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講義概要 
•  線形回帰モデルのベイズ推定 
– 通常最小二乗法(OLS)との比較 
– 尤度関数と自然共役事前分布 
– 平均・分散未知の場合の階層ベイズ推定 

•  無情報事前分布と非正則事前分布 
•  偏差情報量基準 
•  R演習 



線形回帰モデル 
•  サンプル数n (i=1, …, n)、説明変数の数k 
•  被説明変数yi、説明変数xik、未知パラメー
タβk、誤差項εi 

•  誤差項εiは平均0、分散σ2の正規分布に
従う⇒分散は未知 
yi = β0 + xi1β1 + xi2β2 +!+ xikβk +εi ,

εi ~N 0,σ 2( )



線形回帰モデル 
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尤度関数 
•  データX、未知パラメータβ、分散σ2が
与えられた条件下で、被説明変数yが得ら
れる条件付き確率は 

•                           とするとき 
•  尤度関数は正規分布となる 

p yi | xi ;β,σ
2( ) = 1

2πσ 2
exp −

yi − xiβ( )
2

2σ 2
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xi = 1,xi1,…,xik( )



尤度関数 
•  尤度関数の平均と分散はそれぞれ以下の
とおりとなる 

•  平均 

•  分散 

E yi | xi ;β,σ
2( ) = xiβ

V yi | xi ;β,σ
2( ) =σ 2



尤度関数 
•  全てのiについての尤度関数は 

p y | x;β,σ 2( )
= p yi | xi ;β,σ
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対数尤度関数 
•  尤度関数の自然対数をとると 
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最尤法と最小二乗法 
•  最尤法では(対数)尤度関数を最大化するこ
とで未知パラメータを得る⇒対数尤度関数
は上に凸となる関数 

•  対数尤度関数を最大化することは、次式
を最小化することと同じ 

yi − xiβ( )
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最小二乗法による解 
•  次式を最小化することにより得られる未
知パラメータはそれぞれ以下のようになる 

•  最小二乗解 

yi − xiβ( )
2
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xiyii=1

n
∑
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n − k +1( )
yi − xi β̂( )
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∑
自由度: n-(k+1) 



尤度関数(全データ) 
•  データX、未知パラメータβ、分散σ2が
与えられた条件下で、被説明変数yが得ら
れる条件付き確率は 

•  尤度関数は正規分布となる 

p y | X ;β,σ 2( ) = 1

2πσ 2
exp −

y − Xβ( )
2

2σ 2
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尤度関数(全データ) 
•  尤度関数の平均と分散はそれぞれ以下の
とおりとなる 

•  平均 

•  分散 

E y | X ;β,σ 2( ) = Xβ

V y | X ;β,σ 2( ) =σ 2



尤度関数(全データ) 
•  全てのデータについての尤度関数は 

p y | X ;β,σ 2( )
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対数尤度関数(全データ) 
•  全てのデータについての尤度関数は 

lnp y | X ;β,σ 2( )

= −
n
2
ln2π − n

2
lnσ 2 −

y − Xβ( )
T
y − Xβ( )

2σ 2



最小二乗法による解(全データ) 
•  対数尤度関数を最大化⇔最小二乗法による
不偏推定量が得られる 

β̂ = XTX( )
−1
XTy

σ̂ 2 =
1
ν
y − xβ̂( )

T
y − xβ̂( )

ν = n − k +1( ) …自由度 
↑定数項を加えた変数の数 



尤度関数 
•  精度　　　　 とすると尤度関数は以下の
ように式変形できる 

τ =1 σ 2

p y | X ;β,τ( )

=
τ 1 2

2π( )
n 2
⋅ exp −

τ
2
y − Xβ( )

T
y − Xβ( )
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自然共役事前分布と事後分布 
•  正規分布の自然共役事前分布にガンマ分
布があった 

•  精度　　　　 が未知のとき、その事前分
布にガンマ分布Γ(τ|a, b)を乗じると事後
分布(ガウス-ガンマ分布)が得られる 

τ =1 σ 2

p y | X ;β,τ( ) ⋅ p τ |a,b( )

∝τ ν 2 ⋅exp −
νσ̂ 2
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…ガウス分布 

…ガンマ分布 



自然共役事前分布と事後分布 
•  尤度関数(正規分布)に自然共役事前分布
(ガンマ分布)を乗じて得られる事後分布
(ガンマ分布)は以下のようになる（正規化
係数のガンマ分布はキャンセル） 

p y | X ;β,τ( ) ⋅ p τ |a,b( )

∝τ ν 2 ⋅τ a−1 ⋅exp −bτ − νσ̂
2

2
τ

$

%
&

'

(
)

∝τ
a+ν 2( )−1 ⋅exp − b + νσ̂

2

2

*
+
,

-
.
/
τ

$

%
&
&

'

(
)
)



自然共役事前分布と事後分布 

p y | X ;β,τ( ) ⋅ p τ |a,b( )
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•  事後分布 



階層ベイズ 
•  平均と分散(精度)が未知のとき、精度のガ
ンマ分布と尤度関数の正規分布を乗じる
ことで事後分布が得られる 
精度τがガンマ分布に従う 

精度τが与えられた条件下で 
パラメータβが正規分布に従う 

パラメータβと精度τが与えられた 
条件下で被説明変数yが得られる 

p(τ)∝Γ( ) 

p(β|τ) ∝N( ) 

p(y|β,τ) ∝N( ) 



線形回帰モデルのベイズ推定 
•  線形回帰モデルは、未知パラメータβと精
度τについて共役事前分布を与えることに
よりベイズ推定できる 

•  自然共役事前分布 

p β | τ ,y( ) =N XTX( )
−1
XTy, 1 τ( ) XTX( )
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線形回帰モデルのベイズ推定 
•  共役事前分布の超パラメータを導入するこ
とによりを次式のように簡略化する 

 

•  超パラメータb0, B0, ν0, S0は適当に設定
しても問題ない 

p β | τ ,y( ) ~N b0, 1 τ( )B0( )
p τ | y( ) ~ Γ ν0

2
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ν0S0
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線形回帰モデルのベイズ推定 

b0 = XTX( )
−1
XTy

B0 = XTX( )
−1

ν0 = ν

S0 = σ̂
2 =

1
ν
y − xβ̂( )

T
y − xβ̂( )

•  超パラメータを以下のように置き換える 



線形回帰モデルのベイズ推定 
•  以下のような事後分布が得られる 

p β | τ ,y( ) ~N b1,B1( )

p τ | y( ) ~ Γ
ν1
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ν1S1
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b1 = B1 B0
−1b0 + τX

Ty( ), B1
−1 = B0

−1 + τXTX ,

ν1 = ν0 +n, ν1S1 = ν0S0 + y − Xb1( )
T
y − Xb1( )



線形回帰モデルのベイズ推定 
•  βの周辺事後分布は以下のt分布に従う 

p β | τ ,y( ) ~ t b1,σ̂ 2S1,ν1( )
E β | τ ,y( ) = b1
V β | τ ,y( ) = ν1σ̂

2

ν1 − 2
S1



線形回帰モデルのギブスサンプリング 

•  繰り返し回数s=0, …, Nとし、初期値b0, 
B0, ν0, S0を設定する 
1. 　　                                 から　　を
生成する 

2. 　　　　　　　　　　　　　から　　を
生成する 

3.  s<Nのとき1に戻る。s=Nのとき計算終了 

p β s+1 | τ s,y( ) ~N b1
s, 1 τ( )B1s( ) β s+1

p τ s+1 | β s+1,y( ) ~N b1
s, 1 τ( )B1s( ) τ s+1



線形回帰モデルのベイズ推定 
•  パラメータの事後平均の点推定値は、ベイ
ズ推定の事前情報とOLSの点推定値との
重み付け平均 

•  事前情報　　と　　が非常に小さいとき
には、事後情報はどうなるだろうか？ 

E β | X ,τ ,y( ) = b1 = B1 B0−1b0 + τXTy( )
B0

−1 ν0



線形回帰モデルのベイズ推定 
•  事前情報　　　　及び　　　のとき、事
後情報はそれぞれ以下のようになる 

•  すなわち、最小二乗解と同じ結果!! 

B0
−1 = 0 ν0 = 0

b1 = XTX( )
−1
XTy = β̂

ν1 = n

S1 =
1
ν1
y − Xb1( )

T
y − Xb1( ) = σ̂ 2



線形回帰モデルのベイズ推定 
•  推測統計学による線形回帰モデルの推定は、
ベイズ推定において事前情報を与えない場
合と同じ結果である 

•  事前情報なしでベイズ推定する場合の事前
分布を無情報事前分布(non-informative 
prior)という 

•  ベイズ統計では未知パラメータβがランダ
ム変数であると考えるが、推測統計学で
は　をランダム変数と考えているにほかな
らない 
β̂



線形回帰モデルのベイズ推定 
•  無情報事前分布は、積分しても1とならな
い(定数に収束しない) 

•  このような事前分布を非正則事前分布
(improper prior)という 

•  非正則事前分布の例として、一様分布が挙
げられる 

•  推測統計学による線形回帰モデルの不偏推
定量は、事前情報に一様分布を与えた場
合のベイズ推定とみなすこともできる 



偏差情報量基準 
(Deviance Information Criterion: DIC) 

•  モデルの当てはまりの良さを示す指標 
•  未知パラメータθが得られた条件下でデー
タyが求められる確率p(y|θ)⇒つまり尤度
関数 

•  対数尤度を用いて得られる次式をデヴィア
ンスとよぶ 

D θ( ) = −2logp y |θ( )



偏差情報量基準 
•  パラメータ点推定値に対するデヴィアンス 

•  デヴィアンスの平均値 

D θ( ) = −2logp y |θ( )

D θ( ) = Eθ|y −2logp y |θ( )"
#

$
%



偏差情報量基準 
•  有効なパラメータ数 

•  偏差情報量基準(DIC) 

pD =D θ( )−D θ( )

DIC =D θ( )+ pD
=D θ( )+ 2pD



線形回帰モデルのベイズ推定例 
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線形回帰モデルのベイズ推定例 


