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ABSTRACT. Let G be a real rank one connected semisimple Lie group with finite center.
As well-known the radial, heat, and Poisson maximal operators satisfy the LP-norm in-
equalities for any p > 1 and a weak type L' estimate, and so the aim of this paper is to
find a subspace of L!(G) from which they are bounded into L'(G). As an analogue of
the atomic Hardy space on the real line, we shall introduce an atomic Hardy space on G
and prove that these maximal operatprs with suitable modification are bounded from the
atomic Hardy space on G to L!(G).

1. Introduction.

The study of Hardy spaces HP originated in the 1910’s in the setting of Fourier
series and was developed by the so-called complex variable methods. In the 1970’s
these spaces were completely characterized by various maximal operators without using
complex variables and the study was advanced by the so-called real variable methods.
Atomic characterization of HP was also given at the same time. Since the real variable
methods have no need for the complex structure, the Hardy space theory could be
generalized to one on locally compact groups G such as compact Lie groups and the
Heisenberg groups. Nowadays, this fruitful H? theory has been extended to the spaces
X of homogeneous type in the sense that they satisfy the so-called doubling condition:
There exists ¢ > 0 such that for each x € X and t > 0

|B(2t, 2)| < ¢[B(t, z)],

where B(t, z) is the ball with redius ¢ centered at = and | B(x, r)| is the volume of the ball.
Roughly speaking, on X Hardy spaces HP(X) are characterized by the radial maximal
operator, and the heat and Poisson maximal operators are bounded from HP?(X) to
LP(X) for any 1 < p < oo (cf. [3]). However, when the space is not of homogeneous
type, little work has been done. In this paper, looking at the example of semisimple
Lie groups G, we shall consider the Hardy space theory on GG of nonhomogeneous type.
Actually, on G, |B(t,z)| has exponential growth order (cf. Lemma 2.1 below), hence G
is not of homogeneous type. Our goal is to introduce an atomic Hardy space H;)O(G) on
G and show that the modified radial, heat, and Poisson maximal operators are strongly
bounded from H;O(G) to L'(G) under suitable conditions on e.

This paper is organized as follows. We suppose that GG is a real rank one connected
semisimple Lie group with finite center and G = K exp p the Cartan decomposition of G.
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For each g = kexp X (k € K, X € p) let o(g) denote the norm of X with respect to the
Euclidean structure of p induced from the Killing form. Let dg be a Haar measure on G,
dk the one on K with total mass 1, and ds the Lebesgue measure on the Lie algebra a of
A. Then dg is decomposed as dg = A(s)dkdsdk’ relative to the Cartan decomposition
G = KCL(AT)K of G. We identify A = expa with R. Let B(¢) denote the ball with
redius ¢ > 0 centered at the origin: B(t) = {z € G;o(x) <t} and |B(t)| = for A(s)ds
the volume of the ball.
The Hardy-Littlewood maximal operator Myr, on G is defined as follows.

M, f(z) = sup 1B~ f]* xe()

(1) - /G Feg™)xi(9)dg

— sup [B(t)|"! /B g™l

t>0

where x; is the characteristic function of B(t). As well-known, My, satisfies the max-
imal theorem: For any 1 < p < oo, Myy, is of type (p,p), and is of weak type (1,1),
that is, it maps LP(G) into itself and L'(G) into weak L' functions on G (see [7]). In
§3 we shall obtain a pointwise estimate: If a is a function on G supported on B(r) with
lalles < [B(r)|7", then

(2) Mypa(z) < |B(o(x))|~".

We fix a smooth and compactly supported K-bi-invariant function ¢ on G and,
identifying it with an even function on R, we define the dilation ¢, (t > 0) of ¢ by

6u(s) = 7A)IAC)OC) (sER),

where A is the density of the Haar measure dg related to the Cartan decomposition of
G. Then, a radial maximal operator My is defined as

My f(x) = Sup [ * o).

As shown by [4, Theorem 3.4], M, f(x) is dominated by ¢(Mmur, f(x) + |f|* E(x)), where
E(z) = e=27(*) and hence, the radial maximal operator My is also of type (p,p) for
any 1 < p < oo, and is of weak type (1,1).

We now introduce an atom on G. Let 1 < p < oo. We say that a function a on G is
a (1,p,0)-atom provided that

(i)  a is supported on B(r) for some r > 0,

(i) ifr <1, then [lafl, < [B()|/*~" and / a(g)dg = 0,
G

(iii) if » > 1, then ||a||, < |B(r)|"".
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In the Euclidean case the moment condition fR a(g)dg = 0 of an atom a on R essentially
yields the integrability of a radial maximal function of the atom (cf. [3, Theorem 2.9]).
However, in our case Mya is not integrable on G, because the density A(z) cancels the
order of decay obtained in (2) (see Remark 4.7). In §4, by using (2) we shall obtain some
pointwise estimates of a* ¢, (x) and thereby deduce the following weak equi-integrability
of Mya: For each ¢ > 0

3) /G Mya(g)(1 + o(g)~*dg < c,

where ¢ is independent of the (1, p, 0)-atom a on G. As an easy consequence, a refinement
of [4, Proposition 4.1] follows: If we define a modified radial maximal operator M 5 on
G by

Mg f(z) = §1>113(1 + )7 f * de(2)],

then for each € > 0 we have

LMia(g)dg <,

where ¢ is independent of the (1,p,0)-atom a on G. In §5 we shall consider a left
translation of each (1,p,0)-atom a on G: a,(g9) = a(xzg), (r,g € G). Then we shall
introduce an atomic Hardy space H;,O(G) as a collection of these translations. The
above estimate implies that M3 is bounded from H, o(G) to L'(G) (see Theorem 5.3).

We shall treat the same problem for the (modified) heat and Poisson maximal oper-
ators My and Mp on G, which are defined respectively by

My f(z) = sup(1 4+ 8)7°[f * hy(z)| and Mpf(z) = sup(1 +4)7°[f * pi(2)],
>0 >0

for each € > 0, where h; and p; are the heat and Poisson kernels on G/ K, respectively.
We denote MY} (resp. MP) by My (resp. Mp) for simplicity. As shown by [6, Chap.I1]]
and [1, Corollary 3.2], My and Mp also satisfy the maximal theorem. In §6, applying the
sophisticated estimates for h; and p; obtained in [1], we shall prove that the inequality
(3) for My (resp. Mp) holds for e > 1/2 (resp. e > 0). This implies that M}, and
Mg are bounded from H, ,(G) to L'(G) provided e > 1/2 and & > 0, respectively (see
Theorem 6.1 and Theorem 6.4).
The author wishes to thank the referee for many valuable and helpful suggestions.

2. Notation and preliminaries.

Let G = KAN be a connected semisimple Lie group with finite center and suppose
that dim A = 1. Let a be the Lie algebra of A and a* the dual space of a. Let v be the
positive simple root of (G, A), and my, my the multiplicities of v and 2+, respectively.
We put 2p = my + 2msy and 2a = my + mg — 1. Let H be the element in a such that
v(H) = 1. In the following we identify A, a, and a* with R as s — a5 = exp(sH),
sH and sv, respectively. According to the Cartan decomposition G = KCL(AT)K,
At = {as; s > 0}, we define 0 : G — R by g € Ka,(g)K. Then o is K-bi-invariant
and

(4) lo(z) —o(y)| < o(xy) < o(x) +o(y)
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for z,y € G (cf. [8, 8.1.2.]). Let dg be a Haar measure on G normalized as

(5) /f dg—// /fkak s)dkdsdk’,

where dk is the Haar measure on K such that fK dk = 1, ds is the Lebesgue measure
on R, and A(s) = (sinh s)™ (sinh 2s)™2 (cf. [2, (2.4)]). We use the notation LP(G)
to stand for the space LP(G,dg) and we denote the norm by || - ||,. Let C°(G) be
the space of all C* functions with compact support on G. We denote by LP(G//K)
and C°(G//K) respectively the subspaces of LP(G) and C2°(G) consisting of all K-bi-
invariant functions on G. Then we identify each K-bi-invariant function f on G with
an even function on R, which we denote also by the same letter:

f(g) = flacg)) = f(a(g)) (g €G).

We recall some basic facts on the spherical Fourier analysis on G. For a survey of this
subject we refer to [2] and [8, Chap. 9]. Let Q be the Laplace-Beltrami operator on G/ K
and let ¢y (z) (x € G, A € a*) be the spherical function on G such that ¢y(e) = 1 and
Qoy(z) = —(A? + p?)ga(x). For each f € L'(G//K), the spherical Fourier transform
f(X) is defined by

- /G F(9)dr(g)dg (A€ a®).

Then f(w)\) = f(/\) for w € W, the Weyl group of (G, A). Since dim A = 1, this means
that f(A) is an even function on R. When f belongs to C°(G//K), the spherical
Fourier transform f +— f has an inversion formula of the form

(© f9) = [ FNA@ICOIZN (5€G)

where ¢ is a constant and C(A) is Harish-Chandra’s C-function. This transform has
an L2-extension, that is, it gives an isometric isomorphism between L?(G//K) and
L3, (R, |C(X)|2dN), the space of even functions in L*(R, |C(\)|~2d)).

In the following, we follow the custom of using the letter “c” to denote a constant
which might be different at each occurrence.

Let B(s) denote the open ball with redius s > 0 centered at the origin and |B(s)|
the volume [ A(u)du of the ball.

Lemma 2.1. The density A(s) and the volume |B(s
) A~ (s>
(i)  A(s) ~s**T (s
(iii) [B(s)| ~ e (s>1),
(iv)  |B(s)| ~ s20F) (s < 1),
(v)  [B(s)I = A(s),

where the symbol “~” means that the ratio of the left hand side to the right hand side
is bounded below and above by a positive constant, and the prime in (v) means the
derivative with respect to s.

| have the following properties.

);
1),

I /\ —t \_/
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Lemma 2.2. Suppose that x,y € RT and x —y > 1. Then for each ¢ > 1

/ A(U(amkagl))_qdk < ce2Pam2p(a— 1)y,
K

Proof. If  —y > 1 and y < 1, then (4) and Lemma 2.1 (i) imply that A(o(azka, "))~
< e72r(r=Y) < e 209 for all k € K, so we may assume that z,y, 2 —y > 1. We recall
the kernel form of the product of spherical functions ¢y (see [2,(4.2)]):

dx(91)0x(92) = /(;K(91792793)¢A(93)d93 (91,92, 93 € G).

Applying (6), we see that for f € C*(G//K),

/Kf(glkgz)dk = C/a* f) (/K ¢>\(91k92)dk> [C(N)|~%dA
= [ FNe(an)oa(a) CO)]
— [ Kongnan) (¢ [ FO0r@lc0 ) dos

:/(;K(91792793)f(93)d93-

Here K(g1,92,93) = 0 if o(gs) satisfies o(g3) < |o(g1) — o(g2)| or o(g3) > o(g1) +
o(g2) (see [2, (4.17)]). Therefore, approximating A(o(g))~%,¢q > 1, by functions in
C*(G//K), we may replace f in the above equations with A(o(g))~9. Then it follows
from (5) and Lemma 2.1 (i) that

/I(A(a(axkay—l))—wk:LK(am,ay,g)A(a(g))—ng

4y
< / K(ag, ay, az)ezp(l_q)zdz.
z—y

Since K(ay,ay,a,) = O(e=P@+y+2)) provided x,y,z > 1 (see [2, (4.14)]), the desired
result follows.
[

3. The Hardy-Littlewood maximal operator.
We keep the notation in the previous sections. We shall treat the Hardy-Littlewood
maximal operator My, on G defined by (1) and prove the estimate (2).
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Proposition 3.1. Suppose that a function a on G is supported on B(r) and ||al|e <
|B(r)|~t. Then

Mya(z) < min(|B(r)| ™", |B(o(x))|™") (2 € G).

Proof. Without loss of generality, we may assume that a(z) = |B(r)|~'x,(z), where ..
is the characteristic function of the ball B(r). We shall show that the supremum over
t >0 of

F(t) = For(t) = |B(r)| 7 B X0 * xe(2)
is dominated by min(|B(r)|~!,|B(a(x))|™"). Clearly, F(t) < |B(t)|~" and |B(r)|~!,
and hence we may assume that o(x) > r. Since F(t) = 0 for t < o(x) —r, to obtain the

desired estimate it suffices to prove that F'(¢) is increasing on the interval o(z) — r <
t <o(x). If we put

(7) I(x,ry) = /er(xky_l)dk (x,y € G),

then we see that

t
PO = BOIBO [ Hena)a)ds
o(z)—r
Here we note that, as a function of s, I(x,r,as) is increasing on o(z) —r < s < o(x).

Therefore, since |B(t)|" = A(t) and fat(x)_r A(s)ds < |B(t)], it follows that

[ Br)|IB)IF'(t) = I(x, 7, a)At) — |B(t)|'!B(t)|_1/ I(z, 7, a5)A(s)ds

o(z)—r

A(s)ds)

t

> I(a,r an) A(L) (1 _ |B(t)|_1/

>0

(z)—r

O

Corollary 3.2. Suppose that a function a on G is supported on B(z,r), the ball with
redius v centered at z, and ||a||. < |B(r)|7L.
(i) For every X\ > 0,
{x € G; Mypa(z) > A} < 271,

(ii) For every 1 < p < oo,
M ally < (2 PIBE)|YP

Proof. Since b(x) = a(zx) is supported on B(r) and ||b||oc < |B(r)|™", it follows from
Proposition 3.1 that

Myura(z) = Mupb(z~'z) < min(|B(r)| ™', |B(o(z~ )| 71).
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Let S)\) ={z € G La(z) > A}. Obviously, if A > |B(r )] L then S()) is empty,
and if X < |B(r)|7!, then S()\) C B(z,7)) = {x € G;|B(c(z7'x))|7 > A}. Therefore,
IS(N)| < |B(z,r )| = |B(r>\)| = A7, Moreover, it follows that

|B(r)| ™"
/ |Mura(z)Pde = p/ AWP=LS(N)dA < —L—|B(r)| 7.
G 0 p—1
[

4. The radial maximal operator and atoms.
Let ¢ be a K-bi-invariant, differentiable function on G. We say that ¢ belongs to
the class As (6 > 0) if it satisfies, as an even function on R,

() Cyo=lloAlr <1,
(8) (i) Co1 = (@A) (s)[sl(1+ sl <1,
(iii)  Copo = (@A) (5)Is]*(1 + Is])’[loo < 1.

For each ¢ € As we define the dilation ¢, (¢t > 0) of ¢ and the corresponding modified
radial maximal operator M7 (¢ > 0) on G by

bu(s) = TAG) A (s € R),

Mg f(x) = igg(l +6)7°f xp(x)] (€ G).
Then, as explained in §1, the maximal operator satisfies

M5 f(x) < Myf(x) < co(Murf(z) + [f] * E(z)),
and hence it satisfies the maximal theorem on G.
We first obtain some estimates for ¢; * a when a is supported on a ball B(r).

Proposition 4.1. Let ¢ € As. Suppose that a function a on G is supported on B(r),
lalls <1, and if r > 1, then |a||, < |B(r)|~" for some p > 1. Then

|ax ¢ ()] < —) Ao (@)™t (o(x) = ro),

o(x)—r

where rog = 2r if r <1, andrg =r+ 1 ifr > 1.
Proof. Let r <1 and o(x) > 2r. Then it follows from (ii) of (8) that

1 o(@)tr 4 o)
|ax ¢y ()] < —Cqs,l/ (14 = / / la(zka; ' k") |dkdk' A(s)ds

t o(z)—r S t

AN

D)=t A(o(x) — ) Yal|s-

1 o
= o(x) —7"(1+
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If o(x) > 2, then o(x)—r > 1, and hence, A(o(x) =)' ~ e 20(0@)=") ~ Ao (z))~! by
(7) of Lemma 2.1. Moreover, if 2r < o(x) < 2, then o(x) —r > o(z) —o(x)/2 = o(x)/2,
which implies that A(o(x) —7)7! < A(o(x)/2)"! ~ A(o(x))~! by (ii) of Lemma 2.1.
Therefore, the desired estimate follows.

Let r > 1 and o(x) > r + 1. We note that, if s < r, then by (4), o(a;'kz) > o(z) —s
> o(x) —r > 1 for all k € K. Therefore, using Holder’s inequality three times, we see
from (ii) of (8), Lemma 2.2, and (i) of Lemma 2.1 that |a * ¢¢(z)| is dominated by

tCon [ [ [ bty ———q+
! (1+J(x)t_r)_5/0r(/l((/K la(kagk')|dk) dk)' /7

X ola” k~1x)) 4 YVaa(s)ds 1 1:
(/KAusk )R A (5 = 1)

o(x)—r

)P Ao(a; 'k~ ) T dkA(s)ds

<—C¢’1

—t o(x)—r

c o'(x)—r_é/r// ! ! 1/
< 1+ alkask)|Pdk’dkA(s)ds) /P
o TSN [ [ ko par ks s)s)
% e—2p0($)(/ 62p(q—1)8A(5)d5)1/q
0
< ¢ (1 + 0'(.1‘) — T)—6||a||pe2pre—2pa(m).
o(x)—r

Since ||all, < |B(r)|™! ~ e72’" (r > 1) and e=207(®) ~ A(o(x))™" (o(z) > 1), we are
done.

O

Remark 4.2. In the proof of Proposition 4.1, when r > 1, we used Holder’s inequality
to divide the integral over K into the ones of [, |a(kask")|dk" and A(o(a; k™" z))~". If
a is left K-invariant on (G, then this process is not necessary and we can directly apply
Lemma 2.2 with ¢ = 1 to [, A(o(a; 'k~ x))" dk. In this case, ||a|,e®" in the last
inequality can be replaced by [|a||; < 1, and therefore the assumption ||al|, < |B(r)|™!
1s not necessary.

Proposition 4.3. Let ¢ € As. Suppose that a function a on G is supported on B(r),
lally <1, and [, a(g)dg =0. Then

cr

|a’*¢t(x)| < O'(LL‘) _r

(1+ "(x)t_ Y Mpra(z) (z € Q).

Proof. For simplicity we put ® = ¢A and

A(x,y):/K/Ka(xky_lk’)dkdk’ (z,y € G).
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Clearly, as a function of s, the support of A(z,as) is contained in the interval [o(x) —
o(x)+r], and fooo |A(z,as)|A(s)ds < ||a|l;y < 1. Moreover, it follows from the moment
condition that

/000 Az, as)A(s)ds = /Ga(g)dg = 0.

Therefore, by integration by parts, we see that
1 oo
aron) =1 [ Al A a)AG)ds
0

1

_ _Z/OOO (@(;)A(s)_l)//os Az, ag)A(u)duds
_ /:(W <_lzq>'(;)A(s)—1 4 lq1>(5)A(s)'A(s)—2> /0 A, ay)A(u)duds.

() —r t tot

Here we note that

(9) B(s)|"| / 2 au) A(w)du| = |B(s)|~Va  xa(2)| < Mira(z).

Since |B(s)|A(s)™! ~ s/(1 + s) and A(s)'A(s)™t ~ (1 + s)/s, it follows from (ii) and
(iii) of (8) that

0% u(w)] < /

o(@)tr <1 o ; S 1

4110 ) ds (o)

o@)—r \2 1+ t

< U(xc)T_ S+ (x)t ) =0(Cp2 + Cp1) Mipa()
cr o(x) —r _s

S O'(x) . (1 ; ) MHLa(ac).

Proposition 4.4. Let ¢ and a be as above, and suppose that r < 1. Then

% 60(@)] < ) ) Bl (o) > 2.

()(1+

Proof. Since r < 1 and o(x) > 2r, it follows that |B(o(z) — r)|™! < ¢|B(a(x))|~" (see
the proof of Proposition 4.1). Therefore we can replace the estimate (9) by

s)|” 1I/ (2, @) A(u)du] < |B(o(x) — )|~ lallil[xsllo < e|Blo(2))]~".

The rest of the proof is the same as in the proof of Proposition 4.3.

Let 1 < p < co. We say that a function a on G is a (1,p,0)-atom provided that
(i)  a is supported on B(r) for some r > 0,
(ii) if r <1, then [af|, < |B(1")|1/p_1 and / a(g)dg = 0,
G

(iii) if r > 1, then ||al|, < |B(r)|~"

Then, combining the estimates obtained in Propositions 4.1, 4.3, and 4.4, we can
obtain the following.
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Theorem 4.5. Let ¢ € Ag, e >0, and 1 < p < co. Then for every (1,p,0)-atom a on
G,
[ Maalo)a +ote)) g <.
G

where ¢ is independent of a.

Proof. Let 7 be as in Proposition 4.1. Since My is of type (p, p), it follows that

(10) » )M¢a(9)d9 < [ Myallp|B(ro)l' =% < ellall,| B(ro)| '~/ < c.

Hence, Mya is equi-integrable on B(r). Let us consider the integrability in the exterior
B(ro)¢ of B(rg). We note that ||al|; < 1, and without loss of generality we may assume
that 0 < e < 1. If »r <1, then Proposition 4.4 with 6 = 0 yields that

r

i 1 1 <1
/ Mgya(g)(1+o(g))""dg < C/ AL C/ —(1+5)7%ds <,
B(2r)¢ o S(1+5)° s 2 5

and if » > 1, then Proposition 4.1 with 6 = 0 gives

<1 1 o 1
Mya(g)(1+o(g)) dg < c/ ds < c/ ——ds<ec.
/B('r'—i—l)C ¢ rp1s — 1 (L4 5)° 1 s(1+s)°

O

Corollary 4.6. Let ¢ € A. (¢ > 0) and 1 < p < co. Then for every (1,p,0)-atom a
on G,

LMia(g)dg <,

where ¢ is independent of a.

Proof. We modify the proof of Theorem 4.5. Since the estimate (10) similarly holds
in this case, the equi-integrability of MZa on B(rg) follows. Let o(g) > ro. Here we
note that if ¢ > 1, then (1 +¢)7° (1 + (o(x) —r)/t)=° = (t/1+t)°(t+o0(9) —7r)"° <
(1+o0(g9)—r) %,and if t <1, then (1+1¢)~° (1+ (o(g9) —7)/t)* < (14 0(g9) —r)"",
and hence

(140 far dulo)] < 1+ ZD D)1 4 (o) — 1) Jax 60(o).

Then, applying Propositions 4.1 and 4.4 with 6 = ¢ to the right hand side, we see
that for o(g) > ro, Mza(g) < cra(g)™! B(o(g))™' (1 + (o(g) — 7))~ ¢ if r < 1 and
c(o(g) — r)"tA(a(g))™t (1 + (0(g) —7))~° if 7 > 1. Therefore, as in the proof of
Theorem 4.5, we have the equi-integrability of MZa outside B(ro).

O

Remark 4.7. (1) In the Euclidean case, each function a on R supported on [—r,r] with
lalleo < (2r)~! satisfies Mya(x) < eMura(z) < cjz|™!, and furthermore if a satisfies
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the moment condition [g a(z)dz = 0, then Mga(x) < cr|x|~2. This estimate yields the
integrability of Mga on || > 2r (cf. [3, Theorem 2.9]). On the other hand, let a be a
function on G supported on B(r) with ||al|s < |B(r)|™!. Then Mypa satisfies (2) and,
if a satisfies the moment condition [, a(g)dg = 0, then Mya(z) < cro(x)™B(o(z))|™*
(see Proposition 4.4). Since this estimate is not enough to obtain the integrability of
Mga on o(x) > 2r, some modification seems to be necessary to obtain the integrability
of Mya on G.

(2) As pointed out in Remark 4.2, if we restricted to left K-invarinat (1, p,0)-atoms on
G, then we can replace |B(r)|™! in (iii) of the definition of the (1,p,0)-atoms on G by
|B(r)["/P=1 as in (ii).

5. Atomic Hardy spaces.

We retain the notation in the previous sections. Since each atom a on G is supported
on a ball centered at the origin, in order to obain a wide class of functions which satisfy
the estimates in Theorem 4.5 and Corollary 4.6, we need to translate each atom. For a
function f on GG we define the translation and the average over K as follows.

fz(9) = f(zg) (2 € ),

/ £ (gh)dk,
_ /K /K f(kgh!)dkdk'.

Then We introduce an atomic Hardy space H;O(G) on G as follows.
Definition 5.1 Let 1 < p < co. We define

G)={f :Z)\iai,mi )

a; is a (1,p,0)-atom on G, z; € G, and Z |Ai| < oo},

and ||f|l1,p,0 = inf) . |A;|, where the infimum is taken over all such representations
f = >, Aia; . Furthermore, we define H;”g(G) and H;:S(G) as the spaces consisting
of f¥ and f° of f in H;,O(G), respectively, and we define the norms in the same way as

in H! (@)

Let a be a (1,p,0)-atom on G and x € G. Since ||(a,)*||; and ||(aw)b||1 are bounded
by |laz||1 = ||a||1 <1, it follows that

H)NG) C HYo(G) c LY(G), H)

p,0 p,0

'(G) C LY(G),

and |[fl[x < ||f

|1 p,0 forall f e H;’O(G) (resp. H;”S(G)). Here we note that
az * ¢1(g) = af Pi(zg),

and

(“ac)b * dr(g) = /K at x di(xkg)dk.

In particular, for ¢ > 0, [[MZa.[[1 and ||M;(am)b||1 are bounded by ||Mgaﬂ||1. Since a’
is a (1,p,0)-atom on G, Theorem 4.5 and Corollary 4.6 yield the following.
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Theorem 5.2. Lete >0 and ¢ € Ag. Then the radial mazimal operator My satisfies

1,p,0

/G M F(g)(1 + o(g))~“dg < el

for all f € H;)O(G) (resp. H;:B(G))

Theorem 5.3. Lete > 0 and ¢ € A.. Then the modified radial mazimal operator Mg
satisfies

/ MEf(g)dg < cl|f
G

1,p,0

for all f € H;)O(G) (resp. H;:B(G))

We shall give a characterization for H;:B(G) without using the translation and the
average over K of (1,p,0)-atoms on G. Let x € G and r > 0. We set the domain R(z, )
as

R(z,r)={9g€G; o(x)—r<o(g) <o(x)+r}

and for a function f on G supported on R(z,r) we put

(o — /G F()PI(x, 0, g~ ") ~7dg) /7,

where I is given by (7) and r( is the same as that in Proposition 4.1. When p = oo,
| fllzr00 means ||f(g)I(z,70,97 1) ||coc. Then we say that a function a on G is a
(1,p,0,8)-atom provided that

(i)  ais K-bi-invariant and supported on R(x,r) for some x € G and r > 0,
(i) ifr <1, then [[farp < |B(r)/7~! and / a(g)dg = 0,
G

(i) ifr> 1, then | f]lorp < |B(r)

By using these f-atoms on G we define an atomic Hardy space H;:g(G) on G as follows.

Definition 5.4 Let 1 < p < co. We define
Hy3(G) ={f = Niai 5

a; is a (1,p,0,f)-atom on G and Z |A\i| < oo},

and ||f||1,p,0,; = inf ) . |Ai|, where the infimum is taken over all such representations
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7" ’
Theorem 5.5. H1 o(G) = H;yg

(G) and || f

|1,p,0 ~ ”f 1,p,0,4-

Proof. To prove H ’g C H 0 it suffices to show that each (1,p,0,f)-atom a on G is
contained in Hp,O(G) and ||a||17p,0 < 1. Suppose that a is supported on R(z,r) and put

b(g) =

I(z, 70, (x~1g)~ 1)Xr0(g) (g € G).

Since a and I(x,r,-) are K-bi-invariant on G, it follows that

/Gb(g)dg _ /G % (/K Xro@@)dk) dg = /Ga(g)dg —0ifr<1.

Moreover, since

P G I(x7T07g_1)

and [|b]|oo < lJa(g)I(x,70,971) " oo = ||allzr 00, it is easy to see that b is a (1, p,0)-atom
on G. Here we note that

/ Xm(:lfkg)dkdgf/ la(g)PI(z, 70,9~ ") "Pdg = ||a||zrp
K G

a(g)

I(.’I?,?“O,g_l)

0. (0) = [ blakg)ik = [ xontahg)ik = a(g)
K K
and thus, a € H;”S(G) with [|a||1 p,0 < 1.
Next, to prove H;:g C H;,’o it is enough to show that (a,)” € H;:g(G) with

I(az)’lx

Clearly, (a,)’ is supported on R(z,7), and if r < 1, then

/G(am)b(g)dgz/G/Kaﬂ(xkg)dkdgz/c;a(g)dgzo.

p.0, <1 for each (1,p,0)-atom a on G. Suppose that a is supported on B(r).

Moreover, since
(@) (0) = | [ k), (oko)at] < ([ la(okg)Pak) /2 [ o, (akgdby=
K K K
and ||(az)’||oo < ||a*||oe (2, 70,9~ 1), it follows that

([ ey @t g™ g < ([ [ 1@ akg)lPatdg) < o], < ol
GJK

Therefore, (a,)’ € H;,’g(G) with [|(az)’||1p.05 < 1.
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6. The heat and Poisson maximal operators.
We define the modified heat maximal operator Mf (¢ > 0) on G by

My f(2) = sup(1 + ) 5[ f ()| = sup(1 + ) ~°|f * hy ()],
t>0 t>0

where e/ is the heat diffusion semigroup over G /K realized by the convolution with

the heat kernel h;, and we denote M{} by My for simplicity. As mentioned in §1, Mg
(e > 0) satisfies the maximal theorem.
First we shall prove the following.

Theorem 6.1. Lete > 1/2. Then

1,p,0

/G Muf(g)(1 + o(9))~"dg < e f

and

1,p,0

/G Mg f(g)dg < el f

for all f € H) o(G) (resp. H;ZS(G))

Proof. We note that the argument preceding to Theorem 5.2 is also applicable to My
with ¢; replaced by h;. Therefore, to deduce the desired estimates it is enough to show
that for each (1,p,0)-atom a on G, Mpa and Mfa satisfy, respectively,

(11) /G Mua(g)(1 + o (g))~*dg < c,

(12) /G Mia(g)dg < c,

for some constant ¢ independent of a (cf. Theorem 4.5 and Corollary 4.6). Then, we
need the estimates for a * hy(x) corresponding to those in Propositions 4.1 and 4.4. In
order to obtain the estimates we shall use the ones for h; and h} obtained in [1, Theorem
3.1]:

2L+ s (<),

|5~ 1/2(lolyeu (1<),

where n = dimG/K = m; +my +1=2a+ 2 and a; (1 < i < 3) depend on the three
regions in [0, 00) X [1,00) to which (|s|,t) belongs: explicitly, they are given as ay = 1/2
if |s| <V, ag = 1if V/t < |s| < t, and a3 is the smallest integer > n—1/2if 1 <t < |s|
(see [1, Fig.5]) and when 1 < t and |s| < v/%, we used the fact that (1 + |s|)/t < 2).
Similarly,

ha(s)] < ce—zmsie—@m—lsm/u{

R sl (14 B @<,

15[ -1/2 <|t_|>ﬁ (1<1),

Ihl(s)| < ce—2rls| = (2pt—|s])? /4t
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where 31 = a1, 3 = ag, and (33 = a3z + 1 according to the rigions on which the
a; depend. Here we note that F(t) = t~le=(2rt=I1sD*/4t (1 > 0) has a maximum at
to ~ |s|/2p if |s| > 1 and at tg ~ |s|? if |s| < 1. Moreover, F'(t) is increasing on (0, %]
and decreasing on [tg,00). Therefore, we can take constants Cs (6 > 0), Cs s, (k= 0,1),
and C so that

|S| y+6 ,
(7) e—(2pt—|s|) /4t S 05 (1 S t,’Y = aivﬁiv 1 S ? S 3)7

1 n—+6 k
t t I

n/2
<1 ‘: |S|> <1 + |‘;_|> e—(2pt—|8|)2/4t < C|S|—n/2(1 + ﬁ)n/Q—i—l ~ |S|—(n—|—1)
S

(t < 1,|s| < 3), where Cs and Cs, are independent of (|s|,t) and C of t. Hence, we
have

Csot™2+5(1 + |s])~(1+9) (t<1,|s| >1),

(13) |hi(s)] < ce201°] -6
t Cols|=1/2 (1) (1<,
C]s|=r+ (1< 1,5 < 3)
(14) I (s)] < cem2elsl] Cont™2Fo(14[s)=U+) (2 <1, s] > 1),
N ~5
Cs|s|~1/2 (|t_|) (1<)
Lemma 6.2. Letr > 1 and 6 > 0. Then for o(x) >ro=r+1
(1 -+ o(z) — r)=0+9 k<),

a* hy(z)] < ce?7™)
| ()] { (o(z) — 7“)_1/2(@)_6 (1 <t).

Proof. We shall recall the proof of Proposition 4.1 and note that

|a*ht(x)|g/OT/K/K|a(kask’)|dk’]ht(a(a;1k_1x))|dkA(s)ds.

Since o(az'kx) > o(x) —s > 1 for k € K, we can substitute (13) into |hy(o(a; 'k~ '2))|
and hence

(1+ o(x) - r)=0+) (t<1),

hi(o(a; 'kx))| < cA(o(z) —r)~! _
|he(o( ) (o(z) =) (o(x) — 1)~ 1/2 (%) (1< t).

The rest of the proof is the same as that in Proposition 4.1.
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Lemma 6.3. Letr <1 and 6 > 0. Then for o(x) > rog = 2r

(o(x) —r)~(»+D) (t<1,0(x)
ja % hy(2)] < ere™27@ (14 o(x) — )=+ (t<1,0(x)
(o(x) —r)~1/2(28=0)=8 (1<),

Proof. We recall the proof of Propositions 4.3 and 4.4. Integration by parts yields that

o(z)+r

la % ha()] < / 1(s)] /O A (2, an)| A (w)duds.

o(z)—r

Since o(z) —r < s<o(x)+r <3ifo(x) <2and s > o(x) —r > 1if o(x) > 2, we can
substitute (14) into |h}(s)|. Then, replacing |s|~! (I > 0) with (o(z)—7)~!, we can deduce
the desired estimate from the same arguments as those in Propositions 4.1 and 4.3.

0

Now, we return to the proof of (11) and (12). Since My is of type (p,p), 1 < p < o0,
My satisfies (10) instead of My and thereby My (¢ > 0) is equi-integrable on B(rg). Let
us consider the integrals of Myua(g)(1+ o(g))~° and Mfa(g) in the exterior of B(rg).
Clearly, without loss of generality, we may assume that 1/2 < e < 1. Then we shall
show the equi-integrability for the local and global parts of the maximal operator My:

My oa(x) = sup |axhy(x)] and Mg a(z) = sup (1+1t)"%|ax* h(z)|
0<t<1 ’ 1<t<o0

Let » < 1. Then Lemma 6.3 with § = 0,e, together with the fact that A(s) ~
|s]20Ft = |s|»~Lif |s| < 2 and A(s) ~ e~ 27151 if |s| > 2 (see Lemma 2.2), yields that

(15)

> 1
2a+1d d
)n+15 5+/2 (1+s—r)+e s)

and

(16)

o° 1
My 1a(g)(1+0o(g _Edggcr/ §cr3/2_€§c.
Jy, Miret@)1 (6 e 5= )AL+ o)

Let » > 1. It follows from Lemma 6.2 with 6 = 0 that

o° 1
(17) / M 0a(g)dg < / ds <c
B(r+1)¢ r+1 (1 +s5— 7")1+5

and

o 1
18 / Mua(g)(1+o(g _Edggc/ ds < c.
(18) B(r41)° rata) @) 1 (8= 7)1/2(1 + 5)°
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Therefore, My ga(g) and Mya(g)(1 + o(g))~° are equi-integrable outside B(rg). This
completes the poof of (11).

As for (12) it remains to show the equi-integrability of Mg  a(g) on B(ro)°. Let
o(g) > roand 1 <t < oco. Since (14 1)°((a(g) —7)/t)° > (o(g) — ), it follows that

_e g —T\e —€
(140 s he(g)] < (PO (o) — 1)~ fa x halo)]
Then, applying Lemma 6.3 and Lemma 6.2 with 6 = ¢ to the right hand side, we see
that if » < 1, then Mﬁ’la(g) < cre_sz(g)(a(g) — r)_1/2_5 and if r > 1, then Mﬁ’la(g)
< ce=20709) (o(g) — r)~/2==. Therefore, as in (16) and (18), the equi-integrability of
Mg ya on B(rg)¢ follows. This completes the proof of (12) and finally, Theorem 6.1.
[

Next we shall consider the same problem for the modified Poisson maximal operator

Mg (¢ > 0) on G defined as

Mg f(x) = sup(1 + )|V % f(z)] = sup(1 + 1) ~°| f % pu ()],
t>0 t>0

where p; is the Poisson kernel of et\/ﬁ, and we denote Mp by Mp for simplicity. Then,
M§ (e > 0) satisfies the maximum theorem.

~

(t?
1

’Pt(3)| <c§ Vi
1

¢ ) o—rlslg—p(t?+5%)1/?

(
+ 82)—n/2—1/2 + t(t2 + 32)—n/2+1/2 (t <1, |8| < 1),
1+4|s| (
7 (2 (

and for |p}(s)| we replace the first line on the right hand side by (t + |s|)~(™*") and
t/(t + |s|) in the third line by (1 +t)/(t + |s|). Let 6 > 0 and we note that

(¢ + [s)~CFD < s 7D,

1 t
—= () =l e
/i G

6
1 <1+ |s|) (m) et < |s| T2 el (1 < 8| < V),

NAUE t

6
1 141 |s] —p(t24s?)1/? 1
e s < Cls|~re Pl (1 <t |s| > V1),
m(t+|s|)(t) < Ol (1<l > VE)

where C' is independent of ¢ and we used the fact that the left hand side in the last
inequality takes a maximum at t ~ \/|s|. Then, it easily follows that

s73/2 (t<1,|s| > 1),

)
o1 (J) (1<t s> 1),

[pe(s)] < ce 27
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and
=+ (t< 1,08l < 1),

|73/ (t<1ls| > 1),

)
B (4T) 0 asaliz

Then, letting 6 = 0 and 6 = ¢ > 0 and repeating the same arguments that yielded
Theorem 6.1, we obtain the following.

Theorem 6.4. Ife > 0, then

pi(s)] < ce™?7l

1,p,05

/G My f(g)(1 + o(g))~*dg < c||f]

and

1,p,0

| M (@da < el
for all f € H) o(G) (resp. H;:S(G))

Remark 6.5. It follows from (15) and (17), together with the corresponding estimates
for Mp o, that the local maximal operators My o and Mp o are bounded from H;,o (@)

(resp. H;,’S(G)) to L1(G), that is,

[Miofllr < ellfll1p,0 and [|Mpofllr < ¢ f]

Lp,0
1 1,b
for all f € H, o(G) (vesp. H,o(G)).
REFERENCES
[1] J.-Ph. Anker, Sharp estimates for some functions of the Laplacian on noncompact symmetric
spaces, Duke Math. J. 65 (1992), 257-297.
[2] M. Flensted-Jensen and T. Koornwinder, The convolution structure for Jacobi function expan-

stons, Ark. Mat. 11 (1973), 245-262.

[3] G. B. Folland and E. M. Stein, Hardy Spaces on Homogeneous Groups, Mathematical Notes 28,
Princeton University Press, New Jersey, 1982.

[4] T.Kawazoe, Atomic Hardy spaces on semisimple Lie groups, Japan. J. Math. 11 (1985), 293-343.

[5] T. Kawazoe, L1 estimates for mazimal functions and Riesz transform on real rank 1 semisimple
Lie groups, J. of Funct. Anal. 157 (1998), 327-357.

[6] E. M. Stein, Topics in Harmonic Analysis. Related to the Littlewood-Paley Theory, Annals of
Mathematics Studies, 63, Princeton University Press, New Jersey, 1970.

[7] J. Stromberg, Weak type estimates for mazximal functions on non-compact symmetric spaces,
Ann. of Math. 114 (1981), 115-126.

[8] G. Warner, Harmonic Analysis on Semi-Simple Lie Groups II, Springer-Verlag, New York, 1972.

Department of Mathematics

Keio University at Fujisawa

5322 Endo

Fujisawa 252-8520

Japan

E-mail address: kawazoe@Qsfc.keio.ac.jp



