Uncertainty principles for the Jacobi transform

Takeshi KAWAZOE *

Abstract

We obtain some uncertainty inequalities for the Jacobi transform
fa,g()\), where we suppose o, € Rand p = a4+ F+1 > 0. As
in the Euclidean case, analogues of the local and global uncertainty
principles hold for fa,/g. In this paper, we shall obtain a new type of
an uncertainty inequality and its equality condition: When 8 < 0 or
B < a, the L?-norm of fa,g(A))\ is estimated below by the L?-norm
of pf(x)(coshz)~!. Otherwise, a similar inequality holds. Especially,
when 3 > « + 1, the discrete part of f appears in the Parseval for-
mula and it influences the inequality. We also apply these uncertainty
principles to the spherical Fourier transform on SU(1,1). Then the
corresponding uncertainty principle depends, not uniformly on the K-

types of f.

1. Introduction. The uncertainty principle on R says that if a function
f(z) is concentrated around z = 0, then its Fourier transform f()\) cannot
be concentrated around A = 0 unless f is identically zero. As surveyed in [7]
and [9], there are various generalizations of this principle on locally compact
groups G; the Heisenberg group, motion groups, and semisimple Lle groups,
and so on. In this paper we shall obtain a generalization of this principle for
the Jacobi transform fa g(A) (see (7)).

On semisimple Lie groups G the local and global uncertainty principles
for the spherical Fourier transform of K-finite functions are obtained in [7].
When the real rank of GG equals to one, these inequalities correspond to the
ones for the Jacobi transforms with specialized . and (3. Hence, the results
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in [7] are easily generalized for the Jacobi transform f, 3()\). However, it is
not clear how the constants appeared in the inequalities depend on «, (3, and
moreover, how the discrete part of f (see (10)) contributes the uncertainty
principles. Hence in §2 and §3, arguing exactly as in the Euclidean case,
we shall give the proofs of local and global uncertainty inequalities for the
Jacobi transform (see Theorems 3.1, 3.2, 4.2 and 4.3).

On the Euclidean space R, to figure a concentration of f(z) around z =
0, we consider a multiplication of z; f(x)z, and similarly, for the Fourier
transform side, we do a multiplication of \; f()\))\. On the other hand, for
the global uncertainty inequality for f, 5(\) (see Theorem 4.1) these z and
A are respectively replaced by

V(x):/oxA(t)dt and W()\):/D(A) d,

where A(t) is the weight function on R, (see (2)), D(\) = {z € C;|z| <
|A|}, and dv the Plancherel measure for the Jacobi transform (see (13)). In
Theorem 4.2 we modify V' (z) and W (\) respectively as

Vs(xz) = min(V(z),57") and we(\) = (A2 + p*)**!

for > 0. Furthermore, in §5 we shall give a refinement of Theorem 4.2 by
replacing V() as
V(z)
v(x) = AG)

We shall obtain a global uncertainty inequality, which figures concentrations
of f and f, 5 by the multiplications of v(z) and w_,/5(\) respectively. Es-
pecially, we can obtain the equality condition (see Theorem 5.1). We note
that functions satisfy the equality condition are neither Gaussian nor heat
kernels for the Jacobi transform (see (21b)). In §6, using these inequalities,
we shall consider some uncertainty principles for f and fa,g.

In §7 we shall apply these global uncertainty inequalities for the Jacobi
transform fo g()) to the spherical Fourier transform f(\) on G = SU(1,1).
Then we can deduce a uncertainty principle for general functions, not K-
finite, on G. As in the Euclidean case, to deduce a non-concentration of
f(\) around X = 0, a concentration of f(g) around g = e is sufficient (see
Theorem 7.1). In particular, we see that this sufficient condition depends on
the K-types of f and is not uniform on the K-types (see Remark 7.2).




2. Notation. Let a, f € C, Ra > —1 and p = a+[+1. For A € C, let ¢,(x)
denote the Jacobi function of the first kind, that is, the unique solution of

(L+X+p)f=0 (1)
satisfying f(0) =1 and f'(0) = 0, where L = A(x)li(A(x)i) and
Yins B - B dx dx
A(z) = (2sinh 2)***! (2 cosh z)* . (2)

For A\ # —i, —2i,—3i,..., let ®)(z) denote the Jacobi function of the second
kind which satisfies

2120 (a+ 1) ha(x) = C(A)a(x) + C(=AN)P-a(2), (3)

where C'(A) is Harish-Chandra’s C-function (cf. [3, §2]). For convenience,
we suppose that a, 5 € R and p > 0 in the following. Then the following
estimates are well-known (cf. [3, 4]): For x > 0 and A € C with |SA| < p

[oa(2)] < 1, (4)

and for each 6 > 0 there exist a positive constant K such that for all z > ¢
and A € C with S\ >0

[@(2)] < Kgem A0, (5)

where Kj is independent of «, 3, and for each r > 0 there exist positive
constants K, K7, such that if A\ € C with I\ > 0 is at distance larger

r,o

than r from the poles of C(—\)"! then
K27 (p+ )2 < [C(=N)[T < K227 (p + [A)* 2, (6)

where Kﬁﬂ, 1 = 1,2, are independent of (3.
Let LP(A), 1 < p < oo, denote the space of all p-th integrable functions

on Ry with respect to A(z)dz and C2%(R) the space of all even C* functions

on R with compact support. For f € C2%(R), the Jacobi transform f()\) is
defined as

=iy [ @ewms . "



Clearly (1) and (4) imply that for A € C,
(L)) = =W+ ) (V) (8)

and for |I\| < p,

1< 1 s o)

This transform f — f satisfies analogous properties of the classical cosine
Fourier transform; the inversion formula, the Paley-Wiener theorem, and the
Plancherel formula were obtained in [3, 4]: We set

Dos={i(f-—a—-1-2m);m=0,1,2,--- ,f—a—1-2m > 0}.
Then the inversion formula is given as follows: For f € CZ%(R),

10 = ol ([ iwswien a3 asw)

F(a+1) Wit
= fr(z)+°f(2), (10)

where a, = f(u) and d(p) = —27iC (1) "Resy—,C (=)', We call fp and
°f the principal part and the discrete part of f respectively. We note that
since p > 0, |3] < a+1if § <0 and hence D, 3 = 0 if 3 < 0. Moreover,
there exists a positive constant K, such that

6u(@)] < Kye 012 5> 0 (11)
and thereby
2 [o¢]
A)™ = gy | @A) >0 (12)

We denote by F(v) = (F(A),{a,}) a function on R, U D, s defined by

F(v) F(\) ifr=XeRy
V) =
a, if v=pecD,p.

F(v) = (m, {@,}) and define a product of F(v) = (F(\),{a,})
) = (G(A), {bu}) as

(FG)(v) = (F(NGA), {aubu})-

4
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Moreover, for a function h(\) on C, we define a multiplication of h as
h(v)F(v) = (h(A)F(X), {h(p)a,}). Let dv denote the measure on Ry U D, g
defined by

/RUD F(y)du:/OOOF()\)|C()\)|2d)\+ S aud(p). (13)

“eDa,B

For f € C%(R), we put

Fw)=(FNAFw}).

Then the Parseval formula for the Jacobi transform on Cg%(R) can be stated
as follows (see [4, Theorem 2.4] and cf. [2]): For f,g € C2(R)

/0 " F@) gD A () dr = / W) (14)

Themap f — f, f € C2%(R), can be extended to an isometry between L*(A)
and L*(v) = L*(R; U D, g, dv). Actually, each function f in L?(A) is of the
form f = fp +°f (see (10)) and their L?>-norms are given as

/Ooo|fP(:L‘)|2A(x) :/Ooo|fp()\)|2|c()‘)|2d)‘7 (153)
/ P H@RA@ = Y [aud(u). (15b)

Therefore, if we define f(v) = (f(\), {a,}), (14) implies that

1flle2ay = [1Fllz2w)-

3. Local uncertainty principles. We define a function V' (z) on R, by

Vi) = /:A(t)dt (16)

and for a measurable subset £/ of R, U D, 3 we put

o(E) = /E dv.
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Then as in the Euclidean case, we can deduce the local uncertainty principle
(see [5, §3] for semisimple Lie groups and motion groups).

Theorem 3.1. Let 0 < 0 < 1/2. Then there exists a constant Cp, such that
for all f € LY(A) N L*(A) and E C Ry U Dy 5 with o(E) < oo,

/E £ () Pdv < Cy o (E)? /000 £ (@)*V (2)* A(x)dz.

In order to clear the fact that Cy, is independent of 3 we shall give a
sketch of the proof. Let x,, » > 0, denote the characteristic function of the
interval [0,7]. We set g = fx, and h = f — g. Then

[ 1foPar <2( [ law)Pav [ 1h)Par)

It follows from (9) and Schwarz’ inequality that

/Wg )|*dv

WHQ“Z} yo(E)

2 0 o(E) /OTV(x)_QaA(x)dx /07" |g(x)|2V(x)20A(x)dx

L
- Da+1)?

_ 2 L (B2 /0 9@V (2)P A () da.

Fla+1)2-20+1
On the other hand,

[ihwbar < ["nepswas

< V) / " h(@) 2V (2) A () da.

Here we take an r such that o(E) = V(r)~'. Then

/E F0)[2dv < Cpac(B)? /0 T @)V (@) A () de,

IN

2 |
here Cy, = 2 ( J)
where Cy, max ToT171-20
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We shall modify the above local uncertainty inequality. For each § > 0
we denote by x; the point satisfying V(z;) = 6~ and we let

V(x) if 0 <z < xy,
% = 17
() {(5—1 if x > xs. (17)

Theorem 3.2. Let 6 > 0 and 0 < 6 < 1/2. Then there exists a constant
Co.o such that for all f € L*(A)NL*(A) and E C Ry UDgyp with o(E) > 9,

/E|f(z/)|2dz/ < Cyao(E)* /000 | (2)PVs(2)?? A(z)d.

Proof. Since o(E) > ¢ and ¢ is the minimum value of Vs(x)™!, we can take
an 7 such that o(F) = V(r)~!. Therefore, we can repeat the above sketch of
the proof replacing V' by Vs. m

4. global uncertainty principles. As in the Euclidean case, we can deduce
the global uncertainty principles from the local ones. We denote

W(r)=o({AeCGlA <r}).

Then the following global uncertainty inequality follows from Theorem 3.1
(see [5, §4] for symmetric spaces).

Theorem 4.1. Let 0 < 6 < 1/2. Then there exists a constant Cy o such that
for all f € L'(A) N L*(A)

114 a) < Coa / @)V (@) Ax)da / F)PW ()2 dv.

+UDa,B

We now deduce a global uncertainty inequality from Theorem 3.2. We set

B, = {\€ G|\ <12+ p2}. Since o(E,NR,) = / ()] ~2dA, sub-

0
stituting the estimate of C'(—)\)~! (see (6)), we see that there exist positive
constants C?, i = 1,2, such that for A € R

Cl2720 (2 4 )0t < (B, NR,) < C22720(r2 4 p?)(a+D), (18)



Therefore, if we take § > 0 as § = C1272°p2(@+1) then ¢(E, NR.) > 6. For
v > 0, we define the fractional power of —L as

(=LY F)N) = (W + )7 ()
(cf. (8)). Then we have the following.

Theorem 4.2. Let 0, Vs be as above and let 0 < 0 < 1/2. Then there exists
a positive constant Cy,, such that for all f = fp € L'(A) N L*(A)

sy < Coa2 [ @RV A (=LY (@) PA )
0 0

Proof. Let v = 2(a+1)8 and f = fp. By using the Plancherel formula (16a),
we obtain that

£y = /R(Azﬂ)?)7(A2JrPZ)VIf(A)I2|C(A)I26M

< o / (=LY F(@)PA (@) da. (19)

Moreover, if f()\) is supported on E¢ N Ry, then p=27 can be replaced by
(r? + p?) 77, because A\? + p? > \? > r? + p? for A € ESNR,. Then it follows
from Theorem 3.2 and (18) that for each r > 0

1Fss) = [E @ / F) Py

EcnRy

< Opao(B R [ @ PV @) A da

0

+(r* + ") /Ooo (L) f(2) *A(z)dz (20)

IN

(2 + 272 0y (C [ 7@ PVa(a)*A ) ds
0

02+ )7 [ UL PP
4 2 (T, (4 ) s
Especially, since Cy, > 2 and C} < C?, it follows that
172y < 02+ p°)27 0 Coa(CR* I + (72 + p%) 7 Coa(Co/CR) 'y

= (P +p")A+(r*+p*) 7B
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As a function of x on R, , 27 A + 277 B attains the minimum value 2/ AB at
zo = (B/A)Y/?'. Therefore, it follows from (17) with § = C'}272°p?(@+1) and
(19) that

Tp = (09:04(0014/02)_291—2)1/27 > 2
0— 274,;900,0[(002()29[1 =

Hence we can take an r such that zy = r? 4+ p? and therefore,
1F172(a) < 2747F2CF (C2)*(Co/CR) 1.
This completes the proof. m

For a general f € L'(A) N L?(A) we must pay attention to the discrete
part °f of f. Let °f # 0 and thus, D, g # 0 and > 0. In (19) R, must be
replaced by Ry U D, 3 and when v € D, 3, we see that

(74 )7 < (07— (B—a— 1)) = (4f(a+1)7.

Since f — a — 1 < p, it follows that ES N D, = (. Moreover, in (20)
o(E, NR;) must be repalced by o(E,) = o(E, "Ry ) + 0(D,3). We note
that

2 svat1  0(Days) 2 270419 (Days)
0(Da,p) < (r" 4 p7) CEYoEE < (r"+p%) Rt

Hence, applying the same argument, we can deduce the following.

Theorem 4.3. Let 6 > 0 and 0 < 0 < 1/2. Then there exists a positive
constant Cy o 5 such that for all f € L*(A) N L*(A)

1£1121a) < Cﬂ,a,ﬁ/ If(x)IQVIs(x)Q(’A(x)dw/ [(=L) @ f () A()da
0 0

5. Main theorem. We retain the notations in the previous sections. We
shall obtain a refinement of Theorem 4.3 with § = 1/2(a+1). For x > 0 we
put




and for A € C
w(X) = (A2 + p?)2,

Theorem 5.1. For all f € L'(A) N L*(A),

5 1
ol [ 1P 2 (212)
R+UD0¢,B

where the equality holds if and only if f is of the form

flz) = 067/0 v (21b)

for some ¢,y € C and Ry < 0.
Proof. Without loss of generality we may suppose that f € Cg%(R). Since

(=LA = FNO2 +p?) = F(N)w(N)? (see (8)) and w(N) is positive on
R, N D, g, the Parseval formula (14) yields that

/RUD |f(l/)|2w(z/)2dy = /Ow(—Lf)(x) (z)A(z)dw

S CRNETE
0
Hence it follows that

/000 £ (@)Po(@)*Aw)de / e
B /000 (@) Po(e)*Ax)da /000 (@) PA()d
> ([ RU@r @@

_ 4(/ (1 () ()dx) :i(/owlf(wﬂwx)dx)?

Here we used the fact that V' = A (see (16)). Clearly, the equality holds if
and only if fv = cf’ for some ¢ € C, that is, f'/f = ¢ 'v. This means that

log(f) = cl/ v(t)dt + C and thus, the desired result follows. m
0
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Since w?(\) = A? + p?, (21) and the Parseval formula (15) yield the
following.

Corollary 5.2. Let f be the same as in Theorem 5.1.

. 1 o0
follseny | £z 1l [ 1@ = 0@ Ale)de

+UDq 3

We shall estimate v and 1 — 4p?v2. Since o > —1, it follows that
Vi) = / (2sinh )27+ (2 cosh 527+ ds
0
sinh z
0
1
= 2% (sinh x)2a+2/ 271 (1 + (sinh 2)*#%)A dt
0
1
— 9% (5inh 2)2*2 (cosh 2)?? / (1— $)*(1 — (tanh 2)%s)°ds
0
1
= 2%7!(sinh z)?*"?(cosh 2)*) ——F (1, — 3,2 + o; (tanh x)?)
a+1
and thus,
1

v(x) = mF(l, —3,2 + «a; (tanh 2)?) tanh . (22)

Lemma 5.3. Let notation be as above. If 3 <0 or 3 < «, then

0< v(z) < —
v(r) < —
< =3,
and if 3> 0, then
1
<
0<0l@) < 57y
and if 3 > 0,a > 0, then
1
0 <wv(x)
2p—1

11



Proof. We recall Euler’s integral expression of the hypergeometric function:
1

F(1,—8,2+ a,22) = (a + 1)/ (1= 1)°(1 — t2)Pdt. (23)
0

Thereby, v(z) > 0. If <0, then it is easy to see that F(1,—3,2 + «;x) is
increasing on 0 < x < 1. Hence H(z) = zF (1, —(3,2+a; z%) is dominated by
H(1)=T2+a)'(p)/T(14+a)l(p+1) = (a+1)/pand thus v(z) < 1/2p. Let
0 < # < a. We shall prove that H(x) is also increasing and H(z) < H(1)
as before. In order to prove that H(x) is increasing, we shall show that its
derivative is positive. We put Hy(o, 8,2) = 2?* ' F(k+ 1,k — 3,k +2+a; 2?)
and we note that

2
- 9 fax_lHl(aaﬁax)

= o 'Hyla, B,2) +2(1 +a)z™! <H0(a —1,08,x) — Hy(v, 53, a:))
= K(x),

H'(z) = 27'Hy(a,B,2)

where K(.’L’) = F(]_,—,8,2+Ol,$2)+2(1+0l)(F(1,—/8,1+O[,.'L'2)—F(1,—ﬁ,2—|—
«,x?)). Then

K’(l") = _25372(2_’_%]?1(05,5,1')
N )

Since > 0, Hi(a, 3,2) = 23F (2,1 — 3,3+ a;2) < 2*F(2,1— 3,2+ a;x) =
Hi(a—1,8,z) and 1/(1 +a) —1/(2+ «) > 0, it follows that K'(z) < 0.
Therefore, H'(z) = K(z) is decreasing and

a—fB)(a+1)
pla+ ) =0

under the assumption on 3. Hence H(z) is increasing.
Next let 3 > 0. Then it follows from (23) that

) > H'(1) = .

1
2(+1)

1 N 1
/0 (1= 0dt = g,

2F(1,—f3,24 a;2%) <

N | =

12



Last let 3 > 0 and a > 0. Then it follows from (23) that

1 z !
—aF(1,-03,2 ) < = 1 — 2%t)* Pt

1
= —(1—(1-2%").
(1= (=)
We suppose that the last function takes the maximum at x = xy. Then 2p(1—
z3)Pta2 =1 — (1 —22)” and thereby, the last function is dominated by ( 1 —

xO)O‘J’ﬁxO Since (1 — 22)**Px takes the maximum at x = 1//2(a + ) +

and a + 3 > 0, we see that (1 — 2%)**z is dominated by

( 2(a+ ) )aJmB 1 < 1
2(a+ ) +1 V2@ +68)+1 7 V2p—T1

Hence the desired estimate follows. m

Lemma 5.4. Let T(z) = 1 — 4p®v(z)?. If 3 < 0 or 8 < «, then T(z) >
(coshz)™2. Generally,

[ O((coshz)™?) if x — oo,
n@_{om ﬁx:Q

Proof. Since F(1,—(3,2 + «;0) = 1 and F(1,-3,2 + a;1) = (a + 1)/p,
the asymptotic behavior easily follows. As in the proof of Lemma 5.3, if
B <0orf < a, then F(1,—0,2 + «;x) is increasing with respect to z.
Hence v(z) < F(1,—(3,2+ a;1) tanhz /2(a+ 1) < (1/2p) tanh z and thus,
Y(z) > (coshz) 2 m

We put
1 if 6<0orfg<a,
Tap = a‘j—l ; " ?fﬂ>0anda<0, (24)
m1n<a+1,\/2p7_1> if 3>a>0.

Lemma 5.3 implies that

0<ou(r) < 2, (25)



The following assertion follows from Theorem 5.1, Corollary 5.2, Lemma 5.3
and Lemma 5.4.

Corollary 5.5. Let p > 0 and f be the same as in Theorem 5.1.
[ 10 Pudr 2 B e, (26)
R+UDQ,B
and if f = fp, then

/0 T FOPRICN A > / @) PY (@) A ) de

The shapes of v(t) and Y'(t), t = arctanhy/z, x > 0, are respectively given
as follows.

1/2p 1

0 17 0 17

1/2p 1

0 17 0 17

Figure 2: The case of § > 0 and > a.

In (26) we set

V2 (F(a—i—l)

£ =0ul0) = s (T g A )aulo)dle)
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for 4 € Dy g. Then it follows from (12) that

1
160122 (=11 + 0%) = <l PullZ2 (-

Especially,

/0 16,(0) PY (@) A @) < — 4]} 6,0|2 e |1l < 0.

Moreover, if we denote the maximum value of v by vpay, then for p € D, g,

9 1

v >
T A~ |p2 + p?)

and hence
9 1

>
Ymax = 16500 + 1)

6. Uncertainty principles. We shall apply the inequalities obtained in the
previous section to deduce some information on the concentration of f and
f. Let f be a non-zero function in L?*(A). We recall that

F= el @) = e X @)

[a+1 Wi,

and f(v) = (f(N), {au}) (see (10)).

Definition 6.1. Let 0 < e < 1/2p and M > 0.
(1) We say that a function f(z) on Ry is (v, €)-concentrated at x = 0 if

1 follzeay < el fllz2ea) (27a)

and is (v, M)-nonconcentrated at x =0 if the reverse replaced € by M holds.
(2) We say that a function f(X) on Ry is (A, €)-concentrated at A = 0 if

/0 FOIPRIC)2dA < [f o) (27b)

and is (A, M)-nonconcentrated at A = 0 if the reverse replaced € by M holds.

15



(3) We say that a function f(x) on Ry has an e-small descrete part if

IPFIF < ell fllzca)- (27¢)

(4) We say that a function f(z) on Ry is (T, €)-nonconcentrated at x = 0
if

[ @ PT@Aw)ds] <
(5) We say that a function f(x) on Ry is (o, €)-bounded if

|f(@)] < ee” || fllee(a) if © = wo.

Now we suppose that f(z) is (v, €)-concentrated at z = 0. Since

JRNECRTOR
R4+UD, 5

= / FOPNICNT2 AN = lauPlul’d(m) + o1 £ 1172
Da.p

0

(see (15)), it follows from (21) and (27a)

/0 T IFOIPRIC()

> [T IFOPRIC)] - Y o luPdin)
0 Da.g
= [ If@Pee)d - 2y
R4+UD, g
> (1/4¢ = ) ooy 29

Therefore, f(v) is (\, (1/4€2 — p?)}/*)-nonconcentrated at A = 0.
Conversely, we suppose that f(v) is (A, €)-concentrated at A = 0. Since
Y(x) =1—4p’v(x)* > 1 — 724 (see (25)), it follows that

[ U@ PT@AEE 2 0= )l 29

0
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We recall that 1 — 72 5 < 0. Moreover, letting A = / \fp(2)*T(2) A(x)dz
0
and B = |[fp|7(a), We see from Corollary 5.2 for f = fp and (27b) that

(B— A)’B > p*AB

2 2
B € .
< — B, that is,

pPPt+e T p

/0 @)Y (@) A da ;—ufanz (30)

and thus, A <

Therefore, (29) and (30) imply that fp(z) is (2, §)-nonconcentrated at x = 0,
where

6 = max{(72 5 — D2 p7lel.
Moreover, letting § = 1 in (5), we see from (10), (3) and (27b) that for x > 1,

el < o [T FB@e0) iy
< i [T HwleEnr s [TIFoeen)

S A CLTA TN
> 1/2 o0 1/2
([ ieeemran) ([ aa) ")
< 2k frll g 31

Hence we have the following.

Theorem 6.2 Let p > 0 and f € L*(A). If f(x) is (v,€)-concentrated at
x =0, then f(\) is (A, (1/4€2— p?)/?)-nonconcentrated at X = 0. Conversely,
if f(\) is (), €)-concentrated at X = 0, then fp(z) is (T, 0)-nonconcentrated
at © = 0, where § = max{(r2, — 1)"/2,p7'€}, and there exists a positive
constant ¢ = co g such that fp(z) is (1, ce'/?)-bounded.

When 3 < «, we recall that D,z = 0, f = fp and 7,5 = 1. Hence,
the above theorem implies that, if f()) is (), €)-concentrated at A = 0, then
f(z) is (7, p~'€)-nonconcentrated at x = 0 and (1, ce'/2)-bounded. Therefore,
f(z) is spread if € goes to 0.
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When > a, then 7, 3 > 1 and it is not clear that f(z) is spread if € goes
to 0. We must pay attention to the discrete part of f. We suppose that f()\)
is (A, €)-concentrated at A = 0 and moreover, f(x) has an e;-small discrete
part. Of course, if § < « + 1, then we can take ¢; = 0, because D, 5 = 0.
We shall prove that f(z) is spread if € and €4 go to 0. First we note that (30)
replaced fp by f holds as before:

2

/0 @Y @)A@)dr < sy (32)

Let 25 > 0 be the point such that 7(zo) = 0 (see Fig. 2). In (31), replacing
d =11in (5) by § = zg, we see that for z > z,

|p(x)] < cKuoePe || frllr2a)-

On the other hand, it follows from (11), (15b) and (27¢) that

Pr@) < e Y laullgu(@)ld(p)

l"‘esz,ﬁ

1/2
< ce_p’”( s e—?\u\wod(u)) 1°Fll 2y < ceae™ || Fllz2ca).

n€D,, 3

Hence, for x > z, we see that there exists a positive constant ¢y such that

1f(@)] < coe P (e + eq) | fllz2a)- (33)

Since 1'(x) < 0 if x > xy, it follows that

[ r@rr@aws = o[ if@epre

zo

> e+ ey | T

Zo

= —cr(e”’+ Gd)2||f||%2(A)7 (34)

where ¢y > 0. Then (32), (33) and (34) imply the following.

Theorem 6.3 Let p > 0, B > « and f € L*(A). We suppose that f()\) is
(A, €)-concentrated at A = 0 and f(x) has an €4-small discrete part. We take
a sufficiently small € such that 6% = cy(€'/? + €4)> > p~2¢2. Then f(x) is
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(Y, 6)-nonconcentrated at x = 0 and there exists a positive constant ¢ = cq.p
such that f(x) is (xg,cd)-bounded.

We suppose that f is supported on [R,00). Then there exists a constant
0 < d§(R) <1 such that

1
< < — >
0 v(x)_2p5(R),x_R

and 6(R) — 1 if R — oo. Since 1 — 4p?v(z)? > 1 — §(R)7?, it follows from
Corollary 5.2 that

/ F0)P2dy > PER? — 1)||f 2aa,
R+UDQ,B
Then we obtain the following.

Proposition 6.4. Let p > 0 and suppose that f € L*(A) is supported on
[R,00). Then

S JauPluld() < / Fr ) PAZICO) 2N + p2(1 = SR 2aca.

“eDa,B

Remark 6.5. When § = 0 and o > 0, it follows from (22) that v(z) =
(2p)~'tanhx and 1 — 4p®v(z)? = (coshz)™2. Therefore, the inequalities in
Theorem 5.1 and Corollary 5.2 became

1f () t3”1}133”%2@)||f()\)()\2 + :02)1/2”%200\72) > p2||f||4L2(A)7

where the equality holds if and only if f is of the form ¢(cosh z)?, ¢,y € C,
Ry < 0, and

1f () tanh 2|20 L DA Z2 -2y = 2211201 F () (cosh ) T[T

Since the Jacobi transform of (cosh \)7 is explicitly calculated in [1], we can
directly check the above equality condition for these inequalities.

7. Uncertainty principles on SU(1,1). We briefly give some basic nota-
tions to introduce the spherical Fourier transform on G = SU(1,1). For the
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precise definitions we refer to [6] and [8]. We denote ¢, A(z) and C(A) in
§1 respectively by qﬁi"ﬁ, Ay p(z) and C, 5(N).
Let A, K denote the subgroups of G of the matrices

coshz/2 sinhx/2 2 0
Ay = and l{f¢ =
sinhz/2 coshxz/2 0 e

where z € R and 0 < ¢ < 4x respectively. According to the Cartan de-
composition of GG, each g € G can be written uniquely as g = kya,ky where
0<z0<¢,¢p<d4m Let m; (j =0,1/2, X € R) denote the principal series
representation of G. Then the (operator-valued) spherical Fourier transform

mix(f) of f on G is defined as 7 \(f) = / f(9)mjx(g)dg, where dg a Haar

measure on G. In the following, we normglize dg as dg = Ago(x)drdpdy
and we treat only functions f on G whose K-types are supported on Z x Z.
Under this restriction, m;(f) is supported on j = 0 and A > 0 (cf. [6] and
[8, §8]) and

flag) = fla—z), z€R

Let n,m € N and ¢y (g) (A € R, g € G) denote the matrix coefficient of
mo(g) with K-type (n,m). Let f be a compactly supported C'* function on
G whose K-type is (n, m). Then the scalar-valued spherical Fourier transform
Fam(N) of type (n,m) is defined by

Frm() = / F(9)6$™™ (g)dg. (35)

Since the K-type of 1)} (g) is of (n, m), this integral is determined on A, =
R, . We recall that the explicit form of ¢/} (a,) is given by using the Jacobi
function (cf. [4, (4.17)] and [6, (3.4.10)]): For g = kya,ky € G,

2"(9) = (cosha)™ ™ (sink2) " Qu (N @) T (@) e, (36)

where

Qum(N) = (-1/2 A2 F m>

n —m|
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and Fm is equal to —m if n > m and m if n < m. Hence, compared with
(7) and (35), we see from (36) that

fn’m()\) — 27(|n7m|+n+m)71/2F(|n - m| + 1)Qn,m()\)
X (f(:v) (2sinh )~ "~™(2 cosh x)’(””")) ' (N).

[n—m|,n+m

We here fix the K-type of f as (n, m) and we define a compactly supported
C* even function F' on R as

F(z) = f(z)(2sinhz) 1" ™(2 cosh z) "+,

Then it follows that

||f||%2(G) = /0 |f($)|2A0,0($)dl" = ||F||L2(A‘n_m|,n+m)
and
fn,m()\) — 2*(|nfm|+n+m)*1/2r(|n . m| + 1)Qn,m()\)ﬁ1\n—m\,n+m()\)-
Therefore, since
Qnan(N) 7 |Clnmpmsm(A) |72 = 272D (I, — | 4 1)%|Co0(M)] 72,

the Plamcherel formula for the Jacobi transform for F' (see (10) and (15))
implies that

e =2( [ VanWFICN P00+ 3 FumliP()),

’ueDn,m

where D™™ = D, i nim in §1 and dv™(p) = 22(n—mintmP(|n — m| +
1)72Qunm (1) "*djp—m|n+tm(p). This is nothing but the Plancherel formula for
the spherical Fourier transform of type (n,m) on G (see [4, (4.21)] and [8,
Theorem 8.2]). As before, this transform can be extended to the one for
L?-functions on G with K-type (n,m). According to the decomposition (10)
for F', each L*-function f on G with K-type (n,m) is of the form

f = fP + ofa
where °f(g) =2 > a,hp™(g)d"™ (1), and then f = (fa . {a,}). We call

MeDn,m
fp and °f the principal part and the discrete part of f respectively. We here
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introduce vy, Wy m and pp ., respectively corresponding to v, w and p with
a=|n—m|,B=n+min§l. Then for f = (fas, {a,}) it follows that

T 1
/R+UDa,5 FW)dmnv = /_oo FN)[Coo( V)| 2d\ + 5 S aud ().

MeDn,m

Hence the inequality in Theorem 5.1 can be rewritten as
fnnllioe [ AFO P o > 71
R UDm™

We now suppose that f(g) is concentrated at g = e: There exists a
positive constant €, ,, such that

| (37)
As in the same argument in §5 (see (28)), it follows that
NN CoaWI PN > (= g2 ) I (38)
; n,m 0,0 = e, Pr,m L2(G)-

In particular, if €, ,, is of the form

€
802 m

En,m =

for 0 < e < 1, then

and thus,

Therefore, (37) and (38) are respectively rewritten as

€
||fpn,mvn,m||%2(G) < g”f“%?(G)

and
R _ 1
| VanWENICoa0] a0 2 L1 s
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Let f = Zn,meN f™™ denote the K-type decomposition of an L2-function
f on G whose K-types are supported on N x N. Since

e = D 1" iz

n,meN

and the Hilbert-Schmidt norm of o, (f) = (( f”’m)A()\)> is given by

n,meN
Imoa(F)llEs = D 1F"™(Y)

n,meN

we can obtain the following.

Theorem 7.1. Let € > 0 and [ = Zn’meN f™™ be an L*-function on
SU(1,1). We suppose that each f™™ is concentrated at x = 0 such as

n,m € n,m
1™ prmVnm |72y < g”f’ 172)- (39)

Then
o 1
/0 1m0 () IFfisA%|Coo(A)|2dA > E||f||i2(G)

where || ||lus is the Hilbert-Schmid norm. In particular, ||mox(f)||las does not
concentrate at A = 0.

Remark 7.2. It easily follows from (24) and (25) that

. n—m|+n+m
pn,mvn’,h,l:O(mln(| |n—|m|+1 ,\/|n—m|+n—|—m>>.

Therefore, if the right or left K-types of f are finite, then {p, ,Unm} in (39)
are uniformly bounded. However, for example, if n = m, then {p,, ,v,,,} are
not uniformly bounded.
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