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§1 Introduction.

First we brief the history of continuous wavelet transforms. Originally the
(continuous) wavelet transform, introduced by Morlet around 1980, was the
following one. We denote by H?(R) the closed subspace of L?*(R) consisting
of all L? functions f on R with supp(f) C [0,00), and we fix v € H*(R)
satisfying the so-called admissible condition

oo |7 2
Ca :/ () d\ < oo.
0 A

Then the wavelet transform W,, associated to 1 is defined on H*(R) as

Wy f(u,v) = /oo f(w)e_"/%ﬁ(e_“m +ov)dz (u,v € R).

— o0

Theorem 1.1. W, is an isometric isomorphism from H*(R) onto L*(R?):
For any f € H*(R)

1
L1 = —W £l
Cw

Furthermore, for any f € H*(R) and = € R at which f is continuous,

1 o] 0 _
fay=— [ [ Wef) (wo)e™/2p(e " + v)dudv.

In [GMP] Grossmann-Morlet-Paul pointed out the group-theoretical in-
terpretation of the wavelet transform W,,. Let G be the affine group R* with
multiplication law:

(w, )W, 0') = (u+u', e o+ ),
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and let (T, H?*(R)) be an irreducible unitary representation of G defined by
(T(u,0) f) () = e f(e™ "z +v)  (f € H*(R)).

In this scheme W), can be rewritten as

W f (u, 0) = (f, T (u, v)¢h),

where (-, ) is the inner product of H?(R). Furthermore, since dudv is a left
invariant Haar measure on G, Theorem 1.1 yields the square-integrability
and the orthogonality of the matrix coefficients (f, T (u,v)y) of T on G. In
this sense the theory of the continuous wavelet transform Wy, on H?(R) is
nothing but the one of the square-integrable representation (7', H*(R)) of G.

General theory of square-integrable representations of locally compact
groups has been investigated by various mathematicians; Weyl [W] for com-
pact groups, Godement [G] for unimodular locally compact groups, and
Duflo-Moore [DM] for general locally compact groups. Explicit theory based
on the construction of the square-integrable representations was obtained by
Harish-Chandra [HC] for semisimple Lie groups and by Moore-Wolf [MW]
for nilpotent groups.

How to extend the theory of square-integrable representations of locally
compact groups GG 7 One of the ways is to replace the square-integrability on
G by the one on a quotient space G/H for a closed subgroup H of G. More
generally, find a representation (7', H) of G, a measurable subset (S, ds) of
G, and ¢ € H for which, for any f € H

2 = i S 2ds.
() ISP = [ TP

Then, it is easy to see that the transform defined by (f, T'(s)1) is an isometric
isomorphism from H onto L?(S, ds), and each f € H has an L? decomposition

in the weak sense: .

f=— ({1 T T(s)bds.
Csqyp JS

For the last decade researches has been done in this scheme and many wavelet

transforms has been constructed on locally compact groups, for example, on

R x SO(n) by Murenzi [M], on R% x SO(1,n) by A-J. Unterberger [U], on

R* x SO(1,n) x R"*! by Bhonke [B], on S x V, V is a vector space and S is



a subgroup of GL(V'), by De Bievre [DB], on SO(2,1) x R?® by Ali, Antoine,
Gazeau [AAG], on R x SO(n) x H, by Kalisa-Toréssani [KT], Toréssani
[T1,2], on GL(n,R) by Bernier-Taylor [BT], on SO(2, 1) by Wu-Zhong [WZ],
and on Iwasawa AN groups by Kawazoe [K3] and Liu [L].

In this paper we shall consider the case that G is a semisimple Lie group
and S = KA, where K and A are respectively the maximal compact and
abelian subgroups of G. More precisely, let G be a semisimple Lie group with
finite center and G = K AK the Cartan decomposition of GG. dg denotes a
Haar measure on G and dg = D(a)dkdadk the corresponding decomposition
of dg. Then we take S = KA and ds = D(a)dkda in the above scheme,
and we try to find a representation (7, H) of G and ¢ € H satisfying (*).
Unfortunately, the condition (%) is very strong, so I feel that we have no
answer for T" and 1. Therefore, we shall consider a weak condition; there
exist constants 0 < C;, Cy < oo such that

(ex) CullfII* < /5 [(f. T(s)9)*ds < Co| £

and we shall obtain a sufficient condition on v for which (f, T'(s)v) satisfies
(x%) (see Theorem 3.1). In §4 we shall treat the case of G = SU(1,1) and
(Tl/z, 7{1/2) the limit of the holomorphic discrete series of G. We note that
11/, is not square-integrable on G. Then we shall find a » € H,/, satisfy-
ing (*x). Moreover, we shall deduce that, if we ignore a finite dimensional
subspace of Hyj,, then we can find a ¢ € Hy ), satisfying (x) (see Theorem
4.4). In this process we use the facts that some differences of the matrix
coefficients of T’/ are square-integrable on R with respect to D(a)da and
moreover, they satisfy a quasi-orthogonality. These facts are summarized in
Lemmas 4.1, 4.2, and 4.3.

After the lecture, the author noticed that J.-P. Antoine and P. Van-
dergheynst [AV1,2] had the same idea and they obtained an example in the
case of SO(3,1).

§2. Notation.

Let G be a semisimple Lie group with finite center and G = K AN the
Iwasawa decomposition of G. Let X be the set of roots for (G, A) and 37 the
one of positive roots corresponding to N. Let AT denote the closed positive

Weyl chamber in A and G = KATK the Cartan decomposition of G. Let
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dg denote a Haar measure on ¢, and dk, da, and dn ones for K, A, and, N
respectively. We normalize dk as [, dk = 1. According to the Iwasawa and
Cartan decompositions of GG, there are decompositions of dg such that

dg = e*1°5Ddk:dadn = D(a)dkdadk,

where p = % > aes+ Ma and

D(a) = [] (sinhe(loga))™,

aest

me stands for the multiplicity of .
§3. K A-wavelets.

Let (T, H) be a unitary representation of G and
H ::EBTGR7{T7
the K-type decomposition of H. In the following argument we assume that
T,7] <1,

and we denote by Kr the set of all 7 € K such that [T, 7] = 1. Then, as
a representation of K, (T'|x, H,) is equivalent with 7 for each 7 € K. We
choose a complete orthonormal basis of H such that

{eliel € H, 1 <n<dimT, 7€ Kr}

and we denote by I the set of the indexes {(7,n);1 < n < dimT, 7 € KT}
For each f € H the Fourier expansion of f is given by

f= > e

(mn)€I(f)

where f7 = (f,el)y and I(f) the subset of I consisting of all (7, n) such that
fr# 0. Here we put

Ii(f)=A{(r.n); (T()f)r = (T(-)f,el) is not identically 0 on A}.
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We say that ¢ € H is admissible if there exist constants 0 < C,Cy < 0o
such that, if (7,n) € I4(¢),

Ci < Cprn = / (T(a), eT)[2D(a)da < Cb.
A

We put
Hy ={f € H:I(f) C La()}.
Then, by using the bounded constants ¢y ;, we shall define a Fourier multi-

plier My, on H, as follows. For each f =37 erp) fren in Hy

—1/2
M¢’f = Z Cf¢7,7',n 7‘;6:;‘
(r,n)EI(f)

Theorem 3.1. Let ¢ be admissible in H. Then for any f € H,
(1)
AR < [ [ 1. Tka)d) P D(a)dkda < Coll |2

191 = [ [ 10 Mo (ko)) P D (e}l

f= / /KA< . MyT(ka)) M, T (ka)y D(a)dkda.

Proof. We note that

Tf= 3 LTk e = > FAT(Eer ennder.

(rm)EI(f) (rm)eI(f),(7",n")ET

Then the orthogonality of the matrix coefficients of T'|x yields that

//Q (f, T(ka))|> D(a)dkda
= [, T, PRI @ DR Dl

(r,n)EI(f

- |f|(/| ). e)|*Dia)da)

(Tn YeI(f



Since

IFIP =" 171 and I(f) C La(¥).

(mn)€I(f)

(1) easily follows from the definition of the admissible vector ¢. We replace
f by Myf in the above calculation. Then |f7]? in the last equation turns to

|fr |2c;1Tn and then, cllTn cancels the integral over A. Thereby (2) follows.

As for (3) we put H(f) = Span{el; (r,n) € I(f)} and define an opertor Q
on H(f) by

his / /I.x’A< . MyT(ka)yy){h, MyT(ka)) D(a)dkda.

Then (2) and the Schwarz inequality yield that @ is bounded and ||Q]| <
| f1|?, and thereby, there exists fo € H(f) such that Q(h) = (h, fy) and

I foll = |QIl. Since Q(f) = (f.fo) = |If]|* by (2). it easily follows that
= fo (cf. [K]). Clearly, Q(h) = (h, f) means (3).

Remark 3.2. When (7', H) is an irreducible square-integrable representation
of GG, it is well-known that each 1) € H is admissible and satisfies

Cyrn = d%1|\1/]||2~,

where ¢z is the formal degree of T' (cf.[V]). Furthermore, applying the or-
thogonality of the matrix coefficients on GG, we can replace the integrals over
K A in Theorem 3.1 by the ones over G.

§4. Example in SU(1,1).

Let G be SU(1,1). Then
6i9/2 0

B [ cosht/2 sinht/2 )
A=1a = ( sinht/2 cosht/2 ) it € R},

and A" = {a;;t > 0}. In what follows we put

x = tanht.



Let (Th,Hp) (h € Z/2,h > 1) be the holomorphic discrete series of G
realized on the weighted Bergman space H;, on the unit disk D = G/K:

H, ={f:D — C; f is holomorphic on D and

I£l7 = (2h =17 /D ()P = ]2)*"Vdz < oo},

and (T} /25 H1 /2) the limit of holomorphic discrete series of GG realized on the
Hardy space H/2 on D:

Hio ={f: D — C; fis holomorphic on D and
2 _ 1 2
1 = Jim W71 < oo
For h € Z/2,h > 1/2 we denote by (-, -); the inner product of H; and we

put
h _ ) (2h + n) V2 n
671('2)_ (7 (2/1)~ (7’L+1>> z (nEN)

Then {e';n € N} is an orthonormal basis of H;,. For simplicity we denote
(= s and en(s) = elf2(z) = 27,

According to this basis the matrix coefficients of T}, are given as follows (see

Sal):

(Ti(g)eh ety = TN Ty (a)eh el ) (g = koarke)

n» 'm n’ -m

: !’
= n0+md) (h:in,m;z),
where for n > m,

M(h;n,m;x) =C" (1 —22)"(=z)" "™ F(=m,n + 2h,n —m + 1;27%),

n,m

oo ( (n+1), (n+2h))>1/2 . 1

(m+1), (m+2h n—m+1)

and F(a,b,c; x) is the hypergeometric function, and for m > n we change n
and m by m and n respectively. Since

2x

D(a;)dt = sinh(2t)dt = m

dzr,



M (h;n,m;xz) (n,m € N) are square-integrable on G if and only if h > 1/2.
Here we note that for n > m,

lim(1 — 2%) " "M (h;n,m; )

r—1

05'7,m(—1)n’ (1 =m+n), (m+2h)

— n 1 5 (n + 2h>’ (m + 2h) 1/2
= (-1 . (2h) < , (4 1), (m+1) >
= (_ 1>71Dz7m

and for m > n, lim, 1 (1 — 2®)™"M(h;n,m;x) = (=1)"Dh, = (=1)"D! .,

m,n

Then we shall define the normalized matrix coefficients N M (h;n,m, z) as

NM(h;n,m;x) = (D" Y"*M(h;n,m;z)

n,m

and the differences of the normalized matrix coefficients DM (h;n, m; z) as
DM (h;n,m;z) = NM(h;n,m;xz) — NM(h;n + 2, m; ).
The key lemmas are the following.

Lemma 4.1. Let notations be as above. Then

(1 _ x2)1/2

xr

DM (h;n,m;x) =

m + 2h
2h

0l

Proof. We realize Tj, on the circle and let z = ¢ (0 < 6 < 27) (see [Sa]).
We first note that

1/2
e = (20 e D)
’ , (m+ 2h)

(DZ+2,7T7,

Sagh ( (20), (m + 1>>”2

Cnt2 = ’ (m+2h)
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and moreover,

Th(a;) (2" — 2"12)

B 1 zcosht/2 —sinht/2 \"
"~ (—~zsinht/2 + cosht/2)%h <—z sinht/2 + cosht/2>
( < zcosht/2 — sinht/2 )2>
X | 1— -
—zsinht/2 + cosht/2
. 1 zcosht/2 —sinht/2 \"
~ (—zsinht/2 + cosht/2)2 <—z sinht/2 + Cosht/2>
» 1— 22
(—zsinht/2 + cosht/2)?
B 1 1 zcosht/2 —sinht/2 \"
~ sinht/2 (—zsinht/2 + cosht/2)2h+1 (—z sinht/2 + cosht/2>

zcosht/2 — sinht/2
X | — - +z].
—zsinht/2 + cosh /2
On the other hand, we easily see that
1/2
(20 0N
. (m + 2h) "

Y U m
= ((DELR) Ll ti? ey,

T m

m + 2h N
= 2]1 <( Zii{i) 16::1/27 e}r;i+1/2>h+1/2

and

[ e DV
, (m+ 2h) »Tm—1/h
= (DIt iy,
m

= ﬁ«Dzﬁg)*l@ZH/z«61?_11/2>h+1/2-

Then the desired result follows.

Lemma 4.2. Let notations be as above. Then for each n,m € N,

2x
2d:1: < 00,

1
. < )2
0< ‘/0 DM(h,n,m, ZI’) m



and especially, for m > n

/1DM(h' . )224xd

; TN, M T (1= 22 x

, (m+1) ,(n+1)

, (m+20h), (n+2h+2)

=, (2h)*2(n+h+1)

Proof. The case of m > n: We note that

(1—372)1/2 m ‘ .
» 2hNM(h-I—l/2,n,m 1;2)

= Az"7" 2 (1 = 2" G (m — n + 2k, m — n; a?)

and (1—22)Y2m + 2h
. o NM(h+1/2;n+ 1,m;z)
- %Agjm_n_2(1 — )" Gy (m =+ 2k, m — ns a?),
where

B , (2h), (m+1)
o (n+4+2h+1), (m—n)

and G, (z) = G, (a,v,z) (¢ = m—n+2h,y = m—n) is the Jacobi polynomial.
Hence,

1 . Y 2x
I = /0 DM (h;n, m; z) T
1 m 4+ 2h ?
_ Az/ 2m=—n=2)1 _ 22 (G (%) = — " G (2?))] 2zd
0o " (1= () = g @) ) Zwde

1 m + 2h 2 dx
_ 2 y—1 - a—vy e r - e
= A /0 T (1 33) <Gn(az) o 1Gn,+1 (z)) .

We here consider the case of m > n+ 1. Then, y —2=m —n —2 > 0.
We note that G2 = (G,, — 1)G,, + G,, and (G,, — 1)/z is the polynomial of
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degree n — 1. So the orthogonality relations for the Jacobi polynomials and

the definition of G,,(x);

Gn(z) = L>)ycl”/(1 — ) (%)n (J;anl(l B x)aﬂm)

yield that

_ ( o )21(72,—{—1)7 (n+2h+1) m
o ,(m+1),(m+2h) m—n-—1

and similarly,

1
[0 G o
0 X
1 d
_ / 7L = ) G () G (1) 2
J0 X

1 d
_ / 271 = 2)° G () 22
0 T
n+2h+1n+1
m + 2h m

Therefore,

j A2B<1—2n+1 n+1 m+2h >

m m n+2h+1
2(m—n—1)(n+h+1)

= A’B
m(n + 2h + 1)

and hence, the desired result follows.

In the case of m = n+1 we note that (G,,(z) —G,41(x)) /2 is a polynomial
of degree n and thus, the integral I is well-defined. Then the analytic con-
tinuation on 7, letting v — 1 in the previous case, yields the desired formula
form=n+1.

11



The case of m < n: Since M(h+ 1/2;n,m — 1;2) and M(h + 1/2;n +
1,m;x) have the term "™ and n —m + 1 > 1, it easily follows from
Lemma 4.1 that the desired integral is positive and finite.

This completes the proof of the lemma.

Lemma 4.3. Let notations be as above and suppose that
n,me2N or n,m € 2N + 1.

Then, for p > n,m

1 2
/o DM (h;n, p,2)DM(h;m, p, x)ﬁdw

_ 2 v(p‘l'l) ’(n-l'l)
= Opm, (21) 2(n+h+1)7 pE2h) moht2)

Proof. When n = m, it follows from Lemma 4.2. We may suppose that
n > m and hence, n —m > 2 and even. Then, applying the same argument
used in the proof of Lemma 4.2, we see that the desired integral equals to

/1 xp—n—l—l—(n—m)/2<1 . 17>2h

0

p+2h p+2h dr
G,(r) - ——C : Gnlr) — ——G )| —.
(6 = 2 G0 (60 - 2T G

Since (n —m)/2 is integer, 0 < (n —m)/2 —1<n —1, and

P+ 2h
G, -G,
( () m 4+ 2h + 1 “(x))

is a polynomial of degree m+1 < n, the orthogonality relations for the Jacobi
polynomials yield that the integral equals to 0.

We here note that, if » = 1/2, then D" =1 and hence,

DM(1/2;n,m;z) = M(1/2;n,m;x) — M(1/2;n+2,m;x)
= <T1/2(at)(en - en+2>767n>-

12



Therefore, Lemma 4.2 implies that

0 < /A (T4 (a0) (en — ensa), em)|2D(ag)dt < oo

and for m > n this integral equals to

(2n + 3)
(n+1)(n+2)

Furthermore, these differences <T1/2(at)(en — €nt2), €m) satisfy the quasi-
orthogonality relations stated in Lemma 4.3 with o = 1/2. Thereby, as
an application of Theorem 3.1, we see the following.

Theorem 4.4. Let G = SU(1,1) and (135, H1/2) the limit of the discrete
series of G.

(1) Let ¢ be a finite linear combination of e,,» — ¢,. Then there exist
constants 0 < €, Uy < oo such that for any [ in H,

AP < [ [ . Tuplkan ) P sinh 2t didt < Co £

(2) Let

P ((n (2n + 3) )1/2 (era— o),

+1)(n+2)

where the sum is taken over 0 <n < Nne€ 2N or 0 <n < N,n € 2N + 1,
and let ||1]|2 = " |c,|?. Then for any f in the L*span of {e,,p > N + 1},

1 .
f(z) = %l //1(A<f’ T o (kag) )T o (kag)tp sinh 2t dkdt.
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