Optimization Theory (DS2) Lecture #14
Pareto Optimality, Randomness and Sex, and a
Wrap Up of the Semester

January 17, 2017

Abstract

Last lecture! The last three technical topics are Pareto optimality, the impor-
tance of randomness in algorithms, and sex. Oh, and I slip in a few words about
quantum computing!

Lest you think this semester has been a purely academic set of exercises, on Jan.
10, Arjun Narayan noted on Twitter that “lots of people get paid hundreds of thousands
of dollars to do...linearization, which requires understanding all the maths.” Want to
work on Wall Street? What we’ve studied here is valuable stuff!

1 Ouwur Last New Topics

1.1 Pareto Optimality

This is the point where I confess that much of what we’ve talked about all semester
is just an approximation of reality!

Example: Which is more important in a hamburger, cheapness or deliciousness?
If there is a hamburger that is both more expensive and less delicious than some other
option that is available, will you eat it? (Answer: maybe, if it’s closer and more conve-
nient — now we have third axis in our space and on our Pareto front!)

Example 2: When selecting an apartment, how do you balance the distance to
school and to someplace fun, such as your preferred karaoke joint?

The idea of having multiple points that can all be considered “optimal” because
there are multiple aspects of the problem you care about is due to Vilfredo Damaso
Pareto (1848-1923), who is sometimes credited with turning economics into a mathe-
matical science. (He’s most famous for the 80/20 rule, but that’s not what we’re talking
about here.)

Pareto originally formulated what is now called Pareto optimality or Pareto effi-
ciency in terms of optimizing over a set of people: if no individual can be made “better
off” (remember, he’s an economist) without making someone else “worse off,” then
your current solution or economic setup is Pareto optimal.



For two objective variables, such as “cheapness” and “deliciousness,” as in our
hamburger example, it’s pretty easy to place every hamburger stand on a two-dimensional
plot. A point which has no other point both above and to the right of it is Pareto opti-
mal. The set of such points is a Pareto-efficient frontier.

bf n.b.: Pareto efficient has nothing at all to do with fair. Taking a pie and dividing
it among three people by giving half to two people and nothing to the third is still
Pareto efficient, because the third person’s share can only be increased by decreasing
the share of another person. A Pareto inefficient solution, on the other hand, would be
to waste some of the pie. (Not all Pareto problems are zero-sum, but this example is.)

1.2 The Importance of Randomness: a Very Brief History

Livnat and Papadimitriou say, “One of the most central and striking themes of algo-
rithms research in the past few decades has been the surpris- ing power of randomiza-
tion.” But randomness has a long history; here are just a few of the points that occur to
me when thinking about our understanding of its importance and the tension with the
idea that everything can be predicted if we just know enough about the current state of
things:

1. Democritus (c. 460 B.C. —c. 370 B.C.), who is generally credited with the idea
of atoms, also believed that the universe is deterministic, according to Wikipedia
and its sources. If we were arguing about quantum mechanics, his approach
would be what we call a hidden variable theory.

2. Formal concepts of randomness, including what we call Pascal’s Triangle, may
have been developed in China at the time of the I Ching, 1150 B.C.

3. Francis Bacon (1561-1626): often called the Father of the Scientific Method. A
forceful proponent of the idea that the universe can be explained by empirical
experiment and analysis.

4. René Descartes (1596-1650): believed in the mechanical behavior of people.

5. Thope you’re familiar with the basic idea of Bayesian inference. Originally de-
veloped by Thomas Bayes (1702-1761) and extended by Pierre-Simon Laplace
(1749-1827), it’s the idea that you can assign a probability to something that you
only partially understand, then update that probability based on further additional
knowledge (see below).

6. Pierre-Simon Laplace stated explicitly, in 1814, his belief that the universe is
deterministic, a philosophical position known as causal or physical or scientific
determinism, or by philosophers as nomological determinism. It states that the
future is determined entirely by the past, with no possible deviation.

7. More generally, advances in physics during the 18th and 19th centuries were
primarily about mechanics, electricity and magnetism, and optics; there was a
strong belief that things were deterministic. The big exception was thermody-
namics, where it was understood (e.g., Bernoulli, 1700-1782) that gases were
composed of molecules bouncing randomly around.



10.

11.

12.

13.

14.

15.
16.

17.

Gregor Mendel (1822-1884): now revered as the father of modern genetics,
though his work was fairly obscure in his own lifetime; recognized that inheri-
tance includes random choice of characteristics.

Early 20th century: recognition of the importance of randomness in quantum
mechanics. Erwin Schrodinger’s (1887-1961) equation describes the evolution
of a quantum system in terms of waves described by a complex amplitude; these
amplitudes determine the phase and interference properties. Max Born (1882—
1970) recognized that the square of the absolute value of the amplitude repre-
sents the probability of finding the system in that state, hence they are known as
probability amplitudes.

1936: Introduction of the Turing Machine (deterministic computing theory at its
height).

1948: Claude Shannon recognizes both the impact of random noise on the amount
of information you can push through a channel, and that information involves the
entropy of information, which is how hard it is to predict.

1930s to 1950s: Beginnings of Monte Carlo (random) methods in algorithms
and experiments; contributors include Enrico Fermi, Nicholas Metropolis (af-
ter whom an important form is named), Stanislaw Ulam, John von Neumann,
Edward Teller, Augusta Teller, Arianna Rosenbluth, Marshall Rosenbluth, and
others.

1963-1972: Edward Lorenz discovers the Lorenz attractor and does various fol-
lowup work, establishing the foundations of chaos theory, the idea that not ev-
erything can be predicted exactly: sensitive dependence on initial conditions.
Not, strictly speaking, randomness, but the genesis of the idea that nonrandom
doesn’t mean fully predictable.

1968 saw the publication of the first volume of Donald Knuth’s epic The Art of
Computer Programming (TAOCP). Includes some discussion of how to gener-
ate random numbers, and how to deal with random data. This is the true first
pinnacle in the study of algorithms.

Genetic algorithms, introduced as early as 1975, by John Holland.

Simulated annealing was introduced by Armen G. Khachaturyan, Svetlana V.
Semenovskaya, Boris K. Vainshtein (1979); and by Armen G. Khachaturyan,
Svetlana V. Semenovskaya, Boris K. Vainshtein (1981). (via Wikipedia)

Neural networks and their successor, deep learning, sometimes involve random-
ness, or are combined with random subroutines for certain functions. More im-
portantly, perhaps, is that their nonlinear behavior makes direct prediction of
their outcomes hard.



1.2.1 Bayesian Inference

It’s a bit of an aside, but you should know Bayes’ Theorem:

P(B|A) - P(A)

P(B) ; ey

P(A|B) =
where A and B are events with a certain probability, and A|B is read “A given B,” that
is, the probability of even A when we know that B is true.

Let’s see if we can come up with an example in class...

1.3 Sex as an Algorithm

Sex is optimizing for population, not a single winner. This has significant implications
for fitness, according to Adi Livnat and Christos Papadimitriou, writing in “Sex as an
Algorithm,” in the Nov. 2016 Communications of the ACM.

A good quote:

Recent research at the interface of evolution and CS has revealed that
evolution under sex possesses a surprising and multifaceted computational
nature: It can be seen as a coordination game between genes played ac-
cording to the powerful Multiplicative Weights Update Algorithm; or as a
randomized algorithm for deciding whether genetic variants perform well
across all possible genetic combinations; it allows mutation to process and
transmit information from transient genetic combinations to future gener-
ations; and much more.

There is a great question:
What exactly is evolution optimizing, if anything?

They found that the genes are competing with each other, and at each generation,
each gene picks a “strategy,” consisting of the relative balance of alleles (versions of a
gene for something particular) of itself. However, the organism has one fitness function
that determines the probability of each individual surviving to reproduce.

One important point is that with different alleles, sex optimizes not for the indi-
vidual best allele, but for the allele that plays reasonably well in combination with the
most other alleles of other genes. Again, a quote:

There is a mismatch between heuristics and evolution. Heuristics should
strive to create populations that contain outstanding individuals. In con-
trast, evolution under sex seems to excel at something markedly different:
at creating a “good population.”

1.4 Quantum Computing and Optimization

Back in Lecture 9, when we talked about minimum weight matching, I mentioned that
the classical algorithm is useful for matching errors in a quantum computer. But it turns
out that, yes, a quantum computer is also useful for solving optimization problems!



While we might hope naively that a quantum computer would give us an exponen-
tial speedup, in fact, the best we get on arbitrary, unstructured problems is a quadratic
speedup: O(N) — O(v/N) (i.e., if the original problem is O(2"), with Grover you
can get it down to 0(2”/ 2)), using an algorithm known as Grover’s algorithm and its
generalization, amplitude amplification.

For specific problems with some structure, bigger speedups are possible. There has
been a lot of work recently on quantum machine learning, mostly the linear algebra
side of it. I'm dubious about the practicality of some of the work, but it’s potentially
valuable.

A recent paper by Moylett, Linden and Montanaro (arXiv:1612.06203) specif-
ically discusses quantum solutions to the travelling salesman problem.

2 Core Ideas from the Semester

Now that we are done with the semester, we can see a little more clearly the complete
picture. It is important to distinguish the problem, the objective function, and the
algorithmic strategy.

2.1 The Problem Itself

With respect to the problem, there are many aspects that affect our approach to solving
it:

1. whether the problem is single or multiple objective (Pareto);

2. the extent to which the problem is understood (whether the objective function
is known and fixed — it’s possible even that it varies over time), determining
whether we must divide our work into exploration and exploitation phases;

3. whether an exact solution is required or an approximate solution is allowed;

4. whether certificates of infeasibility & optimality exist (affecting whether the
problem can be NP-complete);

5. whether a mapping to another problem is known to exist (also obviously affecting
NP-completeness);

6. whether we are addressing the primal or dual form (noting that we have a certain
amount of freedom to choose);

7. whether it is a maximization or minimization problem (again, something we can
choose by modifying the problem, e.g. by switching between the primal and dual
forms); and

8. the relative value of quick, approximate solutions versus slower, more exact ones
(keeping in mind that “slower” in some cases might be age-of-the-univese kinds
of numbers); and even the use of optimization in online (real time) situations,
from stock trading to adjusting a flight path as wind conditions vary to life-
critical real-time optimization such as control of the flight surfaces on a plane.



2.2 The Objective Function
With respect to the objective function, the most important things are:
1. whether the objective function space is continuous or discrete;
2. whether the input variables are continuous or discrete (linear or integer problem);
3. whether the function is linear or nonlinear in the input variables;
4. whether it’s differentiable (once or twice);

5. whether it’s deterministic or random from some distribution (known or unknown),
which is tied to whether we need to perform exploration before settling in to ex-
ploit our solution;

6. whether it’s single-valued (Pareto).

3 Classes of Optimization Problems We Addressed

3.1 Linear Programming/Problems

Recall that we spent the early part of the semester focusing on linear programming,
in which the objective function is smooth, a simple linear combination of the input
variables (of which there might be many). In the n-dimensional space (for n variables),
then, obviously the value of the objective function increases in some direction, so the
focus of solving the problem becomes moving in a direction that helps us until we slam
into one of the constraints. The constraints collectively define a convex polytope in n-
space, and our optimal point will be at a vertex of the polytope (or possibly an edge or
face).

Recall that we used the simplex algorithm to solve our problems, which first re-
quired us to put the problem into standard equality form, where

1. it is a maximization problem;
2. other than the non-negativity constraints, all constraints are equalities; and
3. every variable has a non-negativity constraint.

For variables without a non-negativity constraint, we achieved this by substitution
of pairs of variables such as 25 and x5 and setting 3 = z3 — z3, then adding
constraints x?{, x5 > 0. To turn inequalities into equalities, we added slack variables.

Once that’s done, we take a basic solution, pick a variable, and increase it until we
hit a stop. We then pick a different basis and reset the problem into canonical form for
the new basis, which will allow us to increase a different variable without accidentally
undoing some of the good work we have already done.



3.2 Integer Problems

Integer problems have the additional constraint that at least some of the variables must
be integers in the solution, rather than continuous; e.g., if you’re packing a transport
ship, you can’t ship half a car! The only technique we really addressed here was the
linear relaxation of the integer problem, where under certain circumstances we can be
sure that our solution using our linear techniques will ultimately result in an integer
solution.
Important additional integer programming techniques we didn’t cover include branch

and bound and dynamic programming.

3.3 Graph Problems

To me, the most interesting and intuitive problems in this field are those on graphs. We
looked at three, though there are others.

3.3.1 Minimum Cost Spanning Tree

A minimum cost spanning tree is a subset of the links in a weighted graph that creates
exactly one path between every pair of nodes. This naturally results in a tree, a graph
with no loops. If every link has a distinct weight, the minimum spanning tree is unique,
and all algorithms for MST will find it; if some links have the same cost, it is possible
that there are multiple trees that have the same cost, and different algorithms or different
starting points for the same algorithm may find different trees.

We talked about the following algorithms:

1. Boruvka’s algorithm (1926) builds a “forest” of trees, adding the lowest-cost
edge to each tree and iterating until they merge into a single tree. Requires that
all edges have distinct weights.

2. Prim’s algorithm (1930) builds a single tree, starting from some point.

3. Kruskal’s algorithm is similar to Boruvka’s, but rather than iterating through the
nodes (or components) to add the lowest-cost link from each component, it stores
all the edges in a global list and adds the lowest-cost edge that connects things.

One important thing we learned from addressing this problem is that many algo-
rithms can solve the same problem in different ways.

3.3.2 Shortest Path (Pair-wise or Tree)

The above minimized the global cost (e.g., dollars to build the network). In the shortest
path problem, instead we are concerned with creating the cheapest path between each
pair of nodes (e.g., highest bandwidth or lowest latency). This problem has two forms:
the pair-wise form, in which we are given a source and destination and are only looking
for the shortest path between that one pair; and the spanning tree form, in which we are
creating a spanning tree of the shortest paths from a given source to all destinations in
the graph:



1. The most famous solution, of course, is Dijkstra’s algorithm, which can be used
for either.

2. We also looked at Radia Perlman’s distributed approach to building the short-
est path spanning tree, which is used in Ethernet networks; this was our first
distributed algorithm discussed in class.

3. We followed up on the above with a homework set proving that the distributed
form of Dijkstra, known as Open Shortest Path First, guarantees consistency in
routing even with distributed solutions to the spanning tree problem.

4. We also looked at the A* algorithm, which can be used in more open environ-
ments where we don’t necessarily have a fixed graph we are operating on. It
works by augmenting our expected cost with a minimum estimate of the cost
from each point on the frontier to the destination.

3.3.3 Minimum Weight Bipartite Matching

It turns out that many “matching” problems, where we have to e.g. match people to
jobs or to houses or what have you, can be represented as minimum weight bipartite
matching problems on graphs (remember what a bipartite graph is?).

The algorithm we studied in detail is the Hungarian algorithm (created by two
Americans). Recall that we took the matrix representing the table of costs, essentially
figured out how to factor out the minimum cost so that some of the entries became zero,
then see if we can create a minimal matching. Various forms of voodoo were invoked
to create a subgraph and reduce the problem, including covering the zeros.

3.4 Non-linear Problems

Perhaps the most fun we had (or at least, the most fun I had) this semester was working
on non-linear problems. In this case, our objective function is non-linear, and so doesn’t
uniformly increase in some fixed direction throughout the polytope of possible answers.
Instead, there may be “hills” and “valleys” in our function. Our problem definition may
be to find the global minimum, or may be to find only a local minimum. In general,
unless we know quite a bit about the objective function, finding the global minimum
can be hard; even NP-hard, if we have a discrete space of possible solutions.

We should probably have started with hill climbing. In hill climbing, you pick one
of the variables and move along it until it makes the objective function worse rather
than better, then pick a different one of the variables and repeat until all of the variables
are optimized. Done properly, this will take you to a local minimum (or maximum,
depending on how the problem is defined). It is possible, though, that you’ll actually
hit a saddle point and stay there, so you really ought to check for that.

A more mathematical solution is gradient descent, in which we take the first deriva-
tive (using the partial derivatives) and find the vector in the entire n-space that gives
us the greatest bang for our buck in terms of change, and jump out in that direction. A
key problem with this is that we make finite-size jumps, and if our jumps are too small
we make very slow progress, but if they are too large then we might be jumping over



valleys or slamming back and forth along the walls, either being inefficient or possibly
failing to reach a nearby minimum at all.

Newton’s method takes the second derivative and attempts to make a better guess
at each jump. It seems computationally intensive in each step, but in low-dimensional
spaces it’s reasonable and can get you much faster convergence.

Of course, all of those are just to find local minima. If you want a global minimum,
or something close to it, without iterating through the entire space, you can apply
heuristics such as simulated annealing, Metropolis and other Monte Carlo optimization
techniques, particle swarm computing, ant colonies, or other techniques. You can also
apply neural networks or deep learning to this, but be careful of any claims that they
solve NP-complete problems in an efficient fashion. I am not aware of any credible
claim for any technique that will solve NP-complete problems in polynomial time.

3.5 Coda: Lecture by Lecture
e Lec. 1: Introduction
e Basics of Linear Programming

— Lec. 2: Examples of Linear, Integer and Graph Problems (formulating
formal descriptions of problems)

Lec. 3: Three Kinds of Certificates, Standard Equality Form, and a Simplex
Iteration

Lec. 4: The Heart of the Simplex Algorithm (bases and canonical forms)
In my opinion, this is the hardest week of the semester!

Lec. 5: Sticking a Stake in the Heart of the Simplex Algorithm

e Graph Algorithms
— Lec. 6: Basic Ideas of Graphs, Dijkstra’s Shortest Path First Algorithm

— Lec. 7: Several Minimum Spanning Tree Algorithms

— Lec. 8: A* Algorithm, Duality, and Minimum Spanning Tree Via Linear
Algebra

— Lec. 9: Minimum Weight Bipartite Matching

(Sadly, we are going to skip some important problems such as set cover,
and min cut max flow. Semester projects, perhaps?)

e Integer Problems

— Lec. 10: The Knapsack Problem

— (Sadly, we are going to skip many important problems and solutions here!)
e Computational Complexity

— Lec. 11: Basic Ideas of Computational Complexity



4

Non-Linear Programming (NLP) and Advanced Techniques

Warning: These lectures require a little basic calculus! But don’t worry too
much if you’re not up on your derivatives; there will be no required homework
on these lectures.

— Lec. 12: Basics: Finding a Min/Max of a Function (Derivatives, Gradient
Descent, Newton’s Method)

— Lec. 13: Deterministic Exact, Deterministic Heuristic, and Random Algo-
rithms (Al-like methods, more on computational complexity)

— Lec. 14: Pareto Optimality and Wrapping Up the Semester

Where To Next?

Suggestions for classes and independent study...
Classes:

Linear Algebra: Ideally, you would have already taken LA before taking this
class, but I know many (most?) of you haven’t. Go take it, learn about eigenvec-
tors and eigenvalues, etc.

Probability: An absolute must for everyone, in my opinion. The probability
class at SFC covers only the basics of discrete probability, you should consider
following up on this with a class in continuous probability at Yagami or online.

Where do you get Bayesian inference and statistics here?

Differential and partial differential equations are necessary for many of the ad-
vanced techniques covered in the last three weeks.

Artificial Intelligence: In Suwa-sensei’s class, you’ll learn more about the phi-
losophy than the existing technologies, but he knows it all. Likewise, in Takefuji-
sensei’s classes, you’ll find some Al-related optimization techniques and even
non-silicon computing, such as using amoebae to optimize some functions.

Further topics for self-study:

We have discussed algorithms here and executed them by hand, but to complete
your understanding you should implement some of them. To do the “kin-tore”
(muscle building) exercises for this, take any of the programming classes at SFC.
Especially, if you are a freshman and have just taken FITI, plan to take FIT2 in
the spring!

As noted above, probably the most important algorithmic techniques we didn’t
cover in detail are branch-and-bound, and dynamic programming.

Besides algorithms and complexity theory, the other major component of solid
theoretical computer science with a big influence on practical programming is
data structures. How your program stores and accesses data elements can have

10



a huge impact on the efficiency of your algorithm. We no longer have a spe-
cific class in this topic at SFC, but much of the knowledge has been scattered
about into different classes. In the years when I teach Fundamentals of Systems
Programming, using the programming language C, I introduce some of the key
data structures, leading up to red-black trees; when Mitsugi-san teaches it, he
emphasizes other basic structures.

e We did very little with the concept of duality during the semester, but people
who work in this field consider it to be a central concept with broad practical
implications.

e For some fun, and to think about what it means for a physical system to compute,

go look at Scott Aaronson’s “soap bubble optimization”.
e Advancing toward classifiers and machine learning: supervised, unsupervised,
reinforcement learning

Books, besides the ones listed below:

o Diestel (Japanese translation of 2nd edition is by Yagami’s Ohta-sensei, but in
English it’s now up to 5th edition, available in Kindle now and hardback on Jan.
1,2017)

5 Sources for the Semester

Some text and examples throughout the semester have been adapted from the paperback
edition of A Gentle Introduction to Optimization, B. Guerin et al.

1. T use this book for simplex and background math in the first few weeks of the
semester, and the Hungarian algorithm when we talk about minimum weight
perfect matching on a bipartite graph:

B. Guenin, J. Kénemann, L. Tuncel,
A Gentle Introduction to Optimization Theory.

2. And of course this book (the standard text on algorithms) for some of the graph
algorithms:
Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest and Clifford Stein,
Introduction to Algorithms, Third Edition

3. And Russell and Norvig on Al, for the A* algorithm:
Stuart Russell and Peter Norvig,
Artificial Intelligence: A Modern Approach, 3e
(n.b.: There are several versions of this edition floating around, one purporting
to be the international edition, but it seems the U.S. edition is the best.)

4. This book is a good reference I’ve used while preparing some material, but a
little too heavy for an SFC class. I highly recommend it for further study for
those interested in the topic, though (and it’s cheap!):

11



Christos H. Papadimitriou and Kenneth Steiglitz,
Combinatorial Optimization: Algorithms and Complexity

5. One of these next two is the book that the prior instructor used when teaching
this in Japanese. I think it’s this one:
Mikio Kubo,
Kumiawase saitekika to arugorizumu
but it might have been this one:
Mikio Kubo and Tomomi Matsui,
Kumiawase saitekika [tanpenshuu]

6. Wikipedia has been helpful, but the quality is very uneven.

7. For gradient descent, these sites have been helpful:
Rudel, http://sebastianruder.com/optimizing—gradient—-descent/
Supstat, http://vis.supstat.com/2013/03/gradient-descent-algorithm-with-r/
(with animation in R)
Lukaszkujawa, https://lukaszkujawa.github.io/gradient-descent .html
Also, there is an ad hoc list of test functions for global optimizers:
There is a convenient summary at Wikipedia:
https://en.wikipedia.org/wiki/Test_functions_for_optimization
This comes from Rody Oldenhuis in Matlab by way of Gilberto A. Ortiz, also in
Matlab on MathWorks.

6 Final Thoughts

Yes, have some.

12



