Simplex Algorithm

May 17, 2017

Abstract

This is pseudocode for the core of the Simplex Algorithm, adapted from *A Gentle Introduction to Optimization.*

Algorithm 2.1 Simplex Algorithm

Input : Linear program (P) and feasible basis B Output: An optimal solution for (P) or a certificate proving that (P) is unbounded 1 Rewrite (P) so that it is in canonical form for the basis B2 Let \vec{x} be the basic feasible solution for B3 if $\vec{c_N} \leq \vec{0}$ then { 4 5 stop $(\vec{x} \text{ is optimal})$ 6 7 } 8 Select $k \in N$ such that $c_k > 0$ 9 if $A_k \leq \vec{0}$ then 10 { 11 stop ((P) is unbounded) 12 13 } 14 Let r be any index i where the following minimum is attained: 15 $t = \min\left\{\frac{b_i}{A_{i,k}} : A_{i,k} > 0\right\}$ (1)16 Let ι be the r^{th} basis element 17 Set $B := B \cup \{k\} \setminus \{\iota\}$

18 Go to step 1

Notes:

1. Recall \vec{c} is the vector of coefficients in our objective function $z(\vec{x})$, and c_k is the *k*th element of \vec{c} .

- 2. B is the set of columns in A that comprise our basis; N is the rest of the columns.
- 3. $\vec{c_N}$ is \vec{c} with the columns corresponding to basis B removed.
- 4. A is the $m \times n$ matrix with linearly independent rows that comprise our constraints. A_k is the *k*th column of A (a vector, though we aren't writing it with the arrow above), and A_B or A_N is a matrix comprised of a subset of the columns of A, keeping them in the original order.