US 20140173624A1

a2y Patent Application Publication (o) Pub. No.: US 2014/0173624 Al

a9 United States

Kurabayashi

43) Pub. Date: Jun. 19, 2014

(54) LOAD BALANCING SCHEME
(71) Applicant: EMPIRE TECHNOLOGY
DEVELOPMENT LLC, Wilmington,

DE (US)

(72) Inventor: Shuichi Kurabayashi, Fujisawa-shi (IP)

(73) Assignee: Empire Technology Development LL.C,

Wilmington, DE (US)

@
(22)

Appl. No.: 13/885,394

PCT Filed: Dec. 17,2012

(86) PCT No.:

§371 (D),
(2), (4) Date:

PCT/US12/70063

May 14, 2013

Publication Classification

Int. Cl1.
GO6F 9/50

(51)
(2006.01)

110-1

110-2

110-3

(52) US.CL
CPC GOGF 9/5083 (2013.01)

USPC i 718/105

(57) ABSTRACT

Technologies are generally described for load balancing
scheme in a cloud computing environment hosting a mobile
device. In some examples, a load balancer may include mul-
tiple request processing units, each of the multiple request
processing units comprising a network socket that is con-
nected to at least one application server and at least one cache
server and a programmable processor configured to process a
cache request from one of the at least one application server,
a performance checking unit configured to measure process-
ing loads of the programmable processors, and a processor
managing unit configured to adjust the processing loads by
writing or deleting a load balancing program in at least one of
the programmable processors.

SERVER

140
' ~
CONNECTION HANDLER
120-1 120-2 120-m
A
APPLICATION | | APPLICATION| | APPLICATION
SERVER SERVER SERVER
160
/
LOAD BALANGER
[/ [
L J 1
CACHE | | CACHE | | CACHE CACHE
SERVER | | SERVER | | SERVER : SERVER
[[
150-1 150-2 | 150-3 150-n
130
DATABASE

Patent Application Publication Jun. 19, 2014 Sheet 1 of 6 US 2014/0173624 A1

110-1 110-2 110-3 110-P
7 74 4 4
A
140
A
CONNECTION HANDLER
I 1201 120-2 120-m
c Z v
APPLICATION APPLICATION . APPLICATION
SERVER SERVER o SERVER
A
I 160
\ ~
LOAD BALANGER
I I I . |
CACHE CACHE CACHE CACHE
SERVER SERVER SERVER te SERVER
S ~ Y ‘
150-1 150-2 150-3 150-n
130
L/
DATABASE

SERVER

US 2014/0173624 Al

Jun. 19, 2014 Sheet 2 of 6

Patent Application Publication

091

092 dTdNCD
062—1 LINM DNDIOIHO 3ONVINHO R
0re— LIND ONIDYNYI 40SS3004d
087 3svaviva
022 AHONIN
13H00S HdOMLAN 13M00S HHOMLIN 1ND0S HYOMLIN
[\
4-08¢ ¢-08¢ 1-08¢
H40SS3004d ses H0SS3004d H0SS300Hd
P J1EYANYYD0Ud P F1GVNINYHOOUd A J1GYNANYHO0Ud
4-0L¢ ¢-0L2 1-0L8
1INN 1IN LINn
P HNISS3O0Ud 153NV p DNISSIT0Ud 1SN0 p HNISSIO0Yd 1S3N0IY
-01¢ ¢-01¢ 1-012

Patent Application Publication

Jun. 19, 2014 Sheet 3 of 6

US 2014/0173624 A1l
RECEIVING CACHE REQUEST - S300
DETERMINE
WHETHER DATA REGARDING YES
CACHE REQUEST
EXISTS
WRITE LOAD BALANCING PROGRAM |—S320
Y
TRANSMIT ADDRESS OF CACHE
SERVER ~—$330
MEASURE PROCESSING LOAD |-—S340
8370 $380
-~ -~
INCREASE DECREASE
NUMBER OF COMPARE PROCESSING LOAD |—S350 NUMBER OF
PROGRAMMABLE PROGRAMMABLE
PROCESSORS PROCESSORS
S360
DETERMINE
WHETHER PROCESSING

LOAD IS LARGER THAN
PREDETERMINED

NO

Patent Application Publication Jun. 19, 2014 Sheet 4 of 6 US 2014/0173624 A1

FIG. 4

ANALYZE CACHE REQUEST ~—S400

l

DETERMINE LOAD BALANCING
PROGRAM

'

TRANSLATE LOAD BALANCING
PROGRAM

~—S410

—3420

Y
WRITE LOAD BALANCING PROGRAM |—3S8430

S OIA

v
<
S
&
-
v
=
3 A ——— e —— S — 4_
m | WNIGCINSNOLLYOINNWWOD | | WNIGIW T18vQY00R | | WNIGIWN T18VQYII-HILNAWOD |

t [[|
- L ———— e —— 0 U d

7 4 -

018 80§ 90G
M 1S3N03Y HOVI IHL OL INIANOJSIHYOD V1VQ FHL SFHOLS LVHL HIAYIS
o JHOVO 3NO 1SV LY JHL 40 INO FHL 40 SSFHAQY NV "HIAYIS NOLLYOI1ddY INO
m 1SY37 1V 3HL 40 ANO IHL 0L "ONILLINSNYHL 404 SNOLLONY LSNI F4OW HO INO
N
= 43AH3S JHOVO ANO LSV LY 40 INO DNILYNDISIA A8 1S3INOIY JHOVI
m, 3HL STIANVH LYHL WY4D0Hd DNIONYTIVE QY01 Y 'SH0SSIO0Hd J19VINWYHDO0Yd
2 40 ALINYYNTd IHL 40 INO OLNI DNILIIM HO4 SNOLLONYLSNI FHON HO 3NO
s
2 H3AH3S NOILVOINddV INO 1SV

1¥ 40 INO WOH4 LSINO3YH FHIVD V ONIAIFOFH HO4 SNOLLOMYLSNI FHOW ¥O 3INC

=
=
= 40 INO 1Sv31 LY
= %
=
- 0S8 WNIQIN DNIYY3E TYNDIS
g ~
.m 0§ 19ndoyd Wydd0yd d31NdW0D
2 7
Z 00§
g
=
=¥

US 2014/0173624 Al

Jun. 19, 2014 Sheet 6 of 6

Patent Application Publication

(299)
($)301A30
DNLLNAWOD
43H10

-3

=

P=

(v99)
(S)L40d
WWO0D Arlv

~

(099)
H3TIONINOD
NJOMLIN

(99)S301A30 NOLLYDINNINWOD

-

(859)

—1(S)1H0d

(959)
HITIOHINOD
JOVAMALNI
TATIVYd

0/1

-

(¥59)
HITIOMINOD
JOVIH3LNI

VIH3S

(P9)SIOVRIALNI WY IHdIIId

R

(0S9)LIND
S
(259)
—Jsiod
MY (BY9)LINN
({oNISS300Md
SOHdVD

(Tr9)SIOVAYILNI LNLNO

1T 1T
~ I iE iF
Auv (0£9) (QQH “F9) (R
4ITIOHINGD (869)39YH0LS (989)39v401S
Auv JOVRILNI/SNE J18VAONU-NON VAN
@ (269)S301A30 IOVHOLS
(809)SNG AYOWIN
| S—
m Bl ||| eevLvawwooud
2 t {4ITI0UINOD AJONIN| !
i |
(NE| | ! it | |
z | i
m ! (919)SY3LSIDIY !
@ ! | (929)SNOLLOMALSNI
g| | 1] wedsanaymy |||
e | | [_300408S3004d | | | (229NOLLYOIddY
{ |
V| [@ (019) | !
bl 3Hovo | | 3HovO | ||
VLA UIEATT] |} | | (029)WALSAS DNILYYIHO
i {
@ | dsa/on/dn m AYH/NOM
1 i
| pOORI0SSIO0Yd |
! (r0%¥ ! (309}AHOWIW WALSAS
Lo Jd
(209)NOLLYYNDIINOD DISYE
~ (009)301A30 HNLLNNOD

(v£9)SNG 3OYAYILNI 3DWYOLS

1--|-i!-|--|--|:|--|--|:|:|:|:|: .

US 2014/0173624 Al

LOAD BALANCING SCHEME

BACKGROUND

[0001] Load balancing is a computer networking method-
ology to distribute workload across multiple computers or a
computer cluster, network links, central processing units,
disk drives, or other resources, to achieve optimal resource
utilization, maximize throughput, minimize response time,
and avoid overload. As applications by which a large number
of users share data of a relatively large size on a cloud data-
center increase, a load balancer may be required to efficiently
process data traffic between computation nodes and storage
nodes.

SUMMARY

[0002] Inanexample, aload balancer may include multiple
request processing units, each comprising a network socket
that is connected to at least one application server and at least
one cache server, and a programmable processor configured
to process a cache request from one of the at least one appli-
cation server. The load balancer further comprises a perfor-
mance checking unit configured to measure processing loads
of the programmable processors and a processor managing
unit configured to adjust the processing loads by writing or
deleting a load balancing program in at least one of the pro-
grammable processors.

[0003] Inanother example, a method performed under con-
trol of a load balancer including multiple programmable pro-
cessors may include receiving a cache request from one of at
least one application server; writing, into one of the plurality
of programmable processors, a load balancing program that
handles the cache request by designating one of at least one
cache server; and transmitting, to the one of the at least one
application server, an address of the one of the at least one
cache server corresponding to the cache request.

[0004] In yet another example, a computer-readable stor-
age medium may store thereon computer-executable instruc-
tions that, in response to execution, cause a load balancer
including multiple programmable processors to perform
operations including receiving a cache request from one of at
least one application server; writing, into one of the plurality
of programmable processors, a load balancing program that
handles the cache request by designating one of at least one
cache server; and transmitting, to the one of the at least one
application, server an address of the one of the at least one
cache server corresponding to the cache request.

[0005] The foregoing summary is illustrative only and is
not intended to be in any way limiting. In addition to the
illustrative aspects, embodiments, and features described
above, further aspects, embodiments, and features will
become apparent by reference to the drawings and the fol-
lowing detailed description.

BRIEF DESCRIPTION OF THE FIGURES

[0006] The foregoing and other features of this disclosure
will become more apparent from the following description
and appended claims, taken in conjunction with the accom-
panying drawings. Understanding that these drawings depict
only several embodiments in accordance with the disclosure
and are, therefore, not to be considered limiting of its scope,
the disclosure will be described with additional specificity
and detail through use of the accompanying drawings, in
which:

Jun. 19, 2014

[0007] FIG. 1 schematically shows an illustrative example
of an environment in which a load balancer provides a load
balancing scheme between multiple application servers and
multiple cache servers, arranged in accordance with at least
some embodiments described herein;

[0008] FIG. 2 shows a schematic block diagram of an illus-
trative example of a load balancer, arranged in accordance
with at least some embodiments described herein;

[0009] FIG. 3 shows an example flow diagram of a process
for providing a load balancing scheme, arranged in accor-
dance with at least some embodiments described herein;
[0010] FIG. 4 shows an example flow diagram of a process
for writing a load balancing program into a programmable
processor, arranged in accordance with at least some embodi-
ments described herein;

[0011] FIG. 5 illustrates computer program products that
may be utilized to provide aload balancing scheme, arranged
in accordance with at least some embodiments described
herein; and

[0012] FIG. 6 is a block diagram illustrating an example
computing device that may be utilized to provide a load
balancing scheme, arranged in accordance with at least some
embodiments described herein.

DETAILED DESCRIPTION

[0013] In the following detailed description, reference is
made to the accompanying drawings, which form a part
hereof. In the drawings, similar symbols typically identify
similar components, unless context dictates otherwise. The
illustrative embodiments described in the detailed descrip-
tion, drawings, and claims are not meant to be limiting. Other
embodiments may be utilized, and other changes may be
made, without departing from the spirit or scope of the subject
matter presented herein. It will be readily understood that the
aspects of the present disclosure, as generally described
herein, and illustrated in the drawings, can be arranged, sub-
stituted, combined, separated, and designed in a wide variety
of different configurations, all of which are explicitly con-
templated herein.

[0014] This disclosure is generally drawn, inter alia, to
methods, apparatuses, systems, devices, and computer pro-
gram products related to a load balancing scheme. Further,
technologies are generally described for a load balancer con-
figured to provide load balancing between multiple applica-
tion servers and multiple cache servers.

[0015] In some embodiments, a cloud-based network sys-
tem may include at least three server layers including, for
example, multiple application servers configured to handle
requests from user devices, multiple cache servers configured
to handle data caching for the multiple application servers,
and a cloud database server configured to store and provide
data for use by the multiple application servers. In such cases,
a load balancer may be configured to balance loads between
the multiple application servers and the multiple cache serv-
ers to resolve a communication bottleneck between the mul-
tiple application servers and the multiple cache servers.
[0016] The load balancer may employ thereon multiple
programmable processors, which are connected to respective
network sockets. The load balancer may dynamically write a
load balancing program for performing load balancing into
one of the programmable processors. In some embodiments,
an application may be executed through one of the multiple
application servers, and the one of the multiple application
servers may request of the load balancer data regarding the

US 2014/0173624 Al

running of the application. In such cases, the load balancer
may write into one of the programmable processors a load
balancing program, which is an application-specific program
according to one or more characteristics of the application.
The one or more characteristics of the application may be
decided by the type of the application (e.g., whether the
application is an e-mail application, a game application, an
SNS service providing application, an e-book application, a
map application, a video playing application, etc.). By way of
example, but not limitation, video playing applications or
game applications may be characterized that they require
more data transmission than e-mail applications and SNS
service providing applications. The load balancing program
may be required to handle the application considering such
characteristics.

[0017] By way of example, but not limitation, when the
user device runs an application for playing a video that is
stored in the cloud database server, a corresponding applica-
tion server may request of the load balancer the video that is
stored in the cloud database server. Then, the load balancer
may write into one of the multiple programmable processors
aload balancing program of a type adapted to cache the video
in one of the multiple cache servers thus making it possible
for the user device to play the video smoothly. In some other
examples, when the user device run an application for a social
networking service (or “SNS”) via a corresponding applica-
tion server, the load balancer may proactively write into one
of the multiple programmable processors a load balancing
program of a type that is adapted to preferentially store infor-
mation data viewed by a greater number of users in one the
multiple cache servers. By way of such customized load
balancing, it may be possible to efficiently manage data cach-
ing according to one or more characteristics of the applica-
tion.

[0018] In some embodiments, the load balancer may mea-
sure a processing load of each of the multiple programmable
processors. When the processing load is concentrated on a
specific programmable processor, the load balancer may
increase the number of programmable processors for the pro-
cessing load by writing a corresponding load balancing pro-
gram into one or more of the multiple programmable proces-
sors. Alternatively, when the programmable processor for the
processing load exhibits low load balancing cost, that is,
when a surplus calculation power of the programmable pro-
cessor is great, the load balancer may reduce the number of
programmable processors for the processing load. In this
way, the number of programmable processors allocated to a
specific processing load may be automatically adjusted.

[0019] FIG. 1 schematically shows an illustrative example
of an environment in which a load balancer provides a load
balancing scheme between multiple application servers and
multiple cache servers, arranged in accordance with at least
some embodiments described herein. As depicted in FIG. 1,
one of user devices 110-1, 110-2, 110-3, . . ., 110-p may send
to one of application servers 120-1, 120-2, . . ., 120-m a
request for application-related data, which may be stored in a
database server 130, via a connection handler 140. Further,
one of cache servers 150-1,150-2, . . ., 150-» may cache the
application-related data from database server 130, and a load
balancer 160 may process the request for application-related
data. By way of example, but not limitation, the request may
include an HTTP (Hypertext Transfer Protocol) request such
as, for example, an HTTP GET request or an HTTP POST
request.

Jun. 19, 2014

[0020] Insomeembodiments, connection handler 140 may
allocate or assign the request from the one of user devices
110-1, 110-2, 110-3, . . ., 110-p to the appropriate one of
application servers 120-1, 120-2, . . . , 120-m. In some
embodiments, connection handler 140 may allocate or assign
the request based at least in part on processing loads of appli-
cation servers 120-1, 120-2, . . ., 120-m.

[0021] In some embodiments, database server 130 may
store data for various applications, and cache servers 150-1,
150-2, . . ., 150-z may cache at least some of the data stored
in database server 130. By way of example, but not limitation,
database server 130 may be a cloud datacenter, and cache

servers 150-1, 150-2, . . ., 150-» may be in-memory cache
servers.
[0022] In some embodiments, a load balancer 160 may

employ thereon multiple programmable processors (not
shown in FIG. 1), which may be respectively connected to
network sockets (not shown in FIG. 1). Load balancer 160
may dynamically write a load balancing program for per-
forming load balancing into one of the multiple program-
mable processors. In such cases, the load balancing program
may be an application-specific program corresponding to one
or more characteristics of the application. The load balancing
program may be a program that determines how to store data
in cache servers 150-1,150-2, . .., 150-x. Since a single cache
server store data beyond the memory storage capacity, mul-
tiple cache servers 150-1, 150-2, .. ., 150-% are employed. In
order to improve responsiveness to the application, the data
likely to be used for cache servers 150-1,150-2, . . . 150-» may
be selectively maintained in the cache memory. However,
because it may be difficult to predict how long certain data
will go unused by an application, load balancer 160 may
perform the load balancing using the load balancing program
that reflects the one or more characteristics of the application.
By way of example, but not limitation, the one or more
characteristics may include data access tendency of the appli-
cation, which may refer to how often the application requests
data stored in database server 130, or what kind of data (e.g.,
a document, an audio, a video, an image, etc.) the application
requests from database server 130.

[0023] Insome embodiments, load balancer 160 may auto-
matically measure a load of each of the multiple program-
mable processors. When a load of a specific programmable
processor (which is processing a request from an application)
exceeds a threshold value (e.g., when the load balancing cost
exceeds 1/0O cost and/or application cost), the number of pro-
grammable processors assigned to the request from the appli-
cation may be increased. But when the programmable pro-
cessor processing the request from the application shows a
low load balancing cost (i.e., the surplus calculation power of
the programmable processors is great), the number of pro-
grammable processors allocated to the load balancing process
of the application may be decreased. In this way, the number
of' programmable processors allocated to each application can
be adjusted automatically.

[0024] FIG. 2 shows a schematic block diagram of an illus-
trative example of load balancer 160, arranged in accordance
with at least some embodiments described herein. As
depicted, load balancer 160 may include multiple request
processing units 210-1, 210-2, . . ., 210- a memory 220, a
database 230, a processor managing unit 240, a performance
checking unit 250 and a compiler 260. Although illustrated as
discrete components, various components may be divided
into additional components, combined into fewer compo-

US 2014/0173624 Al

nents, or eliminated altogether while being contemplated
within the scope of the disclosed subject matter.

[0025] Each of request processing units 210-1, 210-2, .. .,
210-7 may include a programmable processor 270-1, 270-2, .
.., or 270-r and a network socket 280-1, 280-2, .. ., or 280-r.
Each of programmable processors 270-1, 270-2, . . ., 270-7
may be configured to process a cache request from one of
application servers 120-1, 120-2, . . . , 120-m. In some
embodiments, each of programmable processors 270-1, 270-
2,...,270-4 may analyze the cache request as to its charac-
teristics and, as will be described below in more details,
provide the analysis results to processor managing unit 240 so
that processor managing unit 240 may select a load balancing
program that is adapted to process the cache request accord-
ing to the characteristics. By way of example, but not limita-
tion, programmable processors 270-1, 270-2, . . ., 270-r may
be an FPGA (Field Programmable Gate Array). Each of net-
work sockets 280-1, 280-2, . . ., 280-» may be connected to

one or more of application servers 120-1, 120-2, . . ., 120-m
and one or more of cache servers 150-1, 150-2, . . ., 150-n.
[0026] Memory 220 may store multiple load balancing pro-

grams for processing a cache request from one or more of
application servers 120-1, 120-2, . . . , 120-m. By way of
example, but not limitation, the multiple load balancing pro-
grams may be application-specific programs according to one
or more characteristics of applications. Each of the load bal-
ancing programs determines how to store data in one or more
of cache servers 150-1, 150-2, . . ., 150-n.

[0027] Insomeembodiments, each of network sockets 280-
1,280-2, . .., 280-» may receive a cache request from one or
more of application servers 120-1, 120-2, . . ., 120-m, and
each of programmable processors 270-1, 270-2, . . ., 270-~
may analyze the cache request. By way of example, but not
limitation, programmable processors 270-1,270-2, .. ., 270-7
may analyze the cache request and check whether there exists
a cache server (among cache servers 150-1,150-2, . .., 150-n)
in which data related to the cache request is stored. If there is
a cache server that stores the data related to the cache request,
an IP address of the corresponding cache server (among cache
servers 150-1, 150-2, . . ., 150-z) is returned to the one or
more of application servers 120-1, 120-2, . . ., 120-m. On the
other hand, if there is no cache server that stores the data
corresponding to the cache request, a value of NULL is
returned to the one or more of application servers 120-1,
120-2, ..., 120-m.

[0028] Database 230 may be configured to record informa-
tion regarding a relationship between the cache request and
the cache server (among cache servers 150-1, 150-2, . . .,
150-#) that stores the data corresponding to the cache request.
By way of example, but not limitation, when cache server
150-1 stores data related to a cache request from application
server 120-1, a data packet of relationship information
including the cache request, an TP address of application
server 120-1 and an IP address of cache server 150-1 may be
recorded in database 230.

[0029] Processor managing unit 240 may adjust the pro-
cessing loads by writing or deleting a load balancing program
in one or more of programmable processors 270-1, 270-2, . .
., 270-r. In some embodiments, when the value NULL is
returned because there is no cache server corresponding to the
cache request, processor managing unit 240 may write into
one of programmable processors 270-1, 270-2, . . ., 270-r a
load balancing program that handles the cache request by
designating one or more of cache servers 150-1, 150-2, . . .,

Jun. 19, 2014

150-7. Thereafter, the corresponding programmable proces-
sor (among programmable processors 270-1, 270-2, . . .,
270-7) may send one or more IP addresses of the one or more
of cache servers 150-1, 150-2, . . ., 150-» to the one of
application servers 120-1, 120-2, . . ., 120-m that transmitted
the cache request.

[0030] In some embodiments, the load balancing program
written into the one of programmable processors 270-1, 270-
2, ..., 270-r by processor managing unit 240 may be an
application-specific program determined based at least in part
on an analysis of the cache request by the one of program-
mable processors 270-1, 270-2, . . . , 270-~ By way of non-
limiting example, the one of programmable processors 270-1,
270-2, . . ., 270-r may analyze the cache request and deter-
mine that the cache request relates to a video transmission
service, and processor managing unit 240 may proactively
write into the one of programmable processors 270-1, 270-2,
..., 270-r aload balancing program (among the multiple load
balancing programs stored in memory 220) of a type adapted
to store the moving picture in a cache server.

[0031] Performance checking unit 250 may be configured
to measure processing loads of programmable processors
270-1,270-2, . ..,270-~ In some embodiments, performance
checking unit 250 may compare a processing load of each of
programmable processors 270-1, 270-2, . . ., 270-r with a
predetermined value. By way of example, but not limitation,
the predetermined value may be either an 1/O cost or an
application cost, whichever is smaller, or may be the sum of
the I/O cost and the application cost. Processing managing
unit 240 may then adjust the load of each programmable
processors 270-1, 270-2, . . ., 270-7 based at least part on the
comparison. That is, performance checking unit 250 may
measure a throughput of each of programmable processors
270-1,270-2, . . .,270- and if a delay of a certain amount of
time is detected, processing managing unit 240 may change
the number of programmable processors 270-1, 270-2, . . .,
270-r assigned to the corresponding application.

[0032] Compiler 260 may translate the load balancing pro-
gram into a bitstream representing configuration information
of programmable processors 270-1, 270-2, . . ., 270-~ In
some embodiments, in response to a request from perfor-
mance checking unit 250, processor managing unit 240 may
acquire, from memory 220, a load balancing program for an
application and write the load balancing program in one or
more of programmable processor 270-1,270-2, ...,270-~ By
way of example, but not limitation, complier 260 may trans-
late the load balancing program written by HDL into a bit-
stream representing configuration information of the one or
more of programmable processors 270-1, 270-2, . . ., 270-%
[0033] FIG. 3 shows an example flow diagram of a process
for providing a load balancing scheme, arranged in accor-
dance with at least some embodiments described herein. The
method in FIG. 3 may be implemented in or by load balancer
160, which may include multiple request processing units
210-1, 210-2, . . ., 210-%, a memory 220, a database 230, a
processor managing unit 240, a performance checking unit
250 and a compiler 260 discussed above. An example process
may include one or more operations, actions, or functions as
illustrated by one or more blocks S300, S310, S320, S330,
S340, S350, S360, S370 and/or S380. Although illustrated as
discrete blocks, various blocks may be divided into additional
blocks, combined into fewer blocks, or eliminated, depending
on the desired implementation. In the below description with
regard to FIG. 3, the process will be described mainly using

US 2014/0173624 Al

request processing unit 210-1 (including programmable pro-
cessor 270-1 and network socket 280-1), application server
120-1 and cache server 150-1 for the convenience of expla-
nation. However, one skilled in the art would appreciate that
the process can also be implemented by other components.
Processing may begin at block S300.

[0034] At block S300 (Receiving Cache Request), request
processing unit 210-1 may receive a cache request from appli-
cation server 120-1 through network socket 280-1. By way of
example, but not limitation, the cache request may include an
HTTP (Hypertext Transfer Protocol) request such as, for
example, an HTTP GET request or an HTTP POST request.
Processing may continue from block S300 to block S310.
[0035] At decision block S310 (Determine Whether Data
Regarding Cache Request Exists), request processing unit
210-1 may determine whether the data corresponding to the
cache request exists in cache servers 150-1,150-2, .. ., 150-z.
Processing may continue from block S310 to block S320,
upon a negative determination, or to block S330, upon a
positive determination.

[0036] At block S320 (Write Load Balancing Program),
when it is determined that data regarding the cache request
does not exist in cache servers 150-1, 150-2, . . . , 150-n,
processor managing unit 240 may write a load balancing
program that may handle the cache request into program-
mable processor 270-1 by designating cache server 150-1,
which is available for handling the cache request. Processing
may continue from block S320 to block S330.

[0037] Atblock S330 (Transmit Address of Cache Server),
programmable processor 270-1 may transmit, to application
server 120-1, an address of cache server 150-1 designated by
programmable processor 270-1. In some embodiments, if the
data regarding the cache request exists in one of cache servers
150-1,150-2, . ..,150-, programmable processor 270-1 may
transmit, to application server 120-1, an address of the one of
cache servers 150-1, 150-2, . . ., 150-z that stores the data
regarding the cache request. Processing may continue from
block S330 to block S340.

[0038] At block S340 (Measure Processing Load), perfor-
mance checking unit 250 may measure a processing load of
programmable processor 270-1. Processing may continue
from block S340 to block S350.

[0039] At block S350 (Compare Processing [.oad), perfor-
mance checking unit 250 may compare the processing load
with a predetermined value. Processing may continue from
block S350 to block S360.

[0040] At block S360 (Determine Whether Processing
Load is Larger Than Predetermined Value), performance
checking unit 250 may determine whether the processing
load is larger than the predetermined value. By way of
example, but not limitation, the predetermined value may be
either an I/O cost or an application cost, whichever is smaller,
or may be the sum of the /O cost and the application cost.
Processing may continue from block S360 to block S370 or
S380.

[0041] Atblock S370 (Increase Number of Programmable
Processors), if the processing load is larger than the predeter-
mined value, processor managing unit 240 may increase the
number of programmable processors assigned to the cache
request from application server 120-1. In some embodiments,
processor managing unit 240 may increase the number of
programmable processors for the cache request by simply
copying the loading balancing program from programmable
processor 270-1 and writing it into another programmable

Jun. 19, 2014

processor. By way of example, but not limitation, complier
260 may translate the load balancing program written by
HDL into a bitstream representing configuration information
of the other programmable processor.

[0042] Atblock S380 (Decrease Number of Programmable
Processors), if the processing load is not larger than the pre-
determined value, processor managing unit 240 may decrease
the number of programmable processors assigned to the
cache request from application server 120-1. In some
embodiments, processor managing unit may decrease the
number of programmable processors for the cache request by
simply deleting the load balancing program in programmable
processor 270-1.

[0043] FIG. 4 shows an example flow diagram of a process
for writing a load balancing program into a programmable
processor, arranged in accordance with at least some embodi-
ments described herein. The method in FIG. 4 may be imple-
mented in or by load balancer 160, which may include mul-
tiple request processing units 210-1, 210-2, . . ., 210-% a
memory 220, a database 230, a processor managing unit 240,
a performance checking unit 250 and a compiler 260 dis-
cussed above. An example process may include one or more
operations, actions, or functions as illustrated by one or more
blocks S400, S410, S420 and/or S430. Those blocks are sub-
blocks of block S320 of FIG. 3, and thus, the below descrip-
tion may be related with and/or based on the above descrip-
tion with regard to FIG. 3. Although illustrated as discrete
blocks, various blocks may be divided into additional blocks,
combined into fewer blocks, or eliminated, depending on the
desired implementation. Processing may begin at block S400.
[0044] At block S400 (Analyze Cache Request), program-
mable processor 270-1 may analyze the cache request from
application server 120-1. Processing may continue from
block S400 to block S410.

[0045] At block S410 (Determine Load Balancing Pro-
gram), processor managing unit 240 may select a load bal-
ancing program from the multiple load balancing programs
stored in memory 220 based at least in part on the analysis of
programmable processor 270-1. By way of example, but not
limitation, when the cache request is related with an SNS
service (as a result of the analysis), processor managing unit
240 may choose a load balancing program of a type adapted
to preferentially cache information used and/or subscribed by
a greater number of users in a cache server. Processing may
continue from block S410 to block S420.

[0046] Atblock S420 (Translate Load Balancing Program),
compiler 260 may translate the load balancing program
selected by processor managing unit 240 into a bitstream
representing configuration information of programmable
processors 270-1. Processing may continue from block S420
to block S430.

[0047] At block S430 (Write Load Balancing Program),
processor managing unit 240 may write into programmable
processor 270-1 the load balancing program determined by
processor managing unit 240 and translated by compiler 260.
[0048] One skilled in the art will appreciate that, for this
and other processes and methods disclosed herein, the func-
tions performed in the processes and methods may be imple-
mented in differing order. Furthermore, the outlined steps and
operations are only provided as examples, and some of the
steps and operations may be optional, combined into fewer
steps and operations, or expanded into additional steps and
operations without detracting from the essence of the dis-
closed embodiments.

US 2014/0173624 Al

[0049] FIG. 5 illustrates computer program products that
may be utilized to provide a load balancing scheme, arranged
in accordance with at least some embodiments described
herein. Program product 500 may include a signal bearing
medium 502. Signal bearing medium 502 may include one or
more instructions 504 that, when executed by, for example, a
processor, may provide the functionality described above
with respect to FIGS. 1-4. By way of example, instructions
504 may include: one or more instructions for receiving a
cache request from one of at least one application server,
writing, into one of the plurality of programmable processors,
a load balancing program that handles the cache request by
designating one of at least one cache server, and transmitting,
to the one of the at least one application server, an address of
the one of the at least one cache server that stores the data
corresponding to the cache request. Thus, for example, refer-
ring to FIG. 2, load balancer 160 may undertake one or more
of'the blocks shown in FIG. 3 in response to instructions 504.
[0050] In some implementations, signal bearing medium
502 may encompass a computer-readable medium 506,
including, but not limited to, a hard disk drive, a CD, a DVD,
a digital tape, memory, etc. In some implementations, signal
bearing medium 502 may encompass a recordable medium
508, including, but not limited to, memory, read/write (R/W)
CDs, R/'W DVDs, etc. In some implementations, signal bear-
ing medium 502 may encompass a communications medium
510, including, but not limited to, a digital and/or an analog
communication medium (e.g., a fiber optic cable, a
waveguide, a wired communications link, a wireless commu-
nication link, etc.). Thus, for example, program product 500
may be conveyed to one or more modules of load balancer
160 by an RF signal bearing medium 502, where the signal
bearing medium 502 is conveyed by a wireless communica-
tions medium 510 (e.g., a wireless communications medium
conforming with the IEEE 702.11 standard).

[0051] FIG. 6 is a block diagram illustrating an example
computing device that may be utilized to provide a load
balancing scheme, arranged in accordance with at least some
embodiments described herein. In a very basic configuration
602, computing device 600 typically includes one or more
processors 604 and a system memory 606. A memory bus 608
may be used for communicating between processor 604 and
system memory 606.

[0052] Depending on the desired configuration, processor
604 may be of any type including but not limited to a micro-
processor (UP), a microcontroller (uC), a digital signal pro-
cessor (DSP), or any combination thereof. Processor 604 may
include one more levels of caching, such as a level one cache
610 and a level two cache 612, a processor core 614, and
registers 616. An example processor core 614 may include an
arithmetic logic unit (ALU), a floating point unit (FPU), a
digital signal processing core (DSP Core), or any combina-
tion thereof. An example memory controller 618 may also be
used with processor 604, or in some implementations
memory controller 618 may be an internal part of processor
604.

[0053] Depending on the desired configuration, system
memory 606 may be of any type including but not limited to
volatile memory (such as RAM), non-volatile memory (such
as ROM, flash memory, etc.) or any combination thereof.
System memory 606 may include an operating system 620,
one or more applications 622, and program data 624. Appli-
cation 622 may include instructions 626 that may be arranged
to perform the functions as described herein including the

Jun. 19, 2014

actions described with respect to the load balancer 160 archi-
tecture as shown in FIG. 3 or including the actions described
with respect to the flow charts shown in FIGS. 3 and 4. In
some examples, application 622 may be arranged to operate
with program data 624 on an operating system 620 such that
implementations for instructions for an electronic device as
described herein.

[0054] Computing device 600 may have additional features
or functionality, and additional interfaces to facilitate com-
munications between basic configuration 602 and any
required devices and interfaces. For example, a bus/interface
controller 630 may be used to facilitate communications
between basic configuration 602 and one or more data storage
devices 632 via a storage interface bus 634. Data storage
devices 632 may be removable storage devices 636, non-
removable storage devices 638, or a combination thereof.
Examples of removable storage and non-removable storage
devices include magnetic disk devices such as flexible disk
drives and hard-disk drives (HDD), optical disk drives such as
compact disk (CD) drives or digital versatile disk (DVD)
drives, solid state drives (SSD), and tape drives to name a few.
Example computer storage media may include volatile and
nonvolatile, removable and non-removable media imple-
mented in any method or technology for storage of informa-
tion, such as computer readable instructions, data structures,
program modules, or other data.

[0055] System memory 606, removable storage devices
636 and non-removable storage devices 638 are examples of
computer storage media. Computer storage media includes,
butis not limited to, RAM, ROM, EEPROM, flash memory or
other memory technology, CD-ROM, digital versatile disks
(DVD) or other optical storage, magnetic cassettes, magnetic
tape, magnetic disk storage or other magnetic storage devices,
or any other medium which may be used to store the desired
information and which may be accessed by computing device
600. Any such computer storage media may be part of com-
puting device 600.

[0056] Computing device 600 may also include an inter-
face bus 640 for facilitating communication from various
interface devices (e.g., output devices 642, peripheral inter-
faces 644, and communication devices 646) to basic configu-
ration 602 via bus/interface controller 630. Example output
devices 642 include a graphics processing unit 648 and an
audio processing unit 650, which may be configured to com-
municate to various external devices such as a display or
speakers via one or more A/V ports 652. Example peripheral
interfaces 644 include a serial interface controller 654 or a
parallel interface controller 656, which may be configured to
communicate with external devices such as input devices
(e.g., keyboard, mouse, pen, voice input device, touch input
device, etc.) or other peripheral devices (e.g., printer, scanner,
etc.) via one or more I/O ports 658. An example communica-
tion device 646 includes a network controller 660, which may
be arranged to facilitate communications with one or more
other computing devices 662 over a network communication
link via one or more communication ports 664.

[0057] The network communication link may be one
example of a communication media. Communication media
may typically be embodied by computer readable instruc-
tions, data structures, program modules, or other data in a
modulated data signal, such as a carrier wave or other trans-
port mechanism, and may include any information delivery
media. A “modulated data signal” may be a signal that has one
or more of its characteristics set or changed in such a manner

US 2014/0173624 Al

as to encode information in the signal. By way of example,
and not limitation, communication media may include wired
media such as a wired network or direct-wired connection,
and wireless media such as acoustic, radio frequency (RF),
microwave, infrared (IR) and other wireless media. The term
computer readable media as used herein may include both
storage media and communication media.

[0058] Computing device 600 may be implemented as a
portion of a small-form factor portable (or mobile) electronic
device such as a cell phone, a personal data assistant (PDA),
apersonal media player device, a wireless web-watch device,
apersonal headset device, an application specific device, or a
hybrid device that include any of the above functions. Com-
puting device 600 may also be implemented as a personal
computer including both laptop computer and non-laptop
computer configurations.

[0059] The present disclosure is not to be limited in terms of
the particular embodiments described in this application,
which are intended as illustrations of various aspects. Many
modifications and variations can be made without departing
from its spirit and scope, as will be apparent to those skilled in
the art. Functionally equivalent methods and apparatuses
within the scope of the disclosure, in addition to those enu-
merated herein, will be apparent to those skilled in the art
from the foregoing descriptions. Such modifications and
variations are intended to fall within the scope of the
appended claims. The present disclosure is to be limited only
by the terms of the appended claims, along with the full scope
of equivalents to which such claims are entitled. It is to be
understood that this disclosure is not limited to particular
methods, reagents, compounds, compositions or biological
systems, which can, of course, vary. It is also to be understood
that the terminology used herein is for the purpose of describ-
ing particular embodiments only, and is not intended to be
limiting.

[0060] With respect to the use of substantially any plural
and/or singular terms herein, those having skill in the art can
translate from the plural to the singular and/or from the sin-
gular to the plural as is appropriate to the context and/or
application. The various singular/plural permutations may be
expressly set forth herein for sake of clarity.

[0061] It will be understood by those within the art that, in
general, terms used herein, and especially in the appended
claims (e.g., bodies of the appended claims) are generally
intended as “open” terms (e.g., the term “including” should
be interpreted as “including but not limited to,” the term
“having” should be interpreted as “having at least,” the term
“includes” should be interpreted as “includes but is not lim-
ited to,” etc.). It will be further understood by those within the
art that if a specific number of an introduced claim recitation
is intended, such an intent will be explicitly recited in the
claim, and in the absence of such recitation no such intent is
present. For example, as an aid to understanding, the follow-
ing appended claims may contain usage of the introductory
phrases “at least one” and “one or more” to introduce claim
recitations. However, the use of such phrases should not be
construed to imply that the introduction of a claim recitation
by the indefinite articles “a” or “an” limits any particular
claim containing such introduced claim recitation to embodi-
ments containing only one such recitation, even when the
same claim includes the introductory phrases “one or more”

or “at least one” and indefinite articles such as “a” or “an”
PP,

(e.g., “a” and/or “an” should be interpreted to mean “at least
one” or “one or more”); the same holds true for the use of

Jun. 19, 2014

definite articles used to introduce claim recitations. In addi-
tion, even if a specific number of an introduced claim recita-
tion is explicitly recited, those skilled in the art will recognize
that such recitation should be interpreted to mean at least the
recited number (e.g., the bare recitation of “two recitations,”
without other modifiers, means at least two recitations, or two
or more recitations). Furthermore, in those instances where a
convention analogous to “at least one of A, B, and C, etc.” is
used, in general such a construction is intended in the sense
one having skill in the art would understand the convention
(e.g., “a system having at least one of A, B, and C” would
include but not be limited to systems that have A alone, B
alone, C alone, A and B together, A and C together, B and C
together, and/or A, B, and C together, etc.). In those instances
where a convention analogous to “at least one of A, B, or C,
etc” is used, in general such a construction is intended in the
sense one having skill in the art would understand the con-
vention (e.g., “a system having at least one of A, B, or C”
would include but not be limited to systems that have A alone,
B alone, C alone, A and B together, A and C together, B and
Ctogether, and/or A, B, and C together, etc.). It will be further
understood by those within the art that virtually any disjunc-
tive word and/or phrase presenting two or more alternative
terms, whether in the description, claims, or drawings, should
be understood to contemplate the possibilities of including
one of the terms, either of the terms, or both terms. For
example, the phrase “A or B” will be understood to include
the possibilities of “A” or “B” or “A and B.”

[0062] In addition, where features or aspects of the disclo-
sure are described in terms of Markush groups, those skilled
in the art will recognize that the disclosure is also thereby
described in terms of any individual member or subgroup of
members of the Markush group.

[0063] As will be understood by one skilled in the art, for
any and all purposes, such as in terms of providing a written
description, all ranges disclosed herein also encompass any
and all possible subranges and combinations of subranges
thereof. Any listed range can be easily recognized as suffi-
ciently describing and enabling the same range being broken
down into at least equal halves, thirds, quarters, fifths, tenths,
etc. As a non-limiting example, each range discussed herein
can be readily broken down into a lower third, middle third
and upper third, etc. As will also be understood by one skilled
in the art all language such as “up to,” “at least,” and the like
include the number recited and refer to ranges which can be
subsequently broken down into subranges as discussed
above. Finally, as will be understood by one skilled in the art,
arange includes each individual member. Thus, for example,
agroup having 1-3 cells refers to groups having 1, 2, or 3 cells.
Similarly, a group having 1-5 cells refers to groups having 1,
2,3, 4, or 5 cells, and so forth.

[0064] From the foregoing, it will be appreciated that vari-
ous embodiments of the present disclosure have been
described herein for purposes of illustration, and that various
modifications may be made without departing from the scope
and spirit of the present disclosure. Accordingly, the various
embodiments disclosed herein are not intended to be limiting,
with the true scope and spirit being indicated by the following
claims.

What is claimed is:

1. A load balancer, comprising:

a plurality of request processing units, each of the plurality
of request processing units comprising:

US 2014/0173624 Al

a network socket that is connected to at least one appli-
cation server and at least one cache server, and

aprogrammable processor configured to process a cache
request from one of'the at least one application server;

a performance checking unit configured to measure pro-
cessing loads of the programmable processors; and

aprocessor managing unit configured to adjust the process-
ing loads by writing or deleting a load balancing pro-
gram in at least one of the programmable processors.

2. The load balancer of claim 1, wherein the programmable
processor is an FPGA (Field Programmable Gate Array).

3. The load balancer of claim 1, further comprising:

a memory configured to store a plurality of load balancing

programs,

wherein the network sockets are each configured to receive
the cache request and the programmable processors are
further configured to analyze the cache request, and

wherein the processor managing unit is further configured
to select the load balancing program from the plurality
of'load balancing programs based at least in part on the
analysis of the cache request.

4. The load balancer of claim 1, wherein the programmable
processors are further configured to check whether data cor-
responding to the cache request exists in the at least one cache
server.

5. The load balancer of claim 4, wherein the programmable
processors are further configured, if the data corresponding to
the cache request exists in the at least one cache server, to
transmit, to the one of the at least one application server, an
address of the cache server that stores the data corresponding
to the cache request.

6. The load balancer of claim 5, further comprising:

a database configured to record relationship information of
the cache request and the cache server that stores the data
corresponding to the cache request.

7. The load balancer of claim 4, wherein the processor
managing unit is further configured, ifthe data corresponding
to the cache request does not exist in the at least one cache
server, to write in one of the programmable processors the
load balancing program that handles the cache request by
designating one of the at least one cache server, and

wherein the one of the programmable processors is config-
ured to transmit, to the one of the at least one application
server, an address of the one of the at least one cache
server designated by the load balancing program.

8. The load balancer of claim 1, wherein the performance
checking unit is further configured to compare processing
load of each of the programmable processors with a prede-
termined value, and

wherein the processing managing unit is further configured
to adjust the load of each of the programmable proces-
sors based at least part on the comparison.

9. The load balancer of claim 1, wherein the at least one

cache server is connected to a cloud datacenter.

10. The load balancer of claim 1, further comprising:

a compiler configured to translate the load balancing pro-
gram into a bitstream representing configuration infor-
mation of the at least one of the programmable proces-
sors, and

wherein the processor managing unit is further configured
to write the bitstream in the at least one of the program-
mable processors.

Jun. 19, 2014

11. A method performed under control of a load balancer
including a plurality of programmable processors, compris-
ing:

receiving a cache request from one of at least one applica-

tion server;

writing, into one of the plurality of programmable proces-

sors, a load balancing program that handles the cache
request by designating one of at least one cache server;
and

transmitting, to the one of the at least one application

server, an address of the one of the at least one cache
server corresponding to the cache request.

12. The method of claim 11, further comprising:

determining whether the data corresponding to the cache

request exists in the at least one cache server.

13. The method of claim 11, further comprising:

measuring processing load of each of the plurality of pro-

grammable processors;

comparing the processing load with a predetermined value;

and

adjusting the processing load based at least in part on the

comparing.

14. The method of claim 13, wherein the adjusting com-
prises writing the load balancing program into at least one of
the plurality of programmable processors.

15. The method of claim 11, wherein the programmable
processor is an FPGA (Field Programmable Gate Array).

16. The method of claim 11, wherein the at least one cache
server is connected to a cloud datacenter.

17. The method of claim 11, further comprising:

recording, in a database of the load balancer, relationship

information of the cache request and the one of the at
least one cache server.

18. The method of claim 11, further comprising:

analyzing the cache request; and

determining the load balancing program from a plurality of

load balancing programs based at least in part on the
analyzing.

19. The method of claim 11, further comprising:

translating the load balancing program into a bitstream

representing configuration information of the one of the
plurality of programmable processors,

wherein the writing includes writing the bitstream into the

one of the plurality of programmable processors.

20. A computer-readable storage medium having stored
thereon computer-executable instructions that, in response to
execution, cause a load balancer including a plurality of pro-
grammable processors to perform operations, comprising:

receiving a cache request from one of at least one applica-

tion server;

writing, into one of the plurality of programmable proces-

sors, a load balancing program that handles the cache
request by designating one of at least one cache server;
and

transmitting, to the one of the at least one application,

server an address of the one of the at least one cache
server corresponding to the cache request.

21. The computer-readable storage medium of claim 20,
wherein the programmable processor is an FPGA (Field Pro-
grammable Gate Array).

22. The computer-readable storage medium of claim 20,
wherein the operations further comprise:

measuring processing load of each of the plurality of pro-

grammable processors;

US 2014/0173624 Al

comparing the processing load with a predetermined value;

and

adjusting the processing load based at least in part on the

comparing.

23. The computer-readable storage medium of claim 22,
wherein the adjusting comprises writing the load balancing
program into at least one of the plurality of programmable
processors.

24. The computer-readable storage medium of claim 20,
wherein the operations further comprise:

analyzing the cache request; and

determining the load balancing program from a plurality of

load balancing programs based at least in part on the
analyzing.

Jun. 19, 2014

