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Abstract. Let G be a real rank one connected semisimple Lie group with �nite center.
As well-known the radial, heat, and Poisson maximal operators satisfy the Lp-norm in-
equalities for any p > 1 and a weak type L1 estimate, and so the aim of this paper is to
�nd a subspace of L1(G) from which they are bounded into L1(G). As an analogue of
the atomic Hardy space on the real line, we shall introduce an atomic Hardy space on G
and prove that these maximal operatprs with suitable modi�cation are bounded from the
atomic Hardy space on G to L1(G).

1. Introduction.

The study of Hardy spaces Hp originated in the 1910's in the setting of Fourier
series and was developed by the so-called complex variable methods. In the 1970's
these spaces were completely characterized by various maximal operators without using
complex variables and the study was advanced by the so-called real variable methods.
Atomic characterization of Hp was also given at the same time. Since the real variable
methods have no need for the complex structure, the Hardy space theory could be
generalized to one on locally compact groups G such as compact Lie groups and the
Heisenberg groups. Nowadays, this fruitful Hp theory has been extended to the spaces
X of homogeneous type in the sense that they satisfy the so-called doubling condition:
There exists c > 0 such that for each x 2 X and t > 0

jB(2t; x)j � cjB(t; x)j;

where B(t; x) is the ball with redius t centered at x and jB(x; r)j is the volume of the ball.
Roughly speaking, on X Hardy spaces Hp(X) are characterized by the radial maximal
operator, and the heat and Poisson maximal operators are bounded from Hp(X) to
Lp(X) for any 1 � p < 1 (cf. [3]). However, when the space is not of homogeneous
type, little work has been done. In this paper, looking at the example of semisimple
Lie groups G, we shall consider the Hardy space theory on G of nonhomogeneous type.
Actually, on G, jB(t; x)j has exponential growth order (cf. Lemma 2.1 below), hence G
is not of homogeneous type. Our goal is to introduce an atomic Hardy space H1

p;0(G) on
G and show that the modi�ed radial, heat, and Poisson maximal operators are strongly
bounded from H1

p;0(G) to L
1(G) under suitable conditions on ".

This paper is organized as follows. We suppose that G is a real rank one connected
semisimple Lie group with �nite center and G = K exp p the Cartan decomposition of G.

1991 Mathematics Subject Classi�cation. Primary 22E30; Secondary 42C20.

1



2

For each g = k expX (k 2 K;X 2 p) let �(g) denote the norm of X with respect to the
Euclidean structure of p induced from the Killing form. Let dg be a Haar measure on G,
dk the one on K with total mass 1, and ds the Lebesgue measure on the Lie algebra a of
A. Then dg is decomposed as dg = �(s)dkdsdk0 relative to the Cartan decomposition
G = KCL(A+)K of G. We identify A = exp a with R. Let B(t) denote the ball with
redius t > 0 centered at the origin: B(t) = fx 2 G;�(x) � tg and jB(t)j = R r

0
�(s)ds

the volume of the ball.
The Hardy-Littlewood maximal operator MHL on G is de�ned as follows.

MHLf(x) = sup
t>0

jB(t)j�1jf j � �t(x)

=

Z
G

f(xg�1)�t(g)dg(1)

= sup
t>0

jB(t)j�1
Z
B(t)

jf(xg�1)jdg;

where �t is the characteristic function of B(t). As well-known, MHL satis�es the max-
imal theorem: For any 1 < p � 1, MHL is of type (p; p), and is of weak type (1; 1),
that is, it maps Lp(G) into itself and L1(G) into weak L1 functions on G (see [7]). In
x3 we shall obtain a pointwise estimate: If a is a function on G supported on B(r) with
kak1 � jB(r)j�1, then

MHLa(x) � jB(�(x))j�1:(2)

We �x a smooth and compactly supported K-bi-invariant function � on G and,
identifying it with an even function on R, we de�ne the dilation �t (t > 0) of � by

�t(s) =
1

t
�(s)�1�(

s

t
)�(

s

t
) (s 2 R);

where � is the density of the Haar measure dg related to the Cartan decomposition of
G. Then, a radial maximal operator M� is de�ned as

M�f(x) = sup
t>0

jf � �t(x)j:

As shown by [4, Theorem 3.4], M�f(x) is dominated by c(MHLf(x)+ jf j �E(x)), where
E(x) = e�2��(x) and hence, the radial maximal operator M� is also of type (p; p) for
any 1 < p � 1, and is of weak type (1; 1).

We now introduce an atom on G. Let 1 < p � 1. We say that a function a on G is
a (1; p; 0)-atom provided that

(i) a is supported on B(r) for some r > 0,

(ii) if r � 1, then kakp � jB(r)j1=p�1 and
Z
G

a(g)dg = 0;

(iii) if r > 1, then kakp � jB(r)j�1:
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In the Euclidean case the moment condition
R
R
a(g)dg = 0 of an atom a on R essentially

yields the integrability of a radial maximal function of the atom (cf. [3, Theorem 2.9]).
However, in our case M�a is not integrable on G, because the density �(x) cancels the
order of decay obtained in (2) (see Remark 4.7). In x4, by using (2) we shall obtain some
pointwise estimates of a��t(x) and thereby deduce the following weak equi-integrability
of M�a: For each " > 0 Z

G

M�a(g)(1 + �(g))�"dg � c;(3)

where c is independent of the (1; p; 0)-atom a onG. As an easy consequence, a re�nement
of [4, Proposition 4.1] follows: If we de�ne a modi�ed radial maximal operator M"

� on
G by

M"
�f(x) = sup

t>0
(1 + t)�"jf � �t(x)j;

then for each " > 0 we have Z
G

M "
�a(g)dg � c;

where c is independent of the (1; p; 0)-atom a on G. In x5 we shall consider a left
translation of each (1; p; 0)-atom a on G: ax(g) = a(xg), (x; g 2 G). Then we shall
introduce an atomic Hardy space H1

p;0(G) as a collection of these translations. The

above estimate implies that M"
� is bounded from H1

p;0(G) to L
1(G) (see Theorem 5.3).

We shall treat the same problem for the (modi�ed) heat and Poisson maximal oper-
ators M"

H and M"
P on G, which are de�ned respectively by

M"
Hf(x) = sup

t>0
(1 + t)�"jf � ht(x)j and M"

Pf(x) = sup
t>0

(1 + t)�"jf � pt(x)j;

for each " � 0, where ht and pt are the heat and Poisson kernels on G=K, respectively.
We denote M0

H (resp. M0
P) by MH (resp. MP) for simplicity. As shown by [6, Chap.III]

and [1, Corollary 3.2],MH andMP also satisfy the maximal theorem. In x6, applying the
sophisticated estimates for ht and pt obtained in [1], we shall prove that the inequality
(3) for MH (resp. MP) holds for " > 1=2 (resp. " > 0). This implies that M"

H and
M "

P are bounded from H1
p;0(G) to L

1(G) provided " > 1=2 and " > 0, respectively (see
Theorem 6.1 and Theorem 6.4).

The author wishes to thank the referee for many valuable and helpful suggestions.

2. Notation and preliminaries.

Let G = KAN be a connected semisimple Lie group with �nite center and suppose
that dimA = 1. Let a be the Lie algebra of A and a� the dual space of a. Let 
 be the
positive simple root of (G;A), and m1;m2 the multiplicities of 
 and 2
, respectively.
We put 2� = m1 + 2m2 and 2� = m1 +m2 � 1. Let H be the element in a such that

(H) = 1. In the following we identify A, a, and a� with R as s 7! as = exp(sH),
sH and s
, respectively. According to the Cartan decomposition G = KCL(A+)K,
A+ = fas; s > 0g, we de�ne � : G ! R+ by g 2 Ka�(g)K. Then � is K-bi-invariant
and

j�(x)� �(y)j � �(xy) � �(x) + �(y)(4)
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for x; y 2 G (cf. [8, 8.1.2.]). Let dg be a Haar measure on G normalized asZ
G

f(g)dg =

Z
K

Z 1

0

Z
K

f(kask
0)�(s)dkdsdk0;(5)

where dk is the Haar measure on K such that
R
K
dk = 1, ds is the Lebesgue measure

on R, and �(s) = (sinh s)m1(sinh 2s)m2 (cf. [2, (2.4)]). We use the notation Lp(G)
to stand for the space Lp(G; dg) and we denote the norm by k � kp. Let C1c (G) be
the space of all C1 functions with compact support on G. We denote by Lp(G==K)
and C1c (G==K) respectively the subspaces of Lp(G) and C1

c (G) consisting of all K-bi-
invariant functions on G. Then we identify each K-bi-invariant function f on G with
an even function on R, which we denote also by the same letter:

f(g) = f(a�(g)) = f(�(g)) (g 2 G):

We recall some basic facts on the spherical Fourier analysis on G. For a survey of this
subject we refer to [2] and [8, Chap. 9]. Let 
 be the Laplace-Beltrami operator onG=K
and let ��(x) (x 2 G; � 2 a�) be the spherical function on G such that ��(e) = 1 and

��(x) = �(�2 + �2)��(x). For each f 2 L1(G==K), the spherical Fourier transform

f̂(�) is de�ned by

f̂(�) =

Z
G

f(g) ���(g)dg (� 2 a
�):

Then f̂(w�) = f̂(�) for w 2W , the Weyl group of (G;A). Since dimA = 1, this means

that f̂(�) is an even function on R. When f belongs to C1
c (G==K), the spherical

Fourier transform f 7! f̂ has an inversion formula of the form

f(g) = c

Z
a
�

f̂(�)��(g)jC(�)j�2d� (g 2 G);(6)

where c is a constant and C(�) is Harish-Chandra's C-function. This transform has
an L2-extension, that is, it gives an isometric isomorphism between L2(G==K) and
L2W (R; jC(�)j�2d�), the space of even functions in L2(R; jC(�)j�2d�).

In the following, we follow the custom of using the letter \c" to denote a constant
which might be di�erent at each occurrence.

Let B(s) denote the open ball with redius s > 0 centered at the origin and jB(s)j
the volume

R s
0
�(u)du of the ball.

Lemma 2.1. The density �(s) and the volume jB(s)j have the following properties.

(i) �(s) � e2�s (s � 1);

(ii) �(s) � s2�+1 (s � 1);

(iii) jB(s)j � e2�s (s � 1);

(iv) jB(s)j � s2(�+1) (s � 1);

(v) jB(s)j0 = �(s);

where the symbol \�" means that the ratio of the left hand side to the right hand side
is bounded below and above by a positive constant, and the prime in (v) means the
derivative with respect to s.



5

Lemma 2.2. Suppose that x; y 2 R+ and x� y � 1. Then for each q � 1

Z
K

�(�(axka
�1
y ))�qdk � ce�2�qxe2�(q�1)y:

Proof. If x� y � 1 and y � 1, then (4) and Lemma 2.1 (i) imply that �(�(axka
�1
y ))�q

� e�2�q(x�y) � ce�2�qx for all k 2 K, so we may assume that x; y; x� y � 1. We recall
the kernel form of the product of spherical functions �� (see [2,(4.2)]):

��(g1)��(g2) =

Z
G

K(g1; g2; g3)��(g3)dg3 (g1; g2; g3 2 G):

Applying (6), we see that for f 2 C1c (G==K),

Z
K

f(g1kg2)dk = c

Z
a
�

f̂(�)

�Z
K

��(g1kg2)dk

�
jC(�)j�2d�

= c

Z
a
�

f̂(�)��(g1)��(g2)jC(�)j�2d�

=

Z
G

K(g1; g2; g3)

�
c

Z
a
�

f̂(�)��(g3)jC(�)j�2d�
�
dg3

=

Z
G

K(g1; g2; g3)f(g3)dg3:

Here K(g1; g2; g3) = 0 if �(g3) satis�es �(g3) � j�(g1) � �(g2)j or �(g3) � �(g1) +
�(g2) (see [2, (4.17)]). Therefore, approximating �(�(g))�q; q � 1, by functions in
C1c (G==K), we may replace f in the above equations with �(�(g))�q. Then it follows
from (5) and Lemma 2.1 (i) that

Z
K

�(�(axka
�1
y ))�qdk =

Z
G

K(ax; ay; g)�(�(g))�qdg

�
Z x+y

x�y
K(ax; ay; az)e

2�(1�q)zdz:

Since K(ax; ay; az) = O(e��(x+y+z)) provided x; y; z � 1 (see [2, (4.14)]), the desired
result follows.

�

3. The Hardy-Littlewood maximal operator.

We keep the notation in the previous sections. We shall treat the Hardy-Littlewood
maximal operator MHL on G de�ned by (1) and prove the estimate (2).
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Proposition 3.1. Suppose that a function a on G is supported on B(r) and kak1 �
jB(r)j�1. Then

MHLa(x) � min(jB(r)j�1; jB(�(x))j�1) (x 2 G):

Proof. Without loss of generality, we may assume that a(x) = jB(r)j�1�r(x), where �r
is the characteristic function of the ball B(r). We shall show that the supremum over
t > 0 of

F (t) = Fx;r(t) = jB(r)j�1jB(t)j�1�r � �t(x)
is dominated by min(jB(r)j�1; jB(�(x))j�1). Clearly, F (t) � jB(t)j�1 and jB(r)j�1,
and hence we may assume that �(x) � r. Since F (t) = 0 for t < �(x)� r, to obtain the
desired estimate it su�ces to prove that F (t) is increasing on the interval �(x) � r �
t � �(x). If we put

I(x; r; y) =

Z
K

�r(xky
�1)dk (x; y 2 G);(7)

then we see that

F (t) = jB(r)j�1jB(t)j�1
Z t

�(x)�r
I(x; r; as)�(s)ds:

Here we note that, as a function of s, I(x; r; as) is increasing on �(x) � r � s � �(x).

Therefore, since jB(t)j0 = �(t) and
R t
�(x)�r�(s)ds � jB(t)j, it follows that

jB(r)jjB(t)jF 0(t) = I(x; r; at)�(t)� jB(t)j0jB(t)j�1
Z t

�(x)�r
I(x; r; as)�(s)ds

� I(x; r; at)�(t)

 
1� jB(t)j�1

Z t

�(x)�r
�(s)ds

!

� 0

�

Corollary 3.2. Suppose that a function a on G is supported on B(z; r), the ball with
redius r centered at z, and kak1 � jB(r)j�1.

(i) For every � > 0,
jfx 2 G;MHLa(x) > �gj � ��1;

(ii) For every 1 < p � 1,

kMHLakp � (
p

p� 1
)1=pjB(r)j1=p�1:

Proof. Since b(x) = a(zx) is supported on B(r) and kbk1 � jB(r)j�1, it follows from
Proposition 3.1 that

MHLa(x) =MHLb(z
�1x) � min(jB(r)j�1; jB(�(z�1x))j�1):



7

Let S(�) = fx 2 G;MHLa(x) > �g. Obviously, if � > jB(r)j�1, then S(�) is empty,
and if � � jB(r)j�1, then S(�) � B(z; r�) = fx 2 G; jB(�(z�1x))j�1 > �g. Therefore,
jS(�)j � jB(z; r�)j = jB(r�)j = ��1. Moreover, it follows that

Z
G

jMHLa(x)jpdx = p

Z jB(r)j�1

0

�p�1S(�)d� � p

p� 1
jB(r)j1�p:

�

4. The radial maximal operator and atoms.

Let � be a K-bi-invariant, di�erentiable function on G. We say that � belongs to
the class A� (� � 0) if it satis�es, as an even function on R,

(i) C�;0 = k��k1 � 1;

(ii) C�;1 = k(��)(s)jsj(1 + jsj)�k1 � 1;(8)

(iii) C�;2 = k(��)0(s)jsj2(1 + jsj)�k1 � 1:

For each � 2 A� we de�ne the dilation �t (t > 0) of � and the corresponding modi�ed
radial maximal operator M "

� (" � 0) on G by

�t(s) =
1

t
�(s)�1�(

s

t
)�(

s

t
) (s 2 R);

M"
�f(x) = sup

t>0
(1 + t)�"jf � �t(x)j (x 2 G):

Then, as explained in x1, the maximal operator satis�es

M "
�f(x) �M�f(x) � c(MHLf(x) + jf j �E(x));

and hence it satis�es the maximal theorem on G.
We �rst obtain some estimates for �t � a when a is supported on a ball B(r).

Proposition 4.1. Let � 2 A�. Suppose that a function a on G is supported on B(r),
kak1 � 1, and if r > 1, then kakp � jB(r)j�1 for some p > 1. Then

ja � �t(x)j � c

�(x)� r
(1 +

�(x)� r

t
)���(�(x))�1 (�(x) � r0);

where r0 = 2r if r � 1, and r0 = r + 1 if r > 1.

Proof. Let r � 1 and �(x) � 2r. Then it follows from (ii) of (8) that

ja � �t(x)j � 1

t
C�;1

Z �(x)+r

�(x)�r

t

s
(1 +

s

t
)���(s)�1

Z
K

Z
K

ja(xka�1s k0)jdkdk0�(s)ds

� 1

�(x)� r
(1 +

�(x)� r

t
)���(�(x)� r)�1kak1:
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If �(x) � 2, then �(x)�r � 1, and hence, �(�(x)�r)�1 � e�2�(�(x)�r) � �(�(x))�1 by
(i) of Lemma 2.1. Moreover, if 2r � �(x) < 2, then �(x)� r � �(x)��(x)=2 = �(x)=2,
which implies that �(�(x) � r)�1 � �(�(x)=2)�1 � �(�(x))�1 by (ii) of Lemma 2.1.
Therefore, the desired estimate follows.

Let r > 1 and �(x) � r+1. We note that, if s < r, then by (4), �(a�1s kx) � �(x)�s
� �(x) � r > 1 for all k 2 K. Therefore, using H�older's inequality three times, we see
from (ii) of (8), Lemma 2.2, and (i) of Lemma 2.1 that ja � �t(x)j is dominated by

1

t
C�;1

Z r

0

Z
K

Z
K

ja(kask0)jdk0 t

�(x)� r
(1 +

�(x)� r

t
)���(�(a�1s k�1x))�1dk�(s)ds

�1

t
C�;1

t

�(x)� r
(1 +

�(x)� r

t
)��

Z r

0

(

Z
K

(

Z
K

ja(kask0)jdk0)pdk)1=p

� (

Z
K

�(�(a�1s k�1x))�qdk)1=q�(s)ds (
1

p
+

1

q
= 1)

� c

�(x)� r
(1 +

�(x)� r

t
)��(

Z r

0

Z
K

Z
K

ja(kask0)jpdk0dk�(s)ds)1=p

� e�2��(x)(
Z r

0

e2�(q�1)s�(s)ds)1=q

� c

�(x)� r
(1 +

�(x)� r

t
)��kakpe2�re�2��(x):

Since kakp � jB(r)j�1 � e�2�r (r > 1) and e�2��(x) � �(�(x))�1 (�(x) > 1), we are
done.

�

Remark 4.2. In the proof of Proposition 4.1, when r > 1, we used H�older's inequality
to divide the integral over K into the ones of

R
K
ja(kask0)jdk0 and �(�(a�1s k�1x))�1. If

a is left K-invariant on G, then this process is not necessary and we can directly apply
Lemma 2.2 with q = 1 to

R
K
�(�(a�1s k�1x))�1dk. In this case, kakpe2�r in the last

inequality can be replaced by kak1 � 1, and therefore the assumption kakp � jB(r)j�1
is not necessary.

Proposition 4.3. Let � 2 A�. Suppose that a function a on G is supported on B(r),
kak1 � 1, and

R
G
a(g)dg = 0. Then

ja � �t(x)j � cr

�(x)� r
(1 +

�(x)� r

t
)��MHLa(x) (x 2 G):

Proof. For simplicity we put � = �� and

A(x; y) =

Z
K

Z
K

a(xky�1k0)dkdk0 (x; y 2 G):
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Clearly, as a function of s, the support of A(x; as) is contained in the interval [�(x) �
r; �(x)+r], and

R1
0
jA(x; as)j�(s)ds � kak1 � 1. Moreover, it follows from the moment

condition that Z 1

0

A(x; as)�(s)ds =

Z
G

a(g)dg = 0:

Therefore, by integration by parts, we see that

a � �t(x) = 1

t

Z 1

0

�(
s

t
)�(s)�1A(x; as)�(s)ds

= �1

t

Z 1

0

�
�(

s

t
)�(s)�1

�0 Z s

0

A(x; au)�(u)duds

=

Z �(x)+r

�(x)�r

�
� 1

t2
�0(

s

t
)�(s)�1 +

1

t
�(

s

t
)�(s)0�(s)�2

�Z s

0

A(x; au)�(u)duds:

Here we note that

jB(s)j�1j
Z s

0

A(x; au)�(u)duj = jB(s)j�1ja � �s(x)j �MHLa(x):(9)

Since jB(s)j�(s)�1 � s=(1 + s) and �(s)0�(s)�1 � (1 + s)=s, it follows from (ii) and
(iii) of (8) that

ja � �t(x)j � c

Z �(x)+r

�(x)�r

�
1

t2
j�0(s

t
)

s

1 + s
j+ 1

t
j�(s

t
)j
�
dsMHLa(x)

� cr

�(x)� r
(1 +

�(x)� r

t
)��(C�;2 + C�;1)MHLa(x)

� cr

�(x)� r
(1 +

�(x)� r

t
)��MHLa(x):

�

Proposition 4.4. Let � and a be as above, and suppose that r � 1. Then

ja � �t(x)j � cr

�(x)
(1 +

�(x)� r

t
)��jB(�(x))j�1 (�(x) � 2r):

Proof. Since r � 1 and �(x) � 2r, it follows that jB(�(x)� r)j�1 � cjB(�(x))j�1 (see
the proof of Proposition 4.1). Therefore, we can replace the estimate (9) by

jB(s)j�1j
Z s

0

A(x; au)�(u)duj � jB(�(x)� r)j�1kak1k�sk1 � cjB(�(x))j�1:
The rest of the proof is the same as in the proof of Proposition 4.3.

�

Let 1 < p � 1. We say that a function a on G is a (1; p; 0)-atom provided that

(i) a is supported on B(r) for some r > 0,

(ii) if r � 1, then kakp � jB(r)j1=p�1 and
Z
G

a(g)dg = 0;

(iii) if r > 1, then kakp � jB(r)j�1:
Then, combining the estimates obtained in Propositions 4.1, 4.3, and 4.4, we can

obtain the following.
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Theorem 4.5. Let � 2 A0, " > 0, and 1 < p � 1. Then for every (1; p; 0)-atom a on
G, Z

G

M�a(g)(1 + �(g))�"dg � c;

where c is independent of a.

Proof. Let r0 be as in Proposition 4.1. Since M� is of type (p; p), it follows that

Z
B(r0)

M�a(g)dg � kM�akpjB(r0)j1�1=p � ckakpjB(r0)j1�1=p � c:(10)

Hence, M�a is equi-integrable on B(r0). Let us consider the integrability in the exterior
B(r0)

c of B(r0). We note that kak1 � 1, and without loss of generality we may assume
that 0 < " � 1. If r � 1, then Proposition 4.4 with � = 0 yields thatZ
B(2r)c

M�a(g)(1 + �(g))�"dg � c

Z 1

2r

r

s

1

(1 + s)"
1 + s

s
ds � c

Z 1

2

1

s2
(1 + s)1�"ds � c;

and if r > 1, then Proposition 4.1 with � = 0 givesZ
B(r+1)c

M�a(g)(1 + �(g))�"dg � c

Z 1

r+1

1

s� r

1

(1 + s)"
ds � c

Z 1

1

1

s(1 + s)"
ds� c:

�

Corollary 4.6. Let � 2 A" (" > 0) and 1 < p � 1. Then for every (1; p; 0)-atom a
on G, Z

G

M "
�a(g)dg � c;

where c is independent of a.

Proof. We modify the proof of Theorem 4.5. Since the estimate (10) similarly holds
in this case, the equi-integrability of M"

�a on B(r0) follows. Let �(g) � r0. Here we

note that if t > 1, then (1 + t)�" (1 + (�(x) � r)=t)�" = (t=1 + t)"(t + �(g) � r)�" �
(1 + �(g) � r)�", and if t � 1, then (1 + t)�" (1 + (�(g)� r)=t)�" � (1 + �(g)� r)�",
and hence

(1 + t)�"ja � �t(g)j � (1 +
�(g)� r

t
)"(1 + (�(g)� r))�"ja � �t(g)j:

Then, applying Propositions 4.1 and 4.4 with � = " to the right hand side, we see
that for �(g) � r0, M

"
�a(g) � cr�(g)�1 B(�(g))�1 (1 + (�(g) � r))�" if r � 1 and

c(�(g) � r)�1�(�(g))�1 (1 + (�(g) � r))�" if r > 1. Therefore, as in the proof of
Theorem 4.5, we have the equi-integrability of M"

�a outside B(r0).
�

Remark 4.7. (1) In the Euclidean case, each function a on R supported on [�r; r] with
kak1 � (2r)�1 satis�es M�a(x) � cMHLa(x) � cjxj�1, and furthermore if a satis�es
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the moment condition
R
R
a(x)dx = 0, then M�a(x) � crjxj�2. This estimate yields the

integrability of M�a on jxj > 2r (cf. [3, Theorem 2.9]). On the other hand, let a be a
function on G supported on B(r) with kak1 � jB(r)j�1. Then MHLa satis�es (2) and,
if a satis�es the moment condition

R
G
a(g)dg = 0, then M�a(x) � cr�(x)�1jB(�(x))j�1

(see Proposition 4.4). Since this estimate is not enough to obtain the integrability of
M�a on �(x) > 2r, some modi�cation seems to be necessary to obtain the integrability
of M�a on G.
(2) As pointed out in Remark 4.2, if we restricted to left K-invarinat (1; p; 0)-atoms on
G, then we can replace jB(r)j�1 in (iii) of the de�nition of the (1; p; 0)-atoms on G by
jB(r)j1=p�1 as in (ii).

5. Atomic Hardy spaces.

We retain the notation in the previous sections. Since each atom a on G is supported
on a ball centered at the origin, in order to obain a wide class of functions which satisfy
the estimates in Theorem 4.5 and Corollary 4.6, we need to translate each atom. For a
function f on G we de�ne the translation and the average over K as follows.

fx(g) = f(xg) (x 2 G);

f ](g) =

Z
K

f(gk)dk;

f [(g) =

Z
K

Z
K

f(kgk0)dkdk0:

Then We introduce an atomic Hardy space H1
p;0(G) on G as follows.

De�nition 5.1 Let 1 < p � 1. We de�ne

H1
p;0(G) = ff =

X
i

�iai;xi ;

ai is a (1; p; 0)-atom on G, xi 2 G, and
X
i

j�ij <1g;

and kfk1;p;0 = inf
P

i j�ij, where the in�mum is taken over all such representations

f =
P

i �iai;xi . Furthermore, we de�ne H1;]
p;0(G) and H1;[

p;0(G) as the spaces consisting

of f ] and f [ of f in H1
p;0(G), respectively, and we de�ne the norms in the same way as

in H1
p;0(G).

Let a be a (1; p; 0)-atom on G and x 2 G. Since k(ax)]k1 and k(ax)[k1 are bounded
by kaxk1 = kak1 � 1, it follows that

H1;]
p;0(G) � H1

p;0(G) � L1(G); H1;[
p;0(G) � L1(G);

and kfk1 � kfk1;p;0 for all f 2 H1
p;0(G) (resp. H

1;[
p;0(G)). Here we note that

ax � �t(g) = a] � �t(xg);
and

(ax)
[ � �t(g) =

Z
K

a] � �t(xkg)dk:

In particular, for " � 0, kM"
�axk1 and kM"

�(ax)
[k1 are bounded by kM"

�a
]k1. Since a]

is a (1; p; 0)-atom on G, Theorem 4.5 and Corollary 4.6 yield the following.
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Theorem 5.2. Let " > 0 and � 2 A0. Then the radial maximal operator M� satis�es

Z
G

M�f(g)(1 + �(g))�"dg � ckfk1;p;0

for all f 2 H1
p;0(G) (resp. H1;[

p;0(G)).

Theorem 5.3. Let " > 0 and � 2 A". Then the modi�ed radial maximal operator M"
�

satis�es Z
G

M"
�f(g)dg � ckfk1;p;0

for all f 2 H1
p;0(G) (resp. H1;[

p;0(G)).

We shall give a characterization for H1;[
p;0(G) without using the translation and the

average over K of (1; p; 0)-atoms on G. Let x 2 G and r > 0. We set the domain R(x; r)
as

R(x; r) = fg 2 G ; �(x)� r � �(g) � �(x) + rg
and for a function f on G supported on R(x; r) we put

kfkx;r;p = (

Z
G

jf(g)jpI(x; r0; g�1)1�pdg)1=p;

where I is given by (7) and r0 is the same as that in Proposition 4.1. When p = 1,
kfkx;r;1 means kf(g)I(x; r0; g�1)�1k1. Then we say that a function a on G is a
(1; p; 0; \)-atom provided that

(i) a is K-bi-invariant and supported on R(x; r) for some x 2 G and r > 0,

(ii) if r � 1, then kfkx;r;p � jB(r)j1=p�1 and
Z
G

a(g)dg = 0;

(iii) if r > 1, then kfkx;r;p � jB(r)j�1:

By using these \-atoms on G we de�ne an atomic Hardy space H1;\
p;0(G) on G as follows.

De�nition 5.4 Let 1 < p � 1. We de�ne

H1;\
p;0(G) = ff =

X
i

�iai ;

ai is a (1; p; 0; \)-atom on G and
X
i

j�ij <1g;

and kfk1;p;0;\ = inf
P

i j�ij, where the in�mum is taken over all such representations
f =

P
i �iai.
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Theorem 5.5. H1;[
p;0(G) = H1;\

p;0(G) and kfk1;p;0 � kfk1;p;0;\.
Proof. To prove H1;\

p;0 � H1;[
p;0 it su�ces to show that each (1; p; 0; \)-atom a on G is

contained in H1;[
p;0(G) and kak1;p;0 � 1. Suppose that a is supported on R(x; r) and put

b(g) =
a(x�1g)

I(x; r0; (x�1g)�1)
�r0(g) (g 2 G):

Since a and I(x; r; �) are K-bi-invariant on G, it follows that

Z
G

b(g)dg =

Z
G

a(g)

I(x; r0; g�1)

�Z
K

�r0(xkg)dk

�
dg =

Z
G

a(g)dg = 0 if r � 1.

Moreover, since

kbkpp =
Z
G

���� a(g)

I(x; r0; g�1)

����
p Z

K

�r0(xkg)dkdg �
Z
G

ja(g)jpI(x; r0; g�1)1�pdg = kakx;r;p

and kbk1 � ka(g)I(x; r0; g�1)�1k1 = kakx;r;1, it is easy to see that b is a (1; p; 0)-atom
on G. Here we note that

(bx)
[(g) =

Z
K

b(xkg)dk =
a(g)

I(x; r0; g�1)

Z
K

�r0(xkg)dk = a(g);

and thus, a 2 H1;[
p;0(G) with kak1;p;0 � 1.

Next, to prove H1;[
p;0 � H1;\

p;0 it is enough to show that (ax)
[ 2 H1;\

p;0(G) with

k(ax)[k1;p;0;\ � 1 for each (1; p; 0)-atom a on G. Suppose that a is supported on B(r).

Clearly, (ax)
[ is supported on R(x; r), and if r � 1, then

Z
G

(ax)
[(g)dg =

Z
G

Z
K

a](xkg)dkdg =

Z
G

a(g)dg = 0:

Moreover, since

j(ax)[(g)j = j
Z
K

a](xkg)�r0(xkg)dkj � (

Z
K

ja](xkg)jpdk)1=p(
Z
K

�r0(xkg)dk)
1�1=p

and k(ax)[k1 � ka]k1I(x; r0; g�1), it follows that

(

Z
G

j(ax)[(g)jpI(x; r0; g�1)1�pdg)1=p � (

Z
G

Z
K

ja](xkg)jpdkdg)1=p � ka]kp � kakp:

Therefore, (ax)
[ 2 H1;\

p;0(G) with k(ax)[k1;p;0;\ � 1.
�
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6. The heat and Poisson maximal operators.

We de�ne the modi�ed heat maximal operator M"
H (" � 0) on G by

M "
Hf(x) = sup

t>0
(1 + t)�"jet
f(x)j = sup

t>0
(1 + t)�"jf � ht(x)j;

where et
 is the heat di�usion semigroup over G=K realized by the convolution with
the heat kernel ht, and we denote M0

H by MH for simplicity. As mentioned in x1, M"
H

(" � 0) satis�es the maximal theorem.
First we shall prove the following.

Theorem 6.1. Let " > 1=2. ThenZ
G

MHf(g)(1 + �(g))�"dg � ckfk1;p;0

and Z
G

M"
Hf(g)dg � ckfk1;p;0

for all f 2 H1
p;0(G) (resp. H1;[

p;0(G)).

Proof. We note that the argument preceding to Theorem 5.2 is also applicable to M"
H

with �t replaced by ht. Therefore, to deduce the desired estimates it is enough to show
that for each (1; p; 0)-atom a on G, MHa and M"

Ha satisfy, respectively,Z
G

MHa(g)(1 + �(g))�"dg � c;(11)

Z
G

M "
Ha(g)dg � c;(12)

for some constant c independent of a (cf. Theorem 4.5 and Corollary 4.6). Then, we
need the estimates for a � ht(x) corresponding to those in Propositions 4.1 and 4.4. In
order to obtain the estimates we shall use the ones for ht and h

0
t obtained in [1, Theorem

3.1]:

jht(s)j � ce�2�jsje�(2�t�jsj)
2=4t

(
t�n=2(1 + jsj)n�1 (t � 1);

jsj�1=2( jsjt )�i (1 � t);

where n = dimG=K = m1 +m2 + 1 = 2� + 2 and �i (1 � i � 3) depend on the three
regions in [0;1)� [1;1) to which (jsj; t) belongs: explicitly, they are given as �1 = 1=2
if jsj � p

t, �2 = 1 if
p
t � jsj � t, and �3 is the smallest integer > n� 1=2 if 1 � t � jsj

(see [1, Fig.5]) and when 1 � t and jsj � p
t, we used the fact that (1 + jsj)=t � 2).

Similarly,

jh0t(s)j � ce�2�jsje�(2�t�jsj)
2=4t

8><
>:

t�n=2(1 + jsj)n�1
�
1 + jsj

t

�
(t � 1);

jsj�1=2
�
jsj
t

��i
(1 � t);
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where �1 = �1, �2 = �2, and �3 = �3 + 1 according to the rigions on which the

�i depend. Here we note that F (t) = t�le�(2�t�jsj)
2=4t (l > 0) has a maximum at

t0 � jsj=2� if jsj � 1 and at t0 � jsj2 if jsj � 1. Moreover, F (t) is increasing on (0; t0]
and decreasing on [t0;1). Therefore, we can take constants C� (� � 0), C�;k (k = 0; 1),
and C so that� jsj

t

�
+�
e�(2�t�jsj)

2=4t � C� (1 � t; 
 = �i; �i; 1 � i � 3);

�
1 + jsj

t

�n+� �
1 +

jsj
t

�k
e�(2�t�jsj)

2=4t � C�;k; (t � 1; jsj � 1);

�
1 + jsj

t

�n=2 �
1 +

jsj
t

�
e�(2�t�jsj)

2=4t � Cjsj�n=2(1 + 1

jsj )
n=2+1 � jsj�(n+1)

(t � 1; jsj � 3), where C� and C�;k are independent of (jsj; t) and C of t. Hence, we
have

jht(s)j � ce�2�jsj

8<
:

C�;0t
n=2+�(1 + jsj)�(1+�) (t � 1; jsj � 1);

C�jsj�1=2
�
jsj
t

���
(1 � t);

(13)

jh0t(s)j � ce�2�jsj

8>><
>>:

Cjsj�(n+1) (t � 1; jsj � 3);

C�;1t
n=2+�(1 + jsj)�(1+�) (t � 1; jsj � 1);

C�jsj�1=2
�
jsj
t

���
(1 � t):

(14)

Lemma 6.2. Let r � 1 and � � 0. Then for �(x) � r0 = r + 1

ja � ht(x)j � ce2��(x)

(
(1 + �(x)� r)�(1+�) (t � 1);

(�(x)� r)�1=2(�(x)�rt )�� (1 � t):

Proof. We shall recall the proof of Proposition 4.1 and note that

ja � ht(x)j �
Z r

0

Z
K

Z
K

ja(kask0)jdk0jht(�(a�1s k�1x))jdk�(s)ds:

Since �(a�1s kx) � �(x)� s � 1 for k 2 K, we can substitute (13) into jht(�(a�1s k�1x))j
and hence

jht(�(a�1s kx))j � c�(�(x)� r)�1

8<
:

(1 + �(x)� r)�(1+�) (t � 1);

(�(x)� r)�1=2
�
�(x)�r

t

���
(1 � t):

The rest of the proof is the same as that in Proposition 4.1.
�
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Lemma 6.3. Let r � 1 and � � 0. Then for �(x) � r0 = 2r

ja � ht(x)j � cre�2��(x)

8><
>:

(�(x)� r)�(n+1) (t � 1; �(x) � 2);

(1 + �(x)� r)�(1+�) (t � 1; �(x) � 2);

(�(x)� r)�1=2(�(x)�rt )�� (1 � t):

Proof. We recall the proof of Propositions 4.3 and 4.4. Integration by parts yields that

ja � ht(x)j �
Z �(x)+r

�(x)�r
jh0t(s)j

Z s

0

jA(x; au)j�(u)duds:

Since �(x)� r � s � �(x) + r � 3 if �(x) � 2 and s � �(x)� r � 1 if �(x) � 2, we can
substitute (14) into jh0t(s)j. Then, replacing jsj�l (l � 0) with (�(x)�r)�l, we can deduce
the desired estimate from the same arguments as those in Propositions 4.1 and 4.3.

�

Now, we return to the proof of (11) and (12). Since MH is of type (p; p), 1 < p � 1,
MH satis�es (10) instead ofM� and therebyM

"
H (" � 0) is equi-integrable on B(r0). Let

us consider the integrals of MHa(g)(1 + �(g))�" and M"
Ha(g) in the exterior of B(r0).

Clearly, without loss of generality, we may assume that 1=2 < " � 1. Then we shall
show the equi-integrability for the local and global parts of the maximal operator M"

H:

MH;0a(x) = sup
0<t�1

ja � ht(x)j and M"
H;1a(x) = sup

1�t<1
(1 + t)�"ja � ht(x)j:

Let r � 1. Then Lemma 6.3 with � = 0; ", together with the fact that �(s) �
jsj2�+1 = jsjn�1 if jsj � 2 and �(s) � e�2�jsj if jsj � 2 (see Lemma 2.2), yields that

Z
B(2r)c

MH;0a(g)dg � cr(

Z 2

2r

1

(s� r)n+1
s2�+1ds+

Z 1

2

1

(1 + s� r)1+"
ds)

(15)

� c(1 + r1�") � c

and

Z
B(2r)c

MH;1a(g)(1 + �(g))�"dg � cr

Z 1

2r

1

(s� r)1=2(1 + s)"
� cr3=2�" � c:

(16)

Let r > 1. It follows from Lemma 6.2 with � = 0 thatZ
B(r+1)c

MH;0a(g)dg �
Z 1

r+1

1

(1 + s� r)1+"
ds � c(17)

and Z
B(r+1)c

MH;1a(g)(1 + �(g))�"dg � c

Z 1

r+1

1

(s� r)1=2(1 + s)"
ds � c:(18)
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Therefore, MH;0a(g) and MHa(g)(1 + �(g))�" are equi-integrable outside B(r0). This
completes the poof of (11).

As for (12) it remains to show the equi-integrability of M"
H;1a(g) on B(r0)

c. Let
�(g) � r0 and 1 � t <1. Since (1 + t)"((�(g)� r)=t)" � (�(g)� r)", it follows that

(1 + t)�"ja � ht(g)j � (
�(g)� r

t
)"(�(g)� r)�"ja � ht(g)j:

Then, applying Lemma 6.3 and Lemma 6.2 with � = " to the right hand side, we see
that if r � 1, then M"

H;1a(g) � cre�2��(g)(�(g)� r)�1=2�" and if r � 1, then M"
H;1a(g)

� ce�2��(g) (�(g) � r)�1=2�". Therefore, as in (16) and (18), the equi-integrability of
M "

H;1a on B(r0)
c follows. This completes the proof of (12) and �nally, Theorem 6.1.

�

Next we shall consider the same problem for the modi�ed Poisson maximal operator
M "

P (" � 0) on G de�ned as

M"
Pf(x) = sup

t>0
(1 + t)�"jet

p

 � f(x)j = sup

t>0
(1 + t)�"jf � pt(x)j;

where pt is the Poisson kernel of et
p

, and we denote M0

P by MP for simplicity. Then,
M "

P (" � 0) satis�es the maximum theorem.
We recall the estimates for pt and p0t obtained in [1, Theorem 6.1, (6.3) and (6.4)]:

jpt(s)j � c

8>>><
>>>:

t(t2 + s2)�n=2�1=2 + t(t2 + s2)�n=2+1=2 (t � 1; jsj � 1);

1p
t

�
1+jsj
t

�
e��te��jsj (1 � t; jsj � p

t);

1p
s

�
t

t+jsj
�
e��jsje��(t

2+s2)1=2 (jsj � 1;
p
t)

and for jp0t(s)j we replace the �rst line on the right hand side by (t + jsj)�(n+1) and
t=(t+ jsj) in the third line by (1 + t)=(t+ jsj). Let � � 0 and we note that

(t+ jsj)�(n+1) � jsj�(n+1);
1pjsj
�

t

t+ jsj
�
� jsj�3=2 (t � 1);

1p
t

�
1 + jsj

t

� pjsj
t

!�

e��t � jsj�2�3�=2e��jsj2 (1 � jsj �
p
t);

1pjsj
�

1 + t

t+ jsj
� pjsj

t

!�

e��(t
2+s2)1=2 � Cjsj�1e��jsj (1 � t; jsj �

p
t);

where C is independent of t and we used the fact that the left hand side in the last
inequality takes a maximum at t �

p
jsj. Then, it easily follows that

jpt(s)j � ce�2�jsj

8<
:

s�3=2 (t � 1; jsj � 1);

jsj�1
�p

jsj
t

���
(1 � t; jsj � 1);
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and

jp0t(s)j � ce�2�jsj

8>>><
>>>:

jsj�(n+1) (t � 1; jsj � 1);

jsj�3=2 (t � 1; jsj � 1);

jsj�1
�p

jsj
t

���
(1 � t; jsj � 1):

Then, letting � = 0 and � = " > 0 and repeating the same arguments that yielded
Theorem 6.1, we obtain the following.

Theorem 6.4. If " > 0, thenZ
G

MPf(g)(1 + �(g))�"dg � ckfk1;p;0;

and Z
G

M "
Pf(g)dg � ckfk1;p;0

for all f 2 H1
p;0(G) (resp. H1;[

p;0(G)).

Remark 6.5. It follows from (15) and (17), together with the corresponding estimates
for MP;0, that the local maximal operators MH;0 and MP;0 are bounded from H1

p;0(G)

(resp. H1;[
p;0(G)) to L

1(G), that is,

kMH;0fk1 � ckfk1;p;0 and kMP;0fk1 � ckfk1;p;0
for all f 2 H1

p;0(G) (resp. H
1;[
p;0(G)).
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