

KA-wavelets on semisimple Lie groups and quasi-orthogonality of matrix coefficients

Takeshi Kawazoe
Keio University at Fujisawa
5322 Endo, Fujisawa, 252-8520 Japan
kawazoe@sfc.keio.ac.jp

§1 Introduction.

First we brief the history of continuous wavelet transforms. Originally the (continuous) wavelet transform, introduced by Morlet around 1980, was the following one. We denote by $H^2(\mathbf{R})$ the closed subspace of $L^2(\mathbf{R})$ consisting of all L^2 functions f on \mathbf{R} with $\text{supp}(\hat{f}) \subset [0, \infty)$, and we fix $\psi \in H^2(\mathbf{R})$ satisfying the so-called admissible condition

$$c_\psi = \int_0^\infty \frac{|\hat{\psi}(\lambda)|^2}{\lambda} d\lambda < \infty.$$

Then the wavelet transform W_ψ associated to ψ is defined on $H^2(\mathbf{R})$ as

$$W_\psi f(u, v) = \int_{-\infty}^{\infty} f(x) e^{-u/2} \bar{\psi}(e^{-u}x + v) dx \quad (u, v \in \mathbf{R}).$$

Theorem 1.1. W_ψ is an isometric isomorphism from $H^2(\mathbf{R})$ onto $L^2(\mathbf{R}^2)$: For any $f \in H^2(\mathbf{R})$

$$\|f\|^2 = \frac{1}{c_\psi} \|W_\psi f\|^2.$$

Furthermore, for any $f \in H^2(\mathbf{R})$ and $x \in \mathbf{R}$ at which f is continuous,

$$f(x) = \frac{1}{c_\psi} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} (W_\psi f)(u, v) e^{-u/2} \bar{\psi}(e^{-u}x + v) du dv.$$

In [GMP] Grossmann-Morlet-Paul pointed out the group-theoretical interpretation of the wavelet transform W_ψ . Let G be the affine group \mathbf{R}^2 with multiplication law:

$$(u, v)(u', v') = (u + u', e^{-u'}v + v'),$$

and let $(T, H^2(\mathbf{R}))$ be an irreducible unitary representation of G defined by

$$(T(u, v)f)(x) = e^{-u/2} f(e^{-u}x + v) \quad (f \in H^2(\mathbf{R})).$$

In this scheme W_ψ can be rewritten as

$$W_\psi f(u, v) = \langle f, T(u, v)\psi \rangle,$$

where $\langle \cdot, \cdot \rangle$ is the inner product of $H^2(\mathbf{R})$. Furthermore, since $dudv$ is a left invariant Haar measure on G , Theorem 1.1 yields the square-integrability and the orthogonality of the matrix coefficients $\langle f, T(u, v)\psi \rangle$ of T on G . In this sense the theory of the continuous wavelet transform W_ψ on $H^2(\mathbf{R})$ is nothing but the one of the square-integrable representation $(T, H^2(\mathbf{R}))$ of G .

General theory of square-integrable representations of locally compact groups has been investigated by various mathematicians; Weyl [W] for compact groups, Godement [G] for unimodular locally compact groups, and Duflo-Moore [DM] for general locally compact groups. Explicit theory based on the construction of the square-integrable representations was obtained by Harish-Chandra [HC] for semisimple Lie groups and by Moore-Wolf [MW] for nilpotent groups.

How to extend the theory of square-integrable representations of locally compact groups G ? One of the ways is to replace the square-integrability on G by the one on a quotient space G/H for a closed subgroup H of G . More generally, find a representation (T, \mathcal{H}) of G , a measurable subset (S, ds) of G , and $\psi \in \mathcal{H}$ for which, for any $f \in \mathcal{H}$

$$(\star) \quad \|f\|^2 = \frac{1}{c_{S, \psi}} \int_S |\langle f, T(s)\psi \rangle|^2 ds.$$

Then, it is easy to see that the transform defined by $\langle f, T(s)\psi \rangle$ is an isometric isomorphism from \mathcal{H} onto $L^2(S, ds)$, and each $f \in \mathcal{H}$ has an L^2 decomposition in the weak sense:

$$f = \frac{1}{c_{S, \psi}} \int_S \langle f, T(s)\psi \rangle T(s)\psi ds.$$

For the last decade researches has been done in this scheme and many wavelet transforms has been constructed on locally compact groups, for example, on $\mathbf{R}_+^* \times SO(n)$ by Murenzi [M], on $\mathbf{R}_+^* \times SO(1, n)$ by A-J. Unterberger [U], on $\mathbf{R}_+^* \times SO(1, n) \times \mathbf{R}^{n+1}$ by Bohnke [B], on $S \times V$, V is a vector space and S is

a subgroup of $GL(V)$, by De Bièvre [DB], on $SO(2, 1) \times \mathbf{R}^3$ by Ali, Antoine, Gazeau [AAG], on $\mathbf{R}_+^* \times SO(n) \times H_n$ by Kalisa-Toréssani [KT], Toréssani [T1,2], on $GL(n, \mathbf{R})$ by Bernier-Taylor [BT], on $SO(2, 1)$ by Wu-Zhong [WZ], and on Iwasawa AN groups by Kawazoe [K3] and Liu [L].

In this paper we shall consider the case that G is a semisimple Lie group and $S = KA$, where K and A are respectively the maximal compact and abelian subgroups of G . More precisely, let G be a semisimple Lie group with finite center and $G = KAK$ the Cartan decomposition of G . dg denotes a Haar measure on G and $dg = D(a)dkdak$ the corresponding decomposition of dg . Then we take $S = KA$ and $ds = D(a)dkda$ in the above scheme, and we try to find a representation (T, \mathcal{H}) of G and $\psi \in \mathcal{H}$ satisfying (\star) . Unfortunately, the condition (\star) is very strong, so I feel that we have no answer for T and ψ . Therefore, we shall consider a weak condition; there exist constants $0 < C_1, C_2 < \infty$ such that

$$(\star\star) \quad C_1 \|f\|^2 \leq \int_S |\langle f, T(s)\psi \rangle|^2 ds \leq C_2 \|f\|^2$$

and we shall obtain a sufficient condition on ψ for which $\langle f, T(s)\psi \rangle$ satisfies $(\star\star)$ (see Theorem 3.1). In §4 we shall treat the case of $G = SU(1, 1)$ and $(T_{1/2}, \mathcal{H}_{1/2})$ the limit of the holomorphic discrete series of G . We note that $T_{1/2}$ is not square-integrable on G . Then we shall find a $\psi \in \mathcal{H}_{1/2}$ satisfying $(\star\star)$. Moreover, we shall deduce that, if we ignore a finite dimensional subspace of $\mathcal{H}_{1/2}$, then we can find a $\psi \in \mathcal{H}_{1/2}$ satisfying (\star) (see Theorem 4.4). In this process we use the facts that some differences of the matrix coefficients of $T_{1/2}$ are square-integrable on \mathbf{R} with respect to $D(a)da$ and moreover, they satisfy a quasi-orthogonality. These facts are summarized in Lemmas 4.1, 4.2, and 4.3.

After the lecture, the author noticed that J.-P. Antoine and P. Vandergheynst [AV1,2] had the same idea and they obtained an example in the case of $SO(3, 1)$.

§2. Notation.

Let G be a semisimple Lie group with finite center and $G = KAN$ the Iwasawa decomposition of G . Let Σ be the set of roots for (G, A) and Σ^+ the one of positive roots corresponding to N . Let A^+ denote the closed positive Weyl chamber in A and $G = KA^+K$ the Cartan decomposition of G . Let

dg denote a Haar measure on G , and dk , da , and dn ones for K , A , and, N respectively. We normalize dk as $\int_K dk = 1$. According to the Iwasawa and Cartan decompositions of G , there are decompositions of dg such that

$$dg = e^{\rho(\log a)} dk dadn = D(a) dk dadk',$$

where $\rho = \frac{1}{2} \sum_{\alpha \in \Sigma^+} m_\alpha \alpha$ and

$$D(a) = \prod_{\alpha \in \Sigma^+} (\sinh \alpha(\log a))^{m_\alpha},$$

m_α stands for the multiplicity of α .

§3. KA -wavelets.

Let (T, \mathcal{H}) be a unitary representation of G and

$$\mathcal{H} = \bigoplus_{\tau \in \hat{K}} \mathcal{H}_\tau,$$

the K -type decomposition of \mathcal{H} . In the following argument we assume that

$$[T, \tau] \leq 1,$$

and we denote by \hat{K}_T the set of all $\tau \in \hat{K}$ such that $[T, \tau] = 1$. Then, as a representation of K , $(T|_K, \mathcal{H}_\tau)$ is equivalent with τ for each $\tau \in \hat{K}_T$. We choose a complete orthonormal basis of \mathcal{H} such that

$$\{e_n^\tau; e_n^\tau \in \mathcal{H}_\tau, 1 \leq n \leq \dim \tau, \tau \in \hat{K}_T\}$$

and we denote by I the set of the indexes $\{(\tau, n); 1 \leq n \leq \dim \tau, \tau \in \hat{K}_T\}$. For each $f \in \mathcal{H}$ the Fourier expansion of f is given by

$$f = \sum_{(\tau, n) \in I(f)} f_n^\tau e_n^\tau,$$

where $f_n^\tau = \langle f, e_n^\tau \rangle_{\mathcal{H}}$ and $I(f)$ the subset of I consisting of all (τ, n) such that $f_n^\tau \neq 0$. Here we put

$$I_A(f) = \{(\tau, n); (T(\cdot)f)_n^\tau = \langle T(\cdot)f, e_n^\tau \rangle \text{ is not identically 0 on } A\}.$$

We say that $\psi \in \mathcal{H}$ is admissible if there exist constants $0 < C_1, C_2 < \infty$ such that, if $(\tau, n) \in I_A(\psi)$,

$$C_1 \leq c_{\psi, \tau, n} = \int_A |\langle T(a)\psi, e_n^\tau \rangle|^2 D(a) da \leq C_2.$$

We put

$$\mathcal{H}_\psi = \{f \in \mathcal{H}; I(f) \subset I_A(\psi)\}.$$

Then, by using the bounded constants $c_{\psi, \tau, n}$ we shall define a Fourier multiplier M_ψ on \mathcal{H}_ψ as follows. For each $f = \sum_{(\tau, n) \in I(f)} f_n^\tau e_n^\tau$ in \mathcal{H}_ψ

$$M_\psi f = \sum_{(\tau, n) \in I(f)} c_{\psi, \tau, n}^{-1/2} f_n^\tau e_n^\tau.$$

Theorem 3.1. Let ψ be admissible in \mathcal{H} . Then for any $f \in \mathcal{H}_\psi$

$$(1) \quad C_1 \|f\|^2 \leq \int \int_{KA} |\langle f, T(ka)\psi \rangle|^2 D(a) dk da \leq C_2 \|f\|^2,$$

$$(2) \quad \|f\|^2 = \int \int_{KA} |\langle f, M_\psi T(ka)\psi \rangle|^2 D(a) dk da,$$

$$(3) \quad f = \int \int_{KA} \langle f, M_\psi T(ka)\psi \rangle M_\psi T(ka)\psi D(a) dk da.$$

Proof. We note that

$$T(k^{-1})f = \sum_{(\tau, n) \in I(f)} f_n^\tau T(k^{-1})e_n^\tau = \sum_{(\tau, n) \in I(f), (\tau', n') \in I} f_n^\tau \langle T(k^{-1})e_n^\tau, e_{n'}^{\tau'} \rangle e_{n'}^{\tau'}.$$

Then the orthogonality of the matrix coefficients of $T|_K$ yields that

$$\begin{aligned} & \int \int_{KA} |\langle f, T(ka)\psi \rangle|^2 D(a) dk da \\ &= \int_A \sum_{(\tau, n) \in I(f)} |f_n^\tau|^2 |\langle T(a)\psi, e_n^\tau \rangle|^2 D(a) da \\ &= \sum_{(\tau, n) \in I(f)} |f_n^\tau|^2 \left(\int_A |\langle T(a)\psi, e_n^\tau \rangle|^2 D(a) da \right) \end{aligned}$$

Since

$$\|f\|^2 = \sum_{(\tau,n) \in I(f)} |f_n^\tau|^2 \quad \text{and} \quad I(f) \subset I_A(\psi),$$

(1) easily follows from the definition of the admissible vector ψ . We replace f by $M_\psi f$ in the above calculation. Then $|f_n^\tau|^2$ in the last equation turns to $|f_n^\tau|^2 c_{\psi,\tau,n}^{-1}$ and then, $c_{\psi,\tau,n}^{-1}$ cancels the integral over A . Thereby (2) follows. As for (3) we put $\mathcal{H}(f) = \text{Span}\{e_n^\tau; (\tau, n) \in I(f)\}$ and define an operator Q on $\mathcal{H}(f)$ by

$$h \mapsto \int \int_{KA} \langle f, M_\psi T(ka)\psi \rangle \langle h, M_\psi T(ka)\rangle \psi \, D(a) dk da.$$

Then (2) and the Schwarz inequality yield that Q is bounded and $\|Q\| \leq \|f\|^2$, and thereby, there exists $f_0 \in \mathcal{H}(f)$ such that $Q(h) = \langle h, f_0 \rangle$ and $\|f_0\| = \|Q\|$. Since $Q(f) = \langle f, f_0 \rangle = \|f\|^2$ by (2), it easily follows that $f = f_0$ (cf. [K]). Clearly, $Q(h) = \langle h, f \rangle$ means (3).

Remark 3.2. When (T, \mathcal{H}) is an irreducible square-integrable representation of G , it is well-known that each $\psi \in \mathcal{H}$ is admissible and satisfies

$$c_{\psi,\tau,n} = d_T^{-1} \|\psi\|^2,$$

where c_T is the formal degree of T (cf. [V]). Furthermore, applying the orthogonality of the matrix coefficients on G , we can replace the integrals over KA in Theorem 3.1 by the ones over G .

§4. Example in $SU(1, 1)$.

Let G be $SU(1, 1)$. Then

$$K = \{k_\theta = \begin{pmatrix} e^{i\theta/2} & 0 \\ 0 & e^{-i\theta/2} \end{pmatrix}; 0 \leq \theta < 4\pi\},$$

$$A = \{a_t = \begin{pmatrix} \cosh t/2 & \sinh t/2 \\ \sinh t/2 & \cosh t/2 \end{pmatrix}; t \in \mathbf{R}\},$$

and $A^+ = \{a_t; t > 0\}$. In what follows we put

$$x = \tanh t.$$

Let (T_h, \mathcal{H}_h) ($h \in \mathbf{Z}/2, h \geq 1$) be the holomorphic discrete series of G realized on the weighted Bergman space \mathcal{H}_h on the unit disk $D = G/K$:

$$\mathcal{H}_h = \{f : D \rightarrow \mathbf{C}; f \text{ is holomorphic on } D \text{ and}$$

$$\|f\|_h^2 = , (2h-1)^{-1} \int_D |f(z)|^2 (1-|z|^2)^{2(h-1)} dz < \infty\},$$

and $(T_{1/2}, \mathcal{H}_{1/2})$ the limit of holomorphic discrete series of G realized on the Hardy space $\mathcal{H}_{1/2}$ on D :

$$\mathcal{H}_{1/2} = \{f : D \rightarrow \mathbf{C}; f \text{ is holomorphic on } D \text{ and}$$

$$\|f\|_{1/2}^2 = \lim_{h \rightarrow 1/2} \|f\|_h^2 < \infty\}.$$

For $h \in \mathbf{Z}/2, h \geq 1/2$ we denote by $\langle \cdot, \cdot \rangle_h$ the inner product of \mathcal{H}_h and we put

$$e_n^h(z) = \left(\frac{, (2h+n)}{, (2h), (n+1)} \right)^{1/2} z^n \quad (n \in \mathbf{N}).$$

Then $\{e_n^h; n \in \mathbf{N}\}$ is an orthonormal basis of \mathcal{H}_h . For simplicity we denote

$$\langle \cdot, \cdot \rangle = \langle \cdot, \cdot \rangle_{1/2} \text{ and } e_n(z) = e_n^{1/2}(z) = z^n.$$

According to this basis the matrix coefficients of T_h are given as follows (see [Sa]):

$$\begin{aligned} \langle T_h(g) e_n^h, e_m^h \rangle_h &= e^{i(n\theta+m\theta')} \langle T_h(a_t) e_n^h, e_m^h \rangle_h \quad (g = k_\theta a_t k_{\theta'}) \\ &= e^{i(n\theta+m\theta')} M(h; n, m; x), \end{aligned}$$

where for $n \geq m$,

$$M(h; n, m; x) = C_{n,m}^h (1-x^2)^h (-x)^{n-m} F(-m, n+2h, n-m+1; x^2),$$

$$C_{n,m}^h = \left(\frac{, (n+1), (n+2h)}{, (m+1), (m+2h)} \right)^{1/2} \frac{1}{, (n-m+1)}$$

and $F(a, b, c; x)$ is the hypergeometric function, and for $m > n$ we change n and m by m and n respectively. Since

$$D(a_t) dt = \sinh(2t) dt = \frac{2x}{(1-x^2)^2} dx,$$

$M(h; n, m; x)$ ($n, m \in \mathbf{N}$) are square-integrable on G if and only if $h > 1/2$. Here we note that for $n \geq m$,

$$\begin{aligned} & \lim_{x \rightarrow 1} (1 - x^2)^{-h} M(h; n, m; x) \\ &= C_{n,m}^h (-1)^n \frac{(1 - m + n), (m + 2h)}{(2h), (n + 1)} \\ &= (-1)^n \frac{1}{(2h)} \left(\frac{(n + 2h), (m + 2h)}{(n + 1), (m + 1)} \right)^{1/2} \\ &= (-1)^n D_{n,m}^h \end{aligned}$$

and for $m > n$, $\lim_{x \rightarrow 1} (1 - x^2)^{-h} M(h; n, m; x) = (-1)^m D_{m,n}^h = (-1)^m D_{n,m}^h$. Then we shall define the normalized matrix coefficients $NM(h; n, m, x)$ as

$$NM(h; n, m; x) = (D_{n,m}^h)^{-1} M(h; n, m; x)$$

and the differences of the normalized matrix coefficients $DM(h; n, m; x)$ as

$$DM(h; n, m; x) = NM(h; n, m; x) - NM(h; n + 2, m; x).$$

The key lemmas are the following.

Lemma 4.1. Let notations be as above. Then

$$\begin{aligned} DM(h; n, m; x) &= \frac{(1 - x^2)^{1/2}}{x} \\ &\times \left(\frac{m}{2h} NM(h + 1/2; n, m - 1; x) - \frac{m + 2h}{2h} NM(h + 1/2; n + 1, m; x) \right). \end{aligned}$$

Proof. We realize T_h on the circle and let $z = e^{i\theta}$ ($0 \leq \theta < 2\pi$) (see [Sa]). We first note that

$$\begin{aligned} (D_{n,m}^h)^{-1} e_n^h &= \left(\frac{(2h), (m + 1)}{(m + 2h)} \right)^{1/2} z^n, \\ (D_{n+2,m}^h)^{-1} e_{n+2}^h &= \left(\frac{(2h), (m + 1)}{(m + 2h)} \right)^{1/2} z^{n+2}, \end{aligned}$$

and moreover,

$$\begin{aligned}
& T_h(a_t)(z^n - z^{n+2}) \\
&= \frac{1}{(-z \sinh t/2 + \cosh t/2)^{2h}} \left(\frac{z \cosh t/2 - \sinh t/2}{-z \sinh t/2 + \cosh t/2} \right)^n \\
&\quad \times \left(1 - \left(\frac{z \cosh t/2 - \sinh t/2}{-z \sinh t/2 + \cosh t/2} \right)^2 \right) \\
&= \frac{1}{(-z \sinh t/2 + \cosh t/2)^{2h}} \left(\frac{z \cosh t/2 - \sinh t/2}{-z \sinh t/2 + \cosh t/2} \right)^n \\
&\quad \times \frac{1 - z^2}{(-z \sinh t/2 + \cosh t/2)^2} \\
&= \frac{1}{\sinh t/2} \frac{1}{(-z \sinh t/2 + \cosh t/2)^{2h+1}} \left(\frac{z \cosh t/2 - \sinh t/2}{-z \sinh t/2 + \cosh t/2} \right)^n \\
&\quad \times \left(- \left(\frac{z \cosh t/2 - \sinh t/2}{-z \sinh t/2 + \cosh t/2} \right) + z \right).
\end{aligned}$$

On the other hand, we easily see that

$$\begin{aligned}
& \left\langle \left(\frac{, (2h), (m+1)}{, (m+2h)} \right)^{1/2} z^{n+1}, e_m^h \right\rangle_h \\
&= \langle (D_{n+1,m}^{h+1/2})^{-1} e_{n+1}^{h+1/2}, e_m^{h+1/2} \rangle_h \\
&= \frac{m+2h}{2h} \langle (D_{n+1,m}^{h+1/2})^{-1} e_{n+1}^{h+1/2}, e_m^{h+1/2} \rangle_{h+1/2}
\end{aligned}$$

and

$$\begin{aligned}
& \left\langle \left(\frac{, (2h), (m+1)}{, (m+2h)} \right)^{1/2} z^n, e_{m-1}^h \right\rangle_h \\
&= \langle (D_{n,m-1}^{h+1/2})^{-1} e_n^{h+1/2}, e_{m-1}^{h+1/2} \rangle_h \\
&= \frac{m}{2h} \langle (D_{n,m-1}^{h+1/2})^{-1} e_n^{h+1/2}, e_{m-1}^{h+1/2} \rangle_{h+1/2}.
\end{aligned}$$

Then the desired result follows.

Lemma 4.2. Let notations be as above. Then for each $n, m \in \mathbf{N}$,

$$0 < \int_0^1 DM(h; n, m; x)^2 \frac{2x}{(1-x^2)^2} dx < \infty,$$

and especially, for $m > n$

$$\begin{aligned} & \int_0^1 DM(h; n, m; x)^2 \frac{2x}{(1-x^2)^2} dx \\ &= , (2h)^2 2(n+h+1) \frac{(m+1)}{(m+2h)} \frac{(n+1)}{(n+2h+2)}. \end{aligned}$$

Proof. The case of $m > n$: We note that

$$\begin{aligned} & \frac{(1-x^2)^{1/2}}{x} \frac{m}{2h} NM(h+1/2; n, m-1; x) \\ &= Ax^{m-n-2} (1-x^2)^{h+1} G_n(m-n+2h, m-n; x^2) \end{aligned}$$

and

$$\begin{aligned} & \frac{(1-x^2)^{1/2}}{x} \frac{m+2h}{2h} NM(h+1/2; n+1, m; x) \\ &= \frac{m+2h}{n+2h+1} Ax^{m-n-2} (1-x^2)^{h+1} G_{n+1}(m-n+2h, m-n; x^2), \end{aligned}$$

where

$$A = \frac{, (2h), (m+1)}{, (n+2h+1), (m-n)}$$

and $G_n(x) = G_n(\alpha, \gamma, x)$ ($\alpha = m-n+2h, \gamma = m-n$) is the Jacobi polynomial. Hence,

$$\begin{aligned} I &= \int_0^1 DM(h; n, m; x)^2 \frac{2x}{(1-x^2)^2} dx \\ &= A^2 \int_0^1 x^{2(m-n-2)} (1-x^2)^{2h} \left(G_n(x^2) - \frac{m+2h}{n+2h+1} G_{n+1}(x^2) \right)^2 2x dx \\ &= A^2 \int_0^1 x^{\gamma-1} (1-x)^{\alpha-\gamma} \left(G_n(x) - \frac{m+2h}{n+2h+1} G_{n+1}(x) \right)^2 \frac{dx}{x}. \end{aligned}$$

We here consider the case of $m > n+1$. Then, $\gamma-2 = m-n-2 \geq 0$. We note that $G_n^2 = (G_n - 1)G_n + G_n$ and $(G_n - 1)/x$ is the polynomial of

degree $n - 1$. So the orthogonality relations for the Jacobi polynomials and the definition of $G_n(x)$;

$$G_n(x) = \frac{, (\gamma)}{, (\gamma + n)} x^{1-\gamma} (1-x)^{\gamma-\alpha} \left(\frac{d}{dx} \right)^n \left(x^{\gamma+n-1} (1-x)^{\alpha+n-\gamma} \right)$$

yield that

$$\begin{aligned} & \int_0^1 x^{\gamma-1} (1-x)^{\alpha-\gamma} G_n(x)^2 \frac{dx}{x} \\ &= \int_0^1 x^{\gamma-1} (1-x)^{\alpha-\gamma} G_n(x) \frac{dx}{x} \\ &= , (m-n)^2 \frac{, (n+1), (n+2h+1)}{, (m+1), (m+2h)} \frac{m}{m-n-1} \\ &= B, \end{aligned}$$

and similarly,

$$\begin{aligned} & \int_0^1 x^{\gamma-1} (1-x)^{\alpha-\gamma} G_{n+1}(x)^2 \frac{dx}{x} \\ &= \int_0^1 x^{\gamma-1} (1-x)^{\alpha-\gamma} G_n(x) G_{n+1}(x) \frac{dx}{x} \\ &= \int_0^1 x^{\gamma-1} (1-x)^{\alpha-\gamma} G_{n+1}(x) \frac{dx}{x} \\ &= \frac{n+2h+1}{m+2h} \frac{n+1}{m} B. \end{aligned}$$

Therefore,

$$\begin{aligned} I &= A^2 B \left(1 - 2 \frac{n+1}{m} + \frac{n+1}{m} \frac{m+2h}{n+2h+1} \right) \\ &= A^2 B \frac{2(m-n-1)(n+h+1)}{m(n+2h+1)} \end{aligned}$$

and hence, the desired result follows.

In the case of $m = n+1$ we note that $(G_n(x) - G_{n+1}(x))/x$ is a polynomial of degree n and thus, the integral I is well-defined. Then the analytic continuation on γ , letting $\gamma \rightarrow 1$ in the previous case, yields the desired formula for $m = n+1$.

The case of $m \leq n$: Since $M(h + 1/2; n, m - 1; x)$ and $M(h + 1/2; n + 1, m; x)$ have the term x^{n-m+1} and $n - m + 1 \geq 1$, it easily follows from Lemma 4.1 that the desired integral is positive and finite.

This completes the proof of the lemma.

Lemma 4.3. Let notations be as above and suppose that

$$n, m \in 2\mathbf{N} \quad \text{or} \quad n, m \in 2\mathbf{N} + 1.$$

Then, for $p > n, m$

$$\begin{aligned} & \int_0^1 DM(h; n, p, x) DM(h; m, p, x) \frac{2x}{(1-x^2)^2} dx \\ &= \delta_{nm}, (2h)^2 2(n+h+1) \frac{, (p+1)}{, (p+2h)} \frac{, (n+1)}{, (n+2h+2)}. \end{aligned}$$

Proof. When $n = m$, it follows from Lemma 4.2. We may suppose that $n > m$ and hence, $n - m \geq 2$ and even. Then, applying the same argument used in the proof of Lemma 4.2, we see that the desired integral equals to

$$\begin{aligned} & \int_0^1 x^{p-n-1+(n-m)/2} (1-x)^{2h} \\ & \times \left(G_n(x) - \frac{p+2h}{n+2h+1} G_{n+1}(x) \right) \left(G_m(x) - \frac{p+2h}{m+2h+1} G_{m+1}(x) \right) \frac{dx}{x}. \end{aligned}$$

Since $(n - m)/2$ is integer, $0 \leq (n - m)/2 - 1 \leq n - 1$, and

$$\left(G_m(x) - \frac{p+2h}{m+2h+1} G_{m+1}(x) \right)$$

is a polynomial of degree $m+1 < n$, the orthogonality relations for the Jacobi polynomials yield that the integral equals to 0.

We here note that, if $h = 1/2$, then $D_{n,m}^h = 1$ and hence,

$$\begin{aligned} DM(1/2; n, m; x) &= M(1/2; n, m; x) - M(1/2; n + 2, m; x) \\ &= \langle T_{1/2}(a_t)(e_n - e_{n+2}), e_m \rangle. \end{aligned}$$

Therefore, Lemma 4.2 implies that

$$0 < \int_A |\langle T_{1/2}(a_t)(e_n - e_{n+2}), e_m \rangle|^2 D(a_t) dt < \infty$$

and for $m > n$ this integral equals to

$$\frac{(2n+3)}{(n+1)(n+2)}.$$

Furthermore, these differences $\langle T_{1/2}(a_t)(e_n - e_{n+2}), e_m \rangle$ satisfy the quasi-orthogonality relations stated in Lemma 4.3 with $h = 1/2$. Thereby, as an application of Theorem 3.1, we see the following.

Theorem 4.4. Let $G = SU(1, 1)$ and $(T_{1/2}, \mathcal{H}_{1/2})$ the limit of the discrete series of G .

(1) Let ψ be a finite linear combination of $e_{n+2} - e_n$. Then there exist constants $0 < C_1, C_2 < \infty$ such that for any f in $\mathcal{H}_{1/2}$

$$C_1 \|f\|^2 \leq \int \int_{KA} |\langle f, T_{1/2}(ka_t)\psi \rangle|^2 \sinh 2t \ dk dt \leq C_2 \|f\|^2.$$

(2) Let

$$\psi = \sum c_n \left(\frac{(2n+3)}{(n+1)(n+2)} \right)^{-1/2} (e_{n+2} - e_n),$$

where the sum is taken over $0 \leq n \leq N, n \in 2\mathbb{N}$ or $0 \leq n \leq N, n \in 2\mathbb{N} + 1$, and let $\|\psi\|_0^2 = \sum |c_n|^2$. Then for any f in the L^2 -span of $\{e_p, p \geq N + 1\}$,

$$f(x) = \frac{1}{\|\psi\|_0} \int \int_{KA} \langle f, T_{1/2}(ka_t)\psi \rangle T_{1/2}(ka_t)\psi \sinh 2t \ dk dt.$$

References

[AAG] S. T. Ali, J.-P. Antoine and J.-P. Gazeau, *Square integrability of group representations on homogeneous spaces I, II*, Ann. Inst. H. Poincaré, Vol. 55, 1991, pp. 829-855, *ibid.*, Ann. Inst. H. Poincaré, Vol. 55, 1991, pp. 857-890.

- [Ba] V. Bargmann, *On unitary ray representations for continuous groups*, Ann. Math., Vol. 48, 1947, pp. 568-640.
- [BT] D. Bernier and K. F. Taylor, *Wavelets from square-integrable representations*, SIAM J. Math. Anal., Vol. 27, 1996, pp. 594-608.
- [Bo] G. Bohnke, *Treillis d'ondelettes associés aux groupes de Lorentz*, Ann. Inst. H. Poincaré, Vol. 54, 1991, pp. 245-259.
- [DB] De Bièvre, *coherent states over symplectic homogeneous spaces*, J. Math. Phys., Vol. 7, 1989, pp. 1401-1407.
- [DM] G. B. Duflo and C.C. Moore, *On the regular representation of a nonunimodular locally compact group*, J. Funct. Anal., Vol. 21, 1976, pp. 209-243.
- [G] R. Godement, *Sur les relations d'orthogonalité de Bargmann*, C. R. Acad. Sci., Vol. 255, 1947, pp. 521-523, *ibid.*, pp. 657-659.
- [GMP] A. Grossmann, J. Morlet, and T. Paul, *Transforms associated to square integrable group representations. I*, J. Math. Phys., Vol. 26, 1985, pp. 2473-2479.
- [HC] Harish-Chandra, *Discrete series for semisimple Lie groups I, II*, Acta Math, Vol. 113, 1965, pp. 241-318, *ibid.*, Vol. 116, 1966, pp. 1-111.
- [K1] T. Kawazoe, *Wavelet transforms associated to a principal series representation of semisimple Lie groups I, II*, Proc. Japan Acad. Vol. 71, 1995, pp. 154-157, *ibid.*, Proc. Japan Acad. Vol. 71, 1995, pp. 158-160.
- [K2] T. Kawazoe, *Wavelet transforms associated to an induced representation of $SL(n+2, R)$* , Ann. Inst. H. Poincaré, Vol. 65, 1996, pp. 1-13.
- [K3] T. Kawazoe, *Wavelet transforms associated to the analytic continuation of the holomorphic discrete series of a semisimple Lie group*, Keio Research Report, 1998.
- [KT] C. Kalisa and B. Torrésani, *N -dimensional affine Weyl-Heisenberg wavelets*, Ann. Inst. H. Poincaré, Vol. 59, 1993, pp. 201-236.

- [L] H. Liu, *Wavelet transforms and symmetric tube domains*, J. Lie Theory, Vol. 8, 1998, pp. 351-366.
- [M] R. Murenzi, *Ondelettes multidimensionnelles et application à l'analyse d'images*, Ph. D. Thesis, Louvain-la-Neuve, 1990.
- [MW] C. C. Moore and J. A. Wolf, *Square integrable representations on nilpotent groups*, Trans. Amer. Math. Soc., Vol. 185, 1973, pp. 445-462.
- [Sa] P. J. Sally, *Analytic Continuation of the Irreducible Unitary Representations of the Universal Covering Group of $SL(2, \mathbf{R})$* , Memoirs of A. M. S., Vol. 69, American Mathematical Society, Providence, Rhode Island, 1967.
- [Su] M. Sugiura, *Unitary Representations and Harmonic Analysis, An Introduction*, Second Edition, North-Holland/Kodansha, Amsterdam/Tokyo, 1990.
- [T1] B. Torrésani, *Wavelets associated with representations of the affine Weyl-Heisenberg group*, J. Math. Phys., Vol. 32, 1991, pp. 1273-1279.
- [T2] B. Torrésani, *Time-frequency representation: wavelet packets and optimal decomposition*, Ann. Inst. H. Poincaré, Vol. 56, 1992, pp. 215-234.
- [U] A. Unterberger and J. Unterberger, *A quantization of the Cartan Domain BDI ($q = 2$) and operators on the light cone*, J. Funct. Anal., Vol. 72, 1987, pp. 279-319.
- [V] V. S. Varadarajan, *Harmonic Analysis on Real Reductive Groups*, Lecture Note in Math., Springer, Berlin, New York, Vol. 576, 1977.
- [WZ] Y. Wu and X. Zhong, *Discrete wavelet transform on circles*, preprint.
- [AV1] J-P. Antoine and P. Vandergheynst, *Wavelets on the n -sphere and other manifolds*, J. Math. Phys., Vol. 39, 1998, pp. 3987-4008.
- [AV2] J-P. Antoine and P. Vandergheynst, *Wavelets on the 2-sphere: A group-theoretical approach*, Appl. Comput. Harmon. Anal., Vol. 7, 1999, pp. 262-291.