
Optimization Theory (DS2) HW#5
Shortest Path from Dijkstra to OSPF

June 7, 2017

Abstract

Is it true that OSPF and Dijkstra give the same result?

1 Introduction
In class, I talked about two forms of Dijkstra’s algorithm:

• The source-destination form, which starts from a source and searches the graph
until it finds the named destination, then quits.

• The all-destinations form, which builds a spanning tree that can be used to iden-
tify the shortest path to all possible destinations.

In this homework, we will look at the latter form and examine a specific set of
paths. We’ll use the same graph we used during class, in Fig. 1.

The Internet’s Open Shortest Path First protocol (see RFCs 2328 and 5340), which
I briefly described, uses Dijkstra’s algorithm. Each node collects information about the
set of nodes and links, and the link costs, then independently calculates its own shortest
path spanning tree. The Internet only works if the set of spanning trees calculated by
the nodes are consistent enough to guarantee that packets don’t get stuck in a loop
somewhere. In this homework, we are examining that proposition.

2 Problems
1. First, for single paths:

(a) Identify the shortest path from A to E on the graph. Although the edges in
the original graph are undirected, this path will be directed.
(The answer will be a list of edges.)

(b) For each node in that path other than A and E, find the shortest (directed)
path to E. (e.g., if the A-E path is four hops, you will have three other paths
to E, one starting at each of the other nodes.) Is the set of edges in all of

1



�

�

��
�

�

��

��

��

�

�

�

�� �

�

��
�

�

�

�

�

Figure 1: Our nine-vertex, fourteen-edge figure from Intro to Algorithms.

those paths a subset of the edges of the original A-E path? Are all of the
edges oriented in the same direction?
(The answer will be several lists of edges, plus a qualitative answer to each
question.)

2. Next, for trees:

(a) Find the shortest path spanning tree (not the minimum cost spanning tree!
Remember, they are (or can be) different.) for node A, including paths to
all of the other nodes. Again, the edges should be directed.
(The answer will be a set of edges that make a spanning tree.)

(b) Select a second node. Find the shortest path spanning tree for it.
(The answer will be a set of edges that make a spanning tree, rooted at a
different node.)

(c) Compare the two trees: Which portions of the trees are identical, which
different?
(The answer will be a discussion of the results.)

(d) Construct a “Next Hop” table for each of the two nodes. Describe any
similarities or differences you see.
(The answer will be a set of Next Hop tables; see the additional notes at
the end of this document.)

3. If the shortest path from A to some other node Z passes through nodes X and
then Y, can it ever be the case that the shortest path from X to Z does not pass
through Y? Why or why not?
(The answer will be a qualitative argument.)

3 Additional Notes
Last year, there was some confusion over some important aspects of the homework, so
here are some additional notes on what is expected.

2



Directed v. Unidirected and Next Hop Table:

There has been some confusion over the next hop table and HW5. First,
directed v. undirected graph: the basic network in all of our examples
and homeworks begins as an undirected graph -- you can move in either
direction across any link. However, a path from, say, A to F is
inherently directed. It might go A->B->C->D->E->F, for example.
After you run Dijkstra’s algorithm, usually people don’t bother to
mention the direction you would cross a link, since it’s obvious from
the tree structure.

Understanding the homework, though, depends somewhat on that
directionality. If you build a shortest-path tree from A to F, in
this case, we expect that it will eventually pass through D. How does
it get from D to F? There are two basic ways: (1) Follow a path
calculated entirely by the source (A), with that information
communicated to the other nodes in some fashion. (2) Allow each node
to *independently* decide how to get the packet from itself to the
specified destination. In order for this to work, the individual
nodes must make *consistent* decisions.

The packet will pass through D. At D, it will use the shortest-path
tree that D calculated in order to figure out to get from D to F. So,
how do we guarantee that D’s decision is consistent with A’s? How do
we guarantee that the packet won’t end up back at C instead of going
on to E, like it should?

We can check that by checking that the shortest-path spanning tree
calculated at D is consistent with that calculated at A, B and C for
some set of destinations. You will want to check that it’s consistent
for direction of the link, as well as the next hop.

Okay, speaking of the Next Hop, that’s the table that each node uses
to decide where to go next. Completely making up an example, it might
look like:

Node A’s Next Hop Table:
destination next hop
B B
C C
D B
E B
F C

That is, A is directly connected to B and C, so it’s only one hop to
them, but in order to get to D, it has to first send the packet to B.

3



So the homework is to calculate that next hop table for each of the
nodes in our network, and compare them to figure out if they are
consistent, will correctly route packets between all pairs of sources
and destinations.

For homework 1a, the answer will be a list of edges from the original
graph. For 1b, it will be several lists of edges, plus a qualitative
answer to the questions.

For 2a, it will be a set of edges that make a spanning tree. For 2b,
it will be a set of edges making a spanning tree rooted at a different
node. 2c is discussion.

2d will be a Next Hop table like the one above, for *each* node.

3, the answer is qualitative.

4


