
1. はじめに
今回は、「ポイントデータの分布がランダム

かどうか」を分析するための手法を紹介しま

す。この手法は、空間点過程やポイントパタ

ーンの分析として知られています。前回紹介

した「空間集積性」に関する手法が面データ

や点データに対して適用されるのに対し、今

回紹介する手法は点データに対してのみ適用

されます。

空間点過程は、以下のように、広範な分野

に応用されています。

①空間疫学の分野：感染症（コレラ、インフル

エンザなど）の発症者の空間分布解析など

②生態学分野：森林などでの植生分布の均一

性を検出する場合など

③地震工学：地震発生地点の空間分布解析な

ど

④画像工学：プリンタインクの粒径分布の均

質性を分析する場合など

⑤人間工学：アイマークレコーダでの注視点

解析など

⑥都市工学：犯罪分布やGPSで得られた都市

活動分布の解析など

⑦天体物理学：宇宙望遠鏡から得られた惑星

や銀河の分布解析など

これらの分析で使われている点データには、

発生数や種類などの属性が付与されており、

マーク付き点過程と呼ばれています。今回の

演習では、仮想的なデータとして、カラープ

リンタのように４色（シアン、マゼンタ、イ

エロー、ブラック）のマーク付き点過程デー

タを用いることにします。

2. カーネル密度関数
空間点過程の分析には、Rのspatstatという

パッケージを用います。筆者のHP（http://

web.sfc.keio.ac.jp/̃maunz/wiki）からX600.txt

というファイルをダウンロードして読み込ん

でください。このデータには、“c”・“m”・

“y”・“b”というマークが付けられていま

すが、それぞれシアン、マゼンタ、イエロー、

ブラックを意味します。spatstatパッケージ
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で２次元の空間点過程を分析するために、

ppp( )関数を使って座標値とマーク及び分析

対象範囲（ウィンドウ）を定義します。

点過程全体の散布図を図１に示します。

ppp( )関数で定義されたマーク付き空間点過

程データをマーク別に表示・解析したい場合

は、split( )関数でマーク別データを抽出しま

す。

density( )関数を用いた場合、ガウス型カ

ー ネ ル 関 数 を 用 い て 計 算 さ れ る 強 度

（intens i t y）が密度として表示されます。

いま、n個の点データ xi（i＝1, … , n）が分析対

象地域 Aに分布しているとします。地域 Aの

任意の地点 xに対するカーネルスムージング

推計値 は、次式から得られます。

ここで、k（xi－ x）はカーネル関数、hは地

点 xのバンド幅、q（x）は式�で示されるエ

ッジ修正を意味します。カーネル関数には、

ガウス関数、イパネクニコフ関数、四次関

数（biweight関数）、矩形関数、三角関数（コ

サイン関数）などが適用されます。例えば、

k（xi－x）にガウス関数を適用する場合、カー

ネル関数は式�のように表されます。

ここで、σ2はカーネル関数の標準偏差、v

は対象地域の任意の地点を意味します。

図２では、バンド幅 hを0.1としたときの点

過程全体のカーネル密度分布を示しています。

contour( )関数を用いると、密度関数のコン

ター図を描くことができます。また、persp(

)関数を用いると、密度を３次元で表示するこ

とができます。

λ（x）＾ 
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library(spatstat)
X600 <- read.table("X600.txt",
sep=",", header=T)
m <- sample(c("c","m","y","b"),
600, replace=TRUE)
m <- factor(m, levels=c("c","m","y","b"))
X <- ppp(X600$x, X600$y, c(0,1), c(0,1),
marks=m)

# 点過程全体の密度マップ
plot(density(X), 0.1)
contour(density(X), add=T)
# シアン色のみの密度マップ
plot(density(split(X)$c), 0.1)
contour(density(split(X)$c), add=T)
# 密度関数の３次元表示
D <- density(X)
persp(D)

plot(split(X)$b, main="color dots")
points(split(X)$m, col=14)
points(split(X)$y, col=7)
points(split(X)$c, col=5)

図１　点過程データ
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3. 点データのランダム性
点データのランダム性を検証するベンチマ

ーク的な手法として、空間データの完全ラン

ダム性（Complete Spatial Randomness：

CSR）を示す方法が知られています。この方

法は、点過程がランダムに分布する場合、均

質なポアソン過程に従うと仮定し、「点過程が

完全にランダムである」という帰無仮説に対

して仮説検定を行い、CSRでないという証拠

を見つけることが基本的な分析となります。

CSRを証明する代表的な手法として、①χ2

検定やコルモゴロフ・スミルノフ検定を用い

る方法（便宜上、古典的仮説検定方法と呼び

ます）、②ポアソン過程に対して最尤法を適

用しポアソンモデルを推定する方法、③距離

に基づく統計量を用いる方法などがあります。

このほか、点同士の相関や点と背景データと

の相互作用を考慮したギブス点過程による方

法などもありますが、誌面の都合上、割愛し

ます。

� 古典的仮説検定方法

①コドラートを使ったχ2検定

この方法は、分析対象地域を「コドラー

ト」と呼ばれる任意の方形サブ領域に分割

し、各コドラートの点密度に対してピアソン

のχ2検定を行う方法です。この方法では、
χ2検定によるp値が、例えば、非常に小さい

とき帰無仮説を棄却し、点過程がランダムで

ないと判断します。Rでは、quadrat.test( )関

数を用いて計算することができます。図３は、
χ2検定の結果を各コドラート上に示したもの

ですが、コドラート内の左上が実測値（ポイ

ント数）、右上が理論値、下が実測値と理論値

との差を意味します。

②コルモゴロフ・スミルノフ検定

対象地域全体の観測点に対して、任意の関

数から得られる期待地点を比較し、コルモゴ

ロフ・スミルノフ検定を行う方法があります。

例えば、関数としてx座標を採用し、x座標の

観測値と期待値との差の検定を行うことがで

きます。Rでは、kstest( )関数を用いてコル

モゴロフ・スミルノフ検定を適用することが

できます（図４）。
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図２　密度マップ

quadrat.test(X, nx=5, ny=5)
plot(quadrat.test(X, nx=5, ny=5), col=2)

図３　コドラート法による検定結果
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� ポアソンモデルを推定する方法

点過程 xiと未知パラメータθからなる密度
関数 を用いて、均一なポアソン過程の

尤度関数は、次式のように書くことができま

す。

ここで、zj（x）は地点 xの共変量を意味しま

す。密度関数λθ（x）として、例えば、次のよ

うな関数が考えられます。

Rでは、ppm( )関数を用いてポアソンモデ

ルを推定することができます。モデルの当て

はまり傾向を図５に示します。

� 距離に基づく統計量を用いる方法

距離に基づく統計量として、① F統計量、

②G統計量、③K統計量（L統計量）、④ペ

ア相関、⑤ J統計量などがあります。

①F関数とF統計量

任意の地点から他の最近隣地点までの距離

について、F関数を使って得られる統計量で

す。F関数は任意の地点からの半径 rを用い

て、次式のように表されます。

Rでは、Fest( )関数を用いてF統計量を計

算することができます。各地点からの距離

を図６に、F関数とF統計量を図７に示しま

す。

λθ（x） 
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xcoord <- function(x,y) {x}
kstest(split(X)$c, xcoord)
plot(kstest(split(X)$c, xcoord))

図４　コルモゴロフ・スミルノフ法による検定結果

図５　ポアソンモデルの当てはまり傾向

log L（λθ（x）） ＝ Σ log λθ（x） －  ∫   λθ（x）dx � 
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modelc <- ppm(split(X)$c, ̃x+y)
# モデルの当てはまり傾向
plot(modelc, how="image", se=FALSE)
# 予測トレンド
plot(predict(modelc, type="trend",
ngrid=512))

plot(distmap(split(X)$c))
plot(split(X)$c, add=T)
plot(Fest(split(X)$c))
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②G関数とG統計量

任意の地点からの最近隣距離の分布を計測

することにより、G統計量が得られます。あ

る地点 iから他の地点 j（≠ i）との距離のうち、

最小となる組み合わせ（＝最近隣距離）をdi j

とし、di j rとなる地点の数をN（di j ; di j r,

∀i）と書くことにします。このとき、G統計

量を得るためのG関数は次式のように書くこ

とができます。

点過程が完全ランダムであるとき、G統計

量は次式のように表されます。

Rでは、Gest( )関数を用いてG統計量を計

算することができます（図８）。

③K統計量とL統計量

地点 i j 間のペアワイズ距離

を用いて、si j rとなる地点の数をN（si j ;

si j r , ∀i）と書くことにします。このとき、

K統計量を得るためのK関数は次式のように

書くことができます。

ここで、aはウィンドウの面積、q（x）は式

�で示されるエッジ修正です。

点過程が完全ランダムであるとき、K統計

量は次式のように表されます。

Rでは、Kest( )関数を使ってK統計量を計

算することができます（図９）。

si j ＝ ｜｜xi － xj｜｜
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図６　距離マップ

図７　F 関数とF 統計量

図８　G 関数とG 統計量

	 
N（di j ; di j 　 r, ∀i） 

G（r） ＝ ＾ 
n


 K（r） ＝                    N（si j ; si j 　 r, ∀i）q（x） ＾ a

（n － 1）π 

� K（r） ＝ πr2

� G（r） ＝ 1 － exp（－λπr2） 

plot(Gest(X))
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しばしば、K統計量を次式のように変形し

たL統計量が一般的に用いられます。

つまり、ポアソン過程ではL（r）＝ rとなり

ます。Rでは、Lest( )関数を用いてL統計量

を計算することができます（図10）。

④ペア相関関数

K関数の導関数を用いて、ペア相関関数を

定義することができます。

Rでは、pcf( )関数を使ってペア相関を計算

することができます（図11）。

⑤ J統計量

G統計量とF統計量を組み合わせた統計量

として、J統計量が知られています。

Rでは、Jest( )関数を用いてJ統計量を計

算することができます。J関数と J統計量を

図12に示します。
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図９　K 関数とK 統計量

K <- Kest(X)
plot(K)
Kc <- Kest(split(X)$c)
plot(Kc)

L（r） ＝ 
L（r） 
π 


 

J（r） ＝ 
1 － G（r） 
1 － F（r） 

� 

g（r） ＝ 
K （r） 
2πr

� 
'

図10 L 関数とL 統計量

plot(Lest(X))

図11 ペア相関

plot(pcf(X))

plot(Jest(X))
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4. マーク付き点過程の分析
前節で紹介した距離に基づく統計量を、マ

ーク付き点過程に適用することにより、マー

ク間の点過程の独立性やランダム性を示すこ

とができます。ただし、マークが量的変数か

質的変数かによって分析方法が異なります。

マーク付き点過程の分析方法は、①特定のタ

イプ（マーク）iと他のタイプ jとの組み合わ

せを分析する方法と、②特定のタイプ（マー

ク）iと他のすべてのタイプの組み合わせを分

析する方法とがあります。

前者は、F統計量、G統計量、K統計量（L

統計量）、ペア相関、J統計量に対して適用す

ることができます。Rを使ってマーク付き点

過程のK統計量を求める場合は、Kcross( )関

数を用いて計算することができます。

また、後者は、G統計量、K統計量（L統

計量）、J統計量に対して適用することができ

ます。Rを使ってマーク付き点過程のK統計

量を求める場合は、Kdot( )関数を用いて計算

することができます。

5. シミュレーションによる適合度分析
点過程のランダム性を示す統計量を得るた

め、K関数などの関数を用いてモンテカルロ

シミュレーションによる適合度分析を行うこ

とができます。この方法を用いると、与えら

れた点過程がシミュレーションによる包絡線

の最小値と最大値の間に包含されるかどうか

を判断することができます。 R では、

envelope( )関数を用いて適合度分析を行うこ

とができます（図13）。

＊参考文献
A. Baddeley（2008）： Analysing spatial point pattern
in R, Workshop Notes version 3, CSIRO（http://
www.csiro.au/files/files/pn0y.pdf）.
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図12 J 関数とJ 統計量

plot(Kcross(X, "c", "b"))
plot(alltypes(X, "K"))

plot(alltypes(X, "Kdot"))

E <- envelope(X, Kest, nsim=99)
plot(E)

図13 シミュレーションによる適合度分析

p45-51　解析（古谷）20-2134  09.12.1 10:38 AM  ページ 51


