Optimization Theory (DS2) HW\#2 Certificates, Standard Equality Form and Simplex Iteration

November 7, 2016

Problems and page numbers from the paperback edition of A Gentle Introduction to Optimization, by B. Guenin et al.

1. (Problem 1 in Sec. 2.1 of the text, p. 50.)
(a) Prove that the following LP problem is infeasible:

$$
\begin{equation*}
\max \left\{3 x_{1}+4 x_{2}+6 x_{3}\right\} \tag{1}
\end{equation*}
$$

subject to

$$
\begin{align*}
3 x_{1}+5 x_{2}-6 x_{3} & =4 \tag{2}\\
x_{1}+3 x_{2}-4 x_{3} & =2 \tag{3}\\
-x_{1}+x_{2}-x_{3} & =-1 \tag{4}\\
x_{1}, x_{2}, x_{3} & \geq 0 . \tag{5}
\end{align*}
$$

(b) Prove that the following LP problem is unbounded:

$$
\begin{equation*}
\max \left\{-x_{3}+x_{4}\right\} \tag{6}
\end{equation*}
$$

subject to

$$
\begin{array}{r}
x_{1}+x_{3}-x_{4}=1 \\
x_{2}+2 x_{3}-x_{4}=2 \\
x_{1}, x_{2}, x_{3}, x_{4} \geq 0 . \tag{9}
\end{array}
$$

(c) Optional: Prove that the LP Problem

$$
\begin{equation*}
\max \left\{\vec{c}^{\boldsymbol{\top}} \vec{x}: A \vec{x}=\vec{b}, \vec{x} \geq \overrightarrow{0}\right\} \tag{10}
\end{equation*}
$$

is unbounded, where

$$
A=\left(\begin{array}{ccccc}
4 & 2 & 1 & -6 & -1 \tag{11}\\
-1 & 1 & -4 & 1 & 3 \\
3 & -6 & 5 & 3 & -5
\end{array}\right)
$$

$$
\begin{align*}
& \vec{b}=\left(\begin{array}{c}
11 \\
-2 \\
-8
\end{array}\right) \tag{12}\\
& \vec{c}=\left(\begin{array}{c}
1 \\
-2 \\
1 \\
1 \\
1
\end{array}\right) \tag{13}
\end{align*}
$$

Hint: Consider the vectors

$$
\begin{equation*}
\vec{x}=(1,3,1,0,0)^{\top} \text { and } \vec{d}=(1,1,1,1)^{\top} \tag{14}
\end{equation*}
$$

(d) Optional: For each of the problems in parts (b) and (c), give a feasible solution having object value exactly 5000 .
2. (Problem 1 in Sec. 2.2 of the text, p. 54.)
(a) Convert the following LPs into SEF:

$$
\begin{equation*}
\min \left\{(2,-1,4,2,4)\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}\right)^{\top}\right\} \tag{15}
\end{equation*}
$$

subject to

$$
\begin{gather*}
\left(\begin{array}{ccccc}
1 & 2 & 4 & 7 & 3 \\
2 & 8 & 9 & 0 & 0 \\
1 & 1 & 0 & 2 & 6 \\
-3 & 4 & 3 & 1 & -1
\end{array}\right)\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4} \\
x_{5}
\end{array}\right) \stackrel{\leq}{=}\left(\begin{array}{l}
1 \\
2 \\
3 \\
4
\end{array}\right) \tag{16}\\
x_{1}, x_{2}, x_{4} \geq 0 \tag{17}
\end{gather*}
$$

(Careful, note that not all of the x_{i} have a non-negativity constraint.)
(b) Optional: Let A, B, D be matrices and $\vec{b}, \vec{c}, \vec{d}, \vec{f}$ vectors (all of suitable dimensions). Convert the following LP with variables \vec{x} and \vec{y} (where \vec{x}, \vec{y} are vectors) into SEF:

$$
\begin{equation*}
\min \left\{\vec{c}^{\top} \vec{x}+\vec{d}^{\top} \vec{y}\right\} \tag{18}
\end{equation*}
$$

subject to

$$
\begin{align*}
A \vec{x} & \geq \vec{b} \tag{19}\\
B \vec{x}+D \vec{y} & =\vec{f} \tag{20}\\
\vec{x} & \geq \overrightarrow{0} \tag{21}
\end{align*}
$$

3. (Problem 1 in Sec. 2.3 of the text, p. 56.)

In this exercise, you are asked to repeat the argument in Section 2.3 with different examples.
(a) Consider the following LP:

$$
\begin{equation*}
\max \{(-1,0,0,2) \vec{x}\} \tag{22}
\end{equation*}
$$

Subject to

$$
\begin{align*}
\left(\begin{array}{cccc}
-1 & 1 & 0 & 2 \\
1 & 0 & 1 & -3
\end{array}\right) \vec{x} & =\binom{2}{3} \tag{23}\\
\vec{x} & \geq \overrightarrow{0} . \tag{24}
\end{align*}
$$

Observe that $\vec{x}=(0,2,3,0)^{\top}$ is a feasible solution. Starting from \vec{x}, construct a feasible solution $\overrightarrow{x^{\prime}}$ with value larger than that of \vec{x} by increasing as much as possible the value of exactly one of x_{1} or x_{4} (keeping the other variable unchanged).
(b) Consider the following LP:

$$
\begin{equation*}
\max \{(0,0,4,-6) \vec{x}\} \tag{25}
\end{equation*}
$$

subject to

$$
\begin{align*}
\left(\begin{array}{cccc}
1 & 0 & -1 & 1 \\
0 & 1 & -3 & 2
\end{array}\right) \vec{x} & =\binom{2}{1} \tag{26}\\
\vec{x} & \geq \overrightarrow{0} \tag{27}
\end{align*}
$$

Observe that $\vec{x}=(2,1,0,0)^{\top}$ is a feasible solution. Starting from \vec{x}, construct a feasible solution $\overrightarrow{x^{\prime}}$ with value larger than that of \vec{x} by increasing as much as possible the value of exactly one of x_{1} or x_{4} (keeping the other variable unchanged).

