[連載]フリーソフトによるデータ解析・マイニング 第73回

空間の統計学(1):事始め

慶應義塾大学総合政策学部准教授

古谷 知之 (Furutani Tomoyuki)

■兵庫県生まれ。2001年東京大学大学院工学系研究科博 士課程修了。博士(工学)。東京大学大学院助手、慶應義 塾大学環境情報学部専任講師を経て、07年4月より現職。 専門分野:空間統計学、都市交通計画、観光政策。

今回から、「空間の統計学」をテーマに、1 年間程度にわたり、本連載を執筆することに なりました。どうぞよろしくお願いします。 本連載では、以前、「Rと空間統計」に関する シリーズがありましたが(2007年9月号から 2008年2月号)、今回は、空間データの統計解 析を主眼に執筆する予定です。

1. はじめに

本稿では、Rを使って空間統計学や空間計 量経済学を学ぶ上での基本的な情報を提供し たいと考えています。第1回は、空間統計学 や空間計量経済学と呼ばれる分野で使われて いるRのパッケージ、地図表示と主題図の作 成、空間データベースの操作(属性テーブル の結合)について紹介します。できるだけ WindowsとMacの両方に対応できるように心 がけますが、気づかない点もあると思います ので、適宜、ご指摘いただければ幸いです。

2. Rのパッケージ

Rでは、GISデータの基本操作(インポート、 エクスポート、座標系の定義、地図表示など) や空間データの統計解析、計量経済分析に加 え、空間疫学や環境学など、特定分野で有用 なパッケージも用意されています。

最近では、70あまりの空間統計関連パッケ ージが提供されるようになり(表1、[2])、ベ イズ法など最新の推定方法が適用可能なパッ ケージも利用可能です。また、この数年、R を使った空間データ分析に関する文献も出版 されています(例えば、[1])。

空間統計学、空間計量経済学関連のパッケ ージは、以下の方法により一括してインスト ールすることができます(ただし、LANの接 続速度が遅い場合は、インストールに時間が かかるので、必ずしもお勧めしません)。

install.packages("ctv") library(ctv) install.views("Spatial")

パッケージがインストールできたら、早速、

A Hの空间統計学、空间計重栓済-	子渕理ハツ	クーコ	ノ一頁	恴
---------------------	-------	-----	-----	---

パッケージ名	概要	パッケージ名	概要
ade4	生態学、環境学関連データの分析	PBSmodelling	Pacific Biological Stationデータのモデリング
adehabitat	動物の生息環境分析	ramps	RAMPS法を使ったベイズ空間統計モデリング
ads	RepleyのK関数をはじめとする空間点過程分析	RandomFields	ランダム場のシミュレーションと分析
akima	不規則グリッドデータのスプライン補完	RArcInfo	Arc/Info V7.xデータのインポート
ash	Davit ScottのASHルーチン	RColorBrewer	主題図作成のためのカラーパレット
aspace	セントログラフィ法と計算幾何学	regress	線形共分散構造を持つガウス線型モデル
automap	ヴァリオグラムとクリギング補完の自動生成	rgdal	空間データ抽出ライブラリのバインディング(windowsのみ)
classInt	主題図作成時の一変量階級区分選択	RgoogleMaps	Google Mapsへのオーバーレイ
clustTool	クラスター分析	RPyGeo	ArcGISジオプロセシング
Dcluster	疫学データの空間クラスター検出	RSAGA	SAGAジオプロセシングと地形解析
diseasemapping	疫学データの標準死亡率比計算	RSurvey	空間分布データの解析
ecespa	空間点過程分析	sgeostat	S+の空間統計モデリングのためのオブジェクト指向フレー ムワーク
fields	空間補完をはじめとする空間分析用ツール	shapefiles	ESRIシェープファイルの読み込みと書き出し
GEOmap	地図投影	sp	空間データ用クラスとメソッド
geomapdata	GEOmapに使う地図データ	spatclus	2Dおよび3D点データの空間クラスタリング
geonames	www.geonames.org 用インターフェース	spatgraphs	点データのグラフ
geoR	尤度関数やベイズ法を用いた空間統計分析	spatialCovariance	空間データの共分散行列計算
geoRgIm	一般化線形空間回帰モデル(ベイズ法もカバー)	SpatialExtremes	空間極値モデリング
GeoXp	対話型の探索的空間データ分析	spatialkernel	多変量空間点過程のノンパラメトリック推定
glmmBUGS	WinBUGSを使った一般化線形混合モデル、空間モデル分 析	spatstat	空間点過程分析、モデル適合、シミュレーション
gmaps	グリッドデータ用関数	spBayes	MCMCによる一変量および多変量モデリング
gmt	GMT地図作成用ソフトとRとのインターフェース	spdep	空間重み付け行列、隣接行列など空間統計指標の計算
grasp	一般化回帰モデルと空間予測	spgrass6	GRASS 6.0とRとのインターフェース
GRASS	GRASS 5.0とRとのインターフェース	spgwr	地理的加重回帰モデル
gstat	空間統計モデリング、予測、シミュレーション	splancs	時空間点過程分析
hdeco	カテゴリカルマップ比較	spsurvey	合衆国環境保護庁の環境モニタリング・評価プログラムの ための調査設計と分析
mapdata	大規模/高解像度空間データ	SQLiteMap	SQLiteを使ったグラフィカルマップの操作
mapproj	緯度経度の座標系変換	tgp	ベイズガウス過程モデル
maps	地図表示	tossm	空間構造の検出
maptools	空間オブジェクトの読み込みと操作	trip	動物移動軌跡データの空間解析
MBA	マルチレベルB-スプライン近似	tripack	二次元のドロネー三角網作成
ModelMap	学習データによる検証とクロスバリデーション	tripEstimation	動物移動軌跡のメトロポリスサンプラー
ncdf	netCDFデータファイルへのインターフェース	vegan	植物生態やコミュニティ生態の多様性分析
ncf	空間ノンパラメトリック共分散関数	VR	Venable & Relpeyの"Modern Applied Statistics with S"で 用いられた関数とデータ
pastecs	生態学の時空間系列データ分析	WeedMap	雑草強度マップ
PBSmapping	Pacific Biological Stationの調査データ		

出典) CRANのHP[2]

空間データを操作してみましょう。

3. 地図データの表示

本稿で用いるデータは、筆者のHP[3]で公開 しています。上記HPから「ESTRELA連載」 にアクセスして、各回のデータをダウンロー ドして活用してください。

今回は、ESRIジャパンが無償配布している 日本の全国市町村境界シェープファイル[4]を、 都道府県でマージし、属性データを一部加工 した、都道府県境界シェープファイルを使う ことにします。

データをダウンロードしたら、ファイルの あるディレクトリをRの作業ディレクトリに 指定しておくとよいでしょう。Windowsユー ザは「ファイル」→「ディレクトリの変更」 で、Macユーザは「その他」→「作業領域の 変更」で、それぞれ作業ディレクトリを指定 することができます。

インストールしたパッケージのうち、

maptoolsパッケージを、library()関数を使っ て呼び出します。

library(maptools)

maptoolsパッケージでは、spパッケージの オブジェクトとmapsパッケージのオブジェク トを扱うことができます。ここでは、前者の オブジェクトを扱うことにします。spパッケ ージでは、SpatialPoints、SpatialLines、 SpatialPolygonsなどのSpatial*オブジェクトを 扱います。

次に、**readShapePoly**()関数を使って、シ ェープファイル jpn_pref.shpをインポートし、 地図を表示します(図1)。

jpn_pref <- readShapePoly(
"jpn_pref.shp",
IDvar="PREF_CODE")
plot(jpn_pref, col="grey")
summary(jpn_pref)</pre>

4. 属性テーブルのマッチング

jpn_pref.shpファイルの属性テーブルには、 夜間人口、可住地面積、人口密度などのデー タが含まれています。さらに、「社会生活統計 指標-都道府県の指標-」[5]の死因別死亡者 数のデータのうち、2005年のデータを[6]から ダウンロードし、jpn_pref.shpの属性テーブル と結合してみましょう。

ここでは、死因別死亡者数(人口10万人あ たり死亡者数)のうち、生活習慣病による死 亡者数 (geriatric)、悪性新生物による死亡者 数 (malignant)、糖尿病による死亡者数 (diabetes)、高血圧性疾患による死亡者数 (hypertensive)のデータのみをCOD.csvファ イルに格納しています。

jpn_COD <- read.table(
"COD.csv",sep=",",header=T)
summary(jpn_COD)</pre>

次に、jpn_prefの属性テーブルとjpn_CODと を結合します。2つのテーブルに共通なIDを 使ってマッチングするには、match()関数を 使い、テーブル結合にはspCbind()関数を使 います。

ID.match <- match(jpn_pref\$PREF_CODE, jpn_COD\$PREF_CODE) ID.match jpn_COD1 <- jpn_COD[ID.match,] summary(jpn_COD1) jpn_pref_COD <- spCbind(jpn_pref,jpn_COD1) names(jpn_pref_COD) summary(jpn_pref_COD)

5. 主題図の作成

データの準備ができたところで、いよいよ 主題図を作成してみましょう。主題図におい て階級区分を検討することは、空間データの 分類の第一歩といえます。主題図は、(1)カラ ーパレットを作成し、(2)階級区分を定義し、 (3)主題図を描く、という順番で作成します。 主なカラーパレットには、以下のようなも のがあります。それぞれ、nは階級数、start とendは色または色の濃さ、alphaは不透明度 を意味します。

pal0 <- c("grey","grey9") pal1 <- gray.colors(n=5,start=0.9,end=0.3) pal2 <- rainbow(n=5,start=0.6,end=0.1) pal3 <- heat.colors(n=5,alpha=1) pal4 <- topo.colors(n=5,alpha=1) pal5 <- terrain.colors(n=5,alpha=1) pal6 <- cm.colors(n=5,alpha=1)

階級区分方法は、パッケージClassIntの classInt()関数によって指定します。

library(classInt)

この関数は一変量データの階級区分を行う 際に用いられますが、関数中のstyleに階級 区分方法を指定することにより、等量分類 (quantile)、等間隔分類 (equal)、標準偏差 分類 (sd)、自然階級分類 (jenksまたは fisher)、階級数に依存しない分類 (pretty)、 非階層クラスタリング (k-means法)による 分類 (kmeans)、階層クラスタリングによる 分類 (hclustまたはbclust) を行うことができ ます。

①等量分類

等量分類は、各階級区分に等しい数の統計 値(または地区)が含まれるようにする分類 方法です。4つの階級に区分した場合、4分 位(25%、50%、75%)でデータが区分され ます。 q_pref <- classIntervals(jpn_pref_COD\$Pop_Dens, n=5, style="quantile") plot(q_pref, pal=pal0) q_pref_Col <- findColours(q_pref,pal0) plot(jpn_pref_COD,col=q_pref_Col) title("Population Density (quantile)") legend("topleft",fill=attr(q_pref_Col,"palette"), legend=names(attr(q_pref_Col,"table")),bty="n")

② 等間隔分類

等間隔分類は、データの最大値と最小値の 差(=データの範囲)を階級数で割って、等 間隔で区分する方法です。

eq_pref <- classIntervals(jpn_pref_COD\$geriatric, n=5, style="equal")

③ 標準偏差分類

標準偏差分類は、データの平均値からの乖 離度について、標準偏差を±して示す方法で す。

sd_pref <- classIntervals(jpn_pref_COD\$malignant, style="sd")

④ 自然階級分類(Jenksの最適化法)

データの変化点が比較的大きいところに閾 値が設定されます。styleにfisherを指定する と、Fisher-Jenksの方法で分類され、jenksを 指定すると、単にJenksの方法で分類されま す。

fj_pref <- classIntervals(jpn_pref_COD\$malignant, style="fisher") ⑤ 階級数に依存しない分類

styleにprettyを指定すると、指定した階級数 にかかわらず、視覚的にわかりやすい階級区 分で地図を描くことができます。

pr_pref <- classIntervals(
jpn_pref_COD\$malignant,
style="pretty")</pre>

⑥ 非階層クラスタリングによる分類 非階層クラスタリングの代表的な方法であ るk-means法により分類します。この場合、指 定した階級数がk-means法のクラスタ数となり ます。

km_pref <- classIntervals(jpn_pref_COD\$Pop_Dens, n=5, style="kmeans")

⑦ 階層クラスタリングによる分類

階層クラスタリングにより分類する方法で す。階層クラスタリングの方法は、hclust() 関数を参照してください(help(hclust)とい うコマンドを実行すると、ヘルプファイルを 閲覧できます)。

hc_pref <- classIntervals(
jpn_pref_COD\$Pop_Dens, n=5,
style="hclust",
method="complete")</pre>

四分位分類で人口密度を表示した地図と階 級区分を、それぞれ図2と図3に示します。 また、誌面の都合上、生活習慣病による死亡 者数、悪性新生物による死亡者数、糖尿病に よる死亡者数、高血圧性疾患による死亡者数

図2 人口密度の主題図(四分位分類)

Population Density (quantile)

資料)図2同様

Ω

2000

を、それぞれ、等間隔分類、標準偏差分類、 自然階級分類(Jenksの最適化法)、階級数に 依存しない分類を用いて分類した結果を、図 4~7に示します。

4000

6000

8000

10000

Geriatric diseases (equal)

資料) 図2同様

図5 悪性新生物による死亡者数(標準偏差分類)

Malignant neoplasms (standard deviations)

- *参考文献・URL
 - R. S. Bivand, E. J. Pebesma and V. Gomez-Rubio (2008) : "Applied Spatial Data Analysis with R" : Springer.
 - [2] CRANOHP(http://cran.r-project.org/web/ views/Spatial.html)
 - [3] 筆者のHP(http://web.sfc.keio.ac.jp/~maunz/wiki/)

図6 糖尿病による死亡者数(自然階級分類)

Diabetes mellitus (Fisher-Jenks)

資料) 図2同様

図7 高血圧性疾患による死亡者数(階級数に 依存しない分類)

Hypertensive diseases (pretty)

- [4] ESRIジャパンのHP・全国市区町村界データ (http://www.esrij.com/products/gis_data/ japanshp/japanshp.html)
- [5] 総務省統計局:社会生活統計指標-都道府県の 指標-2009(http://www.stat.go.jp/data/ssds/ 5.htm)
- [6] e-StatのHP (http://www.e-stat.go.jp/)