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山登り

対数尤度関数が最大
となる点を点推定

シミュレーションで
尤度関数の形を推定
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データ

事前分布 尤度関数 事後分布
ベイズ更新
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超ﾊﾟﾗﾒｰﾀ

事前分布 尤度関数 事後分布

ベイズ更新Γ(α,λ)

N(μ,σ2)
正規分布の
平均と分散
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• Markov-chain Monte Carlo (MCMC)
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Metropolis-Hasting法

ギブス・サンプリング
(Gibbs sampler)

・完全な条件付き確率
の集合から順々に標本
を取り、緩い条件下で
安定した事後分布を持
つマルコフ連鎖を得る
・未知ﾊﾟﾗﾒｰﾀ２個以上

Metropolis法
(酔歩法)

・完全な条件付き確率
から順々に標本を得る
のが難しい時に用いる
・事後分布の候補分布
と提案分布の比を計算
し受容するか棄却する
かを判断

MCMC���	������
��
初期値パラメータθ1を(適当に)与える

尤度p(D|θ)計算

p(θs|D)
c*p(θ’|D)

ｼﾐｭﾚｰｼｮﾝ回数s

事後確率比α=

α≧u(受容率)
θs+1=θ

α<u
θs+1=θ’

最大計算回数Sに到達

候補確率分布
p(θ’)=p(θs+1)

事後確率p(θs|D)計算
ｼﾐｭﾚｰｼｮﾝ回数
s⇒s+1に更新

no
yes

最初のb回の
計算を捨てる

事後分布を得る
θを受容 θを棄却

(cは定数)
受
容
・
棄
却
法
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受容率を考えない場合 受容率を考える場合

この間に収まって
欲しい！

シミュレーションの
ばらつきが大きい！



��-��� (acceptance-rejection)

受容
棄却

p(θs|D)
c×p(θ’|D) ≧受容率u

p(θs|D)
c×p(θ’|D) <受容率u

提案分布p(θ’|D)

標本分布p(θs|D)
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Xt-1X1 Xt Xt+1

Xt標本空間x 部分集合A

P Xt +1 ∈ A |X1,!,Xt( ) = P Xt +1 |Xt( ) ⋅P Xt |Xt −1( ) ⋅
                                                          ⋅!P X2 |X1( ) ⋅P X1( )

事後確率 初期値推移核
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稼働検査期間：初期値に影響を受ける
と考えて「捨てる」計算回数burn-in

定常状態にあると考えて
パラメータ推定に用いる
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２つの未知パラメータに対する
目標分布（求めたい分布）
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