Minimum Cost Perfect Matching

March 24, 2017

Abstract

This is pseudocode for Minimum Cost Perfect Matching in Bipartite Graphs


```
Algorithm 3.3 Minimum Cost Perfect Matching in Bipartite Graphs
    Input : Graph \(G=(V, E)\) with bipartition \(U, W\) where \(|U|=|W|\) and costs c.
    Output: A minimum cost perfect matching \(M\) or a deficient set \(S\)
```

1

$$
\begin{equation*}
\overrightarrow{y_{v}}:=\frac{1}{2} \min \left\{c_{e}: e \in E\right\} \tag{1}
\end{equation*}
$$

for all $v \in V B$
while Construct graph H with vertices V and edges

$$
\begin{equation*}
\left\{u v \in E: c_{u} v=\overrightarrow{y_{u}}+\overrightarrow{y_{v}}\right\} \tag{2}
\end{equation*}
$$

```
        do
            if H has perfect matching M then
            {
                stop (M is a minimum cost perfect matching of G)
            }
    }
    Let }S\subseteqU\mathrm{ be a deficient set for HB
    if all edges of G with an endpoint in S have an endpoint in N}\mp@subsup{N}{H}{}(S)\mathrm{ then
    1 {
        stop (S is a deficient set of G)
    }
\[
\begin{equation*}
\in:=\min \left\{c_{u v}-\overrightarrow{y_{u}}-\overrightarrow{y_{v}}: u v \in E, u \in S, v \notin N_{H}(S)\right\} \tag{3}
\end{equation*}
\]
```

14

15

$$
\overrightarrow{y_{v}}:=\left\{\begin{array}{l}
\overrightarrow{y_{v}}+\in \text { for } v \in S \tag{4}\\
\overrightarrow{y_{v}}-\in \text { for } v \in N_{H}(S) \\
\overrightarrow{y_{v}}
\end{array}\right.
$$

