
The All-IP Manifesto

Rodney Van Meter
September 17, 2009

Abstract

A few thoughts (brain storming? free association? dig-
nifying this document with a name is a little much...) on the
technical direction and desirable background reading for
the All-IP project. Based on current technological trends,
I believe that the boundaries of systems are evaporating,
and that heterogeneity in latency is increasing, leading to
the buzzwordsboundary-less systemsand latency-tolerant
computation. I believe we need to speculate more during
computation.

1. Introduction

All-IP Computingstarts from a very simple premise:the
Internet Protocol (IP) is the only communications mecha-
nism you need.From this idea flows research in three areas:

• Component Interconnects:iSCSI has already proved
to be a commercial success, replacing the physical
connection to a disk or tape with SCSI commands
sent over a network. We work on advanced storage
device protocols, USB/IP, IP-based display protocols,
and boldly propose that IP can even be used in place
of a memory bus. One of the most important issues
in this area is theoperational semanticsfor devices.
Do they need to change when latency or sharing in-
creases?

• Planetary-Scale Dynamic Systems:Also called ”cloud
computing” or ”utility computing”, we are working
toward on-demand allocation of computational and stor-
age resources from around the globe.

• Human-Centric Computing:The most profound con-
sequence of the All-IP philosophy is thathuman be-
ingsshould be more evident in the computational model,
supporting anytime, anywhere, virtually unlimited com-
puting and access toall of one’s data.

2. The Changing Landscape

Life in the late Moore’s Law period:

• multicore (and other parallel):processor-to-processor
latency is low, processor-to-memory latency is high,
and the boundary of the system gets fuzzier.

• virtualization: everything except large physical racks
of equipment can migrate.

• search and data-centric computing:managing your
data is harder than creating it; Google wins, the desk-
top (and Microsoft?) lose.

• asynchronous:AJAX.

• mobile and ubiquitous:everything, everywhere, al-
ways on...

3. Problem Portrait

So, the big picture is that in light of the above changing
landscape, it’s getting harder to create systems that solve
problems faster. It seems we are in danger of hitting some
sort of serious “scalability wall”, though the biggest sys-
tems (BlueGene, etc.) seem to do pretty well. The gap
between what a wizard can achieve and what a normal pro-
grammer can achieve is large, though (and growing?).

It’s alsostill hard to manage disparate computing devices
and resources safely and with minimal effort.

...but those are both too vague. We need a more clearly
defined problem. Homework for all!

4. The Eternal Landscape

Readings you need to look into. Number one on the list
is Lampson [53].

4.1 Distributed Operating Systems

Read the book, it’s good [19]. I don’t have a Japanese
copy, but I believe it has been translated. Tanenbaum also
has a good one, which I had a Japanese copy of...I think I
lent it out...

Ah, and you should look at chapters 3-5 of Roy Field-
ing’s Ph.D. thesis [27]. It will help you understand dis-
tributed information transfers. Likewise, you should go back



to the beginning on remote procedure calls (RPCs), which
have been around since 1976 or earlier [11].

You really need to know about Sprite [65], V [16] (I
always thought the triangle-routed RPCs in VMTP were
clever [17]), Condor [58], VMS VAXclusters [51] (which
was, arguably, the most commercially successful system
with many “modern” distributed system ideas in it), Amoeba [78],
Locus [87], and Plan 9 [67].

Process migration is one important topic; many papers
exist on the topic, and I’m not an expert, but you should
read one or two of the references [36, 63, 75, 23].

The above are operating systems; distributed and parallel
programming models are also important.

4.2 Cloud/Utility and Parallel/Distributed
Computing

Parallel computing, of course, is an enormous field, but
you need to have some basic idea of how it works in mes-
sage passing and shared memory forms.

Other old things that need to be understood:

1. I’m a big fan of Linda [14]. In Linda, information
producers inserttuples into a shared, distributed tu-
ple space, and consumers extract those tuples. All of
the parallelism and distribution is then handled by the
system. Scalability and efficiency are important and
tricky. In some ways, it’s like a simpler MapReduce
(see below).

2. Virtual Time is a powerful insight into the way infor-
mation must propagate in distributed systems [42]. It
is based on a Newtonian concept of time, and was one
of the things that prompted me to think of relativis-
tic time as an organizing principle for distributed sys-
tems.

3. In that same vein, Joe Touch is found of saying, “Ev-
erybody complains about the speed of light, but no-
body ever does anything about it,” which is funny and
motivational, but not quite true (arguably, all caching
work is exactly that – an attempt to get around la-
tency). Nevertheless, his thesis is an interesting at-
tempt to bring some physical principles (including rel-
ativistic information transfer) to networking; I like it [81].

4. Joe also has a patent [80] for a “code pump”, where
the code pump is located near the memory and prefetches
multiple instruction streams, with a filter placed closer
to the processor.

5. Leases [34].

Some current hot buzzwords worth investigating are:

1. MapReduce [20]. Cited by many as a good, new alter-
native to message passing systems, which are often a
hassle to program, maintain, administer, and optimize.

2. BOINC, the Berkeley Open Infrastructure for Network
Computing [6], is the premierevolunteer computing
system.

3. Utility [40], cloud, or service computing [40]. The
publish/find/bind model is important. “Cloud comput-
ing” is such a new term that it shows up in many re-
cent web articles, but few technical papers. However,
all of these are related, and all related to many years
of distributed computing research.

4. Eddies are another concept for dynamic allocation of
transactional processing resources [9].

5. Thread-level speculationis an active area of research [18].

4.3 Distributed Storage

The first two places to start are the CACM paper by
Garth and yours truly [33], and Levy and Silberschatz on
distributed file systems [56]. I also recommend Riedel’s
customer dissatisfaction paper to understand how tojustify
performing a large chunk of work [70]. Two other useful
papers here are Katz [43] and Sachs [72], especially de-
scribing how networking concepts gradually appear in I/O
interfaces.

The 1980s and 1990s saw a bunch of things tried. When
you read these in detail, you’ll be surprised at how many of
your current ideas are present there. That doesn’t mean they
were bad ideas, nor does it mean that there is no reason to
try them again! Knowing why a project failed to become
mainstream, what is different between the present and the
time it was tried before, and how to extend prior ideas, are
imperative. The things you need to know about, in order to
carry on an intelligent conversation, listed in rough orderof
priority for reading, are:

1. Network Attached Secure Disk (NASD) [32], CMU.
Object-oriented interface for the devices. Sophisti-
cated firmware inside the device makes space alloca-
tion decisions.

2. Derived Virtual Devices (DVDs) [86], USC/ISI. Any-
one with the right to use a device can create a new
right for someone else to use a subset of that in a se-
cure fashion, in the form of a derived virtual device.
DVDs are not persistent, they are lost when power
goes out.

3. Petal [55] and Frangipani [79], DEC. Frangipani in-
cludes a VMS-like distributed lock manager, with leases.
Petal is the networked, snapshotted, block-level, vir-
tual disk system Frangipani is built on.

4. OceanStore [52], Berkeley. Excellent ideas on using
untrusted servers, though the implementation never
really seemed to get off the ground.

2



5. xFS (serverless file systems) [7], Berkeley. Good FS
work for a cluster; replicated and logged.

6. GoogleFS [31]. ’Nuff said.

7. Andrew AFS and Coda [74]. The granddaddies of
wide-area file systems. If you are interested in dy-
namic, ad hoc caching in e.g. your current location,
look at WayStations, too [45].

8. TickerTAIP [13], HP. A first step toward distributed
RAID. A lower-priority read.

9. Swift/RAID [60], Sandy Eggo. Another early dis-
tributed RAID paper; also lowish-priority at the mo-
ment.

10. Zebra [37], Berkeley. Another approach to distributed,
striped storage.

11. GFS [76], Minnesota. Direct use of shared disk drives
at the block level, with a lock server.

12. RAID-II [25], Berkeley. Building a file server that
uses a better control/data separation.

13. GridFTP [5], the Globus Project.

14. Sarkaret al. investigated when it is favorable to use a
hardware implementation of iSCSI and when it isn’t [73].

15. Pick one paper on out-of-core distributed I/O, and read
it. Selections are available in the IOPADS book [41].
Alok Choudhary has been working this theme for more
than a decade, and his group has an interesting paper
on inter-file access patterns [61].

You should also read almost everything ever written by
John Wilkes and Greg Ganger, and a smattering of work
by Ethan Miller, Darrell Long, Randall Burns, and a few
others.

4.4 File Systems

Eventually, I’ll add a basic reading list on file systems
here. Elephant, Plan9, log-structured, journaled, write-once,
B-trees, WAFL...

Need RAID, too.

4.5 Distributed Hardware Architectures

You should know all of the buzzwords – NUMA, CC-
NUMA, NORMA, RDMA, etc...of particular relevance to
my vision going forward is cache-only memory architec-
tures [35] like the KSR-1 AllCache [71].

Memory shared over a network goes back quite a ways [21,
77]; as long ago as 1996, it was possible to list 411 refer-
ences on the topic [26], some for pure software implemen-
tations for parallel computation, others for hardware.

When discussing memory semantics, I think we need to
considertransactional memory[54], which can be done in
either hardware or software, and is touted as one solution to
the difficulty of parallel programming.

In the multimedia area, you must know about Netsta-
tion [29], ViewStation [57, 3], and Desk Area Network [10].

Overall, there are a ton of references on multimedia and
storage network-attached peripherals in my survey paper [84].

For reasons that become clear below, you should be fa-
miliar with the basic idea ofdataflowarchitectures, which
you can learn about from papers [22] or textbooks.

AMD supports HyperTransport and provides a cache co-
herent, non-uniform memory access (CC-NUMA) architec-
ture.

4.6 Multi-Core Chips and Networks

Absolutely critical to understand, not just for All-IP but
in general. Also calledchip multiprocessorsandmany-core
chips. You should read about the Sony/Toshiba/IBM Cell
Processor, Sun’s Niagara, and Intel’s 80-core chip.

For network-on-chip (NoC) architectures, check out Bjer-
regaard and Mahadevan [12], as well as the special section
in the Sept. 2008 issue ofIEEE Transactions on Computers.

4.7 Virtualization

As I said at the top, one of the most popular concepts in
current systems work, and a key to enabling migration of
services, in my opinion. We used to virtualize processes;
now we virtualize entire machines and move them around,
a la VMotion. Read about Xen [24], and maybe go back
and read the original formalization of the topic [68]. There
was a special section in an issue ofIEEE Computer(May
2005) on the topic [28]. Some of the papers are very good;
you should pick one or two and read them.

4.8 Fault Tolerance

A huge area in which we need at least a smattering of
help. Who here has taken a class in FT?

Random suggestions: practical Byzantine fault tolerance
has gotten a lot of mileage [15].

4.9 Parallel Languages and Compilers

A list is needed here...we’re not going to attack this prob-
lem directly, but we need to know about it...

Random references: [59, 4]

4.10 Resource- and Environment-Adaptive
Computing

Odyssey [62], as well as lcron [38], Netstation [29], etc.

3



5. Buzzwords of Choice

5.1 Boundary-less Systems

With the advent of many-core chips, we will have pro-
cessors that have much lower latency toeach otherthan to
“local” memory.

iSCSI (and, to a lesser extent, Fibre Channel) erases the
boundary for device I/O. It used to be that a device was un-
der the complete control of one instance of a host operating
system; today that it no longer true.

Interestingly, virtualization, which is becoming increas-
ingly critical in data center environments, also serves to fuzz
system boundaries. A VMware/VMotion-enabled system,
when it moves, continues to access devices on its original
“home” hardware platform.

5.2 Latency-Tolerant Computation

When multiple many-core chips are built into a system,
latency to memory and processor-to-processor latencies dif-
fer, and the cache consistency protocols become more diffi-
cult.

Optimizing computation becomes more difficult when
access to different memories varies, and especially when
access to thesamememory or device varies over time – as
when a VMware server instance migrates to other hardware.

In early distributed systems design, it was usually apro-
cessthat was migrated to balance load or provide fault tol-
erance. Now, it is often avirtual machine.

One aspect of latency tolerance is flexibility in the or-
dering of computations; I proposed a file system interface
called SLEDs, storage latency estimation descriptors, that
allows an application to do the easy work first and postpone
more time-consuming operations [85].

SLEDs allow a form of “dataflow” computation at a macro-
scopic level; one idea I proposed long ago (but never put on
paper in any form other than the SLEDs work) is adataflow
operating system. I still think the idea is fascinating and
valid, and works well in the kinds of heterogeneous systems
that are being built. However, in its most obvious form,
it requires re-architecting computationally complex appli-
cations, and is a very different computational model. The
more object-oriented your system is, probably the cleaner it
fits into this kind of model.

6. Pick Your Battles

Here are a series of problems, each of which should be
worth at least one paper, and some of which are worth a
Ph.D. thesis (or two, or three).

6.1 Memory Interconnect

Macchan-san’s work has already taken a big stride to-
ward showing that IP can be used as a memory interconnect.
A little more experimentation, and writing up a paper, and
we’re all rich, famous, and covered in glory for solving one
of Mankind’s biggest problems.

⇒Demonstrate that IP can be used as a mem-
ory interconnect.

6.2 Memory Semantics

In systems with heterogeneous latency, is transactional
memory useful [54]? Should devices perform a form of data
filtering, as the IRAM project proposed more than a decade
ago [48]?

⇒ Variable-latency transactional memory.

⇒ How about Linda memory?

6.3 Scalability in Latency-Heterogeneous
Caches

Hennessy & Patterson has an excellent section on hard-
ware protocols for cache consistency [39], and it was trans-
lated into Japanese by Keio’s own Hunga-sensei. Under-
standing the basic cache protocols and the performance im-
pact of cache misses and sharing conflicts is critical; the
Linux kernel gives a process an affinity for a single proces-
sor for exactly this reason – moving a process from one pro-
cess to another, or creating a single, shared list of runnable
processes that all processors pick from arbitrarily, results in
cache thrashing poor performance.

But existing cache protocols generally assume a fairly
uniform physical environment, for reliability, security,la-
tency, and processing speed. What happens when those as-
sumptions break down?

⇒ Could we, for example, create amulti-
granularity sharingscheme that would scale more
smoothly? (How would this differ from a multi-
level cache?)

6.4 Device Semantics

In addition to the NASD/OBD, DVDs, and other things
mentioned above, some systems proposed a more programmable
access to the device. We did a project like that at Quan-
tum which was an utter failure; research projects in what
are called “Active Disks” came from CMU [69], Santa Bar-
bara [83], and again from Berkeley [44]. (Those three pa-
pers are similar enough that it’s only necessary to read one.)

4



⇒ Active disks might be a good platform for
MapReduce, as Heidemann has pointed out.

What I want to know about the interface to a node/device
on the network is:

1. what is the command interface?

(a) blocks, bytes or pixels

(b) files, or windows

2. how much does it understand about the security (au-
thentication/authorization) scheme?

(a) nothing (must be protected; will process any com-
mand it receives from anyone)

(b) can enforce a specific policy (e.g., only execute
commands signed with the proper key), but doesn’t
understand anything about ”users”

(c) can participate in full security, understands UIDs,
permissions, etc.

3. can it do third-party transfer?

(a) A tells B, ”Send block #123 to node C, address
0xDEADBEEF.”

(b) How are errors reported?

(c) Can data formats be massaged before sending?
(managing mismatched block sizes, move disk
blocks to screen rectangles, etc.)

4. can it handle concurrency control, or does a manager
(or managers) have to control access to the device?

5. how do we do device discovery?

6.5 Resource Discovery and Macroscopic
Sharing

Resource discovery, in general, is a problem that has
remained unsolved. LDAP and various Microsoft-specific
things work on a LAN, or with generous assumptions about
security. How can this problem be solved for very low-
function devices (such as network-attached RAM)?

By “macroscopic sharing” I mean “device reservations”
or the like – allocating the entire (or a large chunk) of the
device to a dedicated use, as opposed to attempting to coor-
dinate access on an operation-by-operation basis (including
caching). This is one area where the All-IP project has al-
ready done a little real work [64].

Here’s an idea I’ve floated in a meeting or two:

⇒ Incorporate distributed resource manage-
ment into a virtual machine monitor, such as Xen.

I’m sure VMware is headed in that direction; I don’t
know enough about VMotion and the other aspects of their
remote device sharing to say how far they’ve gotten, but
there should be room for exploration.

6.6 Security in Shared Devices

I don’t believe that this area is at all yet mined out. Who
has the right to grant access to a device or a piece of data?
That is a generic systems question, but separation of se-
curity policy andenforcementcan allow different policies
in different situations. Should access rights (for either re-
source scheduling or security purposes) be persistent, or dy-
namic?

⇒ Implement derived virtual devices for DRAM.

Recent work has examined a form of “hardware firewall”
for memory accesses in network-on-chip devices (really a
simple MMU on a per-core basis) [30].

6.7 Speculation in Data Access

⇒ Presending of information based on var-
ious pieces of information. A good rule-based
system is required.

It might be worthwhile to look at e.g.lcron, which
allowed some location-specific computation [38].

And, if you’re interested in prefetching, you gotta know
about local prefetching and some of the intelligent meth-
ods that have been tried for that. I recommend Kroeger for
both local FS and remote web prefetching [50, 49], and Ko-
rner [47] and Patterson [66] for additional ideas on more
intelligent I/O systems, as well as rdv’s SLEDs [85] and
Arpaci-Dusseau’s “gray box” techniques [8].

6.8 Speculation in Computation

This is the home run problem. Radical, innovative so-
lutions here justmight bring big improvements in system
performance, and will definitely result in interesting papers.

Is it possible to predict a value or action accurately often
enough to accelerate a computation?

Thread-level speculationis an active area of research [18].
There are many papers on the topic...

7. How to Have Fun Doing It

• Collaborate.

• Compete (in a friendly way).

• Set small, short-term goals with visible milestones.

• Work smart, not hard.

• Okay, work hard, too.

In my experience, success breeds success. When you are
good, people want to work with you; when you accomplish
one thing, it makes you feel good and makes you want to
achieve even more.

5



8. References

[1] ACM. Proc. 15th ACM Symposium on Operating
Systems Principles, Dec. 1995.

[2] ACM. Proc. 16th ACM Symposium on Operating
Systems Principles, Oct. 1997.

[3] J. F. Adam, H. H. Houh, M. Ismert, and D. L.
Tennenhouse. Media-intensive data communications
in a ”desk-area” network.IEEE Communications,
pages 60–67, Aug. 1994.

[4] A. Al Zain, P. Trinder, G. Michaelson, and H. Loidl.
Evaluating a High-Level Parallel Language (GpH) for
Computational Grids.IEEE TRANSACTIONS ON
PARALLEL AND DISTRIBUTED SYSTEMS, pages
219–233, 2008.

[5] W. Allcock, J. Bresnahan, R. Kettimuthu, M. Link,
C. Dumitrescu, I. Raicu, and I. Foster. The Globus
Striped GridFTP Framework and Server.Proceedings
of Super Computing, 2005, 2005.

[6] D. Anderson. BOINC: A System for Public-Resource
Computing and Storage. In5th IEEE/ACM
International Workshop on Grid Computing, pages
365–372, 2004. Available translated into Japanese at
http://boinc.oocp.org/gridpaper04.html.

[7] T. E. Anderson, M. D. Dahlin, J. M. Neefe, D. A.
Patterson, D. S. Roselli, and R. Y. Wang. Serverless
network file systems. InProc. 15th ACM Symposium
on Operating Systems Principles[1], pages 109–126.

[8] A. Arpaci-Dusseau and R. Arpaci-Dusseau.
Information and control in gray-box systems.
Proceedings of the eighteenth ACM symposium on
Operating systems principles, pages 43–56, 2001.

[9] R. Avnur and J. Hellerstein. Eddies: continuously
adaptive query processing.Proceedings of the 2000
ACM SIGMOD international conference on
Management of data, pages 261–272, 2000.

[10] P. Barham, M. Hayter, D. McAuley, and I. Pratt.
Devices on the desk area network.J. Selected Areas
in Communications, 13(4):722–732, May 1995.

[11] A. Birrell and B. Nelson. Implementing remote
procedure calls.ACM Transactions on Computer
Systems (TOCS), 2(1):39–59, 1984.

[12] T. Bjerregaard and S. Mahadevan. A survey of
research and practices of Network-on-chip.ACM
Computing Surveys (CSUR), 38(1), 2006.

[13] P. Cao, S. B. Lim, S. Venkataraman, and J. Wilkes.
The TickerTAIP parallel RAID architecture. InProc.
20th Annual International Symposium on Computer
Architecture, pages 52–63, May 1993.

[14] N. Carriero and D. Gelernter. Linda in context.
Communications of the ACM, 32(4):444–458, 1989.

[15] M. Castro and B. Liskov. Practical Byzantine Fault
Tolerance. InProc. Third Symposium on Operating
Systems Design and Implementation, Feb. 1999.

[16] D. Cheriton. The V distributed system.
Communications of the ACM, 31(3), 1988.

[17] D. R. Cheriton. Exploiting recursion to simplify rpc
communication architectures. InProc. ACM
SigComm (Stanford, CA August 1988), pages 76–87,
Aug. 1988.

[18] C. B. Colohan, A. Ailamaki, J. G. Steffan, and T. C.
Mowry. Incrementally parallelizing database
transactions with thread-level speculation.ACM
Trans. Comput. Syst., 26(1):1–50, 2008.

[19] G. Coulouris, J. Dollimore, and T. Kindberg.
Distributed Systems: Concepts and Design.
Addison-Wesley, 2nd edition, 1994.

[20] J. Dean and S. Ghemawat. MapReduce: simplified
data processing on large clusters.Commun. ACM,
51(1):107–113, 2008.

[21] G. Delp, A. Sethi, and D. Farber. An analysis of
MemNet—an experiment in high-speed
shared-memory local networking. InSIGCOMM ’88:
Symposium proceedings on Communications
architectures and protocols, pages 165–174, New
York, NY, USA, 1988. ACM.

[22] J. Dennis. Data Flow Supercomputers.Computer,
13(11):48–56, 1980.

[23] F. Douglis and J. Ousterhout. Transparent process
migration: design alternatives and the sprite
implementation.SoftwarePractice & Experience,
21(8):757–785, 1991.

[24] B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho,
and I. Pratt. Xen and the Art of Virtualization.
Proceedings of the ACM Symposium on Operating
Systems Principles, October, 2003.

[25] A. L. Drapeau, K. W. Shirrif, J. H. Hartman, E. L.
Miller, S. Seshan, R. H. Katz, K. Lutz, D. A.
Patterson, E. K. Lee, P. H. Chen, and G. A. Gibson.
RAID-II: a high-bandwidth network file server. In
Proceedings of the 21st Annual International
Symposium on Computer Architecture, pages
234–244, 1994.

[26] M. R. Eskicioglu. A comprehensive bibliography of
distributed shared memory.ACM Operating Systems
Review, pages 71–96, Jan. 1996.

[27] R. T. Fielding.Architectural Styles and the Design of
Network-based Software Architectures. PhD thesis,
U. C. Irvine, 2000.

[28] R. Figueiredo, P. A. Dinda, and J. Fortes. Resource
virtualization renaissance.IEEE Computer, pages
28–31, May 2005.

[29] G. G. Finn and P. Mockapetris. Netstation
architecture: Multi-gigabit workstation network
fabric. InProc. NetWorld+InterOp Engineer
Conference, 1994.

[30] L. Fiorin, G. Palermo, S. Lukovic, V. Catalano, and
C. Silvano. Secure Memory Accesses on

6



Networks-on-Chip.Computers, IEEE Transactions
on, 57(9):1216–1229, 2008.

[31] S. Ghemawat, H. Gobioff, and S. Leung. The Google
file system. InProc. Symp. on Operating System
Principles, pages 29–43. ACM Press New York, NY,
USA, 2003.

[32] G. A. Gibson et al. File server scaling with
network-attached secure disks. InProc. ACM
International Conference on Measurement and
Modeling of Computer Systems. ACM, June 1997.

[33] G. A. Gibson and R. Van Meter. Network attached
storage architecture.Communications of the ACM,
43(11):37–45, Nov. 2000.

[34] C. Gray and D. Cheriton. Leases: an efficient
fault-tolerant mechanism for distributed file cache
consistency.SIGOPS Oper. Syst. Rev., 23(5):202–210,
1989.

[35] E. Hagersten, A. Landin, and S. Haridi. DDM-a
cache-only memory architecture.Computer,
25(9):44–54, 1992.

[36] M. Harchol-Balter and A. B. Downey. Exploiting
process lifetime distribution for dynamic load
balancing. InProc. ACM Sigmetrics Conference on
Measurement and Modeling of Computer Systems,
pages 13–24. ACM, May 1996.

[37] J. H. Hartman and J. K. Ousterhout. The zebra striped
network file system.ACM Trans. Comput. Syst.,
13(3):274–310, Aug. 1995.

[38] J. Heidemann and D. Shah. Location-aware
scheduling with minimal infrastructure. InProc. 2000
USENIX Annual Technical Conference, pages
131–138.

[39] J. L. Hennessy and D. A. Patterson.Computer
Architecture: A Quantitative Approach. Morgan
Kaufman, 4th edition, 2006.

[40] M. Huhns and M. Singh. Service-Oriented
Computing: Key Concepts and Principles.IEEE
INTERNET COMPUTING, pages 75–81, 2005.

[41] R. Jain, J. Werth, and J. C. Browne, editors.
Input/Output in Parallel and Distributed Computer
Systems. Kluwer Academic Publishers, 1996.

[42] D. Jefferson, B. Beckman, F. Wieland, L. Blume,
M. Di Loreto, P. Hontalas, P. LaRouche,
K. Sturdevant, J. Tupman, V. Warren, J. Wedel,
H. Younger, and S. Bellenot. Distributed simulation
and the Time Warp operating system. InProc.
Eleventh ACM Symposium on Operating Systems
Principles, pages 77–93, Nov. 1987.

[43] R. H. Katz. High-performance network and channel
based storage.Proc. IEEE, 90(8):1238–1261, Aug.
1992.

[44] K. Keeton, D. Patterson, and J. Hellerstein. A case for
intelligent disks (IDISKs).ACM SIGMOD Record,
27(3):42–52, 1998.

[45] M. Kim, L. Cox, and B. Noble. Safety, visibility, and
performance in a wide-area file system. In
Proceedings of the Conference on File and Storage
Technologies[82].

[46] B. Kobler, editor.Fifth NASA Goddard Conference on
Mass Storage Systems and Technologies, Sept. 1996.

[47] K. M. Korner.An intelligent remote file server. PhD
thesis, 1986.

[48] C. E. Kozyrakis, S. Perissakis, D. A. Patterson, T. E.
Anderson, K. Asanovic, N. Cardwell, R. Fromm,
J. Golbus, B. Gribstad, K. Keeton, R. Thomas,
N. Treuhaft, and K. A. Yelick. Scalable processors in
the billion-transistor era: Iram.IEEE Computer,
30(9):75–78, 1997.

[49] T. M. Kroeger and D. D. E. Long. Predicting
file-system actions from prior events. InProceedings
of the USENIX 1996 Annual Technical Conference,
pages 319–328. USENIX, January 1996.

[50] T. M. Kroeger, D. D. E. Long, and J. C. Mogul.
Exploring the bounds of Web latency reduction from
caching and prefetching. InProceedings of the
USENIX Symposium on Internet Technologies and
Systems (ITS-97), pages 13–22, Berkeley, Dec. 8–11
1997. USENIX Association.

[51] N. P. Kronenberg, H. M. Levy, and W. D. Strecker.
Vaxclusters: A closely-coupled distributed system.
ACM Trans. Comput. Syst., 4(2):130–146, May 1986.

[52] J. Kubiatowicz et al. OceanStore: An architecture for
global-scale persistent storage. InProc. ACM Ninth
International Conference on Architectural Support
for Programming Languages and Operating Systems.
ACM, ACM, Nov. 2000.

[53] B. W. Lampson. Hints for computer system design. In
Proc. 9th ACM Symposium on Operating Systems
Principles, pages 33–48, 1983.

[54] J. Larus and C. Kozyrakis. Transactional memory.
Commun. ACM, 51(7):80–89, 2008.

[55] E. K. Lee and C. A. Thekkath. Petal: Distributed
virtual disks. InProc. ACM Seventh International
Conference on Architectural Support for
Programming Languages and Operating Systems,
pages 84–92. ACM, Oct. 1996.

[56] E. Levy and A. Silberschatz. Distributed file systems:
Concepts and examples.ACM Comput. Surv.,
22(4):322–374, Dec. 1990.

[57] C. J. Lindblad, D. J. Wetherall, W. F. Stasior, J. F.
Adam, H. H. Houh, M. Ismert, D. R. Bacher, B. M.
Philips, and D. L. Tennenhouse. Viewstation
applications: Implications for network traffic.J.
Selected Areas in Communications, 13:768–778, May
1995.

[58] M. Litzkow, M. Livny, and M. Mutka. Condor-a
hunter of idle workstations.Distributed Computing
Systems, 1988., 8th International Conference on,

7



pages 104–111, 1988.
[59] H. Loidl, F. Rubio, N. Scaife, K. Hammond,

S. Horiguchi, U. Klusik, R. Loogen, G. Michaelson,
R. Peña, S. Priebe, et al. Comparing Parallel
Functional Languages: Programming and
Performance.Higher-Order and Symbolic
Computation, 16(3):203–251, 2003.

[60] D. D. E. Long, B. R. Montague, and L.-F. Cabrera.
Swift/RAID: A distributed RAID system.Computing
Systems, 7(3):333–359, 1994.

[61] G. Memik, M. Kandemir, and A. Choudhary.
Exploiting inter-file access patterns using
multi-collective i/o. InProceedings of the Conference
on File and Storage Technologies[82].

[62] B. D. Noble, M. Satyanarayanan, D. Narayanan, J. E.
Tilton, J. Flinn, and K. R. Walker. Agile
application-aware adaptation for mobility. InProc.
16th ACM Symposium on Operating Systems
Principles[2], pages 276–287.

[63] M. Nuttall. A Brief Summary of Systems Providing
Process or Object Migration Facilities.Operating
Systems Review, 28:64–80, 1994.

[64] K. Okada, K. Muda, Y. Nishida, H. Yoshifuji,
R. Wakikawa, and J. Murai. Protocol Design for
All-IP Computer Architecture. InInformation
Networking, 2008. ICOIN 2008. International
Conference on, pages 1–5, 2008.

[65] J. Ousterhout, A. Cherenson, F. Douglis, M. Nelson,
and B. Welch. The Sprite Network Operating System.
Computer, 21(2):23–36, 1988.

[66] R. H. Patterson, G. A. Gibson, E. Ginting,
D. Stodolsky, and J. Zelenka. Informed prefetching
and caching. InProc. 15th ACM Symposium on
Operating Systems Principles[1], pages 79–95.

[67] R. Pike, K. Thompson, and H. Trickey. Plan 9 from
Bell Labs. InProc. Summer 1990 UKUUG Conf.,
pages 1–9, July 1990.

[68] G. J. Popek and R. P. Goldberg. Formal requirements
for virtualizable third generation architectures.
Commun. ACM, 17(7):412–421, 1974.

[69] E. Riedel, C. Faloutsos, G. Gibson, and D. Nagle.
Active disks for large-scale data processing.
Computer, 34(6):68–74, 2001.

[70] E. Riedel and G. Gibson. Understanding customer
dissatisfaction with underutilized distributed file
servers. In Kobler [46], pages 371–388. also known
as CMU-CS-96-158.

[71] R. H. Saavedra, R. S. Gaines, and M. J. Carlton.
Micro benchmark analysis of the KSR1. In
Proceedings of the 1993 ACM/IEEE Conference on
Supercomputing, pages 202–213, 1993.

[72] M. W. Sachs, A. Leff, and D. Sevigny. LAN and I/O
convergence: A survey of the issues.IEEE Computer,
pages 24–32, Dec. 1994.

[73] P. Sarkar, S. Uttamchandani, and K. Voruganti.
Storage Over IP: When Does Hardware Support
Help?Proceedings of the 2nd USENIX Conference on
File and Storage Technologies, pages 231–244, 2003.

[74] M. Satyanarayanan. Scalable, secure, and high
available distributed file access.IEEE Computer,
pages 9–21, May 1990.

[75] J. Smith. A survey of process migration mechanisms.
Operating systems review, 22(3):28–40, 1988. note:
more than one version of this paper exists.

[76] S. R. Soltis, T. M. Ruwart, and M. T. O’Keefe. The
global file system. In Kobler [46], pages 319–342.

[77] M.-C. Tam, J. M. Smith, and D. J. Farber. A
taxonomy-based comparison of several distributed
shared memory systems.SIGOPS Oper. Syst. Rev.,
24(3):40–67, 1990.

[78] A. S. Tanenbaum, R. van Renesse, H. van Stavaren,
G. J. Sharp, S. J. Mullender, J. Jansen, and G. van
Rossum. Experiences with the Amoeba distributed
operating system.Commun. ACM, 33(12):46–63,
Dec. 1990.

[79] C. A. Thekkath, T. Mann, and E. K. Lee. Frangipani:
A scalable distributed file system. InProc. 16th ACM
Symposium on Operating Systems Principles[2],
pages 224–237.

[80] J. Touch and D. Farber. Memory-side driven
anticipatory instruction transfer interface with
processor-side instruction selection, Oct. 4 1994. US
Patent 5,353,419.

[81] J. D. Touch.MIRAGE: A Model for Latency in
Communication. PhD thesis, University of
Pennsylvania, 1992.

[82] USENIX. Proceedings of the Conference on File and
Storage Technologies. USENIX, Jan. 2002.

[83] M. Uysal, A. Acharya, and J. Saltz. Evaluation of
active disks for decision support databases.Proc.
Sixth Intl Symp. High-Performance Computer
Architecture, pages 337–348, 2000.

[84] R. Van Meter. A brief survey of current work on
network attached peripherals (extended abstract).
ACM Operating Systems Review, pages 63–70, Jan.
1996.

[85] R. Van Meter and M. Gao. Latency management in
storage systems. InProc. Fourth USENIX Symp. on
Operating Systems Design and Implementation.
USENIX, Oct. 2000.

[86] R. Van Meter, S. Hotz, and G. Finn. Derived virtual
devices: A secure distributed file system mechanism.
In Kobler [46].

[87] B. Walker, G. Popek, R. English, C. Kline, and
G. Thiel. The LOCUS distributed operating system.
In Proceedings of the ninth ACM symposium on
operating systems principles, pages 49–70. ACM
New York, NY, USA, 1983.

8


	Introduction
	The Changing Landscape
	Problem Portrait
	The Eternal Landscape
	Distributed Operating Systems
	Cloud/Utility and Parallel/Distributed Computing
	Distributed Storage
	File Systems
	Distributed Hardware Architectures
	Multi-Core Chips and Networks
	Virtualization
	Fault Tolerance
	Parallel Languages and Compilers
	Resource- and Environment-Adaptive Computing

	Buzzwords of Choice
	Boundary-less Systems
	Latency-Tolerant Computation

	Pick Your Battles
	Memory Interconnect
	Memory Semantics
	Scalability in Latency-Heterogeneous Caches
	Device Semantics
	Resource Discovery and Macroscopic Sharing
	Security in Shared Devices
	Speculation in Data Access
	Speculation in Computation

	How to Have Fun Doing It
	References

