KA-wavelets on semisimple Lie groups
and quasi-orthogonality of matrix coefficients

Takeshi Kawazoe
Keio University at Fujisawa
5322 Endo, Fujisawa, 252-8520 Japan
kawazoe@sfc.keio.ac.jp

§1 Introduction.

First we brief the history of continuous wavelet transforms. Originally the (continuous) wavelet transform, introduced by Morlet around 1980, was the following one. We denote by $H^2(\mathbb{R})$ the closed subspace of $L^2(\mathbb{R})$ consisting of all L^2 functions f on \mathbb{R} with $\text{supp}(\hat{f}) \subset [0, \infty)$, and we fix $\psi \in H^2(\mathbb{R})$ satisfying the so-called admissible condition

$$c_\psi = \int_0^\infty \frac{\left|\hat{\psi}(\lambda)\right|^2}{\lambda} d\lambda < \infty.$$

Then the wavelet transform W_ψ associated to ψ is defined on $H^2(\mathbb{R})$ as

$$W_\psi f(u, v) = \int_{-\infty}^{\infty} f(x)e^{-u/2}\tilde{\psi}(e^{-u}x + v)dx \quad (u, v \in \mathbb{R}).$$

Theorem 1.1. W_ψ is an isometric isomorphism from $H^2(\mathbb{R})$ onto $L^2(\mathbb{R}^2)$: For any $f \in H^2(\mathbb{R})$

$$\|f\|^2 = \frac{1}{c_\psi} \|W_\psi f\|^2.$$

Furthermore, for any $f \in H^2(\mathbb{R})$ and $x \in \mathbb{R}$ at which f is continuous,

$$f(x) = \frac{1}{c_\psi} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} (W_\psi f)(u, v)e^{-u/2}\tilde{\psi}(e^{-u}x + v)dudv.$$

In [GMP] Grossmann-Morlet-Paul pointed out the group-theoretical interpretation of the wavelet transform W_ψ. Let G be the affine group \mathbb{R}^2 with multiplication law:

$$(u, v)(u', v') = (u + u', e^{-u}v + v'),$$
and let \((T, \mathcal{H}^2(\mathbb{R}))\) be an irreducible unitary representation of \(G\) defined by
\[
(T(u,v)f)(x) = e^{-u/2}f(e^{-u}x + v) \quad (f \in \mathcal{H}^2(\mathbb{R})).
\]
In this scheme \(W_\psi\) can be rewritten as
\[
W_\psi f(u,v) = \langle f, T(u,v)\psi \rangle,
\]
where \(\langle \cdot, \cdot \rangle\) is the inner product of \(\mathcal{H}^2(\mathbb{R})\). Furthermore, since \(dudv\) is a left invariant Haar measure on \(G\), Theorem 1.1 yields the square-integrability and the orthogonality of the matrix coefficients \(\langle f, T(u,v)\psi \rangle\) of \(T\) on \(G\). In this sense the theory of the continuous wavelet transform \(W_\psi\) on \(\mathcal{H}^2(\mathbb{R})\) is nothing but the one of the square-integrable representation \((T, \mathcal{H}^2(\mathbb{R}))\) of \(G\).

General theory of square-integrable representations of locally compact groups has been investigated by various mathematicians; Weyl [W] for compact groups, Godement [G] for unimodular locally compact groups, and Duflo-Moore [DM] for general locally compact groups. Explicit theory based on the construction of the square-integrable representations was obtained by Harish-Chandra [HC] for semisimple Lie groups and by Moore-Wolf [MW] for nilpotent groups.

How to extend the theory of square-integrable representations of locally compact groups \(G\)? One of the ways is to replace the square-integrability on \(G\) by the one on a quotient space \(G/H\) for a closed subgroup \(H\) of \(G\). More generally, find a representation \((T, \mathcal{H})\) of \(G\), a measurable subset \((S, ds)\) of \(G\), and \(\psi \in \mathcal{H}\) for which, for any \(f \in \mathcal{H}\)
\[
\tag{*}
\|f\|^2 = \frac{1}{c_{S,\psi}} \int_S |\langle f, T(s)\psi \rangle|^2 ds.
\]
Then, it is easy to see that the transform defined by \(\langle f, T(s)\psi \rangle\) is an isometric isomorphism from \(\mathcal{H}\) onto \(L^2(S, ds)\), and each \(f \in \mathcal{H}\) has an \(L^2\) decomposition in the weak sense:
\[
f = \frac{1}{c_{S,\psi}} \int_S \langle f, T(s)\psi \rangle T(s)\psi ds.
\]
For the last decade researches has been done in this scheme and many wavelet transforms has been constructed on locally compact groups, for example, on \(\mathbb{R}^*_+ \times SO(n)\) by Murenzi [M], on \(\mathbb{R}^*_+ \times SO(1, n)\) by A-J. Unterberger [U], on \(\mathbb{R}^*_+ \times SO(1, n) \times \mathbb{R}^{n+1}\) by Bhonke [B], on \(S \times V\), \(V\) is a vector space and \(S\) is
a subgroup of $GL(V)$, by De Bièvre [DB], on $SO(2,1) \times \mathbb{R}^3$ by Ali, Antoine, Gazeau [AAG], on $\mathbb{R}^*_+ \times SO(n) \times H_n$ by Kalisa-Toréssani [KT], Toréssani [T1,2], on $GL(n, \mathbb{R})$ by Bernier-Taylor [BT], on $SO(2,1)$ by Wu-Zhong [WZ], and on Iwasawa AN groups by Kawazoe [K3] and Liu [L].

In this paper we shall consider the case that G is a semisimple Lie group and $S = KA$, where K and A are respectively the maximal compact and abelian subgroups of G. More precisely, let G be a semisimple Lie group with finite center and $G = KAK$ the Cartan decomposition of G. dg denotes a Haar measure on G and $dg = D(a)dk adk$ the corresponding decomposition of dg. Then we take $S = KA$ and $ds = D(a)dk da$ in the above scheme, and we try to find a representation (T, \mathcal{H}) of G and $\psi \in \mathcal{H}$ satisfying (\star). Unfortunately, the condition (\star) is very strong, so I feel that we have no answer for T and ψ. Therefore, we shall consider a weak condition; there exist constants $0 < C_1, C_2 < \infty$ such that

$$\tag{**} C_1 \| f \|^2 \leq \int_{\mathcal{H}} |\langle f, T(s)\psi \rangle|^2 ds \leq C_2 \| f \|^2$$

and we shall obtain a sufficient condition on ψ for which $\langle f, T(s)\psi \rangle$ satisfies (**). In §4 we shall treat the case of $G = SU(1,1)$ and $(T_{1/2}, \mathcal{H}_{1/2})$ the limit of the holomorphic discrete series of G. We note that $T_{1/2}$ is not square-integrable on G. Then we shall find a $\psi \in \mathcal{H}_{1/2}$ satisfying (\star). Moreover, we shall deduce that, if we ignore a finite dimensional subspace of $\mathcal{H}_{1/2}$, then we can find a $\psi \in \mathcal{H}_{1/2}$ satisfying (\star) (see Theorem 4.4). In this process we use the facts that some differences of the matrix coefficients of $T_{1/2}$ are square-integrable on \mathbb{R} with respect to $D(a)da$ and moreover, they satisfy a quasi-orthogonality. These facts are summarized in Lemmas 4.1, 4.2, and 4.3.

After the lecture, the author noticed that J.-P. Antoine and P. Vanderghynst [AV1,2] had the same idea and they obtained an example in the case of $SO(3,1)$.

§2. Notation.

Let G be a semisimple Lie group with finite center and $G = KAN$ the Iwasawa decomposition of G. Let Σ be the set of roots for (G, A) and Σ^+ the one of positive roots corresponding to N. Let A^+ denote the closed positive Weyl chamber in A and $G = KA^+K$ the Cartan decomposition of G. Let
dg denote a Haar measure on G, and dk, da, and dn ones for K, A, and N respectively. We normalize dk as $\int_K dk = 1$. According to the Iwasawa and Cartan decompositions of G, there are decompositions of dg such that

$$dg = e^{\rho \log a} dk da dn = D(a) dk da dk',$$

where $\rho = \frac{1}{2} \sum_{\alpha \in \Sigma^+} m_\alpha \alpha$ and

$$D(a) = \prod_{\alpha \in \Sigma^+} \left(\sinh \alpha \log a \right)^{m_\alpha},$$

m_α stands for the multiplicity of α.

§3. KA-wavelets.

Let (T, \mathcal{H}) be a unitary representation of G and

$$\mathcal{H} = \bigoplus_{\tau \in \hat{K}} \mathcal{H}_\tau,$$

the K-type decomposition of \mathcal{H}. In the following argument we assume that

$$[T, \tau] \leq 1,$$

and we denote by \hat{K}_T the set of all $\tau \in \hat{K}$ such that $[T, \tau] = 1$. Then, as a representation of K, $(T|_K, \mathcal{H}_\tau)$ is equivalent with τ for each $\tau \in \hat{K}_T$. We choose a complete orthonormal basis of \mathcal{H} such that

$$\{ e_{\tau}^n; e_{\tau}^n \in \mathcal{H}_\tau, 1 \leq n \leq \dim \tau, \tau \in \hat{K}_T \}$$

and we denote by I the set of the indexes $\{ (\tau, n); 1 \leq n \leq \dim \tau, \tau \in \hat{K}_T \}$. For each $f \in \mathcal{H}$ the Fourier expansion of f is given by

$$f = \sum_{(\tau, n) \in I(f)} f_{n}^\tau e_{n}^\tau,$$

where $f_{n}^\tau = \langle f, e_{n}^\tau \rangle_{\mathcal{H}}$ and $I(f)$ the subset of I consisting of all (τ, n) such that $f_{n}^\tau \neq 0$. Here we put

$$I_A(f) = \{ (\tau, n); (T(\cdot)f)_{n}^\tau = \langle T(\cdot) f, e_{n}^\tau \rangle \text{ is not identically } 0 \text{ on } A \}.$$
We say that \(\psi \in \mathcal{H} \) is admissible if there exist constants \(0 < C_1, C_2 < \infty \) such that, if \((\tau, n) \in I_A(\psi),\)

\[
C_1 \leq c_{\psi, \tau, n} = \int_A |\langle T(a)\psi, e_n^* \rangle|^2 D(a) \, da \leq C_2.
\]

We put

\[
\mathcal{H}_\psi = \{ f \in \mathcal{H}; I(f) \subset I_A(\psi) \}.
\]

Then, by using the bounded constants \(c_{\psi, \tau, n} \) we shall define a Fourier multiplier \(M_\psi \) on \(\mathcal{H}_\psi \) as follows. For each \(f = \sum_{(\tau, n) \in I(f)} f_n^* e_n \) in \(\mathcal{H}_\psi \)

\[
M_\psi f = \sum_{(\tau, n) \in I(f)} c_{\psi, \tau, n}^{-1/2} f_n^* e_n.
\]

Theorem 3.1. Let \(\psi \) be admissible in \(\mathcal{H} \). Then for any \(f \in \mathcal{H}_\psi \)

\[
(1) \quad C_1 \| f \|^2 \leq \int \int_{K^2} |\langle f, T(ka)\psi \rangle|^2 D(a) \, dk \, da \leq C_2 \| f \|^2,
\]

\[
(2) \quad \| f \|^2 = \int \int_{K^2} |\langle f, M_\psi T(ka)\psi \rangle|^2 D(a) \, dk \, da,
\]

\[
(3) \quad f = \int \int_{K^2} \langle f, M_\psi T(ka)\psi \rangle M_\psi T(ka)\psi \, D(a) \, dk \, da.
\]

Proof. We note that

\[
T(k^{-1})f = \sum_{(\tau, n) \in I(f)} f_n^* T(k^{-1}) e_n = \sum_{(\tau, n) \in I(f), (\tau', n') \in I} f_n^* T(k^{-1}) e_n^* e_n'^* e_n'^*.
\]

Then the orthogonality of the matrix coefficients of \(T|_K \) yields that

\[
\int \int_{K^2} |\langle f, T(ka)\psi \rangle|^2 D(a) \, dk \, da
= \int_A \sum_{(\tau, n) \in I(f)} |f_n^*|^2 |\langle T(a)\psi, e_n^* \rangle|^2 D(a) \, da
= \sum_{(\tau, n) \in I(f)} |f_n^*|^2 \left(\int_A |\langle T(a)\psi, e_n^* \rangle|^2 D(a) \, da \right).
\]
Since
\[\|f\|^2 = \sum_{(\tau, n) \in I(f)} |f_{\tau}^{n}|^2 \quad \text{and} \quad I(f) \subset I_A(\psi), \]
(1) easily follows from the definition of the admissible vector \(\psi \). We replace \(f \) by \(M_v f \) in the above calculation. Then \(|f_{\tau}^{n}|^2 \) in the last equation turns to \(|f_{\tau}^{n}|^2 c_{\psi, \tau, n}^{-1} \) and then, \(c_{\psi, \tau, n}^{-1} \) cancels the integral over \(A \). Thereby (2) follows. As for (3) we put \(\mathcal{H}(f) = \text{Span}\{e_{\tau}^{\gamma}; (\tau, n) \in I(f)\} \) and define an operator \(Q \) on \(\mathcal{H}(f) \) by
\[h \mapsto \int_{KA} \langle f, M_v T(ka) \psi \rangle \langle h, M_v T(ka) \psi \rangle D(a) \, dk \, da. \]
Then (2) and the Schwarz inequality yield that \(Q \) is bounded and \(\|Q\| \leq \|f\|^2 \), and thereby, there exists \(f_0 \in \mathcal{H}(f) \) such that \(Q(h) = \langle h, f_0 \rangle \) and \(\|f_0\| = \|Q\| \). Since \(Q(f) = \langle f, f_0 \rangle = \|f\|^2 \) by (2), it easily follows that \(f = f_0 \) (cf. [K]). Clearly, \(Q(h) = \langle h, f \rangle \) means (3).

Remark 3.2. When \((T, \mathcal{H})\) is an irreducible square-integrable representation of \(G \), it is well-known that each \(\psi \in \mathcal{H} \) is admissible and satisfies
\[c_{\psi, \tau, n} = d_T^{-1} \|\psi\|^2, \]
where \(c_T \) is the formal degree of \(T \) (cf.[V]). Furthermore, applying the orthogonality of the matrix coefficients on \(G \), we can replace the integrals over \(KA \) in Theorem 3.1 by the ones over \(G \).

§4. Example in \(SU(1, 1) \).

Let \(G \) be \(SU(1, 1) \). Then
\[K = \{k_\theta = \left(\begin{array}{cc} e^{i\theta/2} & 0 \\ 0 & e^{-i\theta/2} \end{array} \right); 0 \leq \theta < 4\pi \}, \]
\[A = \{a_t = \left(\begin{array}{cc} \cosh t/2 & \sinh t/2 \\ \sinh t/2 & \cosh t/2 \end{array} \right); t \in \mathbb{R} \}, \]
and \(A^+ = \{a_t; t > 0 \} \). In what follows we put
\[x = \tanh t. \]
Let \((T_h, \mathcal{H}_h)\) \((h \in \mathbb{Z}/2, h \geq 1)\) be the holomorphic discrete series of \(G\) realized on the weighted Bergman space \(\mathcal{H}_h\) on the unit disk \(D = G/K\):

\[
\mathcal{H}_h = \{ f : D \to \mathbb{C}; f \text{ is holomorphic on } D \text{ and } \| f \|^2_h = (2h - 1)^{-1} \int_D |f(z)|^2 (1 - |z|^2)^{2(h-1)} \, dz < \infty \},
\]

and \((T_{1/2}, \mathcal{H}_{1/2})\) the limit of holomorphic discrete series of \(G\) realized on the Hardy space \(\mathcal{H}_{1/2}\) on \(D\):

\[
\mathcal{H}_{1/2} = \{ f : D \to \mathbb{C}; f \text{ is holomorphic on } D \text{ and } \| f \|^2_{1/2} = \lim_{h \to 1/2} \| f \|^2_h < \infty \}.
\]

For \(h \in \mathbb{Z}/2, h \geq 1/2\) we denote by \(\langle \cdot, \cdot \rangle_h\) the inner product of \(\mathcal{H}_h\) and we put

\[
e_h^n(z) = \left((2h + n), (2h), (n + 1) \right)^{1/2} z^n \quad (n \in \mathbb{N}).
\]

Then \(\{e_h^n; n \in \mathbb{N}\}\) is an orthonormal basis of \(\mathcal{H}_h\). For simplicity we denote

\[
\langle \cdot, \cdot \rangle = \langle \cdot, \cdot \rangle_{1/2} \quad \text{and} \quad e_n(z) = e_{1/2}^n(z) = z^n.
\]

According to this basis the matrix coefficients of \(T_h\) are given as follows (see [Sa]):

\[
\langle T_h(g)e_h^n, e_h^m \rangle_h = e^{i(n \theta + m \varphi)} \langle T_h(a_t)e_h^n, e_h^m \rangle_h \quad (g = kga_kk\varphi)
\]

where for \(n \geq m\),

\[
M(h; n, m; x) = C^h_{n,m} (1 - x^2)^{h} (-x)^{-m-n} F(-m, n + 2h, n - m + 1; x^2),
\]

\[
C^h_{n,m} = \left((n + 1), (n + 2h), (m + 1), (m + 2h) \right)^{1/2} \frac{1}{(n - m + 1)}
\]

and \(F(a, b, c; x)\) is the hypergeometric function, and for \(m > n\) we change \(n\) and \(m\) by \(m\) and \(n\) respectively. Since

\[
D(a_t)dt = \sinh(2t)dt = \frac{2x}{(1 - x^2)^2} dx,
\]

\[7\]
$M(h; n, m; x)$ $(n, m \in \mathbb{N})$ are square-integrable on G if and only if $h > 1/2$. Here we note that for $n \geq m$,

$$
\lim_{x \to 1} (1 - x^2)^{-h} M(h; n, m; x)
= C_{n,m}^h (-1)^n, (1 - m + n), (m + 2h) \over (2h), (n + 1)
= (-1)^n \frac{1}{(2h)} \left((n + 2h), (m + 2h) \right)^{1/2}
= (-1)^n D_{n,m}^h
$$

and for $m > n$, $\lim_{x \to 1} (1 - x^2)^{-h} M(h; n, m; x) = (-1)^m D_{m,n}^h = (-1)^m D_{n,m}^h$.

Then we shall define the normalized matrix coefficients $NM(h; n, m, x)$ as

$$
NM(h; n, m, x) = (D_{n,m}^h)^{-1} M(h; n, m; x)
$$

and the differences of the normalized matrix coefficients $DM(h; n, m; x)$ as

$$
DM(h; n, m; x) = NM(h; n, m; x) - NM(h; n + 2, m; x).
$$

The key lemmas are the following.

Lemma 4.1. Let notations be as above. Then

$$
DM(h; n, m; x) = \frac{(1 - x^2)^{1/2}}{x}
$$

\[x \left(\frac{m}{2h} NM(h + 1/2; n, m - 1; x) - \frac{m + 2h}{2h} NM(h + 1/2; n + 1, m; x) \right).\]

Proof. We realize T_h on the circle and let $z = e^{i\theta}$ ($0 \leq \theta < 2\pi$) (see [Sa]).

We first note that

$$
(D_{n,m}^h)^{-1} e_n^h = \left(\frac{(2h), (m + 1)}{(m + 2h)} \right)^{1/2} z^n,
$$

$$
(D_{n+2,m}^h)^{-1} e_{n+2}^h = \left(\frac{(2h), (m + 1)}{(m + 2h)} \right)^{1/2} z^{n+2},
$$

8
and moreover,

\[
T_h(a_i)(z^n - z^{n+2}) = \frac{1}{(-z \sinh t/2 + \cosh t/2)^2} \bigg(\frac{z \cosh t/2 - \sinh t/2}{-z \sinh t/2 + \cosh t/2} \bigg)^n \\
\times \left(1 - \left(\frac{z \cosh t/2 - \sinh t/2}{-z \sinh t/2 + \cosh t/2} \right)^2 \right)
\]

\[
= \frac{1}{(-z \sinh t/2 + \cosh t/2)^2} \bigg(\frac{z \cosh t/2 - \sinh t/2}{-z \sinh t/2 + \cosh t/2} \bigg)^n \\
\times \frac{1 - z^2}{(-z \sinh t/2 + \cosh t/2)^2}
\]

\[
= \frac{1}{\sinh t/2} \frac{1}{(-z \sinh t/2 + \cosh t/2)^{2h+1}} \bigg(\frac{z \cosh t/2 - \sinh t/2}{-z \sinh t/2 + \cosh t/2} \bigg)^n \\
\times \left(- \left(\frac{z \cosh t/2 - \sinh t/2}{-z \sinh t/2 + \cosh t/2} \right) + z \right).
\]

On the other hand, we easily see that

\[
\langle \left(\frac{(2h), (m+1)}{(m+2h)} \right)^{1/2} z^{n+1}, e^h_{m+1} \rangle_h \\
= \langle (D_{n+1,m}^{h+1/2})^{-1} e_{n+1}^{h+1/2}, e^h_{m+1} \rangle_h \\
= \frac{m + 2h}{2h} \langle (D_{n+1,m}^{h+1/2})^{-1} e_{n+1}^{h+1/2}, e^h_{m} \rangle_h^{h+1/2}
\]

and

\[
\langle \left(\frac{(2h), (m+1)}{(m+2h)} \right)^{1/2} z^n, e^h_{m-1} \rangle_h \\
= \langle (D_{n,m-1}^{h+1/2})^{-1} e_{n}^{h+1/2}, e^h_{m-1} \rangle_h \\
= \frac{m}{2h} \langle (D_{n,m-1}^{h+1/2})^{-1} e_{n}^{h+1/2}, e^h_{m-1} \rangle_h^{h+1/2}.
\]

Then the desired result follows.

Lemma 4.2. Let notations be as above. Then for each \(n, m \in \mathbb{N} \),

\[
0 < \int_0^1 D M(h; n, m; x)^2 \frac{2x}{(1 - x^2)^2} dx < \infty,
\]

9
and especially, for \(m > n \)

\[
\int_0^1 DM(h; n, m; x)^2 \frac{2x}{(1 - x^2)^2} dx
\]

\[
= \frac{(2h)^2}{2} (n + h + 1) \frac{(m + 1)}{(m + 2h)} \frac{(n + 1)}{(n + 2h + 2)}.
\]

Proof. The case of \(m > n \): We note that

\[
\frac{(1 - x^2)^{1/2} m}{2h} \frac{NM(h + 1/2, n, m; x)}{N(M)}
\]

\[
= Ax^{m-n-2}(1 - x^2)^{h+1} G_n(m - n + 2h, m - n; x^2)
\]

and

\[
\frac{(1 - x^2)^{1/2} m + 2h}{2h} \frac{NM(h + 1/2, n + 1, m; x)}{N(M)}
\]

\[
= \frac{m + 2h}{n + 2h + 1} Ax^{m-n-2}(1 - x^2)^{h+1} G_{n+1}(m - n + 2h, m - n; x^2),
\]

where

\[
A = \frac{(2h)}{(n + 2h + 1)}, \frac{(m + 1)}{(m - n)}
\]

and \(G_n(x) = G_n(\alpha, \gamma, x) (\alpha = m-n+2h, \gamma = m-n) \) is the Jacobi polynomial. Hence,

\[
I = \int_0^1 DM(h; n, m; x)^2 \frac{2x}{(1 - x^2)^2} dx
\]

\[
= A^2 \int_0^1 x^{2(m-n-2)}(1 - x^2)^{2h} \left(G_n(x^2) - \frac{m + 2h}{n + 2h + 1} G_{n+1}(x^2) \right)^2 2x dx
\]

\[
= A^2 \int_0^1 x^{\gamma-1}(1 - x)^{\alpha-\gamma} \left(G_n(x) - \frac{m + 2h}{n + 2h + 1} G_{n+1}(x) \right)^2 \frac{dx}{x}.
\]

We here consider the case of \(m > n + 1 \). Then, \(\gamma - 2 = m - n - 2 \geq 0 \). We note that \(G_n^2 = (G_n - 1)G_n + G_n \) and \((G_n - 1)/x \) is the polynomial of
degree \(n - 1 \). So the orthogonality relations for the Jacobi polynomials and the definition of \(G_n(x) \):

\[
G_n(x) = \frac{\gamma}{\gamma + n} x^{1-\gamma} (1 - x)^{\gamma-\alpha} \left(\frac{d}{dx} \right)^n (x^{\gamma+n-1}(1 - x)^{\alpha+n-\gamma})
\]

yield that

\[
\begin{align*}
\int_0^1 x^{\gamma-1} (1 - x)^{\alpha-\gamma} G_n(x)^2 \frac{dx}{x} \\
= \int_0^1 x^{\gamma-1} (1 - x)^{\alpha-\gamma} G_n(x) \frac{dx}{x} \\
= \frac{\gamma}{\gamma + n} x^{1-\gamma} (1 - x)^{\gamma-\alpha} \left(\frac{d}{dx} \right)^n (x^{\gamma+n-1}(1 - x)^{\alpha+n-\gamma})
\end{align*}
\]

and similarly,

\[
\begin{align*}
\int_0^1 x^{\gamma+1} (1 - x)^{\alpha-\gamma} G_{n+1}(x)^2 \frac{dx}{x} \\
= \int_0^1 x^{\gamma+1} (1 - x)^{\alpha-\gamma} G_{n+1}(x) \frac{dx}{x} \\
= \frac{\gamma+1}{\gamma + n+1} x^{1-\gamma} (1 - x)^{\gamma-\alpha} \left(\frac{d}{dx} \right)^n (x^{\gamma+n-1}(1 - x)^{\alpha+n-\gamma})
\end{align*}
\]

Therefore,

\[
I = A^2 B \left(1 - 2 \frac{n+1}{m} + \frac{n+1}{m} \frac{m+2h+1}{n+2h+1} \right)
\]

and hence, the desired result follows.

In the case of \(m = n+1 \) we note that \((G_n(x) - G_{n+1}(x))/x \) is a polynomial of degree \(n \) and thus, the integral \(I \) is well-defined. Then the analytic continuation on \(\gamma \), letting \(\gamma \to 1 \) in the previous case, yields the desired formula for \(m = n + 1 \).
The case of $m \leq n$: Since $M(h+1/2; n, m-1; x)$ and $M(h+1/2; n+1, m; x)$ have the term x^{n-m+1} and $n - m + 1 \geq 1$, it easily follows from Lemma 4.1 that the desired integral is positive and finite.

This completes the proof of the lemma.

Lemma 4.3. Let notations be as above and suppose that

$$n, m \in 2\mathbb{N} \text{ or } n, m \in 2\mathbb{N} + 1.$$

Then, for $p > n, m$

$$\int_{0}^{1} DM(h; n, p, x) DM(h; m, p, x) \frac{2x}{(1-x^2)^2} dx$$

$$= \delta_{nm}, \frac{(2h)^2}{2(n+h+1)} \frac{(p+1)}{(p+2h)(n+2h+2)}.$$

Proof. When $n = m$, it follows from Lemma 4.2. We may suppose that $n > m$ and hence, $n - m \geq 2$ and even. Then, applying the same argument used in the proof of Lemma 4.2, we see that the desired integral equals to

$$\int_{0}^{1} x^{p-n-1+(n-m)/2} \frac{2x}{(1-x^2)^2} dx$$

$$\times \left(G_n(x) - \frac{p+2h}{n+2h+1} G_{n+1}(x) \right) \left(G_m(x) - \frac{p+2h}{m+2h+1} G_{m+1}(x) \right) dx.$$

Since $(n-m)/2$ is integer, $0 \leq (n-m)/2 - 1 \leq n - 1$, and

$$\left(G_m(x) - \frac{p+2h}{m+2h+1} G_{m+1}(x) \right)$$

is a polynomial of degree $m+1 < n$, the orthogonality relations for the Jacobi polynomials yield that the integral equals to 0.

We here note that, if $h = 1/2$, then $D_{n,m}^h = 1$ and hence,

$$DM(1/2; n, m; x) = M(1/2; n, m; x) - M(1/2; n+2, m; x)$$

$$= \langle T_{1/2}(a_t)(e_n - e_{n+2}), e_m \rangle.$$
Therefore, Lemma 4.2 implies that
\[0 < \int_A |\langle T_{1/2}(a_t)(e_n - e_{n+2}), e_m \rangle|^2 D(a_t) dt < \infty \]
and for \(m > n \) this integral equals to
\[\frac{(2n + 3)}{(n + 1)(n + 2)}. \]
Furthermore, these differences \(\langle T_{1/2}(a_t)(e_n - e_{n+2}), e_m \rangle \) satisfy the quasi-orthogonality relations stated in Lemma 4.3 with \(h = 1/2 \). Thereby, as an application of Theorem 3.1, we see the following.

Theorem 4.4. Let \(G = SU(1, 1) \) and \((T_{1/2}, \mathcal{H}_{1/2}) \) the limit of the discrete series of \(G \).

1. Let \(\psi \) be a finite linear combination of \(e_{n+2} - e_n \). Then there exist constants \(0 < C_1, C_2 < \infty \) such that for any \(f \) in \(\mathcal{H}_{1/2} \)
\[C_1 \| f \|^2 \leq \int \int_{KA} |\langle f, T_{1/2}(ka_t)\psi \rangle|^2 \sinh 2t \, dk \, dt \leq C_2 \| f \|^2. \]

2. Let
\[\psi = \sum c_n \left(\frac{(2n + 3)}{(n + 1)(n + 2)} \right)^{-1/2} (e_{n+2} - e_n), \]
where the sum is taken over \(0 \leq n \leq N, n \in 2\mathbb{N} \) or \(0 \leq n \leq N, n \in 2\mathbb{N} + 1 \), and let \(\| \psi \|_0^2 = \sum |c_n|^2 \). Then for any \(f \) in the \(L^2 \)-span of \(\{ e_p, p \geq N + 1 \} \),
\[f(x) = \frac{1}{\| \psi \|_0} \int \int_{KA} \langle f, T_{1/2}(ka_t)\psi \rangle T_{1/2}(ka_t)\psi \sinh 2t \, dk \, dt. \]

References

