa]).
We �rst note that

(Dh
n;m)

�1ehn =

 
�(2h)�(m+ 1)

�(m+ 2h)

!1=2

zn;

(Dh
n+2;m)

�1ehn+2 =

 
�(2h)�(m+ 1)

�(m+ 2h)

!1=2

zn+2;
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and moreover,

Th(at)(z
n � zn+2)

=
1

(�z sinh t=2 + cosh t=2)2h

 
z cosh t=2� sinh t=2

�z sinh t=2 + cosh t=2

!n

�

0
@1�

 
z cosh t=2� sinh t=2

�z sinh t=2 + cosh t=2

!2
1
A

=
1

(�z sinh t=2 + cosh t=2)2h

 
z cosh t=2� sinh t=2

�z sinh t=2 + cosh t=2

!n

�
1� z2

(�z sinh t=2 + cosh t=2)2

=
1

sinh t=2

1

(�z sinh t=2 + cosh t=2)2h+1

 
z cosh t=2� sinh t=2

�z sinh t=2 + cosh t=2

!n

�

 
�

 
z cosh t=2� sinh t=2

�z sinh t=2 + cosh t=2

!
+ z

!
:

On the other hand, we easily see that

h

 
�(2h)�(m+ 1)

�(m+ 2h)

!1=2

zn+1; ehmih

= h(D
h+1=2
n+1;m)

�1e
h+1=2
n+1 ; eh+1=2

m ih

=
m+ 2h

2h
h(D

h+1=2
n+1;m)

�1e
h+1=2
n+1 ; eh+1=2

m ih+1=2

and

h

 
�(2h)�(m+ 1)

�(m+ 2h)

!1=2

zn; ehm�1ih

= h(D
h+1=2
n;m�1)

�1eh+1=2
n ; e

h+1=2
m�1 ih

=
m

2h
h(D

h+1=2
n;m�1)

�1eh+1=2
n ; e

h+1=2
m�1 ih+1=2:

Then the desired result follows.

Lemma 4.2. Let notations be as above. Then for each n;m 2 N,

0 <
Z 1

0
DM(h;n;m;x)2

2x

(1� x2)2
dx <1;
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and especially, for m > n

Z 1

0
DM(h;n;m;x)2

2x

(1� x2)2
dx

= �(2h)22(n+ h+ 1)
�(m+ 1)

�(m+ 2h)

�(n+ 1)

�(n+ 2h+ 2)
:

Proof. The case of m > n: We note that

(1� x2)1=2

x

m

2h
NM(h + 1=2;n;m� 1;x)

= Axm�n�2(1� x2)h+1Gn(m� n+ 2h;m� n;x2)

and
(1� x2)1=2

x

m+ 2h

2h
NM(h+ 1=2;n+ 1;m;x)

=
m+ 2h

n+ 2h+ 1
Axm�n�2(1� x2)h+1Gn+1(m� n+ 2h;m� n;x2);

where

A =
�(2h)�(m+ 1)

�(n+ 2h+ 1)�(m� n)

andGn(x) = Gn(�; 
; x) (� = m�n+2h; 
 = m�n) is the Jacobi polynomial.
Hence,

I =
Z 1

0
DM(h;n;m;x)2

2x

(1� x2)2
dx

= A2
Z 1

0
x2(m�n�2)(1� x2)2h

 
Gn(x

2)�
m+ 2h

n+ 2h+ 1
Gn+1(x

2)

!2

2xdx

= A2
Z 1

0
x
�1(1� x)��


 
Gn(x)�

m+ 2h

n+ 2h+ 1
Gn+1(x)

!2
dx

x
:

We here consider the case of m > n + 1. Then, 
 � 2 = m � n � 2 � 0.
We note that G2

n = (Gn � 1)Gn + Gn and (Gn � 1)=x is the polynomial of
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degree n� 1. So the orthogonality relations for the Jacobi polynomials and
the de�nition of Gn(x);

Gn(x) =
�(
)

�(
 + n)
x1�
(1� x)
��

 
d

dx

!n �
x
+n�1(1� x)�+n�


�

yield that

Z 1

0
x
�1(1� x)��
Gn(x)

2dx

x

=
Z 1

0
x
�1(1� x)��
Gn(x)

dx

x

= �(m� n)2
�(n+ 1)�(n+ 2h+ 1)

�(m+ 1)�(m+ 2h)

m

m� n� 1

= B;

and similarly,

Z 1

0
x
�1(1� x)��
Gn+1(x)

2dx

x

=
Z 1

0
x
�1(1� x)��
Gn(x)Gn+1(x)

dx

x

=
Z 1

0
x
�1(1� x)��
Gn+1(x)

dx

x

=
n+ 2h+ 1

m+ 2h

n+ 1

m
B:

Therefore,

I = A2B

 
1� 2

n+ 1

m
+
n+ 1

m

m+ 2h

n+ 2h+ 1

!

= A2B
2(m� n� 1)(n+ h+ 1)

m(n+ 2h+ 1)

and hence, the desired result follows.
In the case ofm = n+1 we note that (Gn(x)�Gn+1(x))=x is a polynomial

of degree n and thus, the integral I is well-de�ned. Then the analytic con-
tinuation on 
, letting 
 ! 1 in the previous case, yields the desired formula
for m = n+ 1.
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The case of m � n: Since M(h + 1=2;n;m � 1;x) and M(h + 1=2;n +
1;m;x) have the term xn�m+1 and n � m + 1 � 1, it easily follows from
Lemma 4.1 that the desired integral is positive and �nite.

This completes the proof of the lemma.

Lemma 4.3. Let notations be as above and suppose that

n;m 2 2N or n;m 2 2N+ 1:

Then, for p > n;m

Z 1

0
DM(h;n; p; x)DM(h;m; p; x)

2x

(1� x2)2
dx

= �nm�(2h)
22(n+ h+ 1)

�(p+ 1)

�(p+ 2h)

�(n+ 1)

�(n+ 2h+ 2)
:

Proof. When n = m, it follows from Lemma 4.2. We may suppose that
n > m and hence, n�m � 2 and even. Then, applying the same argument
used in the proof of Lemma 4.2, we see that the desired integral equals to

Z 1

0
xp�n�1+(n�m)=2(1� x)2h

�

 
Gn(x)�

p+ 2h

n+ 2h+ 1
Gn+1(x)

! 
Gm(x)�

p+ 2h

m+ 2h+ 1
Gm+1(x)

!
dx

x
:

Since (n�m)=2 is integer, 0 � (n�m)=2� 1 � n� 1, and

 
Gm(x)�

p+ 2h

m+ 2h+ 1
Gm+1(x)

!

is a polynomial of degreem+1 < n, the orthogonality relations for the Jacobi
polynomials yield that the integral equals to 0.

We here note that, if h = 1=2, then Dh
n;m = 1 and hence,

DM(1=2;n;m;x) = M(1=2;n;m;x)�M(1=2;n+ 2;m;x)

= hT1=2(at)(en � en+2); emi:
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Therefore, Lemma 4.2 implies that

0 <
Z
A
jhT1=2(at)(en � en+2); emij

2D(at)dt <1

and for m > n this integral equals to

(2n+ 3)

(n+ 1)(n+ 2)
:

Furthermore, these di�erences hT1=2(at)(en � en+2); emi satisfy the quasi-
orthogonality relations stated in Lemma 4.3 with h = 1=2. Thereby, as
an application of Theorem 3.1, we see the following.

Theorem 4.4. Let G = SU(1; 1) and (T1=2;H1=2) the limit of the discrete
series of G.
(1) Let  be a �nite linear combination of en+2 � en. Then there exist
constants 0 < C1; C2 <1 such that for any f in H1=2

C1kfk
2 �

Z Z
KA

jhf; T1=2(kat) ij
2 sinh 2t dkdt � C2kfk

2:

(2) Let

 =
X

cn

 
(2n+ 3)

(n+ 1)(n+ 2)

!
�1=2

(en+2 � en);

where the sum is taken over 0 � n � N;n 2 2N or 0 � n � N;n 2 2N+ 1,
and let k k20 =

P
jcnj

2. Then for any f in the L2-span of fep; p � N + 1g,

f(x) =
1

k k0

Z Z
KA
hf; T1=2(kat) iT1=2(kat) sinh 2t dkdt:
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