
Optimization Theory

Rod Van Meter
Lecture 11: Computational Complexity Theory

December 13, 2016
@慶應湘南藤沢

with help from
Eisuke Abe 阿部英介

http://news.sciencemag.org/math/2015/11/mathematician-claims-breakthrough-complexity-theory
http://jeremykun.com/2015/11/12/a-quasipolynomial-time-algorithm-for-graph-isomorphism-the-
details/

http://people.cs.uchicago.edu/~laci/

László Babai

http://news.sciencemag.org/math/2015/11/mathematician-claims-breakthrough-complexity-theory
http://jeremykun.com/2015/11/12/a-quasipolynomial-time-algorithm-for-graph-isomorphism-the-details/
http://people.cs.uchicago.edu/~laci/

What We Want to Know
✦ What problems is it possible for a

computer to solve for us?
✦ In particular, as problem size scales up
✦ Known as complexity class
✦ Caveat: constant factors matter, too!

Alan M. Turing

“All computing machines above a
minimum level of capability are
equivalent.” (1930s)

“We can characterize algorithms
according to their
complexity.” (1965)

“Not everything can be
computed.” (Turing, 1936)

“Many problems can be mapped to
other, apparently different,
problems with ‘only’ a polynomial
overhead.” (1972)

(quotes are artificial paraphrases)

Juris Hartmanis & Richard E. Stearns

Alonzo Church

Richard M. Karp
(photos from Wikipedia, except Turing)

Lecture Outline
✦ O(.) notation
✦ Classical Computational Complexity

Review
- P, PSPACE, EXP
- P v. NP

✦ Quantum Computational Complexity

What Is Computational
Complexity?

An algorithm or a problem has a  
computational complexity class (and,  

more specifically, its particular
computational complexity) that describes

how the resources needed to solve the
problem grow as the size of the problem

grows.

⌦(·),⇥(·), O(·)
O(.) (Big O) Notation

l Already been using it...
l Describes asymptotic behavior as the

problem size grows.

f(x) = O(g(x)) as x ! 1

|f(x)| M |g(x)| for all x > x0

x0

O(.)

means

for some positive constant M and some value

Example

100x+ 5000

x

2

Example

100x+ 5000

x

2

f(x) = O(x)

f(x) = O(x2)

f(x) = O(ex)

Example

So the curve dominates the

 curve. This is independent

of the constants involved. We can say

“f(x) is oh-of (or big-oh of) (something)”

x

2

100x+ 5000

f(x) = 100x+ 5000

f(x) = O(x2)

f(x) = O(ex)

f(x) = 5x2

f(x) 6= O(x)

Example 2

So the curve dominates the

 curve. This is independent

of the constants involved. We can say

“f(x) is oh-of (or big-oh of) (something)”

x

2

100x+ 5000

Functions can be Complicated

Image from Wikipedia

Applying to Code (1)

This is O() what as DIM gets
bigger?

Someone write me code for:
* averaging an array of numbers
* dot product of two vectors
for size DIM

Applying to Code (2)

for (i = 0 ; i < DIM ; i++) {
 for (j = 0 ; j < DIM ; j++) {
 c[i][j] = 0.0;
 for (k = 0 ; k < DIM ; k++) {
 c[i][j] += a[k][j]*b[j][k];
 }
 }
} This is O() what as DIM gets

bigger?

Applying to Code (3)

for (i = 0 ; i < DIM ; i++) {
 BigHairyFunction(a[i]);
}

This is O() what as DIM gets
bigger?

O(.) is “no worse than”
Omega(.) is “no better than”
Theta(.) is “is the same as”  

(both O() and Omega())

⌦(·),⇥(·), O(·)

O(.) Notation

• In the real world, constant factors
matter!

• Must be defined relative to an
architecture
• One-tape Turing machine, two-tape TM,

random-access machine, etc.
• All are polynomially equivalent, but the

polynomials matter!

• Sometimes used for time (circuit depth)
with parallel computation; usually
represents total computation cost

“Language Accepted by…”

A string is “accepted by” a Turing machine if the
machine halts when given the string as input.
The set of strings accepted by a TM is the
language accepted by the machine. The TM
may return “yes”, “no”, or “no decision” on the
string, as long as it halts.

What We're Certain Of

EXP

P This means that
there is definitely a
problem in this
area (inside EXP,
outside P).

What Does That Mean?

EXP is practically infinite resources.  
P is finite resources (space and time).  
We know it is possible to solve more 

problems using infinite (well, very, very
large) resources.

(n.b.: there are actually harder things, but for all practical
purposes, EXP is the “biggest” thing we need to worry about.)

More Precisely...

• EXP: exponential time on a Turing
machine

• P: polynomial time on a TM  
trying all possible answers requires only
polynomial # of tries, or if the # of
possibilities is larger, there is an algorithm
for always getting the right answer in only
a polynomial # of tries

EXPTIME-Complete Problems
• Known to be in EXPTIME,  

and not in P

• Go (囲碁) with 
Japanese ko rules (not
known if Chinese or
American rules are
outside of P)

• Determining if a  
deterministic Turing 
machine (DTM) halts 
in k steps

Truly Undecidable
l Whether a given DTM ever halts, for a given

input.

Image from http://www.cis.upenn.edu/~dietzd/CIT596/index.html

Poorly Defined

Many problems of simulating the real world
can’t be said to be in a particular complexity
class, because there isn’t a solution that can
be checked.

“Calculate the chemical bonding energy of…”
“Calculate the lift of an airfoil…”
So to formally evaluate their complexity, you

have to define the problem somewhat
artificially.

“Run this algorithm until the result converges to
n digits of precision.”

What We're Certain Of

 EXP

P

P Examples

•Deterministic Polynomial (P)

•O(.) is polynomial

•Addition & other basic arithmetic
•Matrix multiplication we just saw

•Eulerian cycles
•Euler’s Seven Bridges of Koenigsberg

•Sorting

Seven Bridges of Koenigsberg

https://en.wikipedia.org/wiki/Seven_Bridges_of_K%C3%B6nigsberg

https://en.wikipedia.org/wiki/Seven_Bridges_of_K%C3%B6nigsberg

NP

• Nondeterministic Polynomial time

• Answers are hard to find, but easy to
verify

• If you were clairvoyant (magic), you
would find the answer on the first try

• Not known if P = NP 
(the answer is worth a million dollars)

NP Definition

•Non-deterministic Polynomial (NP)

•Key point: in practice, exponential # of
operations to find the answer, polynomial
of operations to check the answer
•O(.) generally exponential

•Actual (non-technical) definition: imagine
you can test all possible solutions at
once, and quit when you find the answer!

•Or, that you have some magic knack for
always trying the correct solution first.

NP-Complete

• NP-Complete if it's in NP and in NP-hard

• NP-hard, “at least as hard as the hardest
problems in NP”

• There is a polynomial-time reduction to
another problem in NP-complete

NP-Complete Examples

•Traveling salesman problem
•Hamiltonian cycle, hit each vertex once,

looking for shortest cycle

•Clique
•If every pair of people is either friends or

enemies, what’s the largest group where
everyone is friends with everyone else?

•Satisfiability

•Increasingly large sudoku games

•Packing problems: knapsack, Tetris

•...thousands more...

Some NP-Complete Problems
• Hamiltonian circuit

• Subgraph isomorphism

• Graph isomorphism is  
not known to be 
NP-complete!

• Boolean Satisfiability

• Some compiler code 
generation problems!

• Karp's original 21 problems (1972)

Image from Wikipedia

Traveling Salesman Problem

What is the shortest path (Hamiltonian cycle) through the graph  
that takes us to all the cities?

TSP
• Usually expressed with a fully-connected

graph (e.g., driving by car)

• Add a city, and how long does it take to
find the optimal solution?

• Checking all possible solutions requires
O(exp(n)) time!

• TSP is the most famous NP-hard problem

• With a threshold, NP-complete

• Without a threshold, NP-hard (no
certificate!)

In NP, not known to be outside
P and not known to be  

NP-Complete
•Factoring!

•Graph isomorphism 
(n.b.: not subgraph isomorphism, which
might be harder)
•—> Laszlo Babai!

The Whole Classical Shebang
(not really, but enough to be useful)

EXP

P

ZPP

BPP

PP

PSPACE

NP

UP

MA

coNP

coUP

coMA

What We Know

and

Definitions
l EXP (or EXPTIME): exponential time on Turing

machine
l PSPACE: polynomial space (exp. time)
l PP: probabilistic polynomial time
l MA: Merlin-Arthur protocol
l BPP: bounded-error probabilistic polynomial time
l ZPP: zero-error probabilistic polynomial time
l NP: non-deterministic polynomial time
l UP: unambiguous polynomial time
l P: polynomial time on a TM

The Whole Quantum Shebang
 EXP

 P

 ZPP

 BPP

 PP

 PSPACE

 NP

 UP

 MA

 coNP

 coUP

 coMA
 QMA coQMA

 BQP

 EQP

Definitions
l QMA: quantum Merlin-Arthur protocol
l BQP: bounded-error quantum polynomial time
l EQP: exact quantum polynomial time
l (many more have been defined...)

Quantum Algorithms
l BQP: Shor's factoring, discrete log, quantum

simulation
l NP: Grover's search algorithm
l D-J: ?

44

Shor's Factoring Algorithm
66554087= ? 6703× 9929

An “efficient” classical algorithm for this  
problem is not known.

Using classical number  
field sieve, factoring an  
L-bit number is

Using quantum Fourier 
transform (QFT), factoring  
an L-bit number is

Superpolynomial speedup! But... what are the constant
factors? Physicists tend to ignore clock speed and  
leading constants...

Shor, Proc. STOC 1994, SIAM J. Comp 26(5) (1997)

O
⇣
ek

3
p

L log

2 L
⌘

O
�
L3

�

O\left(L^3\right)O\left(e^{k\sqrt[3]{L\log^2 L}}\right)

Shor's Algorithm
l Full consideration has to include both

classical and quantum parts
l QFT is O(L^2)
l Modular exponentiation is O(L^3) in basic

form
l Classical portion is also polynomial
l All polynomials are architecture-dependent in

depth!

Shor v. Classical
l Number Field Sieve (NFS) is sub-exponential in

length of number
l Not yet known if we can do better classically
l In NP, but believed to not be NP-complete (that is,

not all NP problems can be reduced to factoring)
l Shor is exponentially faster than NFS, but we don't

yet know if this means QC is exponentially faster
than classical

Factoring Larger Numbers

Wrap-Up
l Main point: not yet known if quantum

computers are really more efficient than
classical ones!

l Believed, but not known, that QC CANNOT
solve all NP problems in polynomial time

l Even this is just the tip of the complexity
iceberg

l Many relationships partially understood
l QC may open new attacks on P =? NP

problem

Homework

Pick one of the following and write a 3-4 page
report on its current status, with references.

(1) one of Karp’s original 21 problems
(2) the halting problem
(3) universality of Turing machines
(4) computable v. uncomputable numbers

Research Question

We have described a small set of classes here,
but hundreds are known. What if complexity
classes are actually continuous, rather than
discrete?

References

References
• http://www.complexityzoo.com/  

(407 computational complexity classes!)

• Wikipedia has whole set of pages

• Mike & Ike

• Aaronson's Ph.D. thesis

• Hopcroft, Ullman, Intro to Automata… (classic)

• Papadimitriou, Computational Complexity (somewhat
dated now?)

• Sipser, Intro to Theory of Computation  
(somewhat dated now?)

• Lance Fortnow, The Golden Ticket 
(no equations)

• Scott Aaronson, Quantum Computing Since Democritus
(few equations, but still highly technical)  

http://www.complexityzoo.com

