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What We Want to Know
✦ What problems is it possible for a 

computer to solve for us? 
✦ In particular, as problem size scales up 
✦ Known as complexity class 
✦ Caveat: constant factors matter, too!



Alan M. Turing

“All computing machines above a 
minimum level of capability are 
equivalent.” (1930s)

“We can characterize algorithms 
according to their 
complexity.” (1965) 

“Not everything can be 
computed.” (Turing, 1936)

“Many problems can be mapped to 
other, apparently different, 
problems with ‘only’ a polynomial 
overhead.” (1972)

(quotes are artificial paraphrases)

Juris Hartmanis & Richard E. Stearns

Alonzo Church

Richard M. Karp
(photos from Wikipedia, except Turing)



Lecture Outline
✦ O(.) notation 
✦ Classical Computational Complexity 

Review 
- P, PSPACE, EXP 
- P v. NP 

✦ Quantum Computational Complexity



What Is Computational 
Complexity?

An algorithm or a problem has a  
computational complexity class (and,  

more specifically, its particular 
computational complexity) that describes 

how the resources needed to solve the 
problem grow as the size of the problem 

grows.



⌦(·),⇥(·), O(·)
O(.) (Big O) Notation

l Already been using it...
l Describes asymptotic behavior as the 

problem size grows.



f(x) = O(g(x)) as x ! 1

|f(x)|  M |g(x)| for all x > x0

x0

O(.)

means

for some positive constant M and some value 
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f(x) = O(x)

f(x) = O(x2)

f(x) = O(ex)

Example

So the       curve dominates the 

                      curve.  This is independent  

of the constants involved. We can say 

“f(x)  is oh-of (or big-oh of) (something)”

x

2

100x+ 5000

f(x) = 100x+ 5000



f(x) = O(x2)

f(x) = O(ex)

f(x) = 5x2

f(x) 6= O(x)

Example 2

So the       curve dominates the 

                      curve.  This is independent  

of the constants involved. We can say 

“f(x)  is oh-of (or big-oh of) (something)”

x

2

100x+ 5000



Functions can be Complicated

Image from Wikipedia



Applying to Code (1)

This is O() what as DIM gets 
bigger?

Someone write me code for: 
* averaging an array of numbers 
* dot product of two vectors 
for size DIM



Applying to Code (2)

for (i = 0 ; i < DIM ; i++) {
  for (j = 0 ; j < DIM ; j++) {
    c[i][j] = 0.0;
    for (k = 0 ; k < DIM ; k++) {
      c[i][j] += a[k][j]*b[j][k];
    }
  }
} This is O() what as DIM gets 

bigger?



Applying to Code (3)

for (i = 0 ; i < DIM ; i++) {
  BigHairyFunction(a[i]); 
}

This is O() what as DIM gets 
bigger?



O(.) is “no worse than”
Omega(.) is “no better than”
Theta(.) is “is the same as”  

(both O() and Omega())

⌦(·),⇥(·), O(·)



O(.) Notation

• In the real world, constant factors 
matter! 

• Must be defined relative to an 
architecture 
• One-tape Turing machine, two-tape TM, 

random-access machine, etc. 
• All are polynomially equivalent, but the 

polynomials matter! 

• Sometimes used for time (circuit depth) 
with parallel computation; usually 
represents total computation cost



“Language Accepted by…”

A string is “accepted by” a Turing machine if the 
machine halts when given the string as input. 
The set of strings accepted by a TM is the 
language accepted by the machine. The TM 
may return “yes”, “no”, or “no decision” on the 
string, as long as it halts.



What We're Certain Of

EXP

P This means that 
there is definitely a 
problem in this 
area (inside EXP, 
outside P).



What Does That Mean?

EXP is practically infinite resources.  
P is finite resources (space and time).  
We know it is possible to solve more 

problems using infinite (well, very, very 
large) resources. 

(n.b.: there are actually harder things, but for all practical 
purposes, EXP is the “biggest” thing we need to worry about.)



More Precisely...

• EXP: exponential time on a Turing 
machine 

• P: polynomial time on a TM  
trying all possible answers requires only 
polynomial # of tries, or if the # of 
possibilities is larger, there is an algorithm 
for always getting the right answer in only 
a polynomial # of tries



EXPTIME-Complete Problems
• Known to be in EXPTIME,  

and not in P 

• Go (囲碁) with 
Japanese ko rules (not 
known if Chinese or 
American rules are 
outside of P) 

• Determining if a  
deterministic Turing 
machine (DTM) halts 
in k steps



Truly Undecidable
l Whether a given DTM ever halts, for a given 

input.

Image from http://www.cis.upenn.edu/~dietzd/CIT596/index.html



Poorly Defined

Many problems of simulating the real world 
can’t be said to be in a particular complexity 
class, because there isn’t a solution that can 
be checked.

“Calculate the chemical bonding energy of…”
“Calculate the lift of an airfoil…”
So to formally evaluate their complexity, you 

have to define the problem somewhat 
artificially.

“Run this algorithm until the result converges to 
n digits of precision.”



What We're Certain Of

 EXP 

P 



P Examples

•Deterministic Polynomial (P) 

•O(.) is polynomial 

•Addition & other basic arithmetic 
•Matrix multiplication we just saw 

•Eulerian cycles 
•Euler’s Seven Bridges of Koenigsberg 

•Sorting



Seven Bridges of Koenigsberg

https://en.wikipedia.org/wiki/Seven_Bridges_of_K%C3%B6nigsberg



https://en.wikipedia.org/wiki/Seven_Bridges_of_K%C3%B6nigsberg



NP

• Nondeterministic Polynomial time 

• Answers are hard to find, but easy to 
verify 

• If you were clairvoyant (magic), you 
would find the answer on the first try 

• Not known if P = NP 
(the answer is worth a million dollars)



NP Definition

•Non-deterministic Polynomial (NP) 

•Key point: in practice, exponential # of 
operations to find the answer, polynomial 
# of operations to check the answer 
•O(.) generally exponential 

•Actual (non-technical) definition: imagine 
you can test all possible solutions at 
once, and quit when you find the answer! 

•Or, that you have some magic knack for 
always trying the correct solution first.



NP-Complete

• NP-Complete if it's in NP and in NP-hard 

• NP-hard, “at least as hard as the hardest 
problems in NP” 

• There is a polynomial-time reduction to 
another problem in NP-complete



NP-Complete Examples

•Traveling salesman problem 
•Hamiltonian cycle, hit each vertex once, 

looking for shortest cycle 

•Clique 
•If every pair of people is either friends or 

enemies, what’s the largest group where 
everyone is friends with everyone else? 

•Satisfiability 

•Increasingly large sudoku games 

•Packing problems: knapsack, Tetris 

•...thousands more...



Some NP-Complete Problems
• Hamiltonian circuit 

• Subgraph isomorphism 

• Graph isomorphism is  
not known to be 
NP-complete! 

• Boolean Satisfiability 

• Some compiler code 
generation problems! 

• Karp's original 21 problems (1972) 

Image from Wikipedia



Traveling Salesman Problem

What is the shortest path (Hamiltonian cycle) through the graph  
that takes us to all the cities?



TSP
• Usually expressed with a fully-connected 

graph (e.g., driving by car) 

• Add a city, and how long does it take to 
find the optimal solution? 

• Checking all possible solutions requires 
O(exp(n)) time! 

• TSP is the most famous NP-hard problem 

• With a threshold, NP-complete 

• Without a threshold, NP-hard (no 
certificate!)



In NP, not known to be outside 
P and not known to be  

NP-Complete
•Factoring! 

•Graph isomorphism 
(n.b.: not subgraph isomorphism, which 
might be harder) 
•—> Laszlo Babai!



The Whole Classical Shebang 
(not really, but enough to be useful)

EXP 

P 

ZPP 

BPP 

PP 

PSPACE 

NP 

UP 

MA 

coNP 

coUP 

coMA



What We Know

and



Definitions
l EXP (or EXPTIME): exponential time on Turing 

machine
l PSPACE: polynomial space (exp. time)
l PP: probabilistic polynomial time
l MA: Merlin-Arthur protocol
l BPP: bounded-error probabilistic polynomial time
l ZPP: zero-error probabilistic polynomial time
l NP: non-deterministic polynomial time
l UP: unambiguous polynomial time
l P: polynomial time on a TM



The Whole Quantum Shebang
  EXP 

     P   

    ZPP   

    BPP   

    PP   

    PSPACE   

    NP   

    UP   

  MA 

    coNP   

    coUP   

 coMA 
    QMA      coQMA  

  BQP 

  EQP 



Definitions
l QMA: quantum Merlin-Arthur protocol
l BQP: bounded-error quantum polynomial time
l EQP: exact quantum polynomial time
l (many more have been defined...)



Quantum Algorithms
l BQP: Shor's factoring, discrete log, quantum 

simulation
l NP: Grover's search algorithm
l D-J: ?



44

Shor's Factoring Algorithm
66554087= ? 6703× 9929

An “efficient” classical algorithm for this  
problem is not known.

Using classical number  
field sieve, factoring an  
L-bit number is 

Using quantum Fourier 
transform (QFT), factoring  
an L-bit number is 

Superpolynomial speedup!   But... what are the constant 
factors?  Physicists tend to ignore clock speed and  
leading constants...

Shor, Proc. STOC 1994, SIAM J. Comp 26(5) (1997) 
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Shor's Algorithm
l Full consideration has to include both 

classical and quantum parts
l QFT is O(L^2)
l Modular exponentiation is O(L^3) in basic 

form
l Classical portion is also polynomial
l All polynomials are architecture-dependent in 

depth!



Shor v. Classical
l Number Field Sieve (NFS) is sub-exponential in 

length of number
l Not yet known if we can do better classically
l In NP,  but believed to not be NP-complete (that is, 

not all NP problems can be reduced to factoring)
l Shor is exponentially faster than NFS, but we don't 

yet know if this means QC is exponentially faster 
than classical



Factoring Larger Numbers



Wrap-Up
l Main point: not yet known if quantum 

computers are really more efficient than 
classical ones!

l Believed, but not known, that QC CANNOT 
solve all NP problems in polynomial time

l Even this is just the tip of the complexity 
iceberg

l Many relationships partially understood
l QC may open new attacks on P =? NP 

problem



Homework

Pick one of the following and write a 3-4 page 
report on its current status, with references.

(1) one of Karp’s original 21 problems
(2) the halting problem 
(3) universality of Turing machines
(4) computable v. uncomputable numbers



Research Question

We have described a small set of classes here, 
but hundreds are known. What if complexity 
classes are actually continuous, rather than 
discrete?



References
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• http://www.complexityzoo.com/  

(407 computational complexity classes!) 

• Wikipedia has whole set of pages 

• Mike & Ike 

• Aaronson's Ph.D. thesis 

• Hopcroft, Ullman, Intro to Automata… (classic) 

• Papadimitriou, Computational Complexity (somewhat 
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• Sipser, Intro to Theory of Computation  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(no equations) 
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http://www.complexityzoo.com

