Optimization Theory (DS2) HW\#1 Basic Matrix and Vector Operations

November 7, 2016

Alice laughed. "There's no use trying," she said: "one can't believe impossible things."
"I daresay you haven't had much practice," said the Queen. "When I was your age, I always did it for half-an-hour a day. Why, sometimes I've believed as many as six impossible things before breakfast."

Lewis Carroll, Through the Looking Glass, 1871

1. Download and install the programming language R , if you don't have it. Show me that it works.
2. Write out the transpose of the row vector ($\left.\begin{array}{lll}0 & 1 & 2\end{array}\right)^{\top}$ as a column vector.
3. Add the two vectors

$$
\left(\begin{array}{l}
1 \tag{1}\\
2 \\
3 \\
4
\end{array}\right)+\left(\begin{array}{c}
3 \\
5 \\
7 \\
11
\end{array}\right)=?
$$

4. Calculate the dot product of the two vectors

$$
\left(\begin{array}{llll}
1 & 2 & 3 & 4
\end{array}\right)\left(\begin{array}{llll}
4 & 3 & 2 & 1 \tag{2}
\end{array}\right)^{\top}=?
$$

5. Multiply this vector and matrix

$$
\left(\begin{array}{llll}
1 & 1 & 0 & 0 \tag{3}\\
2 & 0 & 1 & 0 \\
4 & 0 & 0 & 1
\end{array}\right)\left(\begin{array}{c}
1 \\
-1 \\
3 \\
2
\end{array}\right)=?
$$

6. Multiply these matrices

$$
\left(\begin{array}{cccc}
1 & 1 & 0 & 0 \tag{4}\\
2 & 0 & 1 & 0 \\
4 & 0 & 0 & 1 \\
3 & 0 & 0 & 0
\end{array}\right)\left(\begin{array}{cccc}
5 & 1 & 0 & 0 \\
6 & 0 & -1 & 0 \\
7 & 0 & 0 & 1 \\
8 & 0 & 0 & -1
\end{array}\right)=?
$$

