
Optimization Theory (DS2) Lecture #3
Three Kinds of Certificates, Standard Equality

Form, and a Simplex Iteration

May 9, 2017

Abstract

Today we are going to prepare for the simplex algorithm. We will cover Secs.
2.1 to 2.3 of the textbook.

Text and examples adapted from A Gentle Introduction to Optimization.

1 Review
Recall, last time we worked on how to formulate problems, going from a word descrip-
tion of a problem to a formal description including Variables, Constraints, and the
Objective Function. Once you have those, you can produce a formal description that
says, “Maximize (some function) such that (s.t.) (some constraints hold).”

2 Geometric Interpretation of Constraints and Objec-
tive Function

First, let’s review the idea of constraints with a 2-D example. If I give you the equation

y ≥ x+ 2 (1)

you know that this cuts the X-Y plane in half; points in one half satisfy the constraint,
points in the other half don’t.

If we add a second constraint, ...

2.1 A Geometric Simplex
A simplex is an n-dimensional generalization of a triangle: in one dimension it’s a line
segment, in two it’s a triangle, in three it’s a tetrahedron, in four or more it’s more
generally called a simplex. It has n+ 1 vertices. In terms of optimization problems, it
has n+ 1 independent constraints.

1

2.2 More Complex Polytopes
In the next lecture, we will see the n-dimensional generalization of a polyhedron known
as a polytope.

3 Certificates
As the book says, “By definition, an LP [linear program] has only one optimal value,
but it may have many optimal solutions.” However, it may not have a solution at all!
Or, it may have a solution that runs off to infinity. So, there are three possible cases we
would like to distinguish:

1. our problem is infeasible (has no solution),

2. it has one or more optimal solutions, or

3. it is unbounded.

Also, in the case where we have a solution that we think is optimal, it would be
nice to be able to prove that to others. We will see that, once the problem is prop-
erly formulated, there are one or two vectors we can present that will show which of
these cases holds. These vectors are called certificates of infeasibility, optimality, or
unboundedness, respectively.

3.1 Infeasibility
We only need to look at the constraints, not the objective function, and demonstrate
that they are mutually exclusive: by the time you take them all into account, there is no
space left for a working solution at all.

3.2 2-D Example
To be added.

3.3 Larger Example
Consider the constraints of a problem (P),

4x1 + 10x2 − 6x3 − 2x4 = 6 (2)
−2x1 + 2x2 − 4x3 + x4 = 5 (3)

−7x1 − 2x2 + 4x4 = 3, (4)
x1, x2, x3, x4 ≥ 0. (5)

To show there is no solution, we create the equation

x1 + 4x2 + 2x3 = −1 (6)

2

and from this, we are done: all of the coefficients of the xi are positive (or non-negative,
including x4), and all of the xi are constrained to be non-negative, so there is no way
this can be solved!

So how do we create that equation? Via the usual algebraic manipulation of the
equations above:

1× (Eq. 1)− 2× (Eq. 2) + 1× (Eq. 3). (7)

If we write down those values as y1 = 1, y2 = −2, y3 = 1, then we can create the
vector

~y = (y1, y2, y3)
ᵀ = (1,−2, 1)ᵀ. (8)

The vector ~y is said to be our certificate of infeasibility.
We can write this down as

A~x = ~b, (9)

where

A =

 4 10 −6 −2
−2 2 −4 1
−7 −2 0 4

 (10)

~b =

 6
5
3

 (11)

~x =

x1

x2

x3

x4

 . (12)

We multiply both sides by the vector ~y ᵀ to get

~y ᵀA~x = ~y ᵀ~b, (13)

Insert numbers for ~y into that equation, and you will get an equation with all non-
negative values on the left and a negative value on the right. Formally,

Let A be a matrix and~b be a vector. Then the system

A~x = ~b, ~x ≥ ~0 (14)

has no solution if there exists a vector ~y s.t.

1. ~y ᵀA ≥ ~0 ᵀ, and

2. ~y ᵀ~b < 0.

Farkas’ lemma tells us that there exists a certificate of infeasibility for every infea-
sible system.

3.4 Unbounded Linear Programs
To be added.

3

3.5 2-D Example
To be added.

3.6 Larger Example
Consider the already-formulated LP

max{z(~x) = ~c ᵀ~x : A~x = ~b, ~x ≥ ~0}, (15)

where

A =

 1 1 −3 1 2
0 1 −2 2 −2
−2 −1 4 1 0

 (16)

~b =

 7
−2
−3

 (17)

~c =

−1
0
3
7
−1

 (18)

~x =

x1

x2

x3

x4

x5

 . (19)

If we pick vectors ~xa = (2, 0, 0, 1, 2)ᵀ and ~d = (1, 2, 1, 0, 0)ᵀ and define a function

~x(t) = ~xa + t~d, (20)

then we can show that
~c ᵀ~x(t) = ~c ᵀ ~xa + 2t, (21)

and so as t→∞, so does our objective function. Formally,

Suppose there exists a problem (P) as above, with a feasible solution
~xa and a vector ~d such that:

1. A~d = ~0, and

2. ~d ≥ ~0, and

3. ~c ᵀ~d > 0,

then (P) is unbounded.

The pair of vectors ~d and ~xa together are our certificate of unboundedness.

4

3.7 Optimality
See Sec. 2.1.3.

4 Standard Equality Form (SEF)
An LP is in standard equality form if:

1. it is a maximization problem;

2. other than the non-negativity constraints, all constraints are equalities; and

3. every variable has a non-negativity constraint.

That is, it can be written in the form

max{z(~x) = ~c ᵀ~x : A~x = ~b, ~x ≥ ~0}. (22)

Consider the LP
max(1,−2, 4)(x1, x2, x3)

ᵀ (23)

subject to 1 5 3
2 −1 2
1 2 −1

 x1

x2

x3

 ≥
≤
=

 5
4
2

 (24)

x1, x2 ≥ 0. (25)

x3 is called a free variable since it doesn’t have a non-negativity constraint. But a
lot of our techniques and especially proofs depend on that. So, we introduce two new
variables, x+

3 and x−3 , set x3 = x+
3 − x−3 , and add constraints x+

3 , x
−
3 ≥ 0. After some

algebra, you get
max(1,−2, 4,−4)(x1, x2, x

+
3 , x

−
3)

ᵀ (26)

subject to

 1 5 3 −3
2 −1 2 −2
1 2 −1 1

x1

x2

x+
3

x−3

 ≥
≤
=

 5
4
2

 (27)

x1, x2, x
+
3 , x

−
3 ≥ 0. (28)

Getting closer, but we’re still not quite there; we don’t have equalities everywhere
yet. So we introduce two slack variables x4 and x5. Now we get

max(1,−2, 4,−4, 0, 0)(x1, x2, x
+
3 , x

−
3 , x4, x5)

ᵀ (29)

5

subject to

 1 5 3 −3 0 −1
2 −1 2 −2 1 0
1 2 −1 1 0 0

x1

x2

x+
3

x−3
x4

x5

 =

 5
4
2

 (30)

x1, x2, x
+
3 , x

−
3 , x4, x5 ≥ 0 (31)

and we’re finally in SEF! Note that when we replaced a ≤ constraint (second line of
Eq. 27), we added a 1 to the array, and when we replaced a ≥ constraint (first line of
Eq. 27), we added −1 to the array. This helps us keep our non-negativity constraint for
all variables.

5 A Simplex Iteration
The idea of the simplex algorithm is pretty simple: repeat a simplex operation until no
more simplex operations improve the result, and you’re done. But there’s a catch: the
second simplex operation might partly undo the work of the first! So there is something
you have to do in order to make that second one work, and that’s what we’ll see next
time.

...Oh, wait, we haven’t talked about a single simplex operation. Okay, let’s talk
about that. (n.b.: It’s not really a simplex operation, in the mathematical sense, but it’s
related, and the name has stuck.)

Consider the following LP in SEF:

max z(~x) = (2, 3, 0, 0, 0)(x1, x2, x3, x4, x5)
ᵀ (32)

subject to 1 1 1 0 0
2 1 0 1 0
−1 1 0 0 1

 ~x =

 6
10
4

 (33)

x1, x2, x3, x4, x5 ≥ 0. (34)

Given the solution ~xa = (0, 0, 6, 10, 4)ᵀ (easy to see that’s a solution – look at the
right side of the array), z(~xa) = 0.

Now try increasing x1, choosing x1 = t. A little algebra gives x3

x4

x5

 =

 6
10
4

− t

 1
2
−1

 (35)

from which we get

t

 1
2
−1

 ≤
 6

10
4

 (36)

6

which gives us the limiting inequality t ≤ 10/2 = 5. Setting t = 5, ~x′ = (5, 0, 1, 0, 9)ᵀ

and z(~x′) = 10.
Unfortunately, we can’t yet apply the same trick to x2, so that’s the topic for next

time!

6 Homework
See the separate file uploaded to SFS.

1. Exercise 1 (parts a, b) in Sec. 2.1.

2. Exercise 1 (part a) in Sec. 2.2.

3. Exercise 1 (all parts) in Sec. 2.3.

7

