Optimization Theory (DS2) Lecture #9
Minimum Cost Perfect Matching in Bipartite
Graphs and the Hungarian Algorithm

December 6, 2016

Abstract

This week’s particular form of shamanism is the Hungarian algorithm, which
we will get to after starting by explaining bipartite graphs and the idea of mini-
mum weight matching. We’ll also look at a subroutine for finding a perfect match-
ing (any one will do) on a subgraph of our original complete bipartite graph. The
Hungarian algorithm can be explained using either matrix operations or graph op-
erations; we’ll try to reconcile the two. I’ll try not to bring too much quantum
computing into this, but you never know what might happen.

1 Bipartite Graphs

Take a graph G = {V, E'} where V is the set of vertices (nodes) and E is the set of
edges (links). A few random facts about bipartite graphs:

1. A graph is bipartite if you can separate the nodes into two sets U and V' where
every edge crosses between the two sets, and no edges connect two nodes within
the set.

2. Equivalently, the graph is two-colorable. (Question: Can you identify a condi-
tion which makes this true? Hint: What about cycles on the graph, and what
about trees?)

3. A matching M is a subset of the edges such that no node (vertex) has more than
one edge in M.

4. A matching is perfect if every vertex has exactly one edge in M. (That is, a
matching might not cover all of the vertices, but a perfect matching does.)

Many interesting problems can be mapped to bipartite graphs.

2 Mapping the Problem

Consider the following problem: the four people A, B, C' and D are each offering to
do jobs 1-4 for you, for the prices in the following table:

1 2 3 4
A (80 40 50 46
B |40 70 20 25)
C 130 10 20 30

D \35 20 25 30

How can we assign the four people to the four jobs for the minimum cost? This can
easily be mapped to a bipartite graph, with the nodes A — D on the left and the nodes
1 — 4 on the right, and an edge connecting each one on the left to each one on the right,
in this case all with non-zero edge costs as in the matrix.

It can also be mapped to a linear program that is the relaxation of the equivalent
integer problem:

min z(Z) = "% 2)
subject to
A7 =1 (3)
>0 “
7 integer. (5)

where

80
40
50
46
40
70
20
25
30
10
20
30
35
20
25
30

oL
[

(6)

Al A2 A3 A4 Bl B2 B3 B4 Cl C2 (C3 C4 D1 D2 D3 D4

1 1 1 1

@)

and the ordering of entries in ¢ corresponds to the edges matching the labels across the
top of A. Or, we can solve the dual problem:

max z'(§) = 17§ ®)
subject to

ATg< e &)

However, there are other ways to solve this particular problem than via a linear (or
integer) program. The textbook begins with a rather rigorous, but abstract, approach
in order to prove some basic facts, but I found the description rather opaque. The
pseudocode for that approach is in Algorithm 3.3, in a separate document.

The most famous method for solving the problem is the Hungarian algorithm.
There are two descriptions of this algorithm, the matrix-oriented description and the
graph description. In either case, we’re going to need a way to find a perfect matching
— any perfect matching, not necessarily a minimum cost one — so let’s turn to that first.

3 Finding Some Random Perfect Matching

(Okay, not random in the sense of random number, just arbitrary, with no other impor-
tant characteristics.)

During the course of the Hungarian algorithm as a whole, we’re going to be given
a subset of the edges in our original complete bipartite graph, and be asked if a perfect
matching on that subset is possible. This subset will come to us in the form of a
set of edges for which we have successfully negotiated our price differential from the
minimum down to zero. (Don’t get too excited, it doesn’t mean people are going unpaid
or that we’re getting away for free, just that in the accounting process we’ve already set
aside enough money for them, tracked somewhere else.)

3.1 Matrix Form

If this comes to us in matrix form, it will look something like:

1 2 3 4
A 0
B 0 0 (10)
C 0
D\O0O 0
or for a slightly larger problem maybe something like
1 2 3 4 5 6
A 0
B 0
¢ 0 1D
D0 O
E 0 0
F 0 0

where we don’t care what the non-zero entries are (yet). Let’s stick with the simpler
one for the moment. In this form, we can pick matching elements using the following
recipe:

1. Go through the rows, and if there is exactly one zero in the row, assign that job
(that is, we’re going to use the edge connecting the name on the left to the name
at the top). Mark out all of the other zeros in the same column. (If there are two
rows with exactly one zero in the same column, the choice of which to assign
is arbitrary; we already know that there can be no perfect matching, but we’ll
do our best anyway. The algorithm will converge to the same solution, or an
equivalently good one, eventually.)

2. Now do the equivalent with the columns, looking for columns that haven’t yet
been assigned and which have exactly one zero. Assign those, and mark out all
of the other zeros in the same row. (Up to this point, it’s a one-way street.)

Xing out the ones we can’t use and marking the ones we are using in angle
brackets gives:

1 2 3 4
A <0>
B 0 0 (12)
C K
D\<0> i}

3. Now what’s left is rows and columns with multiple zeros each, and we’re looking
to see if there is a perfect matching. In this case, B has two entries left and C has
none, so there is no perfect matching. For the moment, we will stop here.

The next step is to find the minimum number of horizontal and vertical lines that
we can draw through the matrix to cover all of the zeros. There are various methods for
doing this, including a fair amount of erroneous information on the web. The example
on the English Wikipedia is confusing (again, Id love it if somebody fixed that!). If
that number is less than the number of rows in our column, we’re not yet finished.

The minimum here is three lines, in column 2, row B, and row D.

This procedure (from
http://math.stackexchange.com/questions/590305/finding-the-minimum-number-of-1in
seems to work:

1. Mark all unassigned (unassignable) rows. (C)
2. Mark all previously unmarked columns that have zeros in the marked rows. (2)
3. Mark all rows that have assigned zeros in marked columns. (A)

4. Go back to step 2 unless there are no more columns that need to be marked.

(nothing new) This should give you:

A(X) <0>

B 0 0 (13)
C(X) K

D <0> H

5. Draw a line through every marked column and every unmarked row. (2, B, D)

This procedure should be the same as the one on Wikipedia, but is worded slightly
more clearly. It’s also the same as the procedure in Papadimitriou and Steiglitz, with
some slight differences in notation.

Note that in this case, we might not have found a perfect matching even if one
exists, because we stopped with some unallocated zeros still available. This simple
procedure is only effective for the simplest cases. You can augment it by examining all
possible combinations, but that’s expensive. Instead, let’s turn to the graph-based form
of the perfect matching, which I think is both enlightening and useful.

3.2 The Graph Form

This graph-based approach to finding a perfect matching is the same as the one in
Algorithm 3.4 in the textbook. The pseudocode is replicated in a separate document.

Let’s pause to note that any tree of odd depth (counting the root as depth zero and
its neighbors as depth one) is bipartite; simply begin with the root in your left hand
group, and alternate placing the nodes into the right hand then left hand groups.

(An aside: Many trees can be colored to create a perfect matching. We’re not going
to directly use this fact, but a slightly different algorithm might; we are going to use
similar characteristics of a tree, however.)

We begin with some matching, perhaps the empty set, M = &. We build a tree
T = ({r}, @) (the first argument to T is the list of nodes, the second the list of edges)
on the graph GG, with the root 7, such that r is M-exposed, meaning that r is not covered
by an edge that is a member of M. From there, branch out and build a tree, using all of
r’s neighbors, N ({r}). From there, keep branching, trying to build a spanning tree
(as usual, avoiding links that make loops back to nodes we’ve already hit). The key is
that links at alternating depths should be part of the matching M, such that each path
back to the root is an M -alternating path.

At some point in building this tree, you should find another node, say v,that is not
a member of the tree. Now you have a path from v back to the root r that has one link
on the “leaf” side of the tree, a series of nodes that are part of M, to some node (say
s) on the far side of the tree and then the root r itself, which we started with outside of
M. This gives us the opportunity to augment M. We do this by flipping the set of links
along this path; the first and last links become new members of M and everything in
between flips polarity. This guarantees that the size of M grows by one.

Now our root r is part of M, so we need to select a new root 7’ outside of M and
begin building a new tree 7.
Pseudocode for this is in Algorithm 3.4 in the book, or in the separate document.

4 Hungarian Algorithm

Somewhat surprisingly, given that normally I have a strong preference for intuitive
graph algorithms rather than heavyweight matrix algebra, in this case I find the matrix
construction of the problem simpler. However, I’'m going to try to integrate the two
descriptions here, since it bugs me that they are often so different. The graph-based
approach is the same as the one in Algorithm 3.5 in the textbook. The pseudocode is
replicated in a separate document.

Fundamentally, what we’re going to do is to tinker with our array of costs until
some of them become zero (this doesn’t change the outcome of the algorithm, for
reasons explained below), then use those zero entries (which represent edge costs in
our graph) to create a subgraph, and check to see if it’s possible to make a perfect
matching for the entire graph using only the edges in the subgraph. If not, rinse and
repeat.

(Note: My organization into steps here doesn’t exactly correspond to any of the
sources below.)

First step: In our matrix above, we can see that, assuming we are going to assign
any work to A, we must pay her at least forty dollars. Let’s pull that forty dollars out
of every matrix entry in row A, and just remember it off to the left:

1 2 3 4
A(40) {40 0 10
B 40 70 20 25 (14)
C 30 10 20 30
D 35 20 25 30
You can repeat this for all of the rows:
1 2 3 4
A(40) {40 0 10
B(20) 1 20 50 0 5 (15)
C(10) 1 20 0 10 20
D(20) \15 0 5 10

Summing those numbers to the left gives you 90. Dead minimum, we are going to
wind up paying ninety bucks to get our four jobs done; the numbers now in the graph
are the extra over $90 (or penalty) we are going to pay. If we can find an assignment
that matches a zero in every column and row, we get away at exactly $90. In this case,
there isn’t one.

Step Two: So do the same thing with the columns, skipping columns that already
have zeros in them:

1(15) 2 3 4(5)
A(40) ([25 0 10

B(20) a6)
caoy| 5 0 10 15
D20)\ 0 0 5 5

For our minimum price, we add in that $15 and $5, and our minimum total is now
$110.

We now have at least one zero in every row and column, but may not be able to
assign the jobs such that we hit one of those zeros for every assignment.

If you look at the anti-diagonal, it’s all zeros except for a single 1. That assign-
ment would give us a total cost, then, of $111. Is that the minimum? More generally,
assuming we’re not quite there yet, how do we do a partial assignment and look for
something better? How can we decide if there is or isn’t a perfect assignment in our
current arrangement?

Steps Three and Four: In some descriptions of the algorithm, this step and the
next are combined. The goal in these two steps is to figure out if we have reached
the point where an assignment (minimum cost perfect matching) is possible, and if
so, to find that assignment. In some descriptions, only the fest is done, after which
the author/presenter says, “And now we know that an assignment is possible, so we’re
done!” and logs off. Here, we will attempt to find an assignment, then if that fails, use
the information from the partial assignment to figure out our next step in the algorithm.

In the matrix approach, the approach to figuring out if an assignment is possible is
to determine the minimum number of lines necessary to cross out all of the zeros in our
array. We will defer that to Step Four.

So, Step Three, matrix form: Try to assign jobs so that the penalty is zero. If at
any point in the following steps you have assigned exactly one zero in each column and
each row, you are done, and the algorithm can terminate.

Take the zeros only from Eq. 16, and you’ll have

1 2 3 4
A 0
B 0 0
an
C 0
D\0 0

which is the matrix we ran the matching algorithm on back in Sec. 3.1.

Step Four, matrix form: Using the procedure above, find the minimum number
of horizontal and vertical lines that we can draw through the matrix to cover all of the
zeros. If that set is the size of the number of our nodes on each side, we are done.

Steps Three and Four, graphical form: Use the algorithm that finds a perfect
matching on the graph, as discussed. This will return a matching, which might or

might not be perfect, and a set of nodes for which it can’t yet match. If the size of that
latter set is zero, we're done.

Step Five: We are going to modify the weights of edges for which we don’t have
a matching, which is either those uncovered in the matrix, or left out of the matching
in the graph form (the set S = B(T) in the pseudocode). There are at least two ways
to do this. Both begin by finding the smallest entry remaining in the matrix that does
not have a line drawn through it. In the above example, this should be a 1, in the upper
right hand corner.

Take that value, and do one of two things:

1. Subtract it from every entry in every uncovered row, and add it to every entry in
every covered column; or

2. Subtract it only from the uncovered entries, then add it the entries covered twice
(by a vertical and a horizontal line).

1(15) 2 3 4(5)
AM40) (24 0 9 0
B20)| 5 51 0 0 as)
caoy| 4 o0 9 14
D)\ 0 1 5 5

This will increase the number of zeros we have by one.

From here, return to Step Three, and try again to assign all of our tasks to see
if we are finished. If not, continue the loop of Steps Three to Five, this sequence
will eventually terminate. (In this example, it should actually terminate on the next
loop, when we test for a perfect matching; fairly obviously, the anti-diagonal is a good
assignment.)

5 Certificate

It is also possible to generate a certificate here that proves optimality (or the lack of a
solution). We’re going to skip that part.

6 Blossom V Algorithm

Quantum computing, glory be!

The Blossom V algorithm is commonly cited as a good way to solve the minimum
weight perfect matching on a general graph (that is, not necessarily bipartite), and
solving this problem is necessary for an important form of quantum error correction.

7 Source Material for This Lecture

Some text and examples adapted from Sec. 1.4.2 and Sec. 3.2 of the paperback edition
of A Gentle Introduction to Optimization, B. Guerin et al. Example adapted from farn-
boroughmaths’ YouTube video (showing the matrix-oriented interpretation of the Hun-
garian algorithm). I found Tim Roughgarden’s CS261 lecture notes on minimum-cost
bipartite matching (especially the history and the clear discussion of optimality proofs;
he takes a graphical approach to the algorithm, rather than a matrix-oriented one) and
Prashant Puaar’s YouTube video (especially the discussion of how to mark zeros) to
be helpful. The other main book I have been using, especially for graph algorithms,
is Christos Papadimitriou and Kenneth Steiglitz, Combinatorial Optimization: Algo-
rithms and Complexity. It’s a little dense, and way more material than we can cover in
one semester, but it’s a good book. There is also a short description of the problem and
a different algorithm in Ch. 26 of Cormen et al. 1 found the English Wikipedia page to
most helpful after I had begun to understand the algorithm, and of only minimal help in
the beginning. I found the Harvard Math 20 Spring 2005 slides/notes (by Derek Bruff)
to have simple, clear examples, but to not be of much use in the step of finding the
minimum set of lines to cover the zeros. I have adopted their method for the addition
step, as I find it simpler.

As of this writing, Kuhn’s original paper, with a retrospective introduction by him,
is available at
http://bioinfo.ict.ac.cn/ "dbu/AlgorithmCourses/Lectures/Lecl0-HungarianMethod-Ku
This is from the book Jiinger et al., 50 Years of Integer Programming 1958-2008.

There is also the website
http://www.hungarianalgorithm.com/index.php!

8 Conclusion

Sadly, this is the last full week of studying graph theory problems, but this is an ex-
traordinarily rich area. I highly recommend you dig deeper into it.
Sources:

e Cormen, Leiserson, Rivest, Stein, Introduction to Algorithms, 3rd edition, Part
VI, Chapters 22-26, about 160 pages of great material.

e Diestel. You’ll find many books on the topic of graph theory, if you look, but this
is the classic. (Japanese translation of 2nd edition is by Yagami’s Ohta-sensei,
but in English it’s now up to Sth edition, available in Kindle now and hardback
on Jan. 1,2017)

e Another old classic, Bondy & Murty, is available for free online at
http://www.maths.lse.ac.uk/Personal/jozef/LTCC/Graph_Theory_Bondy_Murty.pdf.

e http://math.stackexchange.com/questions/27480/what-are—-good-books—-to-learn—g
e [can offer up several papers on the topology of the Internet, and how it plays

into various assessments of performance and robustness. Note that I am not a fan

10

of what are called “scale-free networks”’; they can be used well, but in general
that term is insufficiently specific and many papers using it are naive about their
problem domain. (This is a little far afield from optimization, but you’ll enjoy it
anyway.)

9 Homework

See the separate file uploaded to SFS.

11

