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Course Introduction

In which we introduce the course and its goals, and its place in the
curriculum.

You use computers every day; are you curious how those systems actually
work? Do you want to improve them? Do you want to know how software and
hardware work together to create the behavior we expect from a computer? Are
you curious about the relationship between the beautiful but abstract ideas of
“computer science” and the actual device on which you are reading this book
(if you are reading it in electronic format)? Perhaps you have heard of, or even
use, an open source operating system such as Linux or FreeBSD, and (in a secret
dream you only sometimes admit to yourself) you want to contribute to the
project, or adapt it to your own needs, or even start your own from scratch.
If so, studying computer systems can be enlightening and fun. The first step
is to develop some of the fundamental skills of a “systems programmer”, after
which it gets easier to study computer operating systems and architecture. In
this class, we will learn the basics of life as a systems programmer, while learning
the programming language C.

The computer you are sitting in front of (as well as your smart phone) con-
tains a large pile of software that can roughly be categorized as the kernel, device
drivers, system utilities, libraries, and applications. The core part of the oper-
ating system is known as the kernel, and the software modules that control the
devices attached to it are known as device drivers. The kernel controls the actual
hardware resources, and programs can request the kernel to do certain things,
such as reading and writing files, using functions known as system calls. Above
the kernel sit many utility programs that help the machine boot, configure the
network and other devices, manage users, write and compile programs for the
machine, and many other tasks. Libraries provide useful functions so that you
don’t have to implement them yourself. Applications, such as your web browser
or mail client, are the programs with which users most often interact to conduct
various tasks – they are the reason that most users buy a particular computer.
The technical distinctions between utilities and applications are minor, but very
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iv COURSE INTRODUCTION

roughly the system needs the utilities but is otherwise happy without the appli-
cations, and the user needs the applications and wants the system to function
properly but is otherwise only dimly aware of utilities.

A systems programmer is a person who writes code and works within and
around the system itself, with little regard for applications. She builds utilities
for making life better for system managers, who run computer systems for others
to use. She may also build libraries that application programmers use, and extend
the functionality of the system. Many system managers write code and consider
themselves to be systems programmers, as well. A special subset of systems
programmers are kernel hackers, who dive into the kernel itself; such work is not
for the fainthearted, but is fun and prestigious.

Systems programmers often write utilities in scripting languages such as
Python, Ruby, and Perl, or in what are called shell programming languages.
The lowest-level tools that manipulate bits or do repair work on the system are
often written in the language C, which was developed originally in the early 1970s
by Dennis Ritchie at Bell Labs, where he worked with Ken Thompson and Brian
Kernighan. C is also the language of choice for those who care about speed and
efficiency in execution, for reasons we may discuss during the semester. The core
functionality of systems is also often implemented using C. Some examples of
software written in C:

• The kernels of operating systems such as FreeBSD and Linux, for example,
are written in C.

• Many device drivers (the software that controls hardware devices such as
disks or flash drives and keyboards).

• Many classic utilities (though if they were rewritten from scratch today a
different language might be chosen).

• Embedded and real-time systems, and software for which execution effi-
ciency and predictability are important.

• Network protocols and utilities that manipulate data at the bit and byte
level.

• The run-time systems for some other interpreted languages.

C is also a historically important language, serving as the basis on which
the implementers of C++, C#, Objective C, Java and others built larger, richer
languages. Simpler languages for devices such as Arduino were developed as
subsets of C. The basic syntax of expressions, assignments, loops, and conditionals
will look familiar across many languages thanks to this heritage.
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Because C is a “low-level high-level language,” C is an excellent tool for
learning how the underlying computer itself operates. The CPU of any computer
executes individual instructions. Instructions themselves are just numbers that
tell the CPU whether to add, subtract or move data. They can be written by
humans in assembly language, but that is tedious and tied to a specific type of
CPU. C allows all of the same operations as assembly language, but is more
portable and faster to write. However, C allows you to make many mistakes that
other languages protect you from!

0.1 To the Independent Reader

If you are reading this book on your own, rather than as the text for a class,
your reasons for reading and your approach to the text may be rather different
than a registered student. You will find this book especially helpful if you are
a moderately experienced programmer but with no experience in C, and if you
are interested in open source systems such as FreeBSD or Linux. For you, this
book should be pretty much self-contained; most of the concepts you need to
understand the code and data structures in the Linux kernel are covered here.
You will find enough on the C language, as well as computer science concepts such
as sorting, binary trees and big-O notation. However, the concepts of operating
systems will require substantial further study, and you should follow this book
with an introduction to operating systems, such as Tanenbaum.

You can skim, or even skip, the next several sections and pick up at Section 0.6.

0.2 Goals and Structure of the Class

Our focus in this class will be on effective use of C for specific tasks. We will
learn:

• the basics of the C programming language;

• proper software engineering style;

• some basic data structures in C;

• tools for software engineering;

• proper use of system calls (including managing error returns);

• a little bit about how the underlying system executes your computation;
and

• how to build software systems such as simple network services.
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Every week, in class there will be:

• a short lecture on programming concepts ;

• in-class exercises (your best chance to get help);

• new tools introduced;

• homework to be done outside of class; and

• later in the semester, we will use the attendance server to track attendance.

0.3 Learning Outcomes

The Association for Computer Machinery (ACM) maintains a recommended cur-
riculum for undergraduate programs in computer science. The detailed curricu-
lum includes about 1,300 separate learning outcomes across 19 Knowledge Areas.
(The KAs do not correspond directly to classes.) Some KAs we address:

• SDF: Software Development Fundamentals

• SE: Software Engineering

• OS: Operating Systems

This class will cover at least the following outcomes:

• SDF/Algorithms and Design:

– 1. Discuss the importance of algorithms in the problem-solving pro-
cess. [Familiarity]

– 3. Create algorithms for solving simple problems. [Familiarity]

– 4. Use a programming language to implement, test, and debug algo-
rithms for solving simple problems. [Usage]

– 5. Implement, test, and debug simple recursive functions and proce-
dures. [Usage]

– 8. Apply the techniques of decomposition to break a program into
smaller pieces. [Usage]

• SDF/Fundamental Programming Concepts:

– 1. Analyze and explain the behavior of simple programs involving
the fundamental programming constructs variables, expressions, as-
signments, I/O, control constructs, functions, parameter passing, and
recursion. [Assessment]
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– 2. Identify and describe uses of primitive data types. [Familiarity]

– 3. Write programs that use primitive data types. [Usage]

– 4. Modify and expand short programs that use standard conditional
and iterative control structures and functions. [Usage]

– 5. Design, implement, test, and debug a program that uses each of
the following fundamental programming constructs: basic computa-
tion, simple I/O, standard conditional and iterative structures, the
definition of functions, and parameter passing. [Usage]

– 6. Write a program that uses file I/O to provide persistence across
multiple executions. [Usage]

– 7. Choose appropriate conditional and iteration constructs for a given
programming task. [Assessment]

– 8. Describe the concept of recursion and give examples of its use.
[Familiarity]

– 9. Identify the base case and the general case of a recursively-defined
problem. [Assessment]

• SDF/Fundamental Programming Concepts:

– 1. Discuss the appropriate use of built-in data structures. [Familiarity]

• SDF/Development Methods:

– 1. Trace the execution of a variety of code segments and write sum-
maries of their computations. [Assessment]

– 8. Apply a variety of strategies to the testing and debugging of simple
programs. [Usage]

– 10. Construct and debug programs using the standard libraries avail-
able with a chosen programming language. [Usage]

– 12. Apply consistent documentation and program style standards that
contribute to the readability and maintainability of software. [Usage]

• SE/Tools and Environments

– 2. Describe how version control can be used to help manage software
release management. [Familiarity]

– 3. Identify configuration items and use a source code control tool in a
small team-based project. [Usage]

Other elements of the ACM CS curriculum are partially covered, and ad-
ditional items may be covered, as well. Some of these concepts are naturally
repeated in different classes in different contexts, and using different program-
ming languages. For more detail, please see the ACM CS2013 curriculum.
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0.4 To the Instructor

⇒This needs to be compared to some notion of CS pedagogy.

Learning of a new programming language alongside a first introduction to
serious programming and CS concepts, proceeds in several phases, for which
there seems to be no real shortcut:

1. “Type this, and tell me what happens,” as students learn to edit and rec-
ognize basic syntactic constructs;

2. add this exact text to your existing (small) program;

3. make minor modifications to the behavior of a program;

4. create a program from scratch for a simple task (e.g., printing a simple
sequence of numbers such as a Fibonacci sequence or the polyrhythm of
Exercise 2.4);

5. be able to discuss a simple algorithmic idea (such as sorting) and translate
the concept into code; and finally

6. become a true student of computer science (or computer engineering or
software engineering), shifting away from “learning to program” and to-
ward learning about the core ideas and how to apply them intelligently,
economically and elegantly in order to solve problems that he or she cares
about.

Somewhere along the way, the student must learn how to build a program,
read and address compiler error messages, and debug simple problems, via printf()
or a debugger.

These phases constitute the equivalent of learning addition, subtraction, mul-
tiplication and division in mathematics. Once these phases have been passed, it
becomes possible to move on to algebra and carry on an “adult” conversation
about core concepts, and the pace of learning accelerates. However, the transi-
tion from step 4 to step 5 above is the most difficult one in learning in CS, and
must be managed carefully. It occurs at around the First Interlude in this book,
and by the time students reach Chapter 8 should be more or less complete.

0.5 This Class in the Keio Shonan Fujisawa Cam-
pus Curriculum

This book will very likely serve as the text for both “Fundamentals of System
Programming” and “System Programming”, a two-semester sequence. The first
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half of the book, “Core Concepts and the C Programming Language in a UNIX
Environment,” represents the content of the fundamentals class, and the second
half of the book, “Concurrency, Parallelism, Communication and Distribution in
Modern Systems,” is the content of the advanced class.

Prerequisites:

• Fundamentals of Information Technology 1

• Fundamentals of Information Technology 2 (recommended or concurrent,
but not an official prereq)

• Data Structures and Programming (officially recommended)

This class falls early in the expected sequence of classes at SFC, but should
not be your first experience with programming. You are assumed to already be
familiar with the basic concepts necessary to express a simple algorithm in a
procedural language, including:

• variables, expressions and assignment statements;

• binary and hexadecimal numbers;

• basic Boolean logic (and, or and not);

• concept of a character and character set;

• conditional execution (if statements);

• loops (for or while statements); and

• functions or procedures, with or without arguments and return values.

All of the above are covered in the prerequisite classes listed above. In addi-
tion, some basic mathematics are helpful for some of the exercises, as well as to
understand some of the abstractions:

• linear algebra: vector addition and dot products, matrix multiplication;

• sequences; and

• the rudiments of probability.

This may be your first experience with compiled programs instead of inter-
preted programs.

Courses this class will prepare you for:

• System Programming
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• Computer Architecture (n.b.: System Programming recommended, may be
taken concurrently)

• Operating Systems (n.b.: System Programming recommended, may be
taken concurrently; OS not offered in 2015)

• Computer Graphics

Many labs around SFC build projects on Arduino or Raspberry Pi, two pop-
ular, small computing platforms. Learning C and a little about systems will also
prepare you to better understand and take advantage of these platforms.

The ultimate goal of this two-class sequence is to prepare you to understand
computer systems, including being ready to understand operating system con-
cepts and read the kernel code for an OS such as FreeBSD or Linux. To that end,
beyond familiarity with the C language itself (as both of those kernels are written
in C) and the fundamental concept of a pointer , it is necessary to understand
these basic data structures:

• arrays,

• stacks,

• singly- and doubly-linked lists,

• basic binary trees (lookup, insert, delete, and balance), and

• hash tables.

All but the last of these are covered in the first half of this book. Systems also
depend heavily on the notion of a finite state machine (or just state machine),
covered in Chapter 9.

0.6 Why C?

⇒Partially discussed in prior section. Bring in suggestions from a friend.

Why C? C is a compact and high performance language which has served
as much of the inspiration for C, C++, Java, Javascript and a host of other
languages. Learning C prepares you to solve most problems in a concise way
with the support of a compiler.
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0.7 Why a New Book?

⇒To be written. In a few words: 64 bits, IPv6, OpenMP, git. Looking for balance

between teaching language and UNIX versus teaching CS.

The landscape of computing, computer science, and the Internet is in a state
of constant evolution. The intent of this book is to familiarize you with the state
of the art in C programming from a systems perspective.

0.8 How to Read this Book

If an exercise has a number in square brackets, such as [5], after the problem, then
that number represents the amount of time the exercise should take, in minutes.
This assumes a student doing a reasonable job of keeping pace with the course.
Those marked 5 minutes should be doable as fast as you can type. Those marked
120 minutes will take a couple of hours of thinking, writing, and debugging.

Each chapter will have one or more “creative” problems (marked with ⋆),
typically related to common logic puzzles or math algorithms, and one or more
“capstone” problems (marked with ⋓). When you can do the capstone problems,
you have fairly mastered the material in the chapter.

Chapter capstone problems:
⇒Still under development.

• “Hello, world!”

• sort program

• buddy memory allocator

• quine

• finite state machine

• local shell

• parallel matrix multiply

• client for attendance server, or remote shell (n.b.: dangerous!)

⇒Describe the meaning of the different box types.

Note that many of the examples in the book are not com-
plete, or may be inefficient, not robust against errors, or
even wrong. This may be done to illustrate a particular
point, and those shortcomings are often corrected in later
examples or the exercises.
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0.9 Additional Recommended Books

A couple of traditional textbooks are listed here, though of course you are not
limited to just these books. It’s worth noting that some old, good textbooks still
have not been updated to a modern 64-bit environment. They may implicitly
treat an integer as 32 bit integer, so you need to exercise some caution when
reading them.

• B. Kernighan and D. Ritchie, The C Programming Language, 2nd edition,
is the original book on C, and remains compact and clear, an excellent
introduction to the language itself.

• W. Stevens, Stephen Rago, Advanced Programming in the UNIX Environ-
ment, 3rd edition, ISBN 978-0321637734

• Jon Bentley, Programming Pearls, 2nd Edition, ISBN 978-0201657883

• Stephens on TCP/IP

• McCool on structure parallel programming

• Cormen et al., Introduction to Algorithms, 3rd ed., is perhaps the most
common textbook on algorithms and data structures. As a CS textbook,
rather than a language introduction, the examples are all in pseudocode,
and translating them into C will take some practice. Over 1,000 pages
long, it is an outstanding book, but requires a certain amount of fortitude
to attack! However, the individual chapters are very accessible. This is a
book worth having as a reference, and for a lifetime of study.
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Core Concepts and the C
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Chapter 1

The Traditional “Hello,
World!”

In which we briefly compare C to Java, and fly through our first C pro-
grams using concepts to be developed in more detail throughout the
course. You are assumed to already be familiar with the basic idea of
an algorithm, variables, expressions, assignment statements, conditional
execution and loops, and functions. However, this may be your first time
with the syntax of C.

1.1 Concepts

⇒To be written.

1.2 Java and C

First, we review the basics of C, which you may have learned already in the
“Data Structures and Programming” class, and differences between C and other
popular languages such as Java and C++.

1.2.1 Object-oriented languages and procedural languages

Java language is an object-oriented language, in which programming consists of
defining an object and methods to manipulate the defined object. So, it is called

3
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an object-oriented language.
In contrast, C is called a procedural language. Everything that the computer

actually does is specified by the programmer, and in general happens exactly in
the order specified. To avoid having to repeat a sequence of commands, they can
be grouped into procedures or functions . C is often referred to as being “close to
the hardware,” in that it can be used to manipulate data at very low levels, as is
necessary to control devices, and because the actions specified by the programmer
are simple primitives close to the way the CPU actually executes instructions.

C has a bad reputation for bugs, especially security-related bugs. Finding
these can be very difficult. C assumes that the programmer knows what she is
doing, and allows her to do things that other languages might prevent, both for
good and for bad. However, proper software engineering practices reduce the
incidence of these occurring.

Unlike Java, there isn’t a clear distinction between objects and methods to
manipulate the objects. Description of the procedures is a program creation.
There is no a concept of an object and methods which are bound to the object.

For example, in Java (an object oriented language), we define the object class
“car”, then “step on the accelerator”, and “step on the brake” within its class.
So, the “step on the accelerator” method can only manipulate the “car” class.
Assume there is another class “refrigerator”. We cannot apply the “step on the
accelerator” method to the “refrigerator” class, even if we want to.

However, in C, we define methods for manipulating objects and the objects
themselves separately. So, we may create an incorrect program which applies
“step on the accelerator” to a “refrigerator” class, usually with bad results.

In this way, the design policies and concepts of programming languages are
quite different. There are many, many programming languages and even classes
of languages; you should learn several languages during your time here, and learn
to apply each when it’s the right tool for the job.

1.2.2 Interpreter and Compiler

If you have just started programming, you probably encountered an interpreted
language as your first programming language. If you have used R, Matlab, Oc-
tave, most forms of BASIC, or macros in tools such as Excel, you have used
interpreted languages. HTML and JavaScript are also interpreted languages.
With an interpreted language, you as the programmer don’t have to do anything
special to prepare the program to be executed – you just read it in using another
program. That program is called the interpreter , and it can read a human-written
program directly and figure out what to do with it.

Other languages use a compiler to translate a program from the human-
readable form into one better for the computer to execute. The input is called
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the source language, and the output is called the target language, or often the
object or binary, if the target language can’t directly be read by a human. If
the object can be executed directly by the CPU with minimal help from the OS,
it is called an executable. We will see that getting from C to an executable is
a multi-step process, though sometimes the compiler will hide that from us to
make our lives simpler.

One of the differences between Java and C is the difference between their
execution methods. In Java, first, we create an object program (binary) from a
source program by compiling with the Java compiler, called the class file in Java
parlance. In this case, the target language is not quite appropriate for direct use
by the CPU; it is in a form called byte code, which requires a Java interpreter to
execute, known as the Java Virtual Machine (JVM). The advantage is that this
object program written in byte code is in a common, standard format, rather
than specific to the type of CPU it our computer, and so can be used in any
computer with a Java interpreter.

In contrast, the C compiler creates the executable file from the source pro-
gram. After that, this file is executed directly on the operating system. Because
this executable file is different for every type of computer, if you want to run
the program on a different type of computer, you need to compile and create the
executable file for that computer.

Let’s see a simple example.

// Hello.java
class Hello {

public static void main(String args[]){
System.out.println("Hello Java World!");

}
}

✓ ✏
% ls

Hello.java

% javac Hello.java

% ls

Hello.class Hello.java

% java Hello

Hello Java World!

%
✒ ✑

In this way, in Java, Hello.class is created by compiling the source file
(Hello.java), which is executed by the interpreter java.

Next, a C language example is shown.
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/* hello.c */
#include <stdio.h>
#include <stdlib.h>
int main(){

printf("Hello C World!\n");
exit(0);

}

✓ ✏
% ls

hello.c

% gcc hello.c

% ls

a.out hello.c

% a.out

Hello C World!

%
✒ ✑

In this way, you can compile the source file (hello.c) to create the executable
file (a.out) in the C language, then execute is as a command. The executable file
that you created by the C language can be used the same as ls command, date
commands, and other commands. Many of the commands in the UNIX operating
system are written in C. For example, there are source files such as date.c and
ls.c, then those are compiled into the executable files, which are date and ls

commands.

In Java, when you compile a source program, a class file,
such as Hello.class, is created, named according to the orig-
inal source file name. However, in C, the executable file
name becomes a.out unless you explicitly specify a different
name. Later, we will learn how to specify a file name for the
executable.

For reference, a program example in the C++ language is shown.

#include <iostream>

main(){
std::cout << "Hello, world!\n";

}

To output and display a string on the screen, in C, the printf() function
is called with the parameter “Hello C World!\n”, which is the string to be
displayed. The string is quoted with double quotes " " as in Java.
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1.2.3 Similarities

C has many similarities with Java:

• Java borrowed a bunch of C’s syntax, especially for operators and markers
such as loop and function delimiters.

• What we call control flow for simple sequences of statements is the same:

– loop using a for statement;

– loop using a while statement;

– conditional branches and selections using if and else; and

– selections by switch and case are the same.

– Exiting and control transfer from a block by break or continue are
the same.

• The basic built-invariable types and usage such as int and double are
almost the same.

• Arithmetic operation and logical operation are almost the same.

1.2.4 A Few Differences

Using Functions From Elsewhere

In Java, the desire to use another program module is declared by the import

statement. But in C, the similar statement #include is used. Strictly speaking,
they are different concepts. However, they are similar in the sense that the use
of other functions that are prepared in advance.

The Class and Inheritance

Java and C++ have the class and its inheritance. The concept of object-oriented
programming languages are implemented in the language. However, the C lan-
guage does not have classes, nor inheritance. Therefore, to describe a data struc-
ture similar to the object-oriented program requires some programming tech-
niques.

Pointers and Memory Management

Important functions not in Java, but in C, are pointers and memory manage-
ment. In the Java language, when you need a new variable or storage area in
the program, you create them using the constructor. However, in C, you need
to create them using pointers and a memory management library. We will study
this in later chapters.
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1.3 C language brief summary

1.3.1 Overall Structure of a Program

A program written in C consists of functions. The next example consists of a
function gcd() which calculates the greatest common divisor of two integers, and
a main() function.

A main() function is the function which is called first and executed. It cor-
responds to the public static void main(...) in the Java language. Other
functions are called by the main() directly or indirectly, and executed.

Along with functions, declaration of global variables and control statements
for the preprocessor are also program components.

More importantly, in C, functions exist in the program independently. They
aren’t methods which are bound to the objects.

exit() is the function which terminates program execution. Its only param-
eter is the exit status of the program. In normal termination, the parameter is
set to 0. We won’t describe the details here, but it removes temporary files which
were created by the tmpfile() function.

1.3.2 Compile and Execution

As mentioned before, in the C language, an executable file is created by the
compiler. For example, to compile and run a program, first, create a file named
gcd.c using a text editor such as emacs.
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/* gcd.c */
#include <stdio.h>
#include <stdlib.h>

int gcd(int a, int b){
int c;
while(b != 0){

c = a%b;
a = b;
b = c;

}
return a;

}

int main() {
int i,j,k;
i = 1000;
j = 35;
k = gcd(i,j);
printf("G.C.D. of %d and %d is %d.\n",i,j,k);
exit(0);

}

Next, compile the program and run it.✓ ✏
% gcc gcd.c -o gcd

% ./gcd

G.C.D. of 1000 and 35 is 5.

%
✒ ✑

Note that we used -o gcd with our command to compile the program. Histor-
ically, for C compilers, if you do not specify this output, it will create a program
called a.out. You may see and execute the program as follows:✓ ✏
% gcc gcd.c

% ls

a.out gcd.c

% ./a.out

G.C.D. of 1000 and 35 is 5.

%
✒ ✑

1.3.3 Comments

The area between /* and */ is a comment, which doesn’t affect the processing
of the program. You should write comments which help the readability and
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understanding of the program. Also, lines beginning with // are comments as
well, as in Java and C++.

1.3.4 Variable and Type

Before using a variable, it must be declared. As shown below, a declaration
consists of variable names and a type for those variables.

type variable name , variable name , ...;

There are two type of variables, local variables and external variables . A
local variable is defined within a function, and instatiated within the function.
An external variable is defined outside of a function, and instantiated such that it
is usable across all functions. This relation between local variables and external
variables resembles the relation between class variables and instance variables in
the Java language, but is not exactly the same relation. An external variable is
also called a global variable.

The C language grammar strictly distinguishes the terms “declaration” and
“definition”. A “declaration” is used to inform the compiler what type a variable
has. It may inform the compiler that a variable is an int type, or double type,
or another type for a variable in a program. In contrast, “definition” is used to
allocate a storage area for a variable in that location of the program.

As we will learn in a later section, the declaration for a variable may exist
at several places in the program. However, the definition for a variable can only
exist at one location in the program.

In the following example, an external variable with integer type int z is
defined outside of the function.
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/* gcd2.c */
/* Calculate GCD by a modified
* Euclidean algorithm.
* written by: Rod Van Meter, 2015/6/1
* Basic idea:
* gcd(a,b) = gcd(a-b,b) for all a>b
* Tricks:
* 1. ’%’ effectively orders a,b on
* first iteration
* since, for a>b, b%a = b.
* 2. ’%’ instantly does N iterations
* of Euclidean
* algorithm where n=floor(a/b)
* Computational complexity:
* O(1)
* In:
* a,b - *positive* integers only
* (range unchecked)
* Out:
* gcd(a,b)
*
* Side effects/throws:
* none
*/

#include <stdio.h>
#include <stdlib.h>

int z; /* definition of an external variable */

int gcd(int a, int b){
int c; /* definition of a local variable */
while(b != 0){

c = a%b;
a = b;
b = c;

}
return a;

}

int main() {
int i,j; // definition of two local variables
i = 1000;
j = 35;
z = gcd(i,j);
printf("G.C.D. of %d and %d is %d.\n",i,j,k);
exit(0);

}
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Note that this time, we have added an extensive description of what the
program does and how it does it in the comments at the top of the program.
These comments describe the inputs and output of the function gcd(), and any
limitations (in this case, warning you that it may not work properly if you give
it 0 or a negative number as an argument).

As shown, local variables are defined between { and } within a function.
External variables are defined outside the { and } of any function.

The printf() function displays the variable z that holds the result of cal-
culation. Its first argument is a string of characters called the “format string.”
Usually, characters within " " are displayed as a string literally, exactly the way
you typed them. However, % within " " and the following characters are excep-
tions. This part is substituted by the value which is designated by the variable
arguments that come after the format string. When you want to print a variable
as an integer, %d is placed within " " as a designator. When an argument is
a floating point number, %f is placed within the format string as a designator.
Other designators are learned in later chapters.

Why are they called “external” variables, even though they
are located within a file such as gcd2.c? As we will see in
later chapters, such variables can be referred to and used
by other functions written in other files, so they are called
“external” variables.

To display the value of variable z, the printf() function is used. This
printf() function is one of the standard input output library functions, but
this is not part of the C language. The C language itself does not define input
or output. The printf function is defined as a part of the standard library of
functions that are accessible by all C programs. We will look at this library in
more detail later.

1.3.5 Function

A program consists of several functions. A function is defined in the following
example. In this example, the function calculates the mean of two numbers.

double mean(double x, double y) {
double c;
c = (x + y)/2;
return c;

}

This program defines the function mean which has two real numbers (float-
ing point numbers) as arguments, and returns a floating point number as the
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return value. ‘x’ and ‘y’ are called parameters , or formal parameters, or dummy
arguments. When this function is actually called, the arguments’ values are sub-
stituted into these parameters, then the function is executed. The arguments are
called actual arguments when a function is actually called.

A function body consists of the definition of local variables (in this example,
double c;) and statements which calculate a value.

A function execution flows from the head of the function to the tail of the
function where the return statement is located. The value of the variable at
return becomes the return value of the function. After execution of return, the
execution of the function completes, and the control is returned to the point at
which the function was called. Statements after a return are ignored.

You may write a formula as the argument to return, so the following example
will give the same result as the previous example.

double mean(double x, double y) {
return (x + y)/2;

}

Furthermore, a function without a return value should be declared to have
the void type. The following example calculates the mean of two numbers, but
displays the mean in the function, and does not return any value to the caller.

void mean(double x, double y) {
double c;
c = (x + y)/2;
printf("c=%d\n",c);

}

A complete program using the function which calculates the mean of two
numbers is shown.
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/* mean.c */
#include <stdio.h>
#include <stdlib.h>

double mean(double x, double y) {
double c;
c = (x + y)/2;
return c;

}

int main() {
double a,b,c; /* local variable definition */
a = 12.0;
b = 5.0;
c = mean(a,b);
printf("The mean of a and b is %f.\n",c);
exit(0);

}

You get the result after compiling and execution as below.✓ ✏
% gcc mean.c -o mean

% ./mean

The mean of a and b is 8.500000.

%
✒ ✑

1.3.6 Function and Types

In the above example, the function int gcd() that calculates the greatest com-
mon divisor, and the function main(), which is executed first, are defined. In
this case, gcd() is called by main(), and its definition appears before main().
From the compiler’s point of view, the only important factor is that the types of
any arguments and the return value of the function have to be declared before it
is called.

If you want to put a function later in a file, then you need to indicate explicitly
the types of the return value and arguments before the definition of any function
(in this case, main()) that calls it. This is called the prototype declaration.
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/* gcd3.c */
#include <stdio.h>
#include <stdlib.h>

/* function prototype declaration */
int gcd(int, int);

int main() {
/* first, definition of local variables */
int i,j,k;
/* now the code, beginning by assigning

values to some variables */
i = 1000;
j = 35;
k = gcd(i,j);
printf("G.C.D. of %d and %d is %d.\n",i,j,k);
exit(0);

}

int gcd(int a, int b){
/* definition of local variables */
int c;

/* now the loop */
while(b != 0){

c = a % b;
a = b;
b = c;

}
return a;

}

If there is no prototype declaration, the return value of a function without
a prototype declaration is treated as type int. So, in this case, the program
executes properly.
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/* example5.c */
#include <stdio.h>
#include <stdlib.h>

int main() {
int i,j,k; /* definition of local variables */
i = 1000;
j = 35;
k = gcd(i,j);
printf("G.C.D. is %d.\n",k);
exit(0);

}

int gcd(int a, int b){
int c; /* definition of local variables */
while(b != 0){

c = a%b;
a = b;
b = c;

}
return a;

}

However, when you compile the program with -Wall option, a warning mes-
sage is displayed at compilation. You should realize that you forgot the necessary
prototype declaration. In this case, a.out is still created, and you can execute
the program.✓ ✏
% gcc -Wall example5.c

example5.c: In function ‘main’:

example5.c:9: warning: implicit declaration

of function ‘gcd’

%
✒ ✑

For example5.c, assuming an int type without a prototype declaration pro-
duces a correct compilation. So, the program executes properly even though
the compiler gave a warning message. However, here is an example that causes
incorrect compilation.
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/* example6.c */
#include <stdio.h>
#include <stdlib.h>

int main(){
int a,b;
a = 10;
b = f1(a);
printf("b=%d\n",b);
exit(0);

}

double f1(int v){
double x;
x = v * 3.141;
return x;

}

The compilation of this program causes the following errors.✓ ✏
% gcc examle6.c

example6.c:13: error: conflicting types for

’f1’

example6.c:8: error: previous implicit

declaration of ’f1’ was here

%
✒ ✑

When you complie the program on an older computer system, you may com-
pile and execute as follows.✓ ✏
% gcc example6.c

example6.c:13: warning: type mismatch with

previous implicit declaration

example6.c:8: warning: previous implicit de

claration of ‘f1’

example6.c:13: warning: ‘f1’ was previously

implicitly declared to return ‘int’

% a.out

b=10

%
✒ ✑

The output should be computed as 3.14 × 10 is 31.4, then truncated to the
integer 31. However, in this example, 10 is displayed as the result.

When you look at the warning message in the example program that cannot
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be compiled, you realize that the return type of function f1() is treated as an
implicit type int at line 8, but the actual definition is type double in line 13.

To correct this example, you need to use a prototype declaration for the
function first.

/* example6good.c */
#include <stdio.h>
#include <stdlib.h>

double f1(int);

int main(){
int a,b;
a = 10;
b = f1(a);
printf("b=%d\n",b);
exit(0);

}

double f1(int v){
double x;
x = v * 3.141;
return x;

}

When you compile this example, you get the correct value 31.✓ ✏
% gcc example6good.c

% a.out

b=31

%
✒ ✑

1.3.7 Automatic Type Conversion

In the C language, a value always has a type. As in Java, there is an int type
that indicates an integer number, and a double type that indicates a floating
point number. Furthermore, there is a char type that is for character handling.

The C language can convert the types more easily than Java language.
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// convert.java
class convert {

public static void main(String args[]){
int i;
double a;
char name;
i = 100;
a = i;
name = i;

}
}

Compiling this Java program produces an error message at the substitution
of i for name.✓ ✏
% javac convert.java

convert.java:9: Incompatible type for =.

Explicit cast needed to convert int to char.

name = i;

^

1 error

%
✒ ✑

The same program is written in C as follows.

/* convert.c */
#include <stdlib.h>
int main(){

int i;
double a;
char name;
i = 100;
a = i;
name = i;
exit(i);

}

This program can be compiled as-is. As this example shows, the language C
has flexibility in handling types, everything is up to the programmers. So, you
have to keep in mind this flexibility and be careful.

1.3.8 Statement

A function consists of several statements. There are several types of statements.
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Assignment Statement

variable = expression ;

This computes a right-hand side value, then assigns the value to a left-hand
side variable.

x = y+z-3*a;

You may use an element of an array (described later) instead of variable .

Conditional Statement

if ( expression ) {

statement 1 ; ...

} else {

statement 2 ; ...

}

This computes the value of expression . If the value is not 0, the program exe-

cutes statement 1 . Otherwise if the value is 0, the program executes statement 2 .

if (x == 1) {
y = 3;
z = 2;

}
else {

y = 5;
z = 4;

}

If you test multiple conditions, else if is inserted as follows.

if ( expression 1 ) {

statement 1 ; ...

} else if ( expression 2 ) {

statement 2 ; ...

} else {

statement 3 ; ...

}

This example first computes the value of expression 1 . If it is not 0, it executes

statement 1 . If the value of statement 1 is 0, it computes a value of statement 2 .
If it is not 0, it executes statement 2 . If both of the values of statement 1 and
statement 2 are 0, it executes statement 3 .

You may insert an arbitary number of else if clauses.
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Loop(1)

while ( expression ) {

statement ;...

}

Computes expression . If the value is not 0, execute statement , then compute

the expression again. This iterates untile the value becomes 0.

x = 0;
while (x < 10) {

printf("%d\n", x);
x = x+1;

}

Loop(2)

for ( expression 1 ; exipression 2 ; expression 3 ){

statement ; ...

}

First, this evaluates expression 1 . Then, it evaluates expression 2 . If the

value is 0, this execution ends. If the value is not 0, it executes statement , then

evaluates expression 3 . After that, evaluates expression 2 again, tests the value
is 0 or not. If the value is 0, the execution ends. If the value is not 0, it executes
statement again, and evaluates expression 3 again. It iterates this process.

for (x = 0; x < 10; x = x+1) {
printf("%d\n", x);

}

Unlike Java, in an old C language standard (ISO C90), you cannot declare
loop control variables in expression 1 . In this case, you need to define variables
for loop control outside the for statement. Therefore, the following example the
compiler to report a grammatical error in the C90 standard.

#include <stdio.h>
int main(){

for (int x = 0; x < 10; x = x+1) {
printf("%d\n", x);

}
return 0;

}
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Compilation results as follows.✓ ✏
% gcc hello.c

hello.c: In function ’main’:

hello.c:3: error: ’for’ loop initial

declaration used outside C99 mode

%
✒ ✑

However, we can compile without error under the newer standard of the lan-
guage C, ISO C99. If you want to compile with gcc, you need to add -std=c99

option for telling the compiler to apply the standard as follows.✓ ✏
% gcc -std=c99 hello.c

%
✒ ✑

Return statement

return expression ;

This computes expression , the value becomes the return value of the function,
and returns the execution control to the point at which the function was called.

1.3.9 Expression

There are several types of expressions.

• variable: v

• reference to arrays: v[i]

• basic arithmetic operations, arithmetic remainder: x+y, x-y, x*y, x/y, x%y

• comparison: x>y, x<y, x>=y, x<=y

• equal, not equal: x==y, x!=y

• bitwise logical and, or: x&y, x|y

• logical product, logical add: x&&y, x||y

• add one, subtract one: v++, v--, ++v, --v

• function call: f(x,y,...)

Comparison, equal, and not equal return 1 when a condition is satisfied,
and return 0 when a condition is not satisfied. In Java, boolean type indicates
true/false. However, in C, integer 0 and 1 (technically, any non-zero value). This
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also shows that the C language is not as strict about types. So, you need to be
careful about type handling and conversion.

1.3.10 Library

In Java, import statements enable other prepared functions to be used.

// Applet pacakge
import java.awt.*;
import java.applet.Applet;
public class MyApplet extends Applet {
......
}

In C, a group of functions that are prepared in advance is called a library.
There are many libraries. The first library we have seen is the standard in-
put/output library, which contains the functions (printf(), fprintf(),scanf(),
fscanf(), fopen(), fclose(), fgets(), gets(), fputs(), puts()). These func-
tions display characters, accept characters from a keyboard, and read and write
files.

Another important library is the character string library, which contains
strcmp(), strncmp(), strcat(), strcpy(), and strlen(). These functions
compare strings, change character case from upper to lower, and calculate the
length of a string.

A square root function is included in a mathematical library.
To use libraries, you need to declare your intent to use the libraries in a

program. In the C Language, you use #include at the beginning of a program.

#include <stdio.h> /* standard input/output */
#include <math.h> /* mathematical library */
#include <string.h> /* strings library */

main(){
....
....
}

Furthermore, you may need to specify libraries at compilation. The standard
input output library and strings library are automatically sought by the compiler.
However, for other libraries, you need to specify which ones you want to include
by using ‘-l’ at compilation. For example, if you want to use the mathematical
library known as m, you need to type the following command to compile programs.✓ ✏
% gcc program.c -lm

✒ ✑
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Technically, the distinction is that the #include statement tells the compiler
what functions are available to be used as part of the library, and the -l option
tells compiler1 which libraries to include in the final binary it is building.

1.3.11 Standard Input/Output Library

By now, you have seen the basic use of the stdio library a couple of times, but
let’s look a little closer. To input numbers and characters from the keyboard, or
to display numbers and characters on a screen, the Standard Input/Output
Library is used. Furthermore, it is used to read numbers and characters from
a file, or to write numbers and characters into a file in a program. To use the
standard input output library, you specify #include <stdio.h> at the beginning
of a program.

printf() function displays characters. printf() example is shown below.

/* printfexample.c */
#include <stdio.h>
#include <stdlib.h>
int main(){

int i,j;
double a,b;
char *name = "Hello";
i = 10; j = 12345;
a = 10.5; b = 0.0123;
printf("i=%d, j=%d\n",i,j);
printf("a=%f, b=%f\n",a,b);
printf("name=%s\n",name);
exit(0);

}

You get the following result.✓ ✏
% gcc printfexample.c

% a.out

i=10, j=12345

a=10.500000, b=0.012300

name=Hello

%
✒ ✑

You need to specify different specifiers to display integers (int), floating point
numbers(double), and strings (char *). The details can be found by using the
Unix manual pages, or of course by searching the web. This command will search
section 3 of the Unix manual for the description of the function printf().

1Actually, the phase of compilation known as linking.
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✓ ✏
% man 3 printf

(lots of output)

✒ ✑

1.4 Tools

So far, we have seen the most fundamental tool, the C compiler itself. If you
have been working the examples, you have also begun to familiarize yourself with
a text editor useful for programming; students in this class often use Emacs, vi,
or nano. We are going to need three more major tools: an automated system for
building software (we will use the Unix standard make), a revision control system
(we will use git), and a debugger (we will use gdb).

1.4.1 Gcc

The version of the C compiler we are using is gcc. It has many options for
controlling its behavior; we will see more of them throughout the semester.

In the examples so far, we have just let the compiler create its default output
file, a.out. But from now on let’s use the -o option to create the file we want
instead.✓ ✏
% gcc -o example example.c

✒ ✑

1.4.2 Make

So far, we have only been using one source code file for each program, but com-
plicated programs (like the Linux kernel) may have thousands. make saves us
from having to remember which things need to be compiled, by applying a set of
rules to figure out what output file is made using which input file.

Put this in a file called Makefile:

example: example.c
cc -o example example.c

(Note that you have to have a real tab character at the start of that second
line.)

Now do the following:✓ ✏
% make

✒ ✑
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cat Prints out the contents of a file.
cp Makes a copy of a file. (Can also put more than one file into one output file.)
gcc Compiles a C program.
gdb Helps you debug programs.
ls Lists the files in a directory.
make Builds programs for you.
man Print “manual” pages describing commands – including these!
more Prints the contents of a file a screen at a time.
rm Deletes or removes a file.

Table 1.1: Some common UNIX utilities you will use in this class.

If your file example.c is older than the program example, you should see
make actually execute the cc command for you.

1.4.3 man (the Unix manual)

Just above, we saw the initial use of man. This is an ancient, standard way of
finding information about a system call or library function in Unix systems. It
may seem simpler these days to simply search the web, but be careful that you
are seeing the man page corresponding to the OS and version you are using.

1.4.4 Other UNIX utilities and commands

1.5 Exercises

1.1 Write a program ex1-1.c that calculates the following number sequence.
Calculate the sequence to the 30th number.

1 1 2 3 5 8 13 ...... (Do you recognize this sequence? What hap-
pens when you use a different pair of numbers instead of 1, 1 for the first
two?)

1.2 Referring to example1.c, write a program ex1-2.c that calculates the great-
est common divisor and the least common multiple of two numbers. To find
the greatest common divisor, the function gcd() in the text can be used.
Since we haven’t yet worked with input from the keyboard, insert the two
numbers directly into your program. Do the same thing in the following
exercises 1.3 and 1.4.

1.3 In Japanese primary school, you should learn about Tsuru Kame San prob-
lem, obtaining the respective numbers of cranes and tortoises from the total
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of their heads and legs – assuming, of course, that cranes have two legs, and
tortoises have four legs. Write a program ex1-3.c that calculates Tsuru
Kame San. In the program, two numbers, the total of heads and the total
of legs are specified. Then the program outputs the number of cranes and
the number of tortoises.

1.4 If a natural number is greater than 1, and has no positive divisors other
than 1 and itself, the number is called a prime number. For example, 2,
7, and 19 are prime numbers. Write a program ex1-4.c, that determines
whether a number is a prime number or not. There are various methods to
determine whether a given number n is prime. For example, by iterating the
divisor from 2 to (the number minus 1), you can test whether the number is
divisible by a divisor without a remainder. If all of them are not divisible,
the number is a prime number.





Chapter 2

Fundamental Data Types

In which we disuss the strengths and limitations of integers and floating
point numbers. We start building our first real looping programs from
the definition of the problem.

2.1 Concepts

⇒To be written.

2.2 Integer Data Types

The language C has several types of integer data with different size and signs
(plus/minus) as follows. The character type (char) is treated as a special case of
the integer types. And, the actual size of integer type varies by implementation.

29
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Type Explanation

char smallest addressable unit of
the machine that can contain
basic character set. Actual
type can be either signed or
unsigned depending on imple-
mentation
1 byte

short short signed integer type. At
least 16 bits in size.
−32768 ∼ 32767 (16 bits)

int basic signed integer type. At
least 16 bits in size.

long long signed integer type. At
least 32 bits in size.
−2147483648 ∼ 2147483647
(32 bits)

long long long long signed integer type.
At least 64 bits in size.
−9223372036854775808 ∼
9223372036854775807 (64
bits)

Type Explanation

unsigned char same as char, but unsigned
0 ∼ 255 (when 1 byte is 8
bits)

unsigned

short

unsigned integer type. At
least 16 bits in size.
0 ∼ 65535 (16 bits)

unsigned int same as int, but unsigned
unsigned long unsigned integer type. At

least 32 bits in size.
0 ∼ 4294967295 (32 bits)

unsigned long

long

unsigned integer type. At
least 64 bits in size.
0 ∼ 18446744073709551615
(64 bits)

To display an unsigned integer or a long long type integer using the printf
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✓ ✏
% gcc -Wall -o long long.c

long.c:12:7: warning: integer constant is so large that it is unsigned

long.c: In function ’main’:

long.c:12: warning: this decimal constant is unsigned only in ISO C90

long.c:13: warning: format ’%d’ expects type ’int’, but argument 2 has type

’long long unsigned int’

long.c:14: warning: format ’%u’ expects type ’unsigned int’, but argument 2 has type

’long long unsigned int’

% ./long

p=-1

p=4294967295

a=-1

a=4294967295

a=-1

a=18446744073709551615

%
✒ ✑

function, you need to pay attention to using the correct format specifier.

/* long.c */
#include <stdio.h>
#include <stdlib.h>

int main(){
unsigned int p;
unsigned long long a;

p = 4294967295;
printf("p=%d\n",p);
printf("p=%u\n",p);
a = 18446744073709551615;
printf("a=%d\n",a);
printf("a=%u\n",a);
printf("a=%lld\n",a);
printf("a=%llu\n",a);
exit(0);

}

You get the following result after compiling and run this program.
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To supress the errors on line 9 and line 12, you need to add U or ULL to specify
an unsigned integer. The warnings at line 13 and 14 occurred because we are
attempting to display signed integers with the format string specifiers %d and
%lld, but p and a are defined as unsigned integers.

The warning messages from line 9 and line 12 do not occur when you add U

or ULL to integer constants.

/* long2.c */
#include <stdio.h>
#include <stdlib.h>

int main(){
unsigned int p;
unsigned long long a;

p = 4294967295U;
printf("p=%d\n",p);
printf("p=%u\n",p);
a = 18446744073709551615ULL;
printf("a=%d\n",a);
printf("a=%u\n",a);
printf("a=%lld\n",a);
printf("a=%llu\n",a);
exit(0);

}

In this way, the range of integers varies from type to type.
The next program calculates factorials and displays the results. Run the

program with various types of integers for a in which the result is stored.

/* longfact.c */
#include <stdio.h>
#include <stdlib.h>
int main(){

unsigned int i;
unsigned long long a;

a = 1;
for(i=1;i<30;i++){
a = a * i;
printf("%llu\n",a);

}
exit(0);

}
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2.3 Floating Point Number Data Types

We used double to define a floating point number. Another type is float, which
is 32 bits on most systems. There is very limited use of floating point numbers
in this text, so only a brief explanation is given.

Type Explanation

float in most systems, IEEE 754 single
precision floating point format
±1.17549435× 10−38 ∼
±3.40282347× 1038

double in most systems, IEEE 754 double
precision floating point format
±2.2250738585072014× 10−308 ∼
±1.7976931348623157× 10308

long

double

in many systems, extended floating
point format. IEEE 754 quadruple
floating point format,
±3.36210314311209350626
2677817321752603 × 10−4932 ∼
±1.18973149535723176508
5759326628007016× 104932

Some computer systems use different floating point number formats. The
header file float.h has some definitions for floating point numbers that the
system can handle. Some examples are shown below. In most recent 64 bit
systems, these same values are usually used.

In C, the notation #define DBL_MIN 2.2250738585072014E-308 is called a
MACRO. At the time of compilation, the literal string DBL_MIN is substituted
with the literal string 2.2250738585072014E-308. This shows the absolute min-
imum value that a double precision floating point number can represent.

...
#define DBL_MIN 2.2250738585072014E-308
#define DBL_MIN_10_EXP (-307)
#define DBL_MAX_EXP 1024
#define DBL_MAX 1.7976931348623157E+308
#define DBL_MAX_10_EXP 308
...
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2.4 Mixed arithmetic operation for an integer
and a floating point number

The C language allows types to be mixed in expressions, and permits operations
that result in type conversions happening implicitly in some cases. If a floating
point number and an integer are mixed in an arithmetic expression, an integer is
converted to a floating point number before the operation. For example, 3.5 + 1
is computed as 3.5+ 1.0. In an assignment, a conversion is implicitly carried out
according to the type of the left hand side variable.

int a;
double b;

a = 3.0; /* a == 3 (convert to integer) */
a = 1.5; /* a == 1 (convert to integer) */
b = 3; /* b == 3.0 (convert to floating

point number) */!!

Other than these implicit type conversion, a cast is used for explicitly con-
version.

The following example converts the value of an expression to int.

(int) expression

The following example converts a value of expression to double.

(double) experssion

The following example converts an integer i to double, then divides it by 2,
and assigns it to the variable x. In the program, the integer 2 is converted to
double implicitly.

int i;
double x;
x = ((double)i) / 2;

If a division is computed without casting to double, it is computed as an
integer division, and any remainder is abandoned. The result is different from
floating point division, so you must be careful to do the conversion first.

2.5 Manipulating bitfields and bits within num-
bers

⇒Checking for a power of two, finding powers of two above and below. Testing bits.
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2.6 Tools

2.6.1 More on Make

Since we now have more than one program we are writing, you might be interested
in the fact that a single Makefile can be used to build more than one program.
Of course, it is best if they are related in some way, otherwise you are better off
keeping them separate!

CFLAGS=-Wall

all: hello typesizes

hello: hello.o
$(CC) $(CFLAGS) -o hello hello.o

hello.o: hello.c
$(CC) $(CFLAGS) -c hello.c

typesizes: typesizes.o
$(CC) $(CFLAGS) -o typesizes typesizes.o

typesizes.o: typesizes.c
$(CC) $(CFLAGS) -c typesizes.c

Note the appropriate use of whitespace, both tabs and blank lines. Note the
use of variables within the Makefile, such as CFLAGS, and how they are referenced.
This makes it easy to update how a whole group of files are to be compiled.

A Makefile is a set of rules for how to build programs. The first line of a block
specifies the target before the colon, then the dependencies (there may be more
than one). The lines below, which must start with a tab, specify the commands
to execute in order to build the target.

Later we will see how the dependencies can be created and maintained auto-
matically.

2.7 Exercises

⇒Add some bitfield exercises, aimed at supporting Exercise 5.3.

2.1 fprange.c: 1. Min: Write a program that starts with float x = 1.0, and
divides it by two repeatedly until it becomes zero. (Trust me, this will
happen. Why does this happen?) 2. Max: Do the same thing getting
larger until something happens. (What happens? Why?) 3. Repeat with
double.
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2.2 Write a program ex2-1.c that defines two integer variables as local variables
in main, passes those two as arguments to a function, then assigns the
number which is not smaller than the other number to the first argument,
and assigns the remaining number to the second argument. For example,
when x=10,y=12 at the top of the main, after the function call, those become
x=12,y=10.

2.3 In the previous exercise, write a program similar to 2.2 with three integer
variables instead of two integer variables. In this program, those numbers
should be arranged from larger variables to small variables.

2.4 ⋆ In a musical polyrhythm, separate parts are played at the same time using
different time signatures. Write a program that prints out the first 100
steps of a polyrhythm. It should print “Fizz” on any multiple of 3 and
“Pop” on any multiple of four, and “FizzPop” on multiples of both. For
other numbers, it should print a simple timekeeping sound, such as “Tap”
or “Chick”. For extra credit, demonstrate to your instructor that you can
sing or play the polyrhythm!

2.5 ⋓ Write a program to calculate the value of π (pi), using both the Gregory-
Leibniz and Nilakantha methods. Print out the calculated value for every
term through the first fifty. Compare the relative error.

Gregory-Leibniz:

π = 4

∞
∑

k=1

(−1)k+1

2k − 1
= 4(1−

1

3
+

1

5
· · · ) (2.1)

Nilakantha:

π = 3 +
∑

∞

k=1
(−1)k+1

×4
2k×(2k+1)×(2k+2) (2.2)

= 3 + 4
2×3×4 − 4

4×5×6 · · ·



Chapter 3

Arrays, Structs and Pointers

In which we meet arrays and pointers, which are the bane of every pro-
grammer’s existence. However, they are also insanely useful, and you
should learn to use them well in order to master C. Pointers correspond
to the memory addresses that the CPU uses when retrieving data from
main memory. We will also catch our first glimpse of structs, or complex
data structures, which will recur throughout the course.

3.1 Concepts

⇒To be written.

3.2 Arrays

Arrays are a convenient way to handle many items of the same type. You may
consider arrays to be vectors in mathematics, or tables. Arrays are defined as
follows.

type array name [ size ], ...;

For example, an array of 10 integer values is defined as follows.

int a[10];

To refer to an element of an array, an index (or subscript) is used. For
example, to use the 4th element of the above array a, you specify the element as
‘a[3]’. You can any integer expression as an index. Index 0 specifies the first

37
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a[]
0

1

4

9

16

25

a[0]

a[1]

a[2]

a[3]

a[4]

a[5]

Figure 3.1: The first six elements of array a in array1.c. The name a itself can
be used as a pointer to the start of the array.

element, and size − 1 specifies the last element. If an index is out of this range,
the result is undefined. Be careful, the compiler will let you do this, and it will
cause hard-to-find bugs!

The following example defines an integer array of size 10, assigns 1 to each
element by looping, then displays them all using a second loop.

/* array1.c */
#include <stdio.h>
#include <stdlib.h>
int main(){

int i, a[10];
for(i=0; i<10; i++){
a[i] = i*i;

}
for(i=0; i<10; i++){
printf("a[%d] = %d\n",i,a[i]);

}
exit(0);

}

The result of this program is the following.
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✓ ✏
% ./array1

a[0] = 0

a[1] = 1

a[2] = 4

a[3] = 9

a[4] = 16

a[5] = 25

a[6] = 36

a[7] = 49

a[8] = 64

a[9] = 81

%
✒ ✑

The first for statement assigns values from 0 to 9 to a variable i. In the
second loop, we use printf() with a format string constructed for displaying the
name and index like a(5) before printing the value of the variable.

However, the above program is actually very poor programming practice.
Why?

The size of our array is 10. That number 10 appears in three separate places
in the program. What happens if we decide to make it 20? Then we must change
it in all three places. If we miss one, the program will behave improperly. A more
maintainable, and readable, form of the program is:

/* array1corrected.c */
#include <stdio.h>
#include <stdlib.h>
#define ARRAYSIZE 10
int main(){

int i, a[ARRAYSIZE];
for(i=0; i<ARRAYSIZE; i++){
a[i] = 1;

}
for(i=0; i<ARRAYSIZE; i++){
printf("a(%d) = %d\n",i,a[i]);

}
exit(0);

}

The following example shows what happens if you specify an index out of the
array range. Such errors are common in C programs, but they are less likely to
happen if you use the #define preprocessor statement effectively.
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/* arrayerror.c */
#include <stdio.h>
#include <stdlib.h>

int main(){
int i, a[100];
for(i=0; i<100; i++ ){
a[i] = i;

}
for(i=0; i<10000; i=i+100){
printf("a[%d]=%d\n",i,a[i]);

}
exit(0);

}

The size of array is 100, so indices vary from 0 to 99. Basically in the C
language, a compilation error does not occur even when a program tries to use
indices out of the range.

At the run time, an error occured as follows. Segmentation fault is dis-
played. However, the program terminates not necessarily at the first element
beyond the range, but at some later point in execution.✓ ✏
% ./arrayerror

a[0]=0

a[100]=-1073742836

a[200]=50

a[300]=1028083265

Segmentation fault

%
✒ ✑

The array access is done without bounds checking (checking the indices and
size) at either compile time or run time, allowing efficient execution, but you need
to pay extra attention when programming.

In recent systems, some index checking can be performed. Debugging
tools which we will describe later also enable index checking at run
time.

The following program does not cause a Bus Error. So, you may not realize
there is an error in the program.
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/* arrayerror2.c */
#include <stdio.h>
#include <stdlib.h>

int main(){
int i, j, k, a[5];

for(i=0; i<5; i++ ){
a[i] = i;

}
i = 10, j = 11, k = 12;
printf("i=%d,j=%d,k=%d\n",i,j,k);
a[9] = 20, a[10] = 21, a[11] = 22;
printf("i=%d,j=%d,k=%d\n",i,j,k);
exit(0);

}

This program uses an out of range a[9]. The result is shown below.✓ ✏
% ./arrayerror2

i=10,j=11,k=12

i=22,j=21,k=20

%
✒ ✑

The variables i, j, k and a are stored somewhere in memory, in this case,
on the stack . (We will discuss stacks more later.) The exact layout will vary
depending on many things, but in the execution shown here, i was in memory in
the place where a[11] would have been, if a had been that large. In this case,
k is stored after the location of a[4]. So, after 20 is assigned to a[9], displaying
k results in the value 20. This kind of memory corruption is a common type of
bug associated with mismanaged memory in C.

3.3 Pointers

During the execution of programs written in C, data are stored in memory on
the computer. To identify the location in memory, each memory has an address .
The pointer indicates the address.

It is not strictly true that all data are stored in memory; they may
instead be stored in the CPU’s registers if they are used frequently.
On modern CPUs, registers do not have an address. Thus, if the
programmer writes a program using a pointer to a particular variable,
the compiler is forced to assign the variable to being in memory rather
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than a register. This distinction will not be important during this
class.

3.3.1 Pointer explanation and value

For example, an integer variable x is defined.

int x;

This variable exists at some location in the memory system of the computer.
The number which indicates the location at which the variable exists is called the
address or memory address. When you want to use the address of the variable,
rather than the value of the variable, place an ampersand in front of the name:

&x

The following example shows the value of the location of a variable. Of course,
addresses are different in different computer systems. Note the %p specifier for
displaying a pointer in the printf() format string.

/* pointer.c */
#include <stdio.h>
#include <stdlib.h>
int main(){

unsigned int i;
i = 10;
printf("i = %d, &i = %p\n",i,&i);
exit(0);

}

The result run at ccz00 is shown below.✓ ✏
ccz00% ./pointer

i = 10, &i = ffbff79c

✒ ✑
The result run at zmac??? is shown below.✓ ✏
zmac000% ./pointer

i = 10, &i = 0x7fff5fbff8cc

✒ ✑
These examples show &i in the printf with %p specifier. In case you are

not familiar with them, the following table shows some decimal numbers and
corresponding hexadecimal numbers.
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Hexadecimal Decimal
0 ∼ 9 0 ∼ 9

A 10
B 11
C 12
D 13
E 14
F 15
10 16

100 256
1000 4,096

FFFF 65,535
FFFFFF 16,777,215

FFFFFFFF 4,294,967,295

In most systems, depending on their computer architecture and operating
systems, the C language uses memory address from 0 to 0xffffffff, or to
0xffffffffffffffff. For example, the following figure shows the memory ad-
dress, stored values, and name of variables in the zmac?? machines at SFC.

FFFFFFFFFFFF

7FFF5FBFF8CC 10 variable i

00000000

When two variables are used in a program, such as pointer2.c, the memory
and variables are shown.

/* pointer2.c */
#include <stdio.h>
#include <stdlib.h>
int main(){

unsigned int i, j;
i = 10, j = 15;
printf("i = %d, &i = %p\n",i,&i);
printf("j = %d, &j = %p\n",j,&j);
exit(0);

}
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This gets the following result.✓ ✏
zmac999% ./pointer2

i = 10, &i = 0x7fff5fbff8cc

j = 15, &j = 0x7fff5fbff8c8

✒ ✑
The following figure shows the relationship between memory locations and

variables.

FFFFFFFFFFFF

7FFF5FBFF8CC 10 variable i

7FFF5FBFF8C8 15 variable j

00000000

The address of the storage space for the variable i (7FFF5FBFF8CC) and the
address of the storage space for the variable j differ by 4. This difference cor-
responds the number of bytes which are required to store an integer type (int)
variable. This example shows that memories are allocated in sequence when a
system assigns storage space for variables.

3.3.2 Character arrays and pointers

Next, character variables (written char), and arrays of characters (written char[])
are discussed.

/* pointer3.c */
#include <stdio.h>
#include <stdlib.h>
int main(){
unsigned int i;
char a;
unsigned int j;
i = 10; j = 15; a = ’A’;
printf("i = %d, &i = %p\n",i,&i);
printf("j = %d, &j = %p\n",j,&j);
printf("a = %d, &a = %p\n",a,&a);
exit(0);

}
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This program gets the following result.✓ ✏
zmac000% ./pointer3

i = 10, &i = 0x7fff5fbff8c8

j = 15, &j = 0x7fff5fbff8c4

a = 65, &a = 0x7fff5fbff8cf

✒ ✑
The following figure shows the relationship between memory locations and

variables. The value of the character variable a is 65 which corresponds to ASCII
code for the uppercase letter A.

FFFFFFFFFFFF

7FFF5FBFF8CC 65 variable a

7FFF5FBFF8C8 10 variable i

7FFF5FBFF8C4 15 variable j

00000000

After the address of the storage area for variable i (7FFF5FBFF8C8), the stor-
age area of character variable a is allocated, and its area is 1 byte in length.
Then, the 3 bytes of address from 7FFF5FBFF8C to 7FFF5FBFF8E are not used.

Next, a character array example is shown.
In the C language, a character string is treated as an array of char type,

char[]. A character string is a sequence of characters. The end of a character
string is demarked by 0 in an array of char type. This 0 is called the null
character, or NULL character.

For example, a string "HELLO" is stored in a character array defined as char
a[8] as follows.

a[0] a[1] a[2] a[3] a[4] a[5] a[6] a[7]

H E L L O \0 ? ?

\0 indicates the value is 0. Be aware, it does not indicate a character ’0’.
As in our previous examples, the values of pointers are examined as follows.
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/* pointer4.c */
#include <stdio.h>
#include <stdlib.h>
int main(){
unsigned int i;
char a[8];
unsigned int j;
i = 10; j = 15;
a[0] = ’H’; a[1] = ’E’; a[2] = ’L’;
a[3] = ’L’; a[4] = ’O’; a[5] = ’\0’;
printf("i = %d, &i = %p\n",i,&i);
printf("j = %d, &j = %p\n",j,&j);
printf("&a = %p\n",&a);
printf("a[2] = %d, &a[2] = %p\n",

a[2],&a[2]);
printf("a[] = %s\n",a);
exit(0);

}

This programs gets the following result.✓ ✏
zmac000% ./pointer4

% ./pointer4

i = 10, &i = 0x7fff5fbff8bc

j = 15, &j = 0x7fff5fbff8b8

&a = 0x7fff5fbff8c0

a[2] = 76, &a[2] = 0x7fff5fbff8c2

a[] = HELLO
✒ ✑

In this example, a new format and specifier for printf, printf("a[] = %s\n",a);

are used. %s treats the corresponding variable as a pointer to an array of character
variables, and displays the string indicated from that pointer to the termination
character (’\0’).

The result and the relationship between memory location and variables are
displayed in the next figure. The contents of the character string are displayed as
characters rather than corresponding ASCII code value for readability. In actual
memory, 72 is stored for ’H’, 76 is stored for ’L’, and so on.
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FFFFFFFFFFFF

7FFF5FBFF8BC 10 variable i

7FFF5FBFF8B8 15 variable j

7FFF5FBFF8B4 ’O’ ’\0’ ?? ?? array a

7FFF5FBFF8B0 ’H’ ’E’ ’L’ ’L’ array a

00000000

As shown in this example, each variable shows the location (address) in mem-
ory. Depending on the type of a variable, the size of area allocated in the memory
differs. For example, 4 bytes are allocated for an integer (long int), and 1 byte
for a character (char).

3.3.3 Pointer variables

As we have seen, the location of the storage area allocated for a variable can be
displayed using &. Also, a variable that stores the location of another variable
can be defined. This is called a pointer variable. It is defined by prepending ‘*’
to the variable name .

type * variable name ;

In the next example, p holds the address of variable x. You will see that *p
has the same value as x.

You can assign an arbitary name to a variable. However, for readability
and understandability, for pointer variables, names beginning with p, are usually
assigned. If you know you are creating a variable that always holds a pointer
to x, you can name it px, for clarity. When a single-character variable name is
desired (as in small loops), p, q, or r is often used.

int x;
int *p;
p = &x;

An integer variable is a box that holds an integer value. Similarly, a pointer
variable is a box that holds a pointer. However, in this case, the box holds a
piece of paper that says “An integer value is stored in the box ...”.

By executing the following program, confirm the contents of x and p.
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/* pointer-change.c */
#include <stdio.h>
#include <stdlib.h>
int main(){

int x; int *p;
x = 7;
p = &x;
printf("x = %d, &x = %p\n",x,&x);
printf("p = %p, *p = %d\n",p,*p);
printf("&p = %p\n",&p);
exit(0);

}

The following result is obtained.✓ ✏
% ./pointer-change

x = 7, &x = 0x7fff5fbff8cc

p = 0x7fff5fbff8cc, *p = 7

&p = 0x7fff5fbff8c0

✒ ✑
This result is shown in the following figure.

FFFFFFFFFFFF

7FFF5FBFF8CC x (=7) pointed to by *p

7FFF5FBFF8C0 7FFF5FBFF8CC location of var. p

00000000

The location of variable p is 7FFF5FBFF8C0, and the value stored in that
location is 7FFF5FBFF8CC. A pointer to an integer *p indicates that the value in
the memory address is 7FFF5FBFF8CC, and its type is int.

The contents of data that pointers refer to can be modified. Data pointed by
pointers can be referred to as

* pointer

For example, in the following program, a location *p, referred to by a pointer
variable p, contains an integer variable x. That value is assigned to y, then the
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integer variable x, referred by the pointer p, is given the value 3. Consequently,
hte initial value of x, 7, is assigned to y, and the value of x becomes 3.

/* pointer-change2.c */
#include <stdio.h>
#include <stdlib.h>
int main(){

int x,y; int *p;

p = &x;
x = 7;
y = *p;
*p = 3;
printf("x = %d, y = %d\n",x,y);
printf("*p = %d\n",*p);
printf("x = %d, &x = %p\n",x,&x);
printf("p = %p, &p = %p\n",p,&p);
printf("&x = %p, &y = %p\n",&x,&y);
exit(0);

}

The result of the program’s execution is shown. The value of pointer variable
p and the address of the integer variable x have the same value, 7FFF5FBFF8CC.✓ ✏
% ./pointer-change2

x = 3, y = 7

*p = 3

x = 3, &x = 0x7fff5fbff8cc

p = 0x7fff5fbff8cc, &p = 0x7fff5fbff8c0

&x = 0x7fff5fbff8cc, &y = 0x7fff5fbff8c8

✒ ✑
The memory allocation is shown as follows.

FFFFFFFFFFFF

7FFF5FBFF8CC x (=3) location referred to by *p

7FFF5FBFF8C8 y (=7) location of var. y

7FFF5FBFF8C0 7FFF5FBFF8CC location of var. p

00000000
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In this example, even before the assignment of 7 to x, the pointer variable p

is can be given the address of x. Even before you know the value of x, you know
the address where x will be stored.

3.3.4 Manipulation of pointer variables

You can add and subtract an integer value to a pointer variable. Adding 1 to a
pointer causes the pointer to refer to the next data element in memory. The name
of an array is considered to be a pointer constant that refers to the beginning of
the array.

/* pointer-op.c */
#include <stdio.h>
#include <stdlib.h>
#define ARRAYSIZE
int main(){

int a[ARRAYSIZE]; int *p;
int i;

for(i=0;i<ARRAYSIZE;i++){
a[i] = i;

}
printf("&a[0]=%p,&i=%p,&p=%p\n",

&a[0],&i,&p);
p = a;
printf("p=%p,*p=%d\n",p,*p);
p++;
printf("p=%p,*p=%d\n",p,*p);
exit(0);

}

At the time of execution, the value of the pointer variable p is 7FFF5FBFF890.
That value corresponds to the address of the integer variable a[0]. The content
of a[0] is 0, as set by our initialization code in the for loop.✓ ✏
% ./pointer-op

&a[0]=0x7fff5fbff890,&i=0x7fff5fbff8cc,

&p=0x7fff5fbff8c0

p=0x7fff5fbff890,*p=0

p=0x7fff5fbff894,*p=1

✒ ✑
The result is shown in the next figure.
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FFFFFFFFFFFF

7FFF5FBFF8CC i location of var i

7FFF5FBFF8C0 7FFF5FBFF894 location of var. p

7FFF5FBFF8B4 a[9] (=9) location of var. a[9]
...

...

7FFF5FBFF894 a[1] (=1) location of var. a[1]

7FFF5FBFF890 a[0] (=0) location of var. a[0]

00000000

An important part is the calculation of p++. The ++ operator, the increment
operator, adds 1 to a value. However, in this example, the value is increased by
4, from 7FFF5FBFF890 to 7FFF5FBFF894. When an increment operator is applied
to a pointer, the value is increased by the size of the variable that the pointer
indicates. Using this mechanism, a sequence of variables of the same type are
handled correctly.

The next example is our first real encounter with character strings. In C, a
string is a sequence of char variables, and the end of a string is the terminal
character (’\0’). Therefore, a pointer to a character variable, char *, has the
same type as a pointer to the first character of a string.

The following table shows this relationship. A fixed-length array for a string,
char a[6], and a single character variable, c, are compared.

a[0] a[1] a[2] a[3] a[4] a[5]

A B C \0 ? ?

c

Z

↑ *p pointer to a[0],c

The string "ABC" is assigned to array a[6]. The character variable c has the
character Z.

The next program shows the allocation of variables in the memory.
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/* pointer-op2.c */
#include <stdio.h>
#include <stdlib.h>
int main(){

char a[6]; char *p;
char c;

a[0] = ’A’; a[1] = ’B’; a[2] = ’C’;
a[3] = ’\0’;
printf("&a[0]=%p,&c=%p,&p=%p\n",&a[0],&c,&p);
p = a;
printf("p=%p,*p=%d\n",p,*p);
p++;
printf("p=%p,*p=%d\n",p,*p);
exit(0);

}

The result is shown below. 65 is the ASCII code value of the character A, and
66 is the ASCII code value of the character B.✓ ✏
% ./pointer-op2

&a[0]=0x7fff5fbff8c0,&c=0x7fff5fbff8cf,

&p=0x7fff5fbff8b8

p=0x7fff5fbff8c0,*p=65

p=0x7fff5fbff8c1,*p=66

✒ ✑
The contents of memory are shown in the next picture.

FFFFFFFFFFFF

7FFF5FBFF8CC c variable c

7FFF5FBFF8C4 array a

7FFF5FBFF8C0 ’A’ ’B’ ’C’ ’\0’ array a

7FFF5FBFF8B8 7FFF5FBFF8C1 variable p

00000000

Because the size of the character array char a[6] is 6, it occupies 6 bytes
from address 7FFF5FBFF8C0 to 7FFF5FBFF8C5 in the memory. At the calculation
of p++, the value of the pointer is increased by 1 to point to the next character
in the array. Initially, the value is 7FFF5FBFF8C0, which points ’A’. After an
increment, it become 7FFF5FBFF8C1, which points to ’B’.
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3.4 Pointers and Functions

Pointers have a strong relationship with the passing of arguments to functions.

3.4.1 Function calls and arguments

The next program intends to calculate two times a. It passes two arguments, a
and b to the function multi2, ant assining the result to b

/* function-p.c */
#include <stdio.h>
#include <stdlib.h>

void multi2(int a, int b){
b = a * 2;
printf("In multi2: a=%d,b=%d\n",a,b);
return;

}

int main(){
int x=0,y=0;

x = 10; y = 0;
multi2(x,y);
printf("In main: x=%d,y=%d\n",x,y);
exit(0);

}

This programs seems to be good. However, we get the following result.✓ ✏
% ./function-p

In multi2: a=10,b=20

In main: x=10,y=0

✒ ✑
In the function multi2, the value is multiplied by 2 correctly. However, when

the control returns to the main, the value of y is unchanged, and still 0. What is
wrong?

When you call the function multi2(x,y), the values of x and y, at the time
of call, are passed to the function. In the example, 10 (x) and 0 (y) are passed.

In the function multi2, x and y are the arguments. Their values are assigned
to the variables a and b which can be used only inside the function. Therefore,
when the function has completed, and the control returns to the main, the values
of x and y are unchanged.
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As in other previous examples, to discover the storage location of variables,
let’s examine the addresses of variables using constructs such as &x. The following
result will be obtained.

FFFFFFFFFFFF

7FFF5FBFF8CC p (=10) location of var. p

7FFF5FBFF8C8 q (=0) location of var. q

...

7FFF5FBFF8AC a (=10) location of var. a

7FFF5FBFF8A8 b (=20) location of var. b

00000000

To run this program correctly, you have to pass the locations of variables x
and y to the function multi2 instead of the value of x (10). Therefore, on the
caller’s side, the addresses of variables are passed as following.

multi2(&x,&y);

On the callee side, it receives the addresses of their storage locations, then it
processes assuming those locations store integer values.
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/* function-p2.c */
#include <stdio.h>
#include <stdlib.h>

void multi2(int *a, int *b){
*b = *a * 2;
printf("In multi2: a=%d,b=%d\n",*a,*b);
return;

}

int main(){
int x,y;

x = 10; y = 0;
multi2(&x,&y);
printf("In main: x=%d,y=%d\n",x,y);
exit(0);

}

In the function multi2, both the first argument and the second argument are
pointers to integers.

void multi2(int *a, int *b)

The next figure shows the storage locations of variables and their values in
this example.

FFFFFFFFFFFF

7FFF5FBFF8CC x (=10) location of x

7FFF5FBFF8C8 y (=0→20) location of y

...

7FFF5FBFF8A8 a(=7FFF5FBFF8CC) location of a

7FFF5FBFF8A0 b(=7FFF5FBFF8C8) location of b

00000000

The modified program gets the following result.
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✓ ✏
% ./function-p2

In multi2: a=10,b=20

In main: x=10,y=20

✒ ✑

3.4.2 How to pass arrays

When you pass arrays to functions, the name of an array is used as an argument.
The called function receives those arguments as arrays.

/* array-p.c */
#include <stdio.h>
#include <stdlib.h>
#define MAXNUM 10
void array(int b[]){

int i;
for(i=0;i<MAXNUM;i++){
b[i] *= 2;

}
return;

}

int main(){
int i, a[MAXNUM];

for(i=0;i<MAXNUM;i++){
a[i] = i;

}
array(a);
for(i=0;i<MAXNUM;i++){
printf("a(%d)=%d\n",i,a[i]);

}
exit(0);

}

#define MAXNUM 10 is a MACRO. In this example, the string 10 is substi-
tuted for the string MAXNUM at compilation time. By using this MACRO, when
you want to modify the size of the array from 10 to 20, you have to change only
one line, this MACRO definition.

This example initializes the integer array a[], then multiplies those initialized
values by 2 in the function array.
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✓ ✏
% ./array-p

a(0)=0

a(1)=2

a(2)=4

a(3)=6

a(4)=8

a(5)=10

a(6)=12

a(7)=14

a(8)=16

a(9)=18

%
✒ ✑
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The next example uses a two-dimensional array. Unlike the previous one-
dimensional array,
you have to specify the size of the array in the prototype for the called function,
such as void array(int b[MAXROW][MAXCOL]). If you failed to specify this size,
a compilation error occurs, because the called function has no way to know how
to handle the array. Because of its very direct relationship to how system stores
data, multi-dimensional arrays are not supported as cleanly as in some other
languages.

/* array-p2.c */
#include <stdio.h>
#include <stdlib.h>
#define MAXROW 5
#define MAXCOL 4
void array(int b[MAXROW][MAXCOL]){

int i,j;
for(i=0;i<MAXROW;i++){
for(j=0;j<MAXCOL;j++){
b[i][j] *= 2;

}
}
return;

}

int main(){
int i, j;
int a[MAXROW][MAXCOL];

for(i=0;i<MAXROW;i++){
for(j=0;j<MAXCOL;j++){
a[i][j] = i*j;

}
}
array(a);
for(i=0;i<MAXROW;i++){
for(j=0;j<MAXCOL;j++){
printf("a(%d)(%d)=%d\n",i,j,a[i][j]);

}
}
exit(0);

}
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This example gets the following result.✓ ✏
% ./array-p2

a(0)(0)=0

a(0)(1)=0

a(0)(2)=0

a(0)(3)=0

a(1)(0)=0

a(1)(1)=2

a(1)(2)=4

a(1)(3)=6

a(2)(0)=0

a(2)(1)=4

a(2)(2)=8

a(2)(3)=12

a(3)(0)=0

a(3)(1)=6

a(3)(2)=12

a(3)(3)=18

a(4)(0)=0

a(4)(1)=8

a(4)(2)=16

a(4)(3)=24

%
✒ ✑

3.5 Structures

When you create a complex program, you may want to handle multiple variables
as a chunk. For example, to handle a complex number or a fractional number, it
is better that you can name and handle variables which hold a pair of integers or
a pair of real numbers, instead of two separate integer variables or real numbers.
In C, you can define a new data type by combining existing basic data type such
as int. This data type is called a Structure.

The next example shows how to define a structure.

struct {
type member name ;

....

} variable name of the structure ;
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The next example shows another form of the definition with the name of the
structure. The name can be used in other parts of the program.

struct type name of structure {

type member name ;

....

} variable name of structure ;

In this definition, you may omit the variable name, and only define the struc-
ture.

struct type name of structure {

type member name ;

....

} ;

In the following example, to make a program which handles fractional num-
ber computation, a structure to specify the fractional number is defined. struct
frac is the name of structure for fractional numbers. Then, bo will hold the de-
nominator (bunbo in Japanese), shi will hold the numerator (bunshi in Japanese).
Those names are arbitrary, but it is better to use some meaningful name.

struct frac{
int shi;
int bo;

} f;

When you use elements of structures, you have to specify the element by
combining the structure’s name and a member name.

variable name . member name

The following example assigns 3/5 to a fractional number structure.

f.shi = 3;
f.bo = 5;

The next example calculates the sum of two fractional numbers. fgets() and
sscanf() are functions for one line input and conversion to integer type variables.
Details are discussed in the chapter for input and output. For the moment, you
only have to understand that two numbers separated by a slash are assigned to
a numerator variable and a denominator variable.
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/* structure-frac.c */
#include <stdio.h>
#include <stdlib.h>
#define MAXLINE 256

struct frac{
int shi;
int bo;

};

int main(){
int ret;
char input[MAXLINE];
struct frac f,g,h;

fgets(input,MAXLINE,stdin);
ret = sscanf(input,"%d/%d",&f.shi, &f.bo);
if(ret != 2) {exit(1);}
fgets(input,MAXLINE,stdin);
ret = sscanf(input,"%d/%d",&g.shi, &g.bo);
if(ret != 2) {exit(1);}

h.shi = f.shi * g.bo
+ g.shi * f.bo;

h.bo = f.bo * g.bo;
printf("%d/%d + %d/%d = %d/%d\n",

f.shi, f.bo,
g.shi, g.bo,
h.shi, h.bo);

exit(0);
}

The result of the program is shown.✓ ✏
% ./structure-frac

1/3 (1st fgets input)

2/5 (2nd fgets input)

1/3 + 2/5 = 11/15 (output)

✒ ✑
If you try writing this program without structures, you will understand the

improvement of readability we gain by using structures (exercise 3.3).
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3.6 Tools

3.6.1 gcc: phases of compilation

C compilers, including gcc, go through different phases from the time they start
reading your program:

• preprocessor: the preprocessor processes all of the commands in your source
code that start with #. We have already seen #include and #define. The
output of this (which you generally never see) is a longer, purer C program,
fed directly into the next phase of compilation.

• compiling: turns the C program into chunks of executable code for this
processor.

• linking: takes the various chunks of executable code, finds the necessary
libraries, and puts the whole together into a program that will run on this
operating system.

3.6.2 git

Git is a system for tracking and sharing changes in your software (or almost any
other file). For the moment, do this:✓ ✏
% git config --global user.name "Your Name"

% git config --global user.email your.email@your.domain

% git init

% git add example.c Makefile

% git commit

(use the editor, add a comment)

✒ ✑

3.7 Exercises

3.1 Write the following program ex2-3.c. For the array a[MAXITEM], assign 1
to MAXITEM from the head of the array (the first element of the array is
a[0]). Then, calculate a[i]*a[i] for all a[i] of the array, assign those
values to the array b[i], then display all b[i] with printf.

MAXITEM is a macro, defined at the begining of the program as,

#define MAXITEM 10



3.7. EXERCISES 63

With this definition, of course the numbers 1,4,9,....,100 should be
displayed as b[i].

3.2 Referring to the program array-p2.c which passes a two-dimensional array
to a function, write a program which passes a three dimensional array to
a function. For example, the array may defined at the begining of the
program as:

int a[MAXROW][MAXCOL][MAXZ];

3.3 A fractional number addition is shown in the example for structures (structure-frac.c).
Write this program without structures.

3.4 ⋆ In the fractional number addition program using structures, 2/5 + 2/5

becomes 20/25, when of course we would like to get 4/5. Write a program
which displays a result in an irreducible fraction. (How can you reduce a
fraction?)

3.5 In the fractional number example, addition is shown. Write the program
ex2-7.c which computes addition, subtraction, multiplication, and divi-
sion, then displays all four results.

3.6 Write a program that calculates the dot product (inner product) of two vec-
tors of floating point numbers and displays it. These vectors should be the
same size, of course, and that size should be defined at compile time using
a #define. The inner product of two vectors is a scalar,

~a ·~b =
n−1
∑

i=0

ai · bi (3.1)

for two vectors of length n. (Note the first index is 0 here, in keeping with
C, though many math textbooks would define it starting from 1.)

3.7 Write a program to print the addresses local variable in main(), a second
function called from main(), and a third function called from inside the
second function. How do they change across calls?

3.8 In this problem, we will see the first vague hint of code related to networks,
use a system library function, pointers, and iteration, all in one problem.

The library function if_nameindex() returns a pointer to struct if_nameindex.
Use it to create a program that prints out a list of all of the network inter-
faces in your system.

The if_nameindex structure:
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struct if_nameindex{
u_int if_index;
char * if_name;

};

The function returns an array of these structs. For more information see
the manual page (man if_nameindex).

Include files to use:

#include<sys/types.h>
#include<net/if.h>

Your program should print out something like this:
✓ ✏
%./iflist

1 lo

2 eth0

3 eth1

4 sit0
✒ ✑
Be sure to use the function if_freenameindex() after you have finished
printing out the list.



Chapter 4

String Processing and
Pointers

In which we learn how to handle strings of text using pointers and library
functions.

4.1 Concepts

The C approach to handling strings represented an advance over earlier high-
level languages such as FORTRAN. Strings can be variable length. (This seems
so natural now that it is hard to imagine how alien it was in the early 1970s.) A
string is null terminated ; that is, a special character (the null character) marks
the end of the string. This allows algorithms to loop until finding the terminator,
rather than for some fixed count.

The techniques presented here are important for handling filenames, process-
ing strings input from the keyboard or other devices, or processing data from
text files. (We will see more on file I/O in Chapter 6.) As such, they are an
important component of many large programs.

Many standalone text processing utilities are written in C, although many
programmers today find it more productive to write such tools in Python, Ruby
or Perl.

This chapter includes a number of examples, but the UNIX man pages for the
library functions provide additional detail. Please refer to them for return values
and more information on constraints in their use.

65
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4.2 Strings as arrays

A string is an array of characters, and can be treated just like an array of any
other data type, except that as we noted strings are usually variable length. The
next program creates a string by putting a character into every element of an
array.

/* hello.c */
#include <stdio.h>
#include <stdlib.h>

int main(){
char a[8];

a[0] = ’H’; a[1] = ’E’;
a[2] = ’L’; a[3] = ’L’;
a[4] = ’O’; a[5] = ’\0’;
printf("a[] = %s\n",a);
exit(0);

}

Note the ’\0’ put into a[5]. This is our null terminator character. The
backslash tells the compiler to put the following number into the character, rather
than the ASCII code for the character ’0’ (which is 0x30, not 0).

In the C language, the data extending from any intermediate point in the
string to the terminal character ’\0’ also can be interpreted as a string. So,
advancing a pointer to a string one by one, you get strings that gradually become
shorter.

/* hellop.c */
#include <stdio.h>
#include <stdlib.h>

int main(){
char a[8];
char *p;

a[0] = ’H’; a[1] = ’E’;
a[2] = ’L’; a[3] = ’L’;
a[4] = ’O’; a[5] = ’\0’;
printf("a[] = %s\n",a);
for(p = a; *p != ’\0’; p++){
printf("%s\n",p);

}
exit(0);

}
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for(p = a; *p != ’\0’; p++) is frequently used syntax. It advances a
pointer across a string step by step, then exits the loop when it encounters the
terminal character ’\0’. An execution example is shown.✓ ✏
% ./hellop

a[] = HELLO

HELLO

ELLO

LLO

LO

O

%
✒ ✑

Now, let’s create a function which determines the location of a specified char-
acter in a string. This function is called with two arguments, the pointer to the
string and a target character. To get a string we want to search, we will use the
library function fgets().
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/* search-c.c */
#include <stdio.h>
#include <stdlib.h>
#define MAXLINE 256

int searchc(char *s, char c){
char *p;
int i;

i = 1;
for(p = s; *p != ’\0’; p++,i++){
if(*p == c){
break;

}
}
if(*p == ’\0’){
return -1;

}else{
return i;

}
}

int main(){
char input[MAXLINE];
int c, loc;

printf("Enter a string\n");
fgets(input,MAXLINE,stdin);
printf("Enter a character\n");
c = getc(stdin);
loc = searchc(input,c);
if(loc < 0){
printf("%c is not found.\n",c);

}else{
printf("%c is found at position %d in the string.\n",
c,loc);

}
exit(0);

}

The result is shown.
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✓ ✏
% ./search-c

Enter a string

ABCDEF

Enter a character

C

C is found at position 3 in the string.

%
✒ ✑

The fgets() function is used for string input:

char *fgets(char *s, int size, FILE *stream);

The first argument is a pointer to a character string. It designates the storage
location where the input string can be found. The second argument is an integer
value which indicates the maximum size of the storage. The third argument
designates which input channel is to used. As in the example program, when
stdin is specified, the program reads a string from the standard input, which is
usually the keyboard. The input/output system in C will be taken up in more
detail in later chapters.

4.2.1 Copying and concatenating strings

In C, strings are treated as arrays of character data. To understand C’s string
processing, the important concept is that the name of an array of characters
corresponds to a pointer to a character variable.

As an example, the following program manipulates two strings input by fgets.
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/* string-example.c */
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <strings.h>
#define MAXLINE 256

int main(){
char str1[MAXLINE], str2[MAXLINE];
char str3[MAXLINE*2];
char *s;

/* First, make sure strings are empty */
str1[0] = ’\0’;
str2[0] = ’\0’;
str3[0] = ’\0’;

printf("Enter the first string:\n");
fgets(str1,MAXLINE,stdin);
printf("Enter the second string:\n");
fgets(str2,MAXLINE,stdin);
/* Display the input strings */
printf("str1 is %s\n",str1);
printf("str2 is %s\n",str2);
/* replace the \n character with ’\0’ */
s = strchr(str1,’\n’);
if(s!=NULL){
*s = ’\0’;

}
s = strchr(str2,’\n’);
if(s!=NULL){
*s = ’\0’;

}
/* String copy (see below) */
strncpy(str3,str1,MAXLINE);
printf("%s is copied to str3\n",str3);
/* String concatenation */
strncat(str3,str2,MAXLINE);
printf("Concatenating str2 to str3 becomes %s.\n",
str3);

exit(0);
}

This program reads two strings with the function fgets, assigns these strings
to two variables str1 and str2, then displays them. The last part of the input
strings includes the line feed character, \n. To eliminate this character, the
program uses the strchr() function to search for the character, and replaces it
with the termination character ’\0’.

If the strchr() call didn’t find the null terminator, it is likely that the line
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the user typed filled or overflowed the buffer, that we have reached the end of
whatever file we are reading, or there was an error. (We should have checked
the return value of the fgets().) To learn more about the behavior of this, try
setting MAXLINE to some small value like 4, and typing long strings at the prompt.

Next, the program copies string str1 to the string variable str3 by the func-
tion strncpy(), and displays it. Then, the program uses strncat() to concate-
nate str2 to str3, and display the modified str3. Note that we chose to use
strncpy() instead of strcpy(), and strncat() instead of strcat(). In this
case, just above, we have already guaranteed that the strings are each shorter
than MAXLINE, including the null terminator, so we could have safely used the
other functions. However, as a matter of good habit, you should get accustomed
to using the versions that include limits on how much data they will copy. If
you do not, you may leave your programs open to buffer overflow attacks, which
open far too many security holes in the world today – don’t let yours be one of
them! (Buffer overflows are related to the array bounds checking we discussed
back on page 40.)

Example execution results are as follows.✓ ✏
% ./string-example

Enter the first string:

abc <--- input string

Enter the second string:

def <--- input string

str1 is abc <--- displayed string

str2 is def <--- displayed string

abc is copied to str3

Concatenating str2 to str3 becomes abcdef

%
✒ ✑

The strchr() function determines whether the specified character exists in
the strings or not. The usage is

#include <string.h>
char *strchr(const char *s, int c);

For copying a string, strncpy is used. As shown below, the first argument
designates the location of the destination, the second argument designates the
location of the source. This function returns the argument dst.

#include <string.h>
char *strncpy(char *restrict dst,
const char *restrict src, size_t n);
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For concatenating strings, the function strncat() is used. As shown below,
the first argument designates the source, the second argument designates the
string to be added to s1. This function returns s1.

#include <string.h>
char *strncat(char *restrict s1,
const char *restrict s2, size_t n);

4.2.2 Comparison of strings

To compare two strings, we can use the functions strcmp() and strncmp().
As shown below, the first argument and the second argument designate the

two strings to be compared. First, the function compares the first character of the
first string and the first character of the second string. If those two characters
are the same, the function compares the second characters, and so on. If the
two strings are the same, the function returns 0. When the function encounters
different characters at some point, it will return an integer value that is negative or
positive. That value shows the magnitude correlation between the two different
characters at that point. If s1 > s2, the function returns a positive value; if
s1 < s2, it returns a negative value.

#include <string.h>
int strcmp(const char *s1, const char *s2);

The function strncmp() is almost same as strcmp(), but it only compares
strings up to the nth character. This number is specified by the third argument.
In general, you should use strncmp().

#include <string.h>
int strncmp(const char *s1, const char *s2,

size_t n);

The next program accepts two strings, and displays the comparison result.
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/* string-cmp.c */
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#define MAXLINE 256

int main(){
char str1[MAXLINE], str2[MAXLINE];
char *s;
int cmp;

printf("Enter the first string\n");
fgets(str1,MAXLINE,stdin);
printf("Enter the second string\n");
fgets(str2,MAXLINE,stdin);
/* substituting the last \n with

the NULL character */
s = strchr(str1,’\n’);
if (s!=NULL){
*s = ’\0’;

}
s = strchr(str2,’\n’);
if (s!=NULL){
*s = ’\0’;

}
/* display strings */
printf("str1 is %s\n",str1);
printf("str2 is %s\n",str2);
/* compare strings */
cmp = strcmp(str1,str2);
if (cmp == 0) {
printf("The two strings are the same\n");

}else if (cmp>0) {
printf("%s is larger than %s\n",

str1,str2);
}else{
printf("%s is larger than %s\n",

str2,str1);
}
exit(0);

}

The result is shown below.
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✓ ✏
% ./string-cmp

Enter the first string

abc

Enter the second string

def

str1 is abc

str2 is def

def is larger than abc

✒ ✑

4.2.3 Classifying characters

Sometimes, you need to classify a character, determining whether it is upper
case, lower case, white space, and so on. The standard library includes functions
for this purpose and for converting cases. You have to include the header file
ctype.h to use these functions.

#include <ctype.h>
int toupper(int c);
int tolower(int c);
int isalpha(int c);
int isupper(int c);
int islower(int c);
int isdigit(int c);
int isxdigit(int c);
int isalnum(int c);
int isspace(int c);
int ispunct(int c);
int isprint(int c);
int isgraph(int c);
int iscntrl(int c);
int isascii(int c);

These functions check whether c, which must have the value of an unsigned
char or EOF, falls into a certain character class according to the current locale.

toupper() and tolower() convert the character to upper case and lower case
respectively. Non-alphabetic characters are unchanged.

isalpha() and other functions check whether the character falls into a certain
character class. They return 1 when the character falls into the class, and return
0 otherwise.

The following program checks input characters one by one, and displays the
result of classification. Enter several types of characters and examine the result.
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/* is-example.c */
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <ctype.h>
#define MAXLINE 256

int main(){
char str1[MAXLINE];
char *s;

printf("Enter a string\n");
fgets(str1,MAXLINE,stdin);
/* substituting the NULL character

for the last \n */
s = strchr(str1,’\n’);
if(s!=NULL){
*s = ’\0’;

}
/* Displaying the string */
printf("The input string is %s\n",str1);
/* Check the string */
for(s = str1; *s != ’\0’; s++){
if(isdigit(*s)){
printf("%c is a number.\n",*s);
continue;

}
if(isalpha(*s)){
printf("%c is an alphabetic character",*s);
if(isxdigit(*s)){

printf(" and is used in hexadecimal notation");
}
printf(".\n");
continue;

}
if(isspace(*s)){
printf("%c is a white space character.\n",*s);
continue;

}
printf("%c is some other type of character.\n",*s);

}
exit(0);

}

The result is shown. Pay attention to using the continue statement. That
avoids executing extra if statements.
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✓ ✏
% ./is-example

Enter a string

Because we can 14.

The input string is Because we can 14.

B is an alphabetic character and is used in hexadecimal notation.

e is an alphabetic character and is used in hexadecimal notation.

c is an alphabetic character and is used in hexadecimal notation.

a is an alphabetic character and is used in hexadecimal notation.

u is an alphabetic character.

s is an alphabetic character.

e is an alphabetic character and is used in hexadecimal notation.

is a white space character.

w is an alphabetic character.

e is an alphabetic character and is used in hexadecimal notation.

is a white space character.

c is an alphabetic character and is used in hexadecimal notation.

a is an alphabetic character and is used in hexadecimal notation.

n is an alphabetic character.

is a white space character.

1 is a number.

4 is a number.

. is some other type of character.

✒ ✑

4.2.4 Strings and numerical data

Sometimes, you want to convert a string to a numeric value (either integer or
floating point), or vice versa. In C, the functions strtol() and sprintf() can
be used for this purpose.

The strtol() function has the following form. The function converts the
initial part of the string in str to a long integer value according to the given base.
The base must be between 2 and 36. If endptr is not NULL, strtol() stores the
address of the first invalid character in *endptr. This can be used to efficiently
skip over white space, commas, etc.

#include <stdlib.h>
long strtol(const char *str, char **endptr,

int base);

The following example assigns an input number to an int and a long type
integer, then checks the result. This points out the problem of assigning a long

integer to an int.
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/* str-tol.c */
#include <stdio.h>
#include <stdlib.h>
#include <inttypes.h>
#include <limits.h>

#define MAXLINE 256

int main(){
int i;
long k;
char input[MAXLINE];

fgets(input,MAXLINE,stdin);
i = strtol(input,NULL,10);
k = strtol(input,NULL,10);
printf("i=%d\n",i);
printf("k=%ld\n",k);
if (k == LONG_MAX)
printf("pegged k at LONG_MAX\n");

exit(0);
}

The result is shown below.
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✓ ✏
% ./str-tol

123

i=123

k=123

% ./str-tol

abc

i=0

k=0

% str-tol

-234567890123

i=1655311157

k=-234567890123

% ./str-tol

900000000000000000000000000000000

i=-1

k=9223372036854775807

pegged k at LONG_MAX

% ./str-tol

50000000000000000000000000000000000000000

i=-1

k=9223372036854775807

pegged k at LONG_MAX

✒ ✑
The function returns 0 when a non-number is passed as an argument. How-

ever, as you can see, it does not always parse unexpectedly large numbers properly
if you assign to an int instead of a long. If you assign to a long, any number
too large will be set to the largest integer your system can support, defined by
the macro LONG_MAX.

Another conversion function is sscanf(). It is convenient when reading mul-
tiple values. Furthermore, it is easy to use for error detection. This function is
almost same as the scanf() function, but the input is provided as a string vari-
able rather than reading from the standard input. (If you have not yet worked
with scanf(), please check the manual page.)

int sscanf(const char *s,
const char *format, ...);

The following program is a bad example that ignores the value returned by
sscanf().
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/* str-sscanf-bad.c */
#include <stdio.h>
#include <stdlib.h>

#define MAXLINE 256

int main(){
int i,ret;
char input[MAXLINE];

fgets(input,MAXLINE,stdin);
ret = sscanf(input,"%d",&i);
printf("i=%d\n",i);
exit(0);

}

The result is shown below.✓ ✏
% ./str-sscanf-bad

10

i=10

% ./str-sscanf-bad

a

i=32767

%
✒ ✑

As you can see, it executes correctly when numbers are entered. However,
when non-number strings are input, it stores an incorrect value in the variable. To
detect this error, you have to check the return value of sscanf(). The corrected
program is shown below.
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/* str-sscanf.c */
#include <stdio.h>
#include <stdlib.h>

#define MAXLINE 256

int main(){
int i,ret;
char input[MAXLINE];

fgets(input,MAXLINE,stdin);
ret = sscanf(input,"%d",&i);
if(ret <= 0){
printf("Invalid input\n");

}else{
printf("i=%d\n",i);

}
exit(0);

}

The value of ret has the number of items that are correctly read. In this
example, if i is correctly read, ret should be 1. The execution result is shown.✓ ✏
% ./str-sscanf

10

i=10

% ./str-sscanf

a

Invalid input

%
✒ ✑

4.3 Dealing with non-ASCII characters

This is important: You are living in Japan, where, in case you haven’t noticed,
the dominant language is not English or American!

In the early days of computing, as computers spread throughout the world,
countries working with written forms of language other than the basic 26-letter
alphabet urgently needed some ability to deal with the local language, and since
resources (especially memory) were scarce, computers weren’t networked, and
international standards bodies for information technologies weaker, many local
solutions developed.

Unfortunately, because the many solutions used overlapping numbers for dif-
ferent characters in different languages, as a programmer it is not possible to
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always, perfectly distinguish the character, or even language, you are holding.
All robust solutions require some additional information somewhere that speci-
fies the character set , telling you how to interpret a string or character.

The original C language and library assumed that the ASCII character set
was in use, which was a fair assumption for the time and place since the ’A’
in ASCII stands for “American”, and C was developed in the United States by
Dennis Ritchie. Nowadays, it is a poor assumption as the World Wide Web is
literally worldwide.

Dealing with the Japanese language in a computer can’t be done using regular
8-bit characters. 8 bits can represent 256 characters at most, and thousands are
needed for a basic Japanese character set and tens of thousands for Chinese.
Here, we will very briefly talk about dealing with other types of characters.

Ken Thompson, the primary architect of the original version of UNIX, and
Rob Pike, another of Bell Labs’ operating systems superstars, developed the
UTF-8 multibyte, variable-length character encoding in the early 1990s. UTF-
8 is recommended by the World Wide Web Consortium (W3C) as a default
encoding for XML and HTML documents. W3C usage statistics suggest that,
in 2015, over 80% of documents on the web are in UTF-8. UTF-8 uses one to
four 8-bit bytes for a single character (called a “code point”), and theoretically
supports more than one million code points.

C and the C library support (at least) two ways of dealing with character sets
using more than one 8-bit byte. We will talk about wide characters and multibyte
characters . A quick summary and references to functions and other information
sources can be found on BSD-derived systems by checking the manual page, man
multibyte.

UTF-8 allows differing numbers of bytes to be used to store each character.
This makes handling characters difficult using the functions we have discussed in
this chapter, for example because it is possible that you will accidentally split a
character in two when copying or concatenating strings, and because you cannot
directly index an array using an integer and be certain which ordinal number
of character you are touching. In C, when processing strings in memory, it is
therefore often convenient to first convert a string of multibyte characters into
fixed-size variables known as wide characters, represented as the type wchar_t.
The library functions mbtowc() and wcrtomb() convert single characters back
and forth, and the functions mbstowcs() and wcstombs() convert strings.

As noted, strings in general do not describe the character set in which they
are encoded, so we must know that a priori. The environment variable LANG

and several others starting with LC_ specify the language that a process expects,
although that alone may not be enough as some languages (including Japanese)
have multiple, differing character sets for representing the language. HTML or
XML and some other documents often begin with a header in ASCII that defines
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the encoding for the rest of the document. A single file may actually switch
between encodings in different regions.

The hassles of doing more than basic string handling in C, especially deal-
ing with non-ASCII strings and the security weaknesses we have discussed in
this chapter, are strong incentives for performing many text processing tasks is
other languages. Ruby, developed in Japan, is especially strong at non-ASCII
processing, although Python also now handles these tasks well.

The standards for C specify that the language’s own reserved words be in the
standard English alphabet. Identifiers such as variable names are actually allowed
to be in another language, although not all compilers may support this behavior.
For maximum compatibility in code and maximum readability for programmers
around the world, we recommend that you use only core ASCII characters in
identifiers. Comments and strings, of course, may be in the local language, as
appropriate.

⇒One or two examples should be included here.

4.4 Structures and functions

The next example shows how structures are passed to a function. First, the
structure struct bunsuu defines the fraction numbers. (Bunsuu is Japanese for
fraction.) Next, two bunsuu arguments are passed to a function, and the return
value of the function also has the type struct bunsuu.
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/* struct-p.c */
#include <stdio.h>
#include <stdlib.h>
#define MAXLINE 256

struct bunsuu {
int shi;
int bo;

};

struct bunsuu keisan(struct bunsuu p,
struct bunsuu q){
struct bunsuu r;

r.shi = p.shi * q.bo + p.bo * q.shi;
r.bo = p.bo*q.bo;
return r;

}

int main(){
int ret;
char input[MAXLINE];
struct bunsuu a,b,c;

fgets(input,MAXLINE,stdin);
ret = sscanf(input,"%d/%d",&a.shi, &a.bo);
if(ret != 2) {exit(1);}
fgets(input,MAXLINE,stdin);
ret = sscanf(input,"%d/%d",&b.shi, &b.bo);
if(ret != 2) {exit(1);}

c = keisan(a,b);
printf("%d/%d + %d/%d = %d/%d\n",
a.shi,a.bo,b.shi,b.bo,c.shi,c.bo);

exit(0);
}

The result is shown.✓ ✏
% ./struct-p

1/2 <-- input

1/3 <-- input

1/2 + 1/3 = 5/6

%
✒ ✑

However, structures are usually passed to functions with pointers, avoiding
data copies. For example, the two integer variables in our struct bunsee con-
sume 8 bytes or 16 bytes. But, a pointer only need the size of the pointer (4
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bytes or 8 bytes). It may seem a minor point here, but when structures become
large, the penalty in execution time for copying them becomes significant. More-
over, because local variables are stored on the stack, they rapidly consume your
available stack space, which is often limited.
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The next example shows how to pass structures using pointers. The result in
this case is the same, but you have to understand the difference. Note that the
third argument is used to hold the result, and its contents are modified in place.
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/* struct-p2.c */
#include <stdio.h>
#include <stdlib.h>
#define MAXLINE 256

struct bunsuu {
int shi;
int bo;

};

void keisan(struct bunsuu *p,
struct bunsuu *q,
struct bunsuu *r){

(*r).shi = (*p).shi * (*q).bo
+ (*p).bo * (*q).shi;

(*r).bo = (*p).bo*(*q).bo;
return;

}

int main(){
int ret;
char input[MAXLINE];
struct bunsuu a,b,c;

fgets(input,MAXLINE,stdin);
ret = sscanf(input,"%d/%d",&a.shi, &a.bo);
if(ret != 2) {exit(1);}
fgets(input,MAXLINE,stdin);
ret = sscanf(input,"%d/%d",&b.shi, &b.bo);
if(ret != 2) {exit(1);}

keisan(&a,&b,&c);
printf("%d/%d + %d/%d = %d/%d\n",
a.shi,a.bo,b.shi,b.bo,c.shi,c.bo);

exit(0);
}

In this example, you have to understand the binding priority between “.” and
“*”. “.” indicates a member of a structure, and “*” indicates dereferencing of
a pointer. Writing simply *p.bo means *(p.bo). This will give you the pointer
that is the structure member named p.bo, not the member bo of the structure
*p. To indicate the latter, *p must be put in parentheses, (*p).bo.

Since member references using pointers to structures occur frequently, a spe-
cial notation is introduced in C. The following two formulas have the same mean-
ing.
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(*variable_name).member_name;

variable_name->member_name;

Using this simplified notation, the example program’s fraction calculation can
be rewritten as follows.

(*r).shi = (*p).shi * (*q).bo
+ (*p).bo * (*q).shi;

r->shi = p->shi * q->bo
+ p->bo * q->shi;

4.5 Tools

⇒We will go back and pick up git, which we didn’t get to in prior weeks.

4.5.1 The Preprocessor

In Section 3.6.1, we first presented the phases of compilation. Now let’s look a
little more closely at the preprocessor. The preprocessor performs a stage of com-
pilation known as, well, pre-processing. A program written in C isn’t translated
to the language that the machine understands directly by the compiler. First,
it is processed by the preprocessor, then passed to the actual C compiler. The
compiler itself has several phases, and in the end outputs a not-quite-complete
file that includes the binary machine language.

programs in C ⇒ preprocessor ⇒ compiler ⇒ machine language

Instructions to the preprocessor begin with ‘#’ in your program. We have
already seen #include:

#include <file name>

In a previous lecture, #include was described as an instruction to use li-
braries. Actually, the preprocessor replaces that line in your program with the
contents of the designated file. When the filename is specified with ‘<>’, it means
the file is provided by the system. The preprocessor searches for the specified file
in system directories such as /usr/include. When the filename is specified with
‘"’, the preprocessor searches for the specified file in the directory or directories
specified by the user (typically including your current directory, named ‘.’, or
“dot”, or “cwd”).

Other than #include, #define, which we have also already been using, is one
of the most common statements used to instruct the preprocessor.
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#define MACRO_NAME Value

This is called amacro definition. In your program, MACRO NAME is replaced

with Value by the preprocessor before the program is passed to the compiler. For
example, using a meaningful macro name to specify a constant number increases
the readability and maintainability of the program, rather than specifying the
number with the numeric value itself. For example, the second call to sin() is
more readable than the first:

#include <stdio.h>
#include <math.h>
#define PI 3.1415926535

...
int main() {

...
x = sin(1.570796327);
y = sin(PI/2);

}

Besides simple numeric constants, there are often parameters of your program,
such as the maximum supported problem size or timing intervals or the like, that
you define at compile time, and that you might change later. In the array example
program array1.c (p. 38), the size of the array is 10. If you want to change the
size of the array from 10 to 20, you have to change 10 in the program to 20 in
three different places. If you use macro definition, you only need to modify one
line as follows:

/* arraymacro.c */
#include <stdio.h>
#include <stdlib.h>
#define ARRAYSIZE 20

int main(){
int i, a[ARRAYSIZE];
for(i=0; i<ARRAYSIZE; i++){
a[i] = 1;

}
for(i=0; i<ARRAYSIZE; i++){
printf("a(%d) = %d\n",i,a[i]);

}
exit(0);

}

There may seem to be little advantage for such a small example program,
but for larger programs, this kind of software engineering discipline pays divi-
dends throughout the life of the program (which is almost always longer than
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you thought it would be). I once watched an inexperienced young programmer
searching through a moderately long program with many loops over a 127-entry
array that he was adapting to be a 128-entry array; it was tedious and, of course,
error-prone; he accidentally changed a 127 somewhere in the program that corre-
sponded to a different meaning than the array size, and had to debug that. The
mnemonic character of #defines aids in understanding, debugging, and mainte-
nance!

If you want to see the expanded program produced by the preprocessor, you
may compile with the -E option. The expanded result is displayed on the standard
output (e.g. display). This example redirects the output to the specified file.✓ ✏
% gcc -E arraymacro.c > arraymacro.cpre

% wc arraymacro.c*

15 31 245 arraymacro.c

1623 4635 41692 arraymacro.cpre

1638 4666 41937 total✒ ✑
The wc utility counts the lines, words and characters (bytes) in a file. You

can see that our fifteen-line C program expanded to 1,623 lines! Looking at
arraymacro.cpre using an editor, most of the original content of our program
arraymacro.c appears at the end of the file. Uses of the macro definitions have
been replaced with their expanded values. Most of the length of our pre-processed
file comes from the direct inclusion of the header files stdio.h and stdlib.h.

A macro definition may be written as a function with arguments. The next
example shows how to define a macro that calculates the square of a number.

#define SQUARE(x) x*x

Using this macro, ‘SQUARE(a)’ is expanded to ‘a*a’, and ‘SQUARE(3)’ is ex-
panded to ‘3*3’.

It is important to note that the macro definition doesn’t care about the con-
tents of its arguments, they are simply text strings. ‘SQUARE(x+1)’ is expanded
to ‘x+1*x+1’. So, the middle term 1*x is calculated before the additions, in
accordance with normal operator precedence rules:
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/* macro-bad-sample.c */
#include <stdio.h>
#include <stdlib.h>
#define SQUARE(x) x*x
int main(){

int i,j;
i = 5;
j = SQUARE(i+1);
printf("i=%d, SQUARE(i+1)=%d\n",i,j);
exit(0);

}

In this program the loop variable i is set to 5. The programmer’s intention
is to calculate the square of i+1, or square of 6. However, the following result is
obtained:✓ ✏
% ./macro-bad-example

i=5, SQUARE(i+1)=11

%
✒ ✑

This failed because SQUARE(i+1) is expanded to 5+1*5+1. To prevent this
unintended expansion, you have to use parentheses.

#define SQUARE(x) (x)*(x)

In this way, ‘SQUARE(x+1)’ is expanded to ‘(x+1)*(x+1)’. Always, using
parentheses is advised.

4.6 Exercises

4.1 Write a program that reads a string from the keyboard, converts all lowercase
characters in the input string to uppercase characters, and displays them.
Your program should use array indices instead of pointers.

To convert a character from the lowercase to the uppercase, the toupper()
function in the standard library is used. You will need to add the line
#include <ctype.h>.

To read the string, use fgets(). To count the number of characters input,
use the library function strlen(char *).

4.2 Write a program that produces the same result as the previous exercise.
In this program, use a function to perform the actual work. Other than
main(), you have to write the function convtoupper(char *) and pass a
pointer to the string to this function. This function should convert lowercase
characters to uppercase characters.
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4.3 Write a program that reads a word from the keyboard, checks whether or
not the word is a palindrome (such as “dad”, “mom”, “deed”, etc.), and
prints the result.

4.4 Write a program that reads three strings from the keyboard. Assuming those
strings are A, B, C, create three string variables that store ABC, CBA,
BACB. Then, display those three newly created strings. Be careful that
each of your string buffers is large enough to hold the maximum size its
string might be.

4.5 Write a program that reads a long string from the keyboard, divides it into
5 character strings, stores them to variables, and displays them. You can
specify the maximum size as #define MAXLINE 256 and set the size of the
other variables to be MAXLINE/5+1.

4.6 ⋆ Write a program that reads a string from the keyboard, randomizes the
sequence of the strings, and displays the randomized string. The number
of each letter in the output string must be the same as the number of
each letter in the input string. You will want to use the library function
random(). You may also need to know about the modulo operator ’%’,
which we have not used before: 13 % 4 will return 1, for example.

4.7 Write a program that performed the tsuru-kame-san in Exercise 1.3. In
this exercise, the program reads the total numbers of heads and legs from
the keyboard. Furthermore, error checking should be increased. When a
non-number is input from the keyboard, a warning message should be dis-
played, then the program should prompt the user to reenter valid numbers,
and loops without terminating. Also, the program should check that the
numbers of heads and legs make sense. When a solution cannot be calcu-
lated, have the program display a warning and prompt the user to reenter
numbers, then read the new numbers without terminating.

4.8 Write a program that reads two fractional numbers, and computes their
sum, difference, product, and quotient, then displays all four results. In
this program, those four calculations should be performed in four separate
functions. Two arguments to each function are pointers to each fraction.



Chapter 5

Memory Management,
Scope in Naming, and More
Control

In which we learn how to manage memory for ourselves, and become
grateful for programming systems that take care of the problem for us.
We also discuss the scope of variable names.

5.1 Concepts

5.1.1 Memory management

Modern computer systems manage much of their memory dynamically. As pro-
grams deal with more data during execution, additional memory must be allo-
cated for use. When the program finishes using the memory, it should be freed.
Many modern programming languages take care of this for you, using a tech-
nique known as garbage collection (GC). The concept of garbage collection was
developed by John McCarthy, first for use in his programming language Lisp.
(McCarthy invented several profoundly important ideas in computer science; he
is also credited with the original idea for multiprogramming (or multitasking),
and he coined the term “artificial intelligence”.)

Garbage collection requires strong typing of variables, limitations on the use of
pointers, and complex support for tracking which chunks of memory are still in use
and which are not. This tracking is often done using reference countingreference
count, a standard technique in computer systems in which every pointer to a

91
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structure or array is kept track of; when the last pointer is no longer in use, the
structure may be garbage collected. The earliest systems used a mark and sweep
two-phase approach in which every pointer in the program is checked first, and
every data structure reachable from a pointer is marked. The whole of memory
is then swept in the second phase, and any unmarked structures are garbage
collected and put back into the free pool for reuse.

As you can imagine, GC is a moderately complex process to get right, even
when using only a single, serial process (we will see threads and other multipro-
gramming techniques in Chapter 14 and elsewhere). Moreover, GC consumes a
lot of CPU time, and can cause programs to stop doing other work while GC
is performed, so it is not suitable for real-time systems. Because of C’s looser
constraints on types and the use of pointers, and the CPU overhead, GC is not
used in C.

Instead, in this chapter we will learn how to manage memory for ourselves.
This is a process fraught with danger, trekking through swamps filled with snakes
and alligators and quicksand. It is intimately intertwined with the proper use of
pointers. However, if you have the courage to see it through, at the end you will
know how to write efficient, elegant programs that behave predictably.

The key is to understand the conditions in which new memory is allocated,
and how to determine when memory is no longer in use and therefore can be
freed. If your programs are written so that both are clear from the structure, you
will have no troubles.

5.1.2 Scope

The scope of a variable is the area of the program over which its name can be
used. Simply put, many languages support local variables valid only within a
function call, and global variables that are valid over the entire lifetime of the
program. A variable may also be valid over a region of the program known as a
code block.

5.2 Dynamic memory use with pointers

Usually, data are stored in variables, and storage areas are allocated before ex-
ecution. This storage allocation is done at the time of program compilation.
However, when the program reads and processes data from a file, pre-allocated
storage may be not sufficient. To adapt storage allocation, a dynamic storage
allocation scheme is used in C. The dynamically allocated data storage area is
called the HEAP1. To allocate a storage area at execution time, the malloc()

1“Heap” is also the name of a specific type of data structure for organizing a group of elements,

which we won’t cover here.
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function is used, and the free() function is used to free the allocated area.

• void *malloc(size t size): allocates size bytes area, and returns the
pointer to the area. Note that the return type is void *. This is a pointer
to a variable of an unnamed type, and can be assigned to any variable
pointer.

• free(void *p): frees the area that is allocated by the malloc() function.
The area is indicated by the pointer p.

In the function malloc(), the size of data is specified in terms of bytes.
Because the size of the specific data type varies from computer to computer, the
sizeof() operator is used to determine the size of the specific type.

sizeof( type )

sizeof( variable name )

This operation provides the size of type or variable name in bytes.
The following example shows how to use the malloc() function.
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/* malloc-example.c */
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <strings.h>

#define MAXLINE 16

int main(){
int len;
char input[MAXLINE];
char *s,*p,*q;

fgets(input,MAXLINE,stdin);
s = strchr(input,’\n’);
if(s!=NULL){
*s = ’\0’;

}
len = strlen(input);
p = malloc(sizeof(char)*(len+1));
strcpy(p,input);
q = malloc(sizeof(char)*(len+4));
strcpy(q,p);
strcat(q,"END");
printf("*p=%s\n",p);
printf("*q=%s\n",q);
printf("input=%p,&len=%p\n",input,&len);
printf("p=%p,q=%p\n",p,q);
printf("&p=%p,&q=%p,&s=%p\n",&p,&q,&s);
exit(0);

}

The program reads a string, allocates a storage area for the string using
malloc(). After the allocation, the program copies the input string to that area.
Next, it allocates another area that is 3 characters larger than the previously
allocated area, copies the input string to that area using strcpy(), then adds
the string "END" to the end of that string. Note that here we have used strcpy()

instead of —strncpy()— since we have been careful to track the size of the string
and allocate enough memory, but using strncpy() is still the better habit.

The execution result is shown below.
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✓ ✏
% ./malloc-example

ABC

*p=ABC

*q=ABCEND

input=0x7fff5fbff8b0,&len=0x7fff5fbff8ac

p=0x100100080,q=0x100100090

&p=0x7fff5fbff898,&q=0x7fff5fbff890,

&s=0x7fff5fbff8a0✒ ✑
Figure 5.1 depicts the memory allocation of a sample run of this program.

It is important to understand the location of the 16-byte array input[MAXLINE]

and the locations pointed to by the pointers p and q.
The area beginning at 0x000100100080 is the heap area. Note the difference

between the addresses of variables on the heap and the addresses of ordinary vari-
ables. The latter, which were defined as local variables in main(), are allocated
space on the stack.

5.3 Scope of variables

The concept of scope applies to all variables. The next program contains three
functions, main(), f1(), and f2().
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FFFFFFFFFFFF

7FFF5FBFF8BC

7FFF5FBFF8B8 array input’s

7FFF5FBFF8B4 storage area

7FFF5FBFF8B0 ’A’ ’B’ ’C’ ’\0’ (16 bytes)

7FFF5FBFF8AC len variable len

7FFF5FBFF8A0 7FFF5FBFF8B3 variable s

7FFF5FBFF898 000100100080 variable p

7FFF5FBFF890 000100100090 variable q

000100100094 ’N’ ’D’ ’\0’
000100100090 ’A’ ’B’ ’C’ ’E’ *q

000100100080 ’A’ ’B’ ’C’ ’\0’ *p

00000000

Figure 5.1: Memory map for a sample execution of malloc-example.
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/* scope-example.c */
#include <stdio.h>
#include <stdlib.h>

int i = 1; /* global */

void f1(){
int i = 100; /* f1 local */

for(;;){
int i = 1000; /* for local */
printf("i = %d (in for in f1)\n",i);
{

i = 2000;
int i;
i = 10000;
printf("i = %d (in for in f1-2)\n",i);

}
printf("i = %d (in for in f1)\n",i);
break;

}
printf("i = %d (in f1)\n",i);

}

void f2(){
printf("i = %d (in f2)\n",i);

}

int main(){
int i;

i = 10;
printf("i = %d (in main)\n",i);
f1();
f2();
printf("i = %d (in main)\n",i);
exit(0);

}

The result is shown below. Several values for i are printed. Can you identify
which i comes from which definition?
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✓ ✏
% ./scope-example

i = 10 (in main)

i = 1000 (in for in f1)

i = 10000 (in for in f1-2)

i = 2000 (in for in f1)

i = 100 (in f1)

i = 1 (in f2)

i = 10 (in main)
✒ ✑

Global variables are defined outside of any function (including main()). They
have the widest scope, and can be used anywhere. They can even be used from
other source files, if an external declaration is provided for them in the other files.

Another variable type is the local variable. Local variables are defined inside
a block. A block is the area between the open and close curly brackets { and }.
Usually, local variables are defined at the beginning of the function. Furthermore,
local variables cease to exist once the function (or the block) that created them
is completed.

As shown in the example, if there are variables that have the same name,
the variable that is defined in the innermost block has priority. For example, in
the function f1(), i = 100, but inside of the for(;;) loop, i = 1000 is given
priority.
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5.4 Control structures

Control structures are used to select which portions of your program are executed
and how many times. They are implemented as conditional branches and loops.
Like Java, C has for, while, and if statements, which we have already seen. In
this section, other control structures are discussed.

5.4.1 switch

When you want to process several cases based on the value of an expression,
you need a lot of if. . . else if. . . else if. . . clauses. In such cases, the switch

statement may be more effective.
Depending on the input, the following example determines whether you meant

’Yes’ or ’No’.

/* ifelse-example.c */
#include <stdio.h>
#include <stdlib.h>
#define MAXLINE 256

int main(){
int ret; char cin;
char input[MAXLINE];

printf("Yes or No ? ");
fgets(input,MAXLINE,stdin);
ret = sscanf(input,"%c",&cin);
if(ret <= 0){
printf("Invalid input\n");
exit(1);

}
if (cin == ’y’)
printf("Yes entered\n");

else if (cin == ’Y’)
printf("Yes entered\n");

else if (cin == ’n’)
printf("No entered\n");

else if (cin == ’N’)
printf("No entered\n");

else
printf("I don’t know %c\n",
cin);

exit(0);
}

If { and } are added to demarcate a block, the program will be as follows.
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/* ifelse-example.c */
#include <stdio.h>
#include <stdlib.h>
#define MAXLINE 256

int main(){
int ret; char cin;
char input[MAXLINE];

printf("Yes or No ? ");
fgets(input,MAXLINE,stdin);
ret = sscanf(input,"%c",&cin);
if(ret <= 0){
printf("Invalid input\n");
exit(1);

}
if (cin == ’y’){
printf("Yes entered\n");

}else if (cin == ’Y’){
printf("Yes entered\n");

}else if (cin == ’n’){
printf("No entered\n");

}else if (cin == ’N’){
printf("No entered\n");

}else{
printf("I don’t know %c\n",
cin);

}
exit(0);

}

You can see that this has become tedious and error prone. Instead, we can
use the switch statement, which is syntactically simpler and visually easier for
humans to parse. The general form of the switch statement is shown below.

switch ( expression ) {

case constant : statement ; ... statement ; break;

case constant : statement ; ... statement ; break;

...

default: statement ; ... statement ; break;

}

First, the program evaluates expression . Next, it searches for the correspond-

ing constant , then executes the set of statement s following. After executing the
break statement, execution of the switch statement completes and the program
executes the next statement just after the switch block. When none of the
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constant clauses matches the value of expression , the statements after default

are executed. If there is no default, and no match, no statement is executed.
The previous example can be rewritten using switch as follows.

/* switch-example.c */
#include <stdio.h>
#include <stdlib.h>
#define MAXLINE 256

int main(){
int ret; char cin;
char input[MAXLINE];

printf("Yes or No ? ");
fgets(input,MAXLINE,stdin);
ret = sscanf(input,"%c",&cin);
if(ret <= 0){
printf("Invalid input\n");
exit(1);

}
switch(cin){
case ’y’:
printf("Yes entered\n");
break;

case ’Y’:
printf("Yes entered\n");
break;

case ’n’:
printf("No entered\n");
break;

case ’N’:
printf("No entered\n");
break;

default:
printf("I don’t know %c\n",

cin);
}
exit(0);

}

At the break statement, the execution of switch ends. Control is transferred
to the next statement after the switch block. You may combine clauses that
need the same processing. Note the different layout style used for yes and no.
This was done just for illustration; you should pick one style and stick with it,
for clarity.
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#include <stdio.h>
#include <stdlib.h>
#define MAXLINE 256

int main(){
int ret; char cin;
char input[MAXLINE];

printf("Yes or No ? ");
fgets(input,MAXLINE,stdin);
ret = sscanf(input,"%c",&cin);
if(ret <= 0){
printf("Invalid input\n");
exit(1);

}
switch(cin){
case ’y’:
case ’Y’:
printf("Yes entered\n");
break;

case ’n’: case ’N’:
printf("No entered\n");
break;

default:
printf("I don’t know %c\n",

cin);
}
exit(0);

}

5.4.2 break

As shown in the switch examples we have just seen, the break statement com-
pletes execution of the statement. It can also be used to finish or abort execution
of a while statement or a for statement. For example, the next program searches
for the first number that is between p and q, and divisible by r.

Executing the break statement completes the innermost switch, while, for,
or do statement that includes the break statement.
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/* break-example.c */
#include <stdio.h>
#include <stdlib.h>
#define MAXLINE 256

int main(){
int i, p, q, r, ret;
char input[MAXLINE];

printf("Enter the beginning number ? ");
fgets(input,MAXLINE,stdin);
ret = sscanf(input,"%d",&p);
if(ret <= 0) {exit(1);}
printf("Enter the ending number ? ");
fgets(input,MAXLINE,stdin);
ret = sscanf(input,"%d",&q);
if(ret <= 0) {exit(1);}
printf("Enter a divisor ? ");
fgets(input,MAXLINE,stdin);
ret = sscanf(input,"%d",&r);
if(ret <= 0) {exit(1);}
for (i = p; i < q; i++) {
if(i%r==0){
printf("From %d to %d, the first number",

p,q);
printf(" divisible by %d is %d\n",

r,i);
break;

}
}
exit(0);

}

The result is shown below.✓ ✏
% ./break-example

Enter the begining number ? 100

Enter the ending number ? 300

Enter a divisor ? 13

From 100 to 300, the first number

divisible by 13 is 104

%
✒ ✑
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5.4.3 continue statement

The continue statement skips the innermost loop of switch, while and for

statements, then returns to the beginning of the loop. For example, in the next
program, when the variable i is greater than or equal to 90, statement 2 is not
executed. statement 1 is executed 100 times.

for (i = 0; i < 100; i++) {
statement 1;
if (i >= 90) continue;
statement 2;

}

The next program displays numbers that are between p and q, and divisible
by 7 and 13.

/* continue-example.c */
#include <stdio.h>
#include <stdlib.h>
#define MAXLINE 256

int main(){
int i, p, q, ret;
char input[MAXLINE];

printf("Enter the beginning number ? ");
fgets(input,MAXLINE,stdin);
ret = sscanf(input,"%d",&p);
if(ret <= 0) {exit(1);}
printf("Enter the ending number ? ");
fgets(input,MAXLINE,stdin);
ret = sscanf(input,"%d",&q);
if(ret <= 0) {exit(1);}
for (i = p; i < q; i++) {
if(i%7 != 0){
continue;

}
if(i%13 != 0){
continue;

}
printf("%d is divisible by 7 and 13\n",
i);

}
exit(0);

}

The result is shown below.
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✓ ✏
% ./continue-example

Enter the begining number ? 100

Enter the ending number ? 300

182 is divisible by 7 and 13

273 is divisible by 7 and 13

%
✒ ✑

5.5 Tools

5.5.1 Interpreting gcc’s error messages

By now, you have hit numerous errors when attempting to compile your programs.
Let’s look a little more closely at the error messages generated by gcc. For
example, we might see✓ ✏
% gcc-5 list1.c

list1.c:11:1: error: unknown type name ’nt’

nt main(){

^

%
✒ ✑
if our source code file looked like

...
nt main(){

// we will use p as a temporary
...

If you are sharp-eyed, you might have noticed that instead of int main()

we have nt main(), a simple typo where we left off (or accidentally deleted) the
initial i. The error message from gcc is actually telling us exactly where to find
the error: list1.c:11:1 tells us it is in file list.c on line 11, at column 1. It
tells us that it didn’t recognize the word nt as an acceptable return value type;
here C’s moderately strong type checking catches an error for us.

If instead our source code file had a different typo,

...
int main){

// we will use p as a temporary
...

we would get the following error message:
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✓ ✏
gcc-5 -o list1 list1.c

list1.c:11:9: error: expected ’=’, ’,’, ’;’,

’asm’ or ’__attribute__’ before ’)’ token

int main){

^✒ ✑
Note that tells us where it ran into trouble (column 9 this time), and even includes
the line of code and marks it for us with a ^ below the spot.

In this case, the compiler had more trouble figuring out what went wrong,
so you must use a little more of your own brainpower. In some programming
languages with a very restricted syntax (such as Lisp), the system can more
easily recognize where you have gone wrong, but C’s grammar (the set of rules
defining the order in which words and symbols may appear) is more flexible,
which makes it harder to pinpoint problems. The error message may point to a
position far from the location of your actual mistake.

Note that this error message refers to ) as a token, which is what compiler
people call an individual term or symbol. A token may be more than one character
long, as in +=.

5.6 Exercises

5.1 If a number is only divisible by 1 and the number itself, the number is
called a prime number (Sosuu in Japanese). For example, 2, 7, and 19 are
prime numbers. In this exercise, the sieve of Eratosthenes (Greece, 276?–
194 B.C.) is used for finding prime numbers between 1 and 10000. The
program should execute the following algorithm.

• creates the sequence from 2 ∼ 10000.

• the minimum number remaining is 2, so the program erases all multi-
ples of 2.

• In the remaining numbers, the minimum number remaining is 3, so
the program erases all multiples of 3.

• repeats this procedure.

• Remainings are prime numbers.

To program this algorithm, you may define the sequence of 2 ∼ 10000 as
an array.

char prime[10001];
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In this method, prime[i] stores whether i is a prime number or not. For
example, if prime[i] is 0, i is not a prime number. if prime[i] is 1, i is a
prime number. First, the program initializes this array. Then, it changes
the value of prime[i] based on the algorithm.

To test the program with a small number, it is better to define the following
macro and change its value to 10001 at the final test.

#define MAXNUMBER 10001

5.2 Write a program that performs integer factorization from for numbers from
1 to 1000. The output example is shown below.
✓ ✏
% ex4-8

2 = 2

3 = 3

4 = 2 x 2

5 = 5

6 = 2 x 3

....

102 = 2 x 3 x 17

103 = 103

104 = 2 x 2 x 2 x 13

....✒ ✑
5.3 ⋓ Write an interactive demonstration of a buddy memory allocator. Your

demo should allow 64 blocks to be allocated and deallocated, and it should
correctly merge freed blocks. The output should be something like that in
Fig. 5.2.

Each time your program splits a block, it should add a ’|’ to show where the
split happened. ’-’ represents free blocks, and ’#’ represents in-use blocks.
The two numbers printed out as in 0/4 represent the beginning address and
number of blocks in a chunk.

Your program should take three one-letter commands: ’a’ for allocate, ’f’
for free, and ’q’ for quit. The second argument on a line should be the
number of blocks (for allocate) or the address, or first block number, of the
allocated chunk (for free). If two neighboring blocks are both allocated,
but were part of separate allocations, be careful to only free the one in the
actual request!

For large numbers of blocks, there are many possible data structures you
could use to track the set of blocks that are in use and the size of chunks.
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✓ ✏
% ./buddy-demo

|----------------------------------------------------------------|

How many blocks do you want to allocate/free?

a 4

(splitting 0/64)

(splitting 0/32)

(splitting 0/16)

(splitting 0/8)

Blocks 0-3 allocated:

|####|----|--------|----------------|--------------------------------|

How many blocks do you want to allocate/free?

a 16

Blocks 16-31 allocated:

|####|----|--------|################|--------------------------------|

How many blocks do you want to allocate/free?

f 0

(merging 0/4 and 4/4)

(merging 0/8 and 8/8)

Blocks 0-3 freed:

|----------------|################|--------------------------------|

How many blocks do you want to allocate/free?

q

%
✒ ✑

Figure 5.2: Interactive session with a buddy allocator demo.
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For this small number, I encourage you to take the simplest approach you
can.





Chapter 6

Input/Output

In which we learn the three basic paradigms of reading and writing files
in C on UNIX systems: the read()/write() family of system calls; the
fread()/fwrite() family of library calls for writing binary files that
complement the simple text input/output of fprintf() and fscanf();
and mmap(). We will also, finally, learn how to parse command line
arguments so we can specify names and numbers. Oh, and we’ll see how
to modify the behavior of a program depending on local environment
variables that express a user’s preference.

6.1 Concepts

6.1.1 Files and I/O

You are probably aware that, in order to make data be persistent (not disappear
when we reboot or lose power), data must be stored in files or in a database
(which we will not otherwise cover in this class). Files allow us to keep data
for a long time, or to share data between programs. (In the second half of this
book, we will see other methods of sharing data between programs that are both
executing at the same time; some of those methods build on the concepts in this
chapter.)

The standard C library, when it was introduced in the early 1970s, simplified
I/O through use of a few basic interfaces for reading and writing lines of files. In
this class, we will use those interfaces almost exclusively. However, let’s take a
short look at the broader concepts.

Broadly speaking, there are several paradigms we can use for input/output,
or I/O:

111
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• line-oriented interfaces for reading and writing files one line at a time, used
for text files such as configuration files, log files, (uncompiled) programs,
HTML and XML files, and many homebrew data files for programs;

• character-oriented interfaces for dealing with one character at a time, of-
ten used for programs that react instantly to single-character commands,
including editors;

• fixed-size or block-oriented interfaces, used to specify the exact number of
bytes to be read or written (on some systems, the size of I/O block may be
limited to e.g. a multiple of 512 bytes, but in UNIX systems this can be
any size);

• record-oriented interfaces, which may be for either fixed-size records (such
as writing out a specific data structure), or variable-sized (typically lines,
as above); and

• memory-oriented interfaces.

The C library and the UNIX system calls collectively support all of these
interfaces. UNIX directly supports only fixed-size I/O and memory-oriented in-
terfaces; the rest are built as library functions which in turn use the system calls,
as shown in Figure 6.1.

It is important to note that the standard C library and UNIX share a model
of what a file is : they both assume that a file is simply an ordered sequence of
8-bit bytes. Any apparent structure is imposed only by the application software
used to read or write the file, and if you write a file using one model (lines, for
example) and read it using another (fixed size), you can misinterpret the data or
even mess up the file. In some other operating systems, the OS itself may impose
structure on a file, accessed through special system calls, which may be available
to C programs. In this book, we will use only the standard C library and UNIX
system calls.

All of these use a file session approach: first the file must be prepared, or
opened, for I/O; the I/O operations are then performed; then the filed is closed.
With the exception of mmap(), while the file is opened, an offset is maintained by
the system for you; if you perform I/O repeatedly, you will move through the file
in a regular fashion from beginning to end. We will see below how that position
may be modified when necessary.

I/O may be done synchronously or asynchronously. In this book, we will
consider only synchronous I/O, which means that when the system call or library
call completes, you can behave as if the I/O is finished – either the data is read
into your buffer, or written to disk or flash or other target. (This latter is not
strictly true, which we will discuss when we discuss closing files and “syncing”
files to disk.)
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App1 App2

std I/O lib

system
calls

user
space

Kernel

Hardware

Figure 6.1: Relationship of applications the standard I/O library and to system
calls. Any operation that touches a hardware device such as a disk, screen win-
dow, keyboard or network interface ultimately does so using a system call, but
may solicit the help of the standard I/O library to simplify some operations.

All of these functions assume a single contiguous memory area, or buffer , is
used for each operation. It is possible to collect data from multiple areas for a
single operation. This is known as scatter-gather , which we will not use in this
book.

Table 6.1 lists input and output functions frequently used in C. To read and
write line by line, you can use fprintf(), fscanf() and other functions, which
will read or write variable amounts of data depending on the content of the data
itself. To read and write byte by byte, you can use getc() and putc() and the
like, all from the standard I/O library. To read or write a fixed amount of data,
with no additional processing, you can use the UNIX system calls read() and
write().

The input or output location specified with fprintf() and fscanf() is called
a stream. The input or output location specified with read() and write()

functions is called a file descriptor. We will look at both, below.

6.1.2 Command line arguments

⇒To be written.
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6.1.3 Environment variables

⇒To be written. Especially important when internationalizing software.

6.2 Standard Input/Ouput

In Java, the java.io package is used to read and write files. In C, either the
standard input/output library or the UNIX system calls may be used. The UNIX
system calls give you a “bare” interface to reading and writing any kind of data
in a file, whereas the standard I/O library gives you partially processed data,
often making your life easier. A third paradigm involves rather different modes
of thinking, essentially making part of a file into a part of your memory.

The fgets() function for one line input, and the printf() function for for-
matted output have been discussed; these are both from the standard library.
The printf() function outputs numbers and characters to your screen, or more
correctly to what we call the standard output . Why is this called the “standard”
output? When no output device is specified by the programmer, it is sent to a
common output determined at execution time. Below, we will see how to modify
where this output goes.

Our original “Hello, world” example displays a string to the standard output.

/* hello.c */
#include <stdio.h>
#include <stdlib.h>
int main(){

printf("Hello C World!\n");
exit(0);

}

The result is shown below.
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✓ ✏
% gcc hello.c -o hello

% ./hello

Hello C World!

%

% ls

hello hello.c

% ./hello > out

% ls

hello out hello.c

% cat out

Hello C World!

%
✒ ✑

First, executing hello displays Hello C World! Next, adding > out redi-
rectsredirection the output to the file out. In this way, the actual location of
the standard output can be changed at execution time. Note that this behavior
is a feature of UNIX shells, but any C implementation (except some embedded
environments) will support standard input and output, although perhaps not
redirection in this fashion.

The next example shows how to read from and redirect the standard input.
This program reads one line from the standard input, then display the number
of characters in that line.

/* stdinput.c */
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
int main(){

char input[100];
fgets(input,100,stdin);
printf("Input is %d characters\n",

(int)strlen(input));
exit(0);

}

The following shows the result. Inputting the string hello results in a re-
ported length of 6 characters, because the new line character is included, but not
the trailing NUL character.✓ ✏
% ./stdinput

hello

Input is 6 characters

%
✒ ✑
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Using <, the next example uses the file input as the standard input. In this
case, a length of 16 characters is reported.✓ ✏
% mv out input

% cat input

Hello C World!

% ./stdinput < input

Input is 15 characters

%
✒ ✑

6.3 Stream input and output

6.3.1 fopen()/fprintf()/fgets()/fclose()

File I/O with a stream is done by following these steps:

• Call the fopen() function once, making the specified file available to use.
(This is called “opening a file”)

• Call the fprintf() function once or more, writing numbers and characters
to the file; or, the fgets() function, reading numbers and characters from
the file.

• Call the fclose() function once, ending use of the file.

Three files (streams for I/O) are automatically opened at the start of the pro-
gram execution: standard input!$standard output, and standard error, specified
by the names stdin, stdout, and stderr. Because they are already available,
you can use printf(), scanf() and other functions without any preparation.

The next example creates the file output, then writes the string Hello C

World into that file.

/* fprintf-example.c */
#include <stdio.h>
#include <stdlib.h>
int main(){

FILE *fp;
fp = fopen("output","w");
fprintf(fp,"Hello C World\n");
fclose(fp);
exit(0);

}

The execution result is shown below. After running fprintf-example, the
next prompt appears immediately, with no output or indication that anything
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happened; after all your program doesn’t send anything to stdout. But, using
the ls command, you can see that the file output has been created. Using the
cat command, you can see the contents of that file.✓ ✏
% gcc fprintf-example.c -o fprint-example

% ./fprintf-example

% ls

fprintf-example fprintf-example.c output

% cat output

Hello C World

%
✒ ✑

The first argument of the fprintf() function is the value that specifies the
location of the output. Usually, the return value of the fopen() function is used.
Otherwise, stdout and stderr can be used to specify the standard output and
the standard error. For fscanf() and other functions that read values, stdin
can be used to specify the standard input.

The following program uses the fprintf() function to display Hello C World

on the standard output.

#include <stdio.h>
int main(){

fprintf(stdout,"Hello C World\n");
exit(0);

}

Next, what is the standard error output? For example, think of the output
from ls. Normally it displays a list of files.✓ ✏
% ls

file1

% ls > list

% cat list

file1

% ls

file1 list

% ls file2 > list

file2: No such file or directory

% cat list

%
✒ ✑
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In this example, > is used to redirect the output of the ls command to the file
list. However, the second ls command displays an error message, because the
file file2 doesn’t exist. Even though we redirected stdout, the error message is
displayed on the screen, not stored in the file list. The ls command outputs the
list of files to the standard output, but error messages are output to the standard
error output. When an error occurs, it is better that the message appears on the
screen, not in the file.

The next example reads data from a file using fgets().

/* fgets-example.c */
#include <stdio.h>
#include <stdlib.h>
#define MAXLEN 512
int main(){

FILE *fp;
char input[MAXLEN];
fp = fopen("output","r");
fgets(input,MAXLEN,fp);
fclose(fp);
printf("%s",input);
exit(0);

}

This program opens the file output (containing data written by the previous
example), reads one line using the fgets() function, then displays it using the
printf() function.

6.3.2 Handling errors from library calls

In the previous example, what occurs if the file output doesn’t exist?✓ ✏
% ls output

output: No such file or directory

% ./fgets-example

Bus error

% ls *core

core

% file a.out.core

core: ELF 32-bit LSB core file Intel 80386,

version 1 (SYSV), SVR4-style, SVR4-style,

from fgets-example’

%
✒ ✑
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When a program opens a non-existent file using fopen(), then attempts to
read data from the file, a Bus Error occurs. (Depending on the operating system,
a Segmentation Fault may occur instead.) Furthermore, a file named core (In
some operating systems, a.out.core) is created. The core file is created by
abnormal termination of the program. It is used to analyze the cause of the
termination. Right now, this file isn’t needed, so you may delete it using the rm

command.

Depending on the your OS and the setting of variables that
control the behavior of your shell, the core file may not be
created. You can use the ulimit command to check or change
the value of coredumpsize. If the core file size limit is 0, no
core dump will be created.

On a Mac, you will need to change the core filesize limit, and core dump
files will be stored in a special directory, /cores. Note that the core files are
enormous, remove them when you are done debugging.✓ ✏
ulimit -c unlimited

$ ./fgets-example

Segmentation fault: 11 (core dumped)

$ ls -Falt /cores

total 900920

-r-------- 1 rdv admin 461271040 May 29 18:36 core.13804

drwxrwxr-t@ 3 root admin 102 May 29 18:35 ./

drwxr-xr-x 40 root wheel 1428 May 21 09:40 ../

$ file /cores/core.13804

/cores/core.13804: Mach-O 64-bit core x86_64
✒ ✑

To prevent such an error, you need to check the return value of fopen().
When the file open fails, the fopen function returns a NULL pointer. You should
check the return result of every system or library call!
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/* fgets-example2.c */
#include <stdio.h>
#include <stdlib.h>
#define MAXLEN 512
int main(){

FILE *fp;
char input[MAXLEN];
fp = fopen("output","r");
if(fp == NULL){
fprintf(stderr,"fopen error\n");
exit(1);

}
fgets(input,MAXLEN,fp);
fclose(fp);
printf("%s",input);
exit(0);

}

✓ ✏
% ./fgets-example

fopen error

%
✒ ✑

To display the details of the error, you can use the perror() library function.
To use this function, the errno.h header file is required.

/* fgets-example3.c */
#include <stdio.h>
#include <stdlib.h>
#include <errno.h>
#define MAXLEN 512
int main(){

FILE *fp;
char input[MAXLEN];
fp = fopen("output","r");
if(fp == NULL){
perror("fopen");
exit(1);

}
fgets(input,MAXLEN,fp);
fclose(fp);
printf("%s",input);
exit(0);

}

The perror() function displays the reason for the error.
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✓ ✏
% ./fgets-example

fopen: No such file or directory

%
✒ ✑

Keep in mind, whenever you create programs, that you should
write procedures that handle abnormal conditions and er-
rors. Every system call or library call should be checked for
an error return! For that matter, many of your own func-
tions should be defensively coded so that they check their
arguments and check for problems in execution, and may
want to return an error on some occasions, too.

6.3.3 Skipping around in a file

As we noted above, the system maintains a file offset for you. Sometimes, though,
you want to move to a different place in a file, in order to read or write there.
Some file formats, for example, start with a description of the rest of the file, so
you might read the beginning then skip to the place containing the data you are
interested in. This can be done by seeking in the file.

The standard C library provides several functions to seek within a file. fseek()
is the only one you really need.

int
fseek(FILE *stream, long offset, int whence);

The argument whence tells the call to count from the beginning, the current
position, or the end of the file, by specifying SEEK_SET, SEEK_CUR, or SEEK_END,
respectively.

6.4 Input and output using file descriptors

6.4.1 open()/write()/read()/close()

The streams we have just discussed are a standard C approach to I/O. On a
UNIX system, they are built on top of the read() and write() system calls. On
some occasions, you may want to perform the I/O directly instead of using the
library. Follow these steps to perform file input and output with file descriptors:

• Call the open() function, making the specified file available for use. At this
time, the choice of mode (read-only, write-only, or read-and-write), action
when the specified file doesn’t exist, protection mode of the file, and other
details can be specified. (See the man 2 open page for more details.)
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• Call the write() function, writing the specifed number of bytes to the file,
or the read() function, reading the specifed number of bytes from the file.
You may call these more than once.

• Call the close() function, ending use of the file. This is important, and
you should check the return value!

The write() and read() functions perform input and output based on a size
in bytes. These functions have the following formats.

#include <unistd.h>
ssize_t write(int fildes, const void *buf,

size_t nbyte);

#include <unistd.h>
ssize_t read(int fildes, const void *buf,

size_t nbyte);

int fildes is the file descriptor. A small integer is assigned to the descrip-
tor, and that number distinguishes the location. The value 0 is assigned to the
standard input, the value 1 is assigned to the standard output, and the value 2

is assigned to the standard error output. Other values are assigned dynamically
as a result of the open() call.

The second argument const void *buf is the pointer that specifies the lo-
cation of the caracter array. In that array, data is stored. The third argument
size_t byte specifies how many bytes are to be read or written. The return
type of the read and write functions is ssize_t, usually synonym for int. The
retrun value is the actual number of read or written bytes. For example, calling
the read() function specifying 1000 bytes returns 500 when only 500 bytes have
been read. Usually, this phenomenon occurs at the end of a file.

The next example uses the write function to display Hello C World.

/* write-example.c */
#include <stdlib.h>
#include <unistd.h>
#include <string.h>
int main(){

const char *hello = "Hello C World\n";
write(1,hello,strlen(hello));
exit(0);

}

To use file descriptors other than the three standard ones, the open() function
has to be called before use. The next program stores values in an array to the
file array.dat.
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/* arraystore.c */
#include <stdlib.h>
#include <unistd.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>
#include <errno.h>
int main(){
int a[6]={2,3,5,8,13,21};
int len,fd;
fd = open("array.dat",O_WRONLY|O_CREAT,

0644);
len = sizeof(a);
write(fd,a,len);
close(fd);
exit(0);

}

It creates array.dat for data storage. Using ls, you can see that the size of
the file is 24, corresponding to the 6 ints of data.✓ ✏
% a.out

% ls -lo array.dat

-rw-r--r-- ...... 24 ...... array.dat

%
✒ ✑

The next program reads this file array.dat and displays its contents.

/* arrayread.c */
#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>
#include <errno.h>
int main(){
int a[100];
int i,fd;
fd = open("array.dat",O_RDONLY);
read(fd,a,sizeof(int)*6);
close(fd);
for(i=0;i<6;i++){
printf("a[%d]=%d\n",i,a[i]);

}
exit(0);

}
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The result is shown below.✓ ✏
% ./arrayread

a[0]=2

a[1]=3

a[2]=5

a[3]=8

a[4]=13

a[5]=21

%
✒ ✑

6.4.2 Handling errors from system calls

When array.dat doesn’t exist when we run arrayread, what happens?✓ ✏
% ls array.dat

array.dat: No such file or directory

% ./arrayread

a[0]=0

a[1]=0

a[2]=-1073743960

a[3]=-1881084160

a[4]=5052

a[5]=17349

%
✒ ✑

Unlike our earlier program that used fopen(), the program runs, and termi-
nates without an error. But, the result is incorrect. This is important to note:
just because your program didn’t crash doesn’t mean it did the right thing!

The reason the earlier program crashed was that we were using pointers to
data structures (the file stream), and those pointers were junk. Using junk point-
ers is the quickest way to get your program to actually crash. This program didn’t
operate properly, but it didn’t crash, because there was no misuse of pointers. It
just silently did the wrong thing.

To prevent this type of problem, you have to check the return value of the
open() function. The open() function returns −1 when something goes wrong.
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/* arrayread2.c */
#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>
#include <errno.h>
int main(){

int a[100];
int i,fd;
fd = open("array.dat",O_RDONLY);
if(fd == -1){
perror("open array.dat");
exit(1);

}
read(fd,a,sizeof(int)*6);
close(fd);
for(i=0;i<6;i++){
printf("a[%d]=%d\n",i,a[i]);

}
exit(0);

}

The result is shown below. Before you run this program, confirm that the file
array.dat doesn’t exist.✓ ✏
% ./arrayread2

open array.dat: No such file or directory

%
✒ ✑

Note that you must check the result of your read() system calls as well; it
may be that the file exists but doesn’t contain enough data to fulfill your request,
in which case you will get less data than you expected. Your program should be
prepared to handle this.

6.4.3 Skipping around in a file

To seek in a file being read or written using the system calls, use the system call
lseek().

#include <unistd.h>

off_t
lseek(int fildes, off_t offset, int whence);
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Its use is (deliberately) almost identical to fseek(), except for the file descrip-
tor argument. The argument whence tells the call to count from the beginning,
the current position, or the end of the file, by specifying SEEK_SET, SEEK_CUR, or
SEEK_END, respectively. Note that you do need the unistd.h include.

6.5 mmap()

⇒To be written.

6.6 Making file names from strings

If file names used in programs are determined at compilation, it is easy to use
those names. However, creating file file-1 to file-n according to the input
number n requires some new techniques. Fortunately, file names in C are just
character strings of the type we have already been using.

To create names in a program, the snprintf() function is useful. snprintf()
is almost same as the fprintf function, but the function outputs data to a
specified character array in memory, rather than to the terminal or a file. The
format is shown below.

#include <stdio.h>
int snprintf(char *s, size_t size, const char *format, ..);

The next program creates 5 files, file1 to file5, then stores 1 to 5 in those
files.

/* snprintfing-filenames.c */
#include <stdio.h>
#include <stdlib.h>
int main(){

FILE *fp;
char name[100];
int i;
for(i=1;i<=5;i++){
snprintf(name,100,"file%d",i);
printf("Creating %s\n",name);
fp = fopen(name,"w");
fprintf(fp,"%d\n",i);
fclose(fp);

}
exit(0);

}
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The result is shown below. At every creation of a file, the file name is dis-
played.✓ ✏
% ./snprintfing-filenames

Creating file1

Creating file2

Creating file3

Creating file4

Creating file5

% ls

file1 file2 file3 file4 file5

% cat file1

1

%
✒ ✑

6.7 Command line arguments

Almost every command we have used so far from the shell, include cp, rm, ls
and make, is actually a program compiled much like the approach we have been
using. (To see where a program actually is, you can use which make and the
like, and the shell will tell you.) When you add some text after the command
name, that is called a command line argument (or arguments). How can you use
command line arguments in your own programs? The main() function has two
arguments we have ignored so far, known as argc and argv.

The next program performs like the echo command.

/* myecho.c */
#include <stdio.h>
#include <stdlib.h>
int i;
int main(int argc, char *argv[]){

if(argc > 1){
for(i=1; i<argc; i++){
printf("%s ",argv[i]);

}
printf("\n");

}
exit(0);

}

The result is shown below.
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✓ ✏
% ./myecho uni ebi ikura

uni ebi ikura

% ./myecho

%
✒ ✑

argc is of type int, and holds the number of arguments, which includes the
command itself. char *argv[]; is the array of pointers to strings. To point to
specific arguments, you can use argv[0]!$argv[1]!$argv[2] and so on. argv[0]
holds the command name itself. This allows you to modify the action based on the
command name by using argv[0]. The following example shows this techinique.

/* morning.c */
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
int main(int argc, char *argv[]){

if( strcmp(argv[0],"morning") == 0 ){
printf("Morning command.\n");}

if( strcmp(argv[0],"ohayou") == 0 ){
printf("Ohayou command.\n");}

exit(0);
}

The result is shown below.✓ ✏
% a.out

% mv a.out morning

% morning

Morning command.

% mv morning ohayou

% ohayou

Ohayou command.

% ln -s ohayou morning

% morning

Morning command.

%
✒ ✑

This techinique is used in real systems. For example, the file compression and
decompression programs, called compress and uncompress are actually the same
program.
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✓ ✏
% cd /usr/bin

% ls -lo compress uncompress

-r-xr-xr-x 2 root 52352 7 14 2009 compress

-r-xr-xr-x 2 root 52352 7 14 2009 uncompress

% cmp compress uncompress

%
✒ ✑

(The cmp utility checks whether or not two files are identical. If the two files
are same, no message is displayed.)

6.7.1 Command line options

You have seen us use commands like gcc -o filename. The -o is called a com-
mand line option. You may of course write your own code to parse these argu-
ments, but the work has already been done for you, twice: the library function
getopt() parses single-letter options like -o filename (with or without an argu-
ment such as a filename), or getopt_long() supports longer option names such
as --output=filename. The latter is more powerful, but more complicated to
use.

⇒Examples to be written.

6.8 Environment variables

To refer to environment variables such as HOME and DISPLAY in the program, use
the getenv() function.

From the command line, environment variables can be displayed using the
printenv command. They can be used to tell the program about its execution
environment. The following example displays the environment variable HOME,
which is the location of the user’s home directory. Being able to find the user’s
home directory is valuable in many programs, for example because configuration
files for some programs are stored there.
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/* myprintenv.c */
#include <stdio.h>
#include <stdlib.h>
int main(){

char *e;
if ((e=getenv("HOME"))!=NULL){
printf("%s\n",e);

}
exit(0);

}

✓ ✏
% ./myprintenv

/home/kusumoto

%
✒ ✑

The next program displays all environment variables in the array *envp[].
In some UNIX environments, main() may be defined to have a third argu-
ment, which points to the environment variables. This should be considered
not portable code; it may not compile on some systems.

/* myprintenv2.c */
#include <stdio.h>
#include <stdlib.h>
int main(int argc, char *argv[],

char *envp[]){
int i;
i = 0;
while(envp[i]!=NULL){
printf("%s\n",envp[i]);
i++;

}
exit(0);

}

6.9 Tools

6.9.1 Make: building programs from more than one file

So far, all of our programs will fit comfortably into a single file; most are no
longer than a single page. However, nearly all complex programs involve source
code that is in more than one file. Let’s take as an example a program that
calculates the dot product of two vectors (as in Exercise 3.6 – yes, this is giving
you a possible solution to that exercise!).

The portions of the program that actually calculate basic functions of vectors,
such as the dot product, will be useful for many programs, not just this one
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example. Moreover, there will eventually be a bunch of such functions, and
our main program will get longer, too, so it makes sense to split things up into
multiple files. Besides making the code easier to read, maintain, and share, this
allows make to rebuild only the portions of the program that have changed during
your edit-compile-test cycle; for most modest-sized programs this won’t seem like
a big deal on a modern machine, but it is a great help when building something
as complex as the Linux kernel, for example.

Let’s create a second source file, veclib.c. In order to use the functions
in the file from our main program dotproduct.c, we will need the function
prototypes, so we will create an accompanying header file, veclib.h. At the
moment, veclib.h is very short:

/* veclib.h: prototypes for veclib.c */
double dotproduct(double a[], double b[], int len);

veclib.c contains the actual code for the function:

/* veclib.c: library of routines for simple vectors of doubles */
#include "veclib.h"

/*
* dotproduct: calculate the dot product of two vectors
* inputs: two pointers to vectors, length
* (vectors are assumed to be the same length)
* output: dot product (sum of element-wise products)
* side effects: none
* exceptions: only overflow should occur unless input
* vectors contain NaN; unhandled here
* complexity: O(len)
*/

double dotproduct(double a[], double b[], int len)
{

float dotprod = 0.0;
int i;

for(i=0 ; i < len ; i++){
dotprod+=a[i]*b[i];

}
return dotprod;

}

Note that our main program file, dotproduct.c, contains the only instance
of the function main():
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/*
* print the dot product of two fixed-size vectors
* Author: Rod Van Meter, 2015/6/8
*/

#include <stdio.h>
#include <stdlib.h>
#include "veclib.h"

#define MAXNUM 100000000

/* dummy initialization routine -- sets each element to its
* own index.
* Inputs: pointer to array of ints, length (#elements)
* Outputs: (void)
* Side effects: modifies input array in place
* Complexity(execution time): O(len)
*/

void InitializeArray(double a[], int len){
int i;
for(i=0;i<len;i++){
a[i]=i; /* implicit conversion */

}
}

/* defined as globals here because vectors this large won’t
* fit on the stack, so we can’t make them locals inside main().
* To get around this and keep the variables local, you would
* need to malloc() memory for them.
*/

double VectorA[MAXNUM];
double VectorB[MAXNUM];

int main(){
float dotprod;

InitializeArray(VectorA,MAXNUM);
InitializeArray(VectorB,MAXNUM);
dotprod = dotproduct(VectorA,VectorB,MAXNUM);
printf("inner product=%f\n",dotprod);
exit(0);

}

Of course, our Makefile must be expanded as well:
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CFLAGS=-g
# or CC=clang
CC=gcc-5

all: dotproduct

dotproduct: dotproduct.o veclib.o
$(CC) -o dotproduct $(CFLAGS) dotproduct.o veclib.o

dotproduct.o: dotproduct.c veclib.h
$(CC) -c $(CFLAGS) dotproduct.c

veclib.o: veclib.c veclib.h
$(CC) -c $(CFLAGS) veclib.c

clean:
rm veclib.o dotproduct.o dotproduct

6.10 Exercises

6.1 Write a program that takes two command line arguments, the number of
heads and legs, then calculates Tsuru-Kame san as in Exercise 4.7. This is
the same as the prior exercise, except for the command line arguments and
that error checks have to be implemented.✓ ✏
% ./tsuru 10 24

Tsuru = 8

Kame = 2

%
✒ ✑

6.2 Write a program that checks whether the file specified as a command line
argument exists or not. For example, you may call open() and check the
return value. A better way is to use the stat() system call. Note that even
if you check once on the existence of a file, your open() call may still fail,
for a variety of reasons, including that the file was deleted between the time
you checked and the time your open call actually completes!

6.3 Write a program that takes a filename as a command line argument, then
outputs the content of that file to the standard output. Reading from
the specified file and writing to the standard output are required. (Hint:
without knowing the file size, you have to read some amount of the file, and
output, then read again.)

6.4 Extend your program from the last exercise to perform some of the functions
of the cat command. For example, cat has the following functions:
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• concatenate function like cat file1 file2 ...,

• Without an argument, it reads from the standard input.

6.5 Write a program that takes two file names as command line arguments, then
tells us which file is larger than the other. The stat() function can be used.
You may simply read an entire file to check the size of the file, although
that would be very wasteful and potentially slow if the files are large.

6.6 Write a program that creates a file that contains 10,000 random integer num-
bers. Random numbers can be obtained by using the random() function.

6.7 ⋓ Write a program (call it narabikae.c) that can read a file one line at
a time, sort those lines into alphabetical order using the library function
qsort(), and print them out to a new file. You will have to use a function
pointer for the comparison function in order to use any of the C library
sort routines. A complete example of function pointers and use of qsort()
are in the Appendix A.7.1; you may extend this program.
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printf() send formatted output to the standard output. Basically, line oriented.
fprintf() Same as printf(), but specifying the output location.
sprintf() Same as printf(), but output is a character array. Be careful of overflow on the

output array
snprintf() Same as sprintf(), but specifying the size of output array. This interface is better.
scanf() formatted input from the standard input. Basically line oriented. (Avoid use of

this interface because of the possibility of buffer overflow)
fscanf() Same as scanf(), but specifying the input location
sscanf() Same as scanf(), but specifying a character array for input.
fgets() Read one line specifying the input location. Doesn’t discard the new line character.

Use this function.
fputc() Output one character specifying the output location.
putc() Same as fputc(), but usually, defined as a macro.
putchar() Output one character to the standard output. Same as putc(c, stdout)

fgetc() Read one character, specifying the input location
getc() Same as fgetc(), but usually, defined as a macro.
getchar() Read one character from the standard input. Same as getc(stdin)
fread() Read a specified number of fixed-size objects (or records) from the specified input

location.
fwrite() Write a specified number of fixed-size objects (or records) to the specified output

location.

read() Read a specified number of bytes from the specified input location.
write() Write a specified number of bytes to the specified output location.
mmap() Make part of a file available as if it is memory; modifying the memory modifies the

file.

Table 6.1: Standard I/O library functions for reading and writing data (above
the double line) and UNIX system calls for reading and writing data (below the
double line). The first group of library functions is the line-oriented interface,
the second group is the character-oriented interface, and the third group is the
block-oriented interface. Several of these functions have additional variants with
slightly different arguments.





First Interlude

If you can use the concepts and C constructs introduced in the first six chapters
(along with the supplemental information in the appendices), you should be able
to read a file, split it into records (at least in the simple case of one record per
line), sort the records using a library routine, and output to a new file, as in
Exercise 6.7. This is perhaps the most basic level at which you can say you are
familiar with a programming language. In C, this requires a minimal facility with
pointers and malloc()/free().

Beginning in the next chapter and extending through the rest of Part I, we
will work toward a more complete mastery of the language, and develop some
of the central ideas in computer science along the way. We will focus on more
involved uses of pointers to organize data in data structures that can be searched,
sorted, and updated efficiently. We will also see some additional basic algorithms,
and get a first look at how those algorithms behave as the size of the problem
they are asked to solve grows.

137





Chapter 7

Linked Lists and Recursion

In which we meet both singly- and doubly-linked lists and dynamic 2-D
arrays for the first time, and discover the profound concept of recursion.

7.1 Concepts

7.1.1 Linked lists

Figure 7.1 shows a simple linked list . In a linked list, each element of the list
consists of one or more data values, and a way to find the next element in the list,
shown by the arrows in the figure. In C, these are implemented using pointers.
A list is inherently ordered and its first and last elements are called the head and
the tail (which are the same if the list is only one element long).

To understand the utility of linked lists, let’s compare to arrays, which were
our first means of organizing groups of data of the same type. Back in Figure 3.1
on page 38, we saw an array of integers. Arrays are simple and fast; you can
access the middle or last elements of the array as easily as the first. However,
they have two major drawbacks: you must know how big your array will be at
the time you create it, and modifying the set of elements in the array is tedious.
If we want to add a new element at the beginning of the array, we must first
move all of the existing elements to spots later in the array. With a linked list,
however, adding elements is straightforward; we will see this in the exercises.

Many languages support what they call “arrays”, but are
dynamically sized and support insertion and deletion well.
Underneath, these arrays are probably implemented using
a more complex data structure, rather than the single, con-
tiguous memory block that is a C array. Linked lists are one
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(null)next

word

next

word

next

word

"middle" "tail""head"

p

Figure 7.1: A three-element, singly-linked list of struct wordlist. The variable
p is a struct wordlist *, a pointer to the structure.

possibility, but more likely trees or hashes are used, which
we will see in Chapter 8.

We actually caught a glimpse of linked lists back in Exercise 3.8; if you have
not done that exercise, this is a good chance to do so.

7.1.2 Recursion

Recursion is one of the most fundamental programming techniques. Elements
of mathematical sequences are often expressed in terms of prior elements in the
sequence, e.g.

{

a0 = 1
an = 2× an−1

(7.1)

is one way to write a definition for the powers of two.
Recursion is possible in all modern programming languages, but is especially

prominent in Lisp. Interestingly, some of the earliest digital computers did not
properly support a stack, and therefore recursion was difficult.

7.2 Self-referential structures

One important structure usage of pointers is to create self-referential structures.
Such a structure includes a pointer to a variable of the same type as the structure
itself. For example,

struct wordlist {
struct wordlist *next;
char *name;

} *a;

This example defines the structure wordlist, and a variable *a that is a
pointer to a wordlist structure. The structure consists of a pointer to a string,
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name, and a pointer to a wordlist structure itself, next. This can be used to
implement the linked list structure that is one of the most important concepts in
programming.

/* list1.c */
#include <stdio.h>
#include <string.h>
#include <stdlib.h>

struct wordlist {
struct wordlist *next;
char *word;

};

int main(){
// we will use p as a temporary
// variable and q to hold our list
struct wordlist *p, *q;

// build the last one first
q = malloc(sizeof(struct wordlist));
q->next =NULL;
q->word = malloc(sizeof(char)*4);
strcpy(q->word,"END");
// build the middle one
p = malloc(sizeof(struct wordlist));
p->word = malloc(sizeof(char)*6);
strcpy(p->word,"...middle...");
// and link it onto the front
p->next = q;
q = p;
// now build the first one
p = malloc(sizeof(struct wordlist));
p->word = malloc(sizeof(char)*6);
strcpy(p->word,"START");
// and link it on the front
p->next = q;
q = p;

// now let’s walk the list
// and print out the words
for ( p = q ; p ; p = p->next )
printf("%s ",p->word);
printf("\n");
exit(0);

}

This program implements the data structure in Figure 7.1. We first build the
linked list by hand. Like a stack, a singly-linked list has the last item that was
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added in the first position; it is last in, first out , or LIFO. After building the list,
we “walk” it using the common idiom of for ( p = q ; p ; p = p->next ).

We set the size of memory storage area to be allocated by malloc() to be
larger than the length of the strings by 1, because we must also include space for
the terminating character ’\0’.

⇒More on functions to add, search and remove from lists to be added.

This kind of manipulation of pointers to organize and reor-
ganize data is one of the central elements of programming
in C. You must master it! We will see more complex uses of
pointers in complex data structures in Chapter 8.

7.3 2-D Arrays

⇒To be written.

7.4 Recursion

It’s easy to write a program that calculates a sequence such as the values in
Equation 7.1 going up. But what if you want to write a program that calculates
an directly? That’s more trouble. Instead, a simpler method is write a function
that takes n as an argument, and calls itself with the argument n−1. Of course,
that call will then call itself with the argument n−2 and so on, until it gets down
to some value it can calculate directly (in this case, the value for a0 is known).

Such a function call is called a recursive call. For example, you may have
learned about factorials when studying probabilities and permutations. Remem-
ber the definition of the factorial:

{

0! = 1
n! = n× (n− 1)!

10! is calculated as follows:

10! = 10× 9!
= 10× 9× 8!
= 10× 9× 8× 7× 6× 5× 4× 3× 2× 1× 1
= 3628800

10! is the product of 1 to 10. Using a for statement, a function to calculate
the factorial can be written as follows:
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int factorial(int n) {
int i, f;
f = 1;
for (i = 1; i <= n; i++) {

f = i * f;
}
return f;

}

Using a recursive call, the function can be written as follows:

int factorial(int n) {
if (n == 0) {

return 1;
} else {

return n * factorial(n-1);
}

}

This function corresponds well to the mathematical definition of the factorial.
In a recursive call, the function itself is called within the function, but the argu-
ments and local variables for the called function are stored in different locations
on the stack from those of the caller fuction.

7.5 Tools

7.5.1 Generating Dependencies in Make

7.6 Exercises

7.1 Modify the program list1.c to print out the addresses of the wordlist

structs and the word strings, and draw a memory map that accurately
represents the layout. Include arrows that indicate the variables to which
the pointers refer.

7.2 Using the factorial() example function, write a program that displays the
factorial of 1 to 20.

7.3 The Fibonacci sequence is defined as follows.

{

fib(0) = fib(1) = 1
fib(n) = fib(n− 1) + fib(n− 2) (n ≥ 2)

Some initial numbers of the Fibonacci sequence are shown below.
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1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, . . .

Write a program that calculates the numbers fib(0) to fib(40) with recursive
calls. The function fib() calculates the Fibonacci sequence fib(n), and is
defined in the program. Be aware of the range that each type can represent.

7.4 Write a program that calculates the Fibonacci sequence to the 100th element
with a for statement, not using recursive calls.

7.5 The factorial of a number n is represented by n!. There is also the notation
n!!. It is defined as follows.

{

0!! = (−1)!! = 1
n!! = n× (n− 2)!!

Write a program that calculates 1!! to 15!!.

7.6 Repeat exercise 3.7 for a recursive function, such as factorial. The set of
things stored on the stack for a function is called the stack frame. What
is the minimum size for a stack frame? Is it zero when there are no local
variables? If not, do you have any idea why not?

7.7 The example program list1.c does not properly free the memory it allocates
before it exits. Modify it so that it does.

7.8 Add a new function to the program list1.c,

struct wordlist

*addfront(struct wordlist *p, char *newword)

that will add a word to the front of your linked list. It should call malloc()
twice, once for the wordlist struct, and once to make a copy of newword.
Replace all of your work in creating the list with calls to this new function.

7.9 Add a new function to the program list1.c,

struct wordlist

*addback(struct wordlist *p, char *newword)

that will add a word to the end of your linked list. It should call malloc()
twice, once for the wordlist struct, and once to make a copy of newword. In
order to do this, you will have to walk the list to the last entry, and modify
that last structure’s next pointer in place.

7.10 Take the program list1.c and add a function that will remove a word from
the list. It should work properly even if the word found is in the middle of
the list. Make it something like
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(null)

next

word

prev

next

word

prev

next

word

prev

p (null)

"head" "middle" "tail"

Figure 7.2: A three-element, doubly-linked list of struct wordlist. The vari-
able p is a struct wordlist *, a pointer to the structure.

struct wordlist

*removeword(struct wordlist *p, char *word)

and use strcmp() to see if the word is the one you want to remove. The
function should return a pointer to the first element in the remaining list
if there are still words in the list, or NULL if they have all been removed.
(Why? ) It should return -1 if the word is not found. Be sure to use free()
to release the memory in your function.

7.11 Take the program list1.c and modify the structure to be a doubly-linked
list, as in Figure 7.2. What is the value of such a list compared to a singly-
linked list?

7.12 Write a program that registers words in an internal dictionary with struc-
tures using pointers. In a loop with while or for, read a word input by
the user using fgets(). When Control-D is input, the program should
exit from the loop, then display all registered words. (When Control-D is
input, fgets() returns a NULL pointer. This way, the program can detect
the end of input.) The program doesn’t know the number of words that will
be registered in advance, so it needs to allocate the memory dynamically.

7.13 Extend your program from Exercise 7.12. Write a program that regis-
ters pairs of keywords and their meanings (content) with structures using
pointers. The program needs to allocate the memory for both keywords
and contents.

7.14 ⋓ Extend your program from Exercise 7.13 to always insert words in al-
phabetical order. To do this, you will have to walk the list until you find a
word that is greater than the word you are adding, then modify the pointer
in the word prior to that one in order to insert the new word, as shown in
Figure 7.3. Is this easier with a singly-linked list, or a doubly-linked one?

7.15 If you take a linked list and make the tail of the list point back to the start
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p (null)
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"dandelion"
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q (null)
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Figure 7.3: Inserting a new word into an ordered linked list. Above, the initial
list p and new entry q; below, with “dandelion” inserted between “bergamot”
and “ginseng”.
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of the list, rather than contain a null pointer, you have created a type of
ring or ring buffer. Rings are useful when you want to dedicate a fixed
amount of space to buffering data; for example, it may only be useful to
keep the last ten error messages. Pick one of the linked list exercises and
reimplement using a ring. How does your for loop have to change?

7.16 ⋓ In Japan, there are six face values of coins, 1, 5, 10, 50, 100, and 500.
When you pay 10 YEN with coins, there are four ways of payment as follows.

• 10

• 5 × 2

• 5 and 1 × 5

• 1 × 10

Write a program that counts how many ways there are to pay n YEN in
coins.

To solve this exercise, define a recursive function change(int n, int k).
This function calculates how many ways you can pay n YEN with coins
that are k YEN or smaller in face value.

• change(n, 1) returns 1, because only 1 YEN coin is used.

• change(n, 5) returns change(n, 1) + change(n− 5, 5)

• change(n, 10) returns change(n, 5) + change(n− 10, 10)

• and so on





Chapter 8

Algorithms, Intermediate
Data Structures, and
Analysis

In which we learn to sort items, meet a basic tree and hash, and learn the
Big-O notation so we can talk about how much work it is to do things.

8.1 Concepts

Now that we have a certain amount of basic training under our belt, let us briefly
summarize what we know and put it from a simple programming mindset into a
more theoretical computer science context. By analogy with mathematics, now
that you know how to add, subtract, multiple and divide, we can begin to talk
about algebra and some of the theory underlying math.

This chapter and the remainder of Part I of this book, then, should help
crystallize concepts in your mind as well as continue the basic work of “muscle
building” in learning C coding, preparing you to use what we have learned, discuss
algorithms and data structures at a more mature, abstract level, and study more
advanced material on your own, in your kenkyuukai (laboratory), or in class.

8.1.1 Big-O notation: How long will my computation take?

⇒Go back and look at factorial() function and compare number of calls using for loop

or recursion. Be sure to mention that this notation is actually tied to a formal model

of the computer itself.
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Whether you intend to become a computer scientist, or a working program-
mer, you will need to know about the O(·), or big-O, notation, the vocabulary
we use when discussing the behavior of algorithms. Even if you do not intend to
become a computer professional, this notion of complexity is a fundamental and
beautiful idea, and will lurk deep in your thinking as you solve problems in any
field.

Now that you have been writing programs for a while, you have probably
noticed that some programs are fast and some are slow. Some computers are also
fast, while others are slow, even when running the same program. How can we
characterize “fast” and “slow”? What do we mean when we use these terms?

If you are observant, you might have realized that the amount of time depends
on the amount of data you are processing: doing something on a gigabyte of data
naturally takes longer than doing the same operation on a megabyte. Up to
this point, however, you probably have not had the opportunity to see how that
“processing time” varies with the amount of data. In fact, for some purposes,
processing ten times as much data takes ten times as long, while in other cases
it may take far longer – a hundred times, a thousand times, or even become
effectively impossibly long.

Theoretical computer scientists find this behavior fascinating in its own right,
and it forms the foundation of their entire field, under the name computational
complexity . As programmers and engineers, our immediate concerns are more
practical: will my program be fast enough for my users, on the machines they
have available, for the size of problem (or size of data set) they will need to use
it on?

As a simple example, consider an operation such as the dot product of two
vectors, which you wrote in Exercise 3.6 and we revisited on page 130. Our
variable len is the number of elements in each vector. Here, let’s call it n, to
make our notation look a little more mathematical. For each of the n elements
in the vector, we had to perform a small, fixed number of operations: read
the elements from the two vectors, multiply them, and add that result into our
running total. Thus, we say,

Calculating the dot product of two vectors is O(n) (read “Oh-of-
n”).

To be more exact, we should say this about a particular function f(n) that
represents the running time of our program, so we really should say, “My pro-
gram’s running time is f(n), and f(n) = O(n).

More correctly, f(n) = O(n) says, “Eventually, as n becomes large, further
growth in n results in nothing worse than linear growth in the total amount of
computation.” If we make n ten percent bigger, execution time grows ten percent;
if we make n twice as big, execution time doubles.
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In contrast to the usual use of =, here we are describing an asymmetric
relationship between the left and right sides of the statement.

8.1.2 Sorting

8.1.3 Basic Data Structures

Almost immediately upon beginning to program, you met the concept of indi-
vidual variables, each holding a single element of data. However, individual data
elements are the exception rather than the rule; most often, we have lots of data
we want to use.

One of the most common functions of a computer is to organize raw data into
a form that allows it to be searched or displayed easily. So far, we have seen
several basic data structures for holding groups of data elements:

• Arrays are useful for data that we receive in a known order (e.g., we know
they were stored in order in a file). Arrays generally work best when we can
determine the number of elements we expect before we start storing the data
into the array, so that we can allocate enough memory at the beginning. A
one-dimensional array can be useful for e.g. a time sequence of events, such
as the daily temperature or your bank balance. In C, character strings are
also a form of one-dimensional array, with the unique characteristic that
they are null-terminated. Two-dimensional or three-dimensional arrays can
be used to hold many types of numeric data corresponding to real-world
data samples or computer simulations, as well as many other uses.

• Stacks allow us to set aside the current chunk of work, deferring it in
favor of a more urgent task or a subtask necessary to complete our current
task. Stacks are used implicitly by the compiler to hold temporary data
as we move through function calls, and are critical for implementation of
recursion.

• Linked lists, both singly-linked and doubly-linked, were our first signif-
icant use of pointers to connect data structures together. They have the
advantage of being dynamic and not having to worry about the number
of elements before you begin. Editing a linked list to add or remove ele-
ments is straightforward, requiring only changing a few pointers. However,
searching a linked list to find a particular element becomes tedious when
the number of elements grows.

Generally, we want to organize the data to make it easier to find an item or
display the set of items in some order that makes sense. An array is constructed
assuming that data can easily be indexed using an integer; that is, the search key
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for retrieving the nth element of an array is just the number n. Linked lists do
not inherently require any given order, but an order is often imposed as the list is
constructed, and the structure is geared to iterating on the next pointer, which
is very efficient. Stacks do not generally offer a method for searching the entire
stack for specific elements.

To extend our set of capabilities, we would like to be able to organize data so
that:

• we do not have to know before we begin how many data elements we will
have;

• it is easy to use a variety of types of search key, such as family name or
given name, student ID number, or any application-specific key; and

• inserting or deleting elements is efficient, and has minimal effect on the
efficiency of further lookup operations.

With the addition of two more basic data structures, we will have a reasonable
set of mental tools for organizing data:

• Trees come in many forms useful for many purposes, from basic binary
trees for simple indexing of data, to Patricia tries for looking up forward-
ing information for IP packets, to B-trees and B+-trees for efficient storage
of data on disk. In this chapter we will meet binary trees and red-black
trees, which provide more robust performance guarantees against unfavor-
able data patterns than the basic binary trees.

• Hash tables store data entries (or pointers to data entries) in a form of
array, or table, that makes it relatively easy to store and find a given item
without knowing before the table is created what the distribution of search
keys will be like. Simple hash tables are used for managing caches in some
systems, and fact the hardware memory cache in a microprocessor is a form
of hash table. The current edition of this book does not cover hash tables,
but you are strongly encouraged to seek out more information on them to
help round out your basic knowledge.

In some cases, we might even like to allow for inexact matches, such as wild-
cards in strings or longest prefix match for IP addresses, or some notion of phys-
ically “nearby” for geographic databases using latitude and longitude or postal
code. We will not address these variants in this book, but the foundation you
will develop in this chapter will prepare you to understand those topics as you
encounter them.
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8.1.4 Basic Binary Search Trees

Basic Structure

In a binary tree, or binary search tree, we store data elements in nodes. Each
node node contains a key that identifies the data element, the data element itself
(or a pointer to the element), and pointers to two children of the current node. It
must be possible to compare two keys, and for our purposes here we will assume
that keys are unique and a set of keys has a single, unique order. An example
of a tree is shown in Figure 8.1, with each node in the tree marked with its key.
Here, our keys are integers, though they may be any data type that meets the
criteria we just described; alphanumeric strings are commonly used as keys.

The first node you encounter in a tree is called the root. Each node in a
binary tree may have zero, one, or two children. (Other types of trees may allow
more children, or impose the restriction that a node never has exactly one child.)
Nodes with no children are called leaf nodes. Note that, in contrast to real trees,
the root is at the top and the leaves are at the bottom in most pictures of binary
trees! I suppose you can imagine that you are looking at the reflection of a tree
in a pond, or drawing a tree as it exists on the opposite side of the world.

Edges in tree may be drawn as arrows or line segments, but “descending” the
tree is always possible; depending on the implementation, a node might have a
pointer to its parent (the node above it, in a typical figure), or your code may be
required to track parents as necessary. A basic data structure for a tree might
look like this:

struct node {
int key;
void *element;
struct node *left;
struct node *right;
};

In this example, element is a pointer to the data element corresponding to
the node. The data element could instead appear directly in the node, as we have
done with linked lists. The key may be a separate data field, as shown here, or
may be part of (or calculated from) the element.

Lookup in a Tree

Inserting into a Tree

8.1.5 Red-Black Binary Trees

This is probably the most difficult material in the first half of the book, but if you
grasp this you are well on your way to becoming a solid programmer. A project
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Figure 8.1: Example of a binary search tree with integer keys. Every node has
two child pointers; in nodes with zero or one children, the other pointers are null.

on red-black trees is an excellent final project for this class.
The basic binary trees we have just covered are a wonderful invention: they

are flexible, fast and simple. Red-black trees are substantially more complex than
the most basic binary trees. Why would we bother creating something more
complex, when it seems like basic trees do what we want?

The answer lies in Figure 8.2. The binary tree structure is beautiful, but
very general. In the best case, every leaf node is O(log n) depth from the root.
However, a binary tree can become very unbalanced. In the worst case, it becomes
equivalent to a simple linked list, as in the figure. In this case, finding a particular
element can take O(n) time steps, rather than the O(log n) we were aiming for
when we created a binary tree.

To combat this imbalance and ensure reasonable performance even as a tree
“ages” (goes through a number of inserts and deletes), computer scientists have
come up with various forms of self-balancing trees. One such tree is a red-black
tree, which stays approximately balanced, and requires only relatively inexpensive
(if somewhat tricky) operations to maintain that balance.

A red-black tree has the following properties:

1. Every node is either red or black.

2. The root and leaves (which are null pointers or nil elements) are black.

3. Every red node has a black parent.

4. Every path from a node to all its descendants includes the same number of
black nodes.

These properties can be formulated in several different equivalent ways; this
version is due to Erik Demaine of MIT.

An example of a red-black tree is shown in Figure 8.3.
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Figure 8.2: Example of an unbalanced binary search tree. This can occur when
reading in a file that is already stored in order and performing a simple insert for
each record.
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Figure 8.3: Example of a red-black tree. The small black dots are the nil leaves.
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The red-black page on English Wikipedia has a few shortcomings, the biggest
of which are: 1. I’m still not sure case 5 is correct (though mine seems to work
using that code). 2. There is no implementation of the rotate operations!

I implemented the rotate operations, but it took me a couple of hours to
get it right, and it involved some changes to the data structure. I will share
the rotate routines with you. Note that the code may work directly with your
implementation, and may not!

Besides the Wikipedia page, here are a few resources:
* Explanation of the use of red-black trees in the Linux kernel: https://www.kernel.org/doc/Documentation/rbtree.txt

http://lxr.free-electrons.com/source/Documentation/scheduler/sched-design-CFS.txt
* Online, browsable Linux kernel source, rbtree.h: http://lxr.free-electrons.com/source/include/linux/rbtree.h
* corresponding C source: http://lxr.free-electrons.com/source/lib/rbtree.c * Ex-
amples of kernel code that uses r-b trees: http://lxr.free-electrons.com/source/drivers/base/regmap/regcache-
rbtree.c http://lxr.free-electrons.com/source/kernel/sched/fair.c

And a reference to one of the best books on algorithms in existence: https://mitpress.mit.edu/books/introduction-
algorithms My copy is 2nd edition, the 3rd edition is current. In both, Chapter
13 is dedicated to red-black trees. The book is probably available in the Media
Center. If not, and if you want to see (and photocopy) the explanation from my
copy of the book, please email me or stop by Delta 211N.

Video of Erik Demaine lecturing on red-black trees: http://ocw.mit.edu/courses/electrical-
engineering-and-computer-science/6-046j-introduction-to-algorithms-sma-5503-fall-
2005/video-lectures/lecture-10-red-black-trees-rotations-insertions-deletions/

https://www.cs.usfca.edu/ galles/visualization/RedBlack.html
Good sequence for showing insert: 1000, 1100, 500, 700, 600 Shows 600 getting

inserted as RL from its grandparent 500, then propagating up to take its place.

8.2 C

⇒To be written.

8.3 Tools

⇒To be written.

8.3.1 gprof: profiling execution

Sometimes your program is a lot slower than you think it ought to be, and it
isn’t obvious why. An execution profiler can help. For many years, the standard
UNIX profiler has been gprof, though it has some limitations (especially with
respect to parallelism, multithreading and locking) and does not work smoothly
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with the Clang compiler or on Macintoshes. The demonstrations here assume
you are working on a FreeBSD, Linux or Solaris machine.

8.4 Exercises

⇒To be written.

8.1 Write your own program to sort a file of integers using the simple bubblesort
algorithm. How many comparison and swap operations must be performed,
as a function of the number of integers in the file, n?

8.2 Implement a binary search on your sorted data.

8.3 Write a new sort program that implements the “mergesort” algorithm for a
file of integers.

8.4 Compare your two sort programs: plot their execution times as you increase
the size of the input files. Give an O() expression for the expected run time
of both functions, for best, average, and worst case.

8.5 Source code for reading a file of student records and creating a simple binary
tree indexed by student ID has been provided. So far, it does little besides
read the file. Within the source code, there are a series of problems marked
TASK in the comments. Complete these tasks.

8.6 Modify your source code from the last problem to reside in multiple source
files, and use an appropriate Makefile.

8.7 The previous program does not balance the tree as the student records are
read in. Characterize this: under what conditions will a balanced tree be
created, and under what conditions will it be unbalanced? What is the
worst-case performance?

8.8 Now modify your program to implement a red-black tree with balanced in-
serts. Characterize as in the last problem.

8.9 Instrument your code to print a message when the root is rotated. Read in a
file with consecutive integer keys, starting with 1. What sequence of values
does the root take as the file is read? How often is the root rotated? You
might also find it enlightening to watch the tree itself grow. Describe the
difference between the left half of the tree and the right half of the tree.





Chapter 9

Finite State Machines

In which we meet the legendary finite state machine (FSM), and perhaps
a friend or two. We also make use of function pointers.

9.1 Concepts

⇒To be written.

9.2 C

⇒To be written.

9.3 Tools

⇒To be written.

9.4 Exercises

⇒To be written.
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Chapter 10

Writing and Testing System
Utilities

As a final “build your own light saber” test, we build our own system
utility, including tests for whether or not it works.

10.1 Concepts

The well-known programmer Dan Kegel created an exercise that is excellent
practice for disciplined systems programming. If you can do this task comfortably,
you are well on your way to being an employable software engineer. This task
requires a certain level of maturity in development processes. We will use it as
our final exam. Just as a Jedi must build his own light saber, you must build
your own systems utility to demonstrate your mastery and readiness to join the
world.

Self-check before applying for a software engineering job

So you’d like to work as a software engineer, and are about to apply
for a job. And you’ve already confident you can answer common
interview questions. What else can you do to get ready?

Here’s an exercise that might be helpful:

1. Find some simple unix utility, e.g. cmp, expr, or od (these come
for free with Linux and MacOSX, and can be gotten on Windows
for free by installing Cygwin)
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2. Try using them a little; get comfortable with their simplest uses
(no fancy options)

3. Write a test for the utility, in your favorite scripting language,
that prints PASS or FAIL at the end (and terminates with nonzero
status on failure).

(a) Start with a very short script (say, 15 lines) that checks just
one of the utility’s most basic functions

(b) Get the test to pass

(c) Add another test case to the script and get it to pass again.

(d) Repeat a couple times until your test script has a handful
of test cases (but is still short; 30 or so lines should do)

4. Finally, implement a simple version of the utility in the language
you want to use at the job (Python, C++, Java, whatever), and
make it pass the test you wrote above.

Repeat with several utilities (and maybe several languages) until
you’re comfortable doing it from start to finish in two hours.

If you can do that, you’ll probably pass any paper-bag programming
test they can throw at you. http://www.kegel.com/academy/selfcheck.html

Acceptance testing of software programs is an important part of software qual-
ity assurance (SQA) practice. Take pride in writing such tests and getting your
code to pass them; it is a sign of superior craftsmanship and maturity as a de-
veloper. One of our fellow faculty members, in a former job, created a suite of
several thousand tests as part of a database development project. Some of these
tests were written by hand, but many of the individual tests were actually created
by a separate program.

10.2 C

⇒To be written.

10.3 Tools

In order to complete this task, you must have scripts that can execute your
program and examine its output. You may write those tests in any language you
wish; it will probably be easiest in a scripting language that handles character
strings smoothly, such as Python or Ruby.

Below is an example in Python:
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import sys
import subprocess as P

def main():
u"""
1. store the contents of the source file
2. copy source_file to target_file
3. verify whether stored content of the source file

and the content of the target file are same.
"""
# check arguments
argv = sys.argv
argc = sys.argv.__len__()
if argc != 3:

print_usage()
sys.exit(1)

source = argv[1]
target = argv[2]

# 1. store the contents of the source file
stored_src = []
with open(source) as s_file:

stored_src.append(s_file.read())

# 2. copy source_file to target_file
retcode = P.call(["cp", sys.argv[1], sys.argv[2]])
if retcode != 0:

print("cp errored!", file=sys.stderr)

# 3. verify whether contents of the source file
# and of the target file are same.
num_line = 1
error = False
with open(target) as t_file:

if stored_src.pop(0) != t_file.read():
print("line %d is different!" % num_line)
error = True

num_line += 1
if error:

print("Unfortunately either the source file
or the target file is corrupted... I’m sorry about that.")

else:
print("Congratulations! You successfully copied the file!")

def print_usage():
u""" print usage. """
print(u"""usage:

python3 verified_copy.py source_file target_file""")

if __name__ == "__main__":
main()
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10.4 Exercises

10.1 Pick your favorite system utility. Choose carefully – you want one that will
a reasonable amount of effort to duplicate!

10.2 Begin by writing a script in your chosen language that can test the simplest
behavior of a utility. It should print PASS if the utility passes and FAIL if
it fails. Your test should not rely on the utility itself to test its correctness.
Question: assuming the utility works properly, how can you test the failure
case of your tester?

10.3 Now write your own version of the utility, and work until it passes your test
script.

10.4 In all probability, in the above you wrote only the successful case – such as
cp correctly copying a file that actually exists. Extend your test suite by
adding a new test script that tests what happens when you give the utility
bad arguments (such as the name of a file that doesn’t exist). Of course,
the script should print PASS when the utility correctly reports an error.

10.5 Now extend your own utility until it passes the test for correct error han-
dling.

10.6 Continue extending your suite of test scripts and the functionality of your
utility until the behavior matches everything described in the utility’s man-
ual page, or some other threshold agreed with your instructor.



Second Interlude

At this point, you should be very comfortable with the C language, several types
of data structures using pointers, basic algorithm analysis, how to convert math-
ematical equations or pseudocode into a program, and a variety of Unix program-
ming tools.

⇒Should we add OpenCL? Cuda? MPI? Hadoop? Even a batch system such as the

Open Grid Engine?
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Chapter 11

Soft Real-Time Computing

In which we see very simple use of timers, and write our own processing
loop. We also discuss guidelines for safety-critical computing, though
this alone will not make you a complete programmer of such systems!

11.1 Concepts

⇒To be written.

⇒Discuss MISRA.

11.2 C

⇒To be written.

11.2.1 An Arduino multitasker

Recently, I built an automatic feeder to feed the fish in my office aquarium. The
feeder was printed using a 3-D printer, and I control it using an Arduino single-
board computer with a motor driver and some additional LEDs. I want the fish
to be fed once a day, but I also want the LED on the Arduino board to blink, so
I can tell at a glance that the system is still running, and I put a nice pattern on
the other LEDs at some interval (ten seconds, at the moment).

If you have worked with Arduino, you know that it uses a subset of C as
its programming language, and that it has a very rudimentary runtime system.
There is no multitasking provided. So, what do you do if you want your Arduino
to do multiple things on separate timers? You write your own multitasking
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scheduler! Here is a simple, cooperative multitasking loop that uses simple timers
to establish when the next action will take place.
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// prototypes for WorkItem functions. All are void.
void BlinkWork(); // just blink the board LED
void RunUpWork(); // do something a little fancier on the LEDs
void DinnerWork(); // feed the fish!

// work items for our simple scheduler
struct WorkItem {

unsigned long interval; // how often to execute this, in seconds
unsigned long NextTime; // time after which we will next execute this, in seconds
void (*fun)(); // pointer to the function that does the work

};

// Actual array of items. Order in this should be irrelevant.
struct WorkItem WorkItems[] = {

{ ONESECOND, ONESECOND, BlinkWork },
{ 10*ONESECOND, 10*ONESECOND, RunUpWork },
{ ONEDAY, 10*ONESECOND, DinnerWork },
{ 0, 0, NULL }

};

void BlinkWork()
{

// basic blink of the LED on the board
// ledval is value of the LED, a global defined elsewhere
if (ledval == HIGH)
ledval = LOW;

else
if (ledval == LOW)
ledval = HIGH;

digitalWrite(OnBoardLed, ledval);
}

// our infinite work loop on Arduino automatic fish feeder
// Assumptions: all WorkItems complete, never block
// or go into infinite loop, and are short, so that
// average load is well below one (that is, the Arduino
// is idle most of the time).
// This is soft real time; any task might be delayed
// by maximum of completion time of all tasks on the list
// plus one second. If the total completion time of all
// tasks exceeds the interval of a task, it is possible
// for invocations of that task to be missed.
// Using the system-supplied millis() function, clock
// slip should be minimal.
// Scheduler sleeps for a second before coming back to
// look at list again.
void loop()
{

int i;
currentmillis=millis(); // get the current milliseconds from Arduino

// Loop through WorkItems[] until we find NULL function pointer
for ( i = 0 ; WorkItems[i].fun != NULL ; i++ ) {
Serial.print("currentmillis: "); Serial.print(currentmillis);
Serial.print(" NextTime: "); Serial.println(WorkItems[i].NextTime);
if ( currentmillis > WorkItems[i].NextTime ) {
// timer has expired, run our function
WorkItems[i].fun();
// set up time for next invocation
WorkItems[i].NextTime += WorkItems[i].interval;

}
}

delay(ONESECOND); // one second delay on loop

}
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11.3 Tools

⇒To be written.

11.4 Exercises

⇒To be written.

11.1 Modify your polyrhythm program from Exercise 2.4 to read the rhythms
from a file and print out the beats in real time. Use the UNIX sleep()

function or another method of your choice to get the timing as close to
possible right. Your rhythm definition file should include the beats per
minute of the rhythm. The format of the file is up to you to decide, but
you must write a document that describes it.



Chapter 12

Processes and Pipelines of
Programs

In which we learn how to create, connect and control independent pro-
cesses running programs of our choice, which is by far the easiest and
safest way to do more than one thing at the same time. The process is
essentially an abstraction of a computer.

12.1 Concepts

⇒To be written.

12.2 C

⇒To be written.

12.3 Tools

⇒To be written.

12.4 Exercises

⇒To be written.
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Chapter 13

Signals: Communicating
Asynchronously

In which we learn how to send a signal to another process. We also
introduce the concepts of POSIX safety.

13.1 Concepts

⇒To be written.

13.2 C

⇒To be written.

13.3 Tools

⇒To be written.

13.4 Exercises

⇒To be written.
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Chapter 14

Threads: Abstracting
Processors

In which we learn that the process is an abstraction of a machine, and a
thread is an asbtraction of the CPU of that machine.

14.1 Concepts

⇒To be written.

14.2 C

⇒To be written.

14.3 Tools

⇒To be written.

14.4 Exercises

⇒To be written.
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Chapter 15

Parallelism: OpenMP

In which we learn how to pay attention to the regularity of the structure
of the parallelism in our programs. OpenMP is one of several new systems
for expressing parallelism in C.

15.1 Concepts

⇒To be written.

15.2 C

⇒To be written.

15.3 Tools

⇒To be written.

15.4 Exercises

⇒To be written.
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Third Interlude

From this point forward, we focus entirely on concepts and programming for IP
networks. Sockets, that is.
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Chapter 16

Communication: IP
Networking Basics

In which we get our first glimpse of how computers actually talk to each
other.

16.1 Concepts

⇒To be written.

16.2 C

⇒To be written.

16.3 Tools

⇒To be written.

16.4 Exercises

⇒To be written.

183





Chapter 17

Naming: the Domain Name
Service

In which we learn how to find the computer we want to talk to.

17.1 Concepts

⇒To be written.

17.2 C

⇒To be written.

17.3 Tools

⇒To be written.

17.4 Exercises

⇒To be written.
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Chapter 18

Communication: TCP
Sockets 1

In which we get our first complete taste of network programming, which is
a fancy way of asking someone else to do your work for you. All examples
are address family independent, and will work with both IPv4 and IPv6!
(We will use what I call itojun’s rules.)

18.1 Concepts

⇒To be written.

18.2 C

⇒To be written.

18.3 Tools

⇒To be written.

18.4 Exercises

⇒To be written.
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Chapter 19

Distribution: TCP Sockets 2

In which we get our first complete taste of network programming, which
is a fancy way of asking someone else to do your work for you.

19.1 Concepts

⇒To be written.

19.2 Tools

⇒To be written.

19.3 Exercises

⇒To be written.

19.1 Write a client that reliably connects to the attendance server via IPv4 or
IPv6.
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Appendix A

C Syntax Supplement

This appendix includes some deeper exploration of the language and its imple-
mentation in the real world. It is presented mostly as reference; you should read
it to understand the language better, but for the most part you will not need this
information to complete the exercises in this class.

A.1 Storage Class

A relatively complete understanding of C requires understanding how it manages
memory (storage). In this section, you will see some examples that demonstrate
use and reuse of the stack memory and other classes of memory.

The following example shows calculation of the factorial using a recursive call.

int factorial(int n) {
if (n == 0) return 1;
else return n * factorial(n-1);

}

In this program, the arguments (and local variables, if any) are different for
each instance of the function call. However, as we have noted, C does not initial-
ize variables for you, and memory can be allocated and reallocated to different
variables. The next couple of programs demonstrate this behavior.
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/* localvar1.c */
#include <stdio.h>
#include <stdlib.h>

/* prototypes for forward reference */
void f1(int n);
void f2(int n);

int main()
{

f2(10);
f1(1);
f1(2);
f1(4);
exit(0);

}

void f1(int n)
{

int sum;
/* note: sum is used without being

initialized! */
sum = sum + n;
printf("sum=%d\n",sum);

}

void f2(int n)
{

int a, b;
a = n;
b = n;
printf("a,b=%d,%d\n",a,b);

}

On ccz??, zmac??, the result is shown below.✓ ✏
ccz00% ./localvar1

a,b=10,10

sum=11

sum=13

sum=17✒ ✑
There are some unexpected, perhaps strange results. You may have expected

the following result:
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✓ ✏
ccz00% ./localvar1

a,b=10,10

sum=1

sum=3

sum=7✒ ✑
Thinking about this behavior and trying to isolate where we’re going wrong,

we may decide to change the argument to the function call f2() to 0.

/* localvar2.c */
/* everything but main() same as above */
int main()
{

f2(0);
f1(1);
f1(2);
f1(4);
exit(0);

}

The result is shown below.✓ ✏
ccz00% ./localvar2

a,b=0,0

sum=1

sum=3

sum=7✒ ✑
Now, the expected result appears. Why is the first case incorrect? It is caused

by the handling of local variables in a function. In f1(), int sum; is defined.
However, the value of sum is undefined at that time. In a function call in C, local
variables and arguments are stored in a newly assigned area at each function call.
Then that storage area is released on exiting from the function. This area is part
of the stack .

In the second example, the storage area that was used for int sum; during
the previous f1() call is reused at the current f1() call. So, the previously used
values remain by chance.

In the first example, temporary storage is used for int a,b;. First, 10 is
assigned to both variables a and b. That temporary storage area is released at
the completion of f2(). At the next call of f1(), the same area just released by
the completion of f2() is reassigned for f1()’s temporary storage of int sum. So,
the uninitialized sum has the value 10 by chance. Thereafter, our code modifies
that and sum becomes 11,13,17.
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If variables are initialized at the function call, what happens? The next
program shows performs variable initialization.

/* localvar3.c */
#include <stdio.h>
#include <stdlib.h>

int main(){
f2(10);
f1(1);
f1(2);
f1(4);
exit(0);

}

f1(int n){
int sum=0;
sum = sum + n;
printf("sum=%d\n",sum);

}

f2(int n){
int a, b;
a = n;
b = n;
printf("a,b=%d,%d\n",a,b);

}

The result is shown below. sum doesn’t follow the pattern ⁀1,3,7; instead, it
does what it ought to with sum being a local variable.✓ ✏
ccz00% ./localvar3

a,b=10,10

sum=1

sum=2

sum=4✒ ✑
In this example, int sum=0; initializes sum during each function call. There-

fore, the previous value doesn’t remain.
So what should we do if we want to retain that value for sum (which seems

likely, just given the name sum!)? To retain the value of a local variable across
multiple calls to the function, use the s

¯
tatic storage class.
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/* localvar4.c */
#include <stdio.h>
#include <stdlib.h>

int main(){
f2(10);
f1(1);
f1(2);
f1(4);
exit(0);

}

f1(int n){
static int sum=0;
sum = sum + n;
printf("sum=%d\n",sum);

}

f2(int n){
int a, b;
a = n;
b = n;
printf("a,b=%d,%d\n",a,b);

}

The result is shown below.✓ ✏
a,b=10,10

sum=1

sum=3

sum=7✒ ✑
The storage for static variables remains after exiting from a function (or a

block). Then, those values are used at the next execution of that function (or
block). The initialization is done only once, at the first execution.

However, when threads are used, you need to pay extra at-
tention while programming. Because static variables are
shared among all threads, you need to be careful if you
are planning to call a function from multiple threads. Auto
variables are safe, because those variables are created and
assigned at function call time, and are unique to the thread.

We went through this series of examples in order for you to understand both
how and where local variables are stored, and the kinds of errors that result from
failing to initialize variables. However, we could have saved ourselves some time
in the beginning by enabling warnings in our compilation:
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✓ ✏
gcc -o localvar1 localvar1.c -Wall

localvar1.c:23:9: warning: variable ’sum’

is uninitialized when used here

[-Wuninitialized]

sum = sum + n;

^~~

localvar1.c:20:10: note: initialize the variable

’sum’ to silence this warning

int sum;

^

= 0

1 warning generated.

✒ ✑
Older C compilers may not provide such warnings, but modern ones generally

do, and they will save you from many frustrating hours debugging mysterious
behavior.

You may have gathered by now that the C compiler makes distinctions be-
tween variables depending on their scope. There are actually several classes,
and under some circumstances we can control which class a variable is in using
modifiers on its declaration.

auto
Called “auto variables”. At execution time, storage is automatically as-
signed (typically on the stack). These variables are of limited scope, and
their storage is reclaimed when they go out of scope. Except for static
variables, this class includes all local variables for functions or blocks. This
is the only time that C will automatically allocate and recover memory for
you; otherwise, variables either exist for the lifetime of the program, or you,
the programmer, must explicitly manage their storage.

const
The const modifier indicates that the object can be initialized, but can’t
be assigned after initialization. In many simple cases, its effect is similar to
using a #define macro, but a const variable actually has a single storage
location assigned to it, and its address can be taken using &.

extern
Some variables are defined externally. This modifier informs the compiler
that here, at the point of definition, it does not need to assign storage for
this variable; it is assigned elsewhere, most probably in a separate module.
Generally, this requires that the variable exist for the lifetime of the program
(process), and so they are global variables .



A.1. STORAGE CLASS 197

register
This modifier informs the compiler that fast access to a variable is required,
and asks the C compiler to generate machine code that uses a CPU register
to store this variable. The address of this variable can’t be obtained using
the & operator. (An interesting exercise is to confirm what happens when
you try this.) Given the strong capabilities of modern compilers, this mod-
ifier is generally unnecessary; the compiler will usually do a better job in
deciding which variables are important enough to assign to registers than
you can.

static
We have just seen static. A variable is defined within a block, and storage
is assigned there statically. Static variables behave like global variables
in terms of their permanence, but like local variables in terms of their
accessibility. They may be used to track the state of some computation.

volatile
The volatile declaration is seldom used in ordinary application programs.
It tells the compiler that some other piece of hardware besides this CPU
may be changing the value, and so it should look at the true location of the
variable every the program uses it; it should not copy it into a register and
reuse that value, for example, as the optimizer might do for other variables.

A.1.1 volatile

Volatile needs a little more explanation. Obviously you would expect that this
code can never exit:

#include <stdio.h>
#include <stdlib.h>

int i;
extern int status;

int main(){
status = 1;
for(i=0;i<10000;i++){
if(status == 0){
break;

}
}
exit(0);

}

But this code can, if another thread or a piece of hardware is updating the
variable status. This is the correct syntax:
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#include <stdio.h>
#include <stdlib.h>

int i;
extern volatile int status;

int main(){
status = 1;
for(i=0;i<10000;i++){
if(status == 0){
break;

}
}
exit(0);

}

Of course, this must be linked with another module somewhere that defines
the variable status; it may be matched to e.g. a device register for some sort of
peripheral that tells us whether or not the device has completed a chunk of work
we asked it to do. This is common in device drivers, for example.

A.1.2 const

This example shows the use of const.

/* const.c */
#include <stdio.h>
#include <stdlib.h>

const int i = 10;
int j = 5;
int main(){

/* an illegal assignment to
a const variable */

i = j;
printf("i,j=%d,%d=n",i,j);
exit(0);

}

This program causes the following compilation error.✓ ✏
% gcc const.c -o const

const.c: In function ‘main’:

const.c:8: warning: assignment of read-only

variable ‘i’

%
✒ ✑
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A.2 Unions

A emphunion allows us to store different kinds of variables in the same location
in memory. More precisely, it allows us to view the same memory location in
different ways.

union universal_tag {
int ival;
float fval;
char *sval;

} u, v;

In the above example, two variables u and v are each defined as a union.
Unions are access by following syntax.

u.ival = 10;
u.fval = 30.4;

Note that care must be taken when the different members of the union are of
different sizes.

Unions are useful when accessing certain hardware devices, where sometimes
you may want to view a location as a large set of small values, or as a small set of
larger ones (e.g., single-precision floating point numbers or double-precision float-
ing point numbers). They are also useful when you are receiving a message across
a network, or reading a structure from a file, when you don’t know beforehand
which of several types of message or structure may arrive.

A.3 Macros

A preprocessor macro is defined by #define. There are two types of macros,
object-like macros and function-like macros.

A.3.1 Object-like macros

#define identifier replacement-list

For example,

#define MAXCLIENT 10

replaces exactly the string MAXCLIENT with exactly the string 10 whereever it
finds it in the source code, before passing on to the next phase of the compiler.
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A.3.2 Function-like macros

⇒More detail to be added here.

#define identifier(arguments) replacement-list

For example,

#define display(x) printf("%s is %d\n", #x, x)

display( abs(-10) );

is expanded to

printf( "%s is %d\n", "abs(-10)", abs(-10) );

Note two important features in this example: substition for the macro argu-
ment is not done inside double-quoted strings; and in order to make a string out
of the macro argument, you precede it with #.

A.3.3 The trap of macros

Macros can give you unexpected results when not written carefully enough. They
are not the same as function calls, though that is not always apparent to the
programmer trying to use them, so the programmer who creates them should
program defensively to minimize unexpected behavior.

/* macrodemo.c */
#include <stdio.h>
#include <stdlib.h>

#define plus2(x) x+2
int main(){

printf("%d\n", 3*plus2(4));
exit(0);

}

The preprocessor expands this to:

3 * 4 + 2

and when the next compiler phase runs, the wrong result will be generated.
You need to put parentheses around the arguments.

#define plus2(x) (x+2)
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A.4 Conditional Compilation

Conditional compilation is used to adapt a single set of source code to multiple
platforms, for debugging, or to customize functionality for specific customers.
This is also called conditional inclusion. Once you understand the power of this
approach, the importance of a Makefile as a form of documentation of how the
program was built will be obvious.

A.4.1 Using macros

A common use is to turn debugging code (especially printf() statements) on or
off.

/* condition1.c */
#include <stdio.h>
#include <stdlib.h>

int main(){
int i;
for(i=0;i<5;i++){

#ifdef DEBUG
printf("factorial(%d) = ",i);

#endif /* DEBUG */
printf("%d\n",factorial(i));

}
exit(0);

}
int factorial(int n) {

if (n == 0) return 1;
else return n * factorial(n-1);

}
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✓ ✏
% gcc condition1.c -o condition1

% ./condition1

1

1

2

6

24

% gcc -DDEBUG condition1.c -o condition1

% ./condition1

factorial(0) = 1

factorial(1) = 1

factorial(2) = 2

factorial(3) = 6

factorial(4) = 24

%
✒ ✑

Compiling in this manner, the -DDEBUG option forces the inclusion of the code
between #ifdef and #endif. Note the DEBUG comment indicating the end of the
#if. This is a common bit of programming style that improves readability of
complex compilation cases. #if statements can be nested, but their indentation
level is always at the left margin, so visually finding the end of a conditional block
can be tricky.

Besides #ifdef and #endif, #else, #elif, #ifndef are used, and they also
can be nested.

/* condition2.c */
#include <stdio.h>
#include <stdlib.h>

int main(){
#ifdef SFC

printf("SFC defined.\n");
#else

printf("SFC not defined.\n");
#endif
#ifdef KEIO

printf("KEIO defined.\n");
#else

printf("KEIO not defined.\n");
#endif exit(0);
}
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✓ ✏
% gcc -DKEIO condition2.c -o condition2

% ./condition2

SFC not defined.

KEIO defined.

% gcc -DKEIO -DSFC condition2.c -o condition2

% ./condition2

SFC defined.

KEIO defined.

%
✒ ✑

Numeric values and string constant can be assigned inside conditional com-
pilation blocks.

/* condition3.c */
#include <stdio.h>
#include <stdlib.h>

int main(){
#ifndef SFC
#define SFC "Shonan Fujisawa Campus"
#endif

printf("SFC = %s\n",SFC);
#ifndef PI
#define PI 3.14159
#endif

printf("Pi = %f\n",PI);
exit(0);

}

✓ ✏
% gcc -DSFC=\"SFC\" condition3.c

% a.out

SFC = SFC

Pi = 3.141590

% gcc -DPI=3.14 condition3.c

% a.out

SFC = Shonan Fujisawa Campus

Pi = 3.140000

%
✒ ✑

n
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A.4.2 Platform dependent compilation

/* condition4.c */
#include <stdio.h>
#include <stdlib.h>

int main(){
#if defined(sony)

printf("This is compiled on a SONY machine.\n");
#elif defined(sun)

printf("This is compiled on a SUN machine.\n");
#elif defined(linux)

printf("This is compiled on a Linux machine.\n");
#elif defined(sgi)

printf("This is compiled on an SGI machine.\n");
#endif

exit(0);
}

✓ ✏
ccn00% gcc condition4.c -o condition4

% ./condition4

This is compiled on a SONY machine.

% ssh ccz01

....

% gcc condition4.c -o condition4

% ./condition4

This is compiled on a SUN machine.

% ssh ccx00

....

% gcc condition4.c -o condition4

% ./condition4

This is compiled on an SGI machine.

%
✒ ✑

sun, sony, sgi are defined automatically by the specific machine. You don’t
have to use the -D option to define them yourself. FreeBSD defines __FreeBSD__
automatically.

When the conditonal compilation directives #if and defined() are used, the
logical sum (||), and logical product (&&) operators can be used.
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#include <stdio.h>
#include <stdlib.h>

int main(){
#if defined(sony) || defined(sun)

printf("compiled in SONY or SUN machine.\n");
#elif defined(sgi)

printf("This is compiled in SGI machine.\n");
#endif

exit(0);
}

A.5 Operators

A.5.1 Operator precedence

Operators Order of binding
() [] -> . left to right
! ~ ++ -- - (cast) * & sizeof right to left
* / % left to right
+ - left to right
<< >> left to right
< <= > >= left to right
== != left to right
& (bitwise AND) left to right
^ (bitwise XOR) left to right
| (bitwise OR) left to right
&& left to right
|| left to right
?: right to left
= += -= *= /= %= |= &= ^= right to left
, left to right

A.5.2 Conditional operator for expressions

The if statement is used to conditionally control execution of a block of C state-
ments. Sometimes what we want to do is simply conditional assignment to a
variable:
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/* condassign1.c */
#include <stdio.h>
#include <stdlib.h>

int main(){
int x, y, z;
int c;
...
if (c)
x = y;

else
x = z;

exit(0);
}

This is tedious and uses a lot of vertical space in a program, reducing read-
ability. Thus, a shorthand syntax is included in the language. The following
performs exactly the same operation:

/* condassign2.c */
#include <stdio.h>
#include <stdlib.h>

int main(){
int x, y, z;
int c;
...
x = c ? y : z;
exit(0);

}

A.5.3 = operator

The order of binding is right to left.

/* complexassignment.c */
#include <stdio.h>
#include <stdlib.h>

int main(){
int a,i,j,k;
i = 2; j = 5; k = 7;
a = i = j = k;
printf("a=%d,i=%d,j=%d,k=%d\n",a,i,j,k);
exit(0);

}

How is a = i = j = k; calculated?
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✓ ✏
% ./complexassignment

a=7,i=7,j=7,k=7

✒ ✑

A.5.4 Increment and decrement operators

We have already seen the increment and decrement operators, back on page 51,
so we reiterate here for completeness.

/* incdemo1.c */
#include <stdio.h>
#include <stdlib.h>

int main(){
int i;
i=1;
printf("i=%d\n",i++);
printf("i=%d\n",i);
printf("i=%d\n",++i);
exit(0);

}

The result is shown below.✓ ✏
% ./incdemo1

i=1

i=2

i=3✒ ✑
An example using pointers is shown below.
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/* incdemo2.c */
#include <stdio.h>
#include <stdlib.h>

int main(){
int a[10], *i;
i = &a[0];
a[0] = 100;
a[1] = 200;
a[2] = 300;
printf("address of i = %p\n",i);
printf("*i = %d\n",*i);
i++;
printf("address of i = %p\n",i);
printf("*i = %d\n",*i);
i = i + 1;
printf("address of i = %p\n",i);
printf("*i = %d\n",*i);
exit(0);

}

The result is shown below.✓ ✏
% ./incdemo2

address of i = 0x7fff5af43a70

*i = 100

address of i = 0x7fff5af43a74

*i = 200

address of i = 0x7fff5af43a78

*i = 300✒ ✑
As a result of i++, i changes from 0x7fff5af43a70 to 0x7fff5af43a74.

When the ++ and -- operators are applied to pointers, the size of variable pointed
by that pointer is added to the pointer.

A.5.5 Comma (,) operator

The comma (,) operator is evaluated from left to right.
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/* commademo.c */
#include <stdio.h>
#include <stdlib.h>

int main(){
int i, j;
for(i=0,j=0; i<3 ; i++,j++){
printf("i=%d, j=%d\n",i,j);

}
exit(0);

}

The result is shown below.✓ ✏
% ./commademo

i=0, j=0

i=1, j=1

i=2, j=2

%
✒ ✑

A.6 Fine Points of Execution Order

A.6.1 Undefined behavior

Imagine the behavior of x = x++;. What result would you expect? Is x incre-
mented before or after the result is assigned to the variable x?

/* undefined.c */
#include <stdio.h>
#include <stdlib.h>

int main(){
int x;
x = 1;
printf("x=%d\n",x);
x = x++;
printf("x=%d\n",x);
x = 1;
printf("x=%d\n",x);
x = ++x;
printf("x=%d\n",x);
exit(0);
exit(0);

}
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The result is shown below.✓ ✏
ccn??% cc undefined.c -o undefinedcc

ccn??% ./undefinedcc

x=1

x=2

x=1

x=2

ccn??% gcc undefined.c -o undefinedgcc

ccn??% ./undefinedgcc

x=1

x=1

x=1

x=2

ccn??%
✒ ✑

Two different C compilers (cc and gcc) produced different results on the same
code, compiled in the same fashion on the same machine! The reason is that this
behavior is undefined. In other words, don’t do this!

A.6.2 Logical expressions

Study this example carefully to understand the order in which logical expressions
(those returning true or false) are evaluated. Evaluation of a chain of terms such
as this aborts as soon as the final value can be determined definitively. Or (||)
aborts as soon as a term returns true, and and (&&) aborts as soon as it finds one
term that returns false. It can be used as a form of conditional execution. Use in
the manner in this example is rare, but loop variable tests for null pointers are
often implemented in this fashion to avoid dereferencing a null pointer.

#include <stdio.h>
#include <stdlib.h>

int main(){
int x, y, z;
x = y = z = 1;
++x || ++y && ++z;
printf("x=%d, y=%d, z=%d\n",x,y,z);

x = y = z = 1;
++x && ++y || ++z;
printf("x=%d, y=%d, z=%d\n",x,y,z);
exit(0);

}
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The result is shown below.✓ ✏
x=2, y=1, z=1

x=2, y=2, z=1

✒ ✑

A.7 Function Pointers

The name that you give to a function – f1() or gcd() or what have you – can
actually be used as a function pointer . It represents the memory address at which
the function itself begins. (You did know that all code is also stored in memory,
didn’t you?)

A.7.1 Example: the qsort library function

As an example, a library function provided in the C library ls qsort(), which will
sort a set of any objects for you, using C.A.R. Hoare’s quicksort algorithm. In
order to sort them for you, it must know where the objects are and how many of
them there are, how big each object is, and how to compare two to decide which
one short be ordered earlier and which should be ordered later. This comparison
is done using a function that you write. The way the qsort() function knows
where to find that function is through a pointer to that function, which you
supply as an argument to qsort().

Note: Questions about sorting are common questions on job
interviews! We have already written a bubblesort routine,
in Exercise 8.1 in Chapter 8. Here we are only using the
quicksort function supplied by the library, but learning how
the algorithm works will be valuable, and you are encouraged
to do so.
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/* qsortints.c */
#include <stdio.h>
#include <stdlib.h>

int intcmp(int *a, int *b){
if (*a > *b){
return (1);

}
if (*a < *b){
return (-1);

}
return (0);

}

int main(){
int d[10]={3, 5, 7, 9, 8, 2, 4, 1, 0, 6};
int i;
qsort((char *)d, 10, sizeof(int),

(void *)intcmp);
for(i=0;i<10;i++){
printf("%d ",d[i]);

}
printf("\n");
exit(0);

}

✓ ✏
% ./qsortints

0 1 2 3 4 5 6 7 8 9

%
✒ ✑

Our function intcmp() compares two integers. qsort has four arguments, as
defined in the function prototype:

extern void qsort(void *, size_t, size_t,
int (*)(const void *, const void *));

The second line of that is the definition of the function pointer, which must
take two pointers as arguments. Because they are defined as void() pointers,
they can point to any type of objects. If you want the compiler to enforce the type
of object pointed to when you are creating your own function pointer definition,
specify the type instead.

A.7.2 Array of pointers to functions

Function pointers can be stored in arrays so that you can choose which one to call
based on some other variable. This is a common means of implementing finite
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state machines.

/* fnptrarray.c */
#include <stdio.h>
#include <stdlib.h>

int f0(),f1(),f2();
int (*flist[10])();

int main(int argc, char *argv[]){
int i;
flist[0] = f0;
flist[1] = f1;
flist[2] = f2;
if(1<=argc && argc<=2){
i = argc;

}else{
i = 0;

}
flist[i]();
exit(0);

}

int f0(){
printf("f0\n");

}
int f1(){

printf("f1\n");
}
int f2(){

printf("f2\n");
}

Various results are shown.✓ ✏
% ./fnptrarray

f1

% ./fnptrarray 2

f2

% ./fnptrarray 2 3

f0

% ./fnptrarray 2 3 4

f0

%
✒ ✑





Appendix B

Development Environment
Addendum: MacOS

⇒To be filled in.

B.1 LLVM

B.2 Clang

B.3 LLDB

http://lldb.llvm.org/lldb-gdb.html lists corresponding commands for gdb.

B.4 Use of Xcode
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Appendix C

Development Environment
Addendum: Windows

You’re on your own.
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Appendix D

Data Structures and
Algorithms Used in the
Linux Kernel

At the beginning of this book, we set the goal of preparing you to read and
understand such complex code bases as the Linux or FreeBSD kernel. Here is
one summary of some of the concepts used in the Linux 2.6 kernel series, courtesy
of Luis de Bethencourt, who adapted it from Vijay D’Silva:

• Linked lists, doubly linked lists, lock-free linked lists.

• B+ Trees with comments telling you what you can’t find in the textbooks.

• Priority sorted lists used for mutexes, drivers, etc.

• Red-Black trees are used are used for scheduling, virtual memory manage-
ment, to track file descriptors and directory entries, etc.

• Interval trees.

• Radix trees, are used for memory management, NFS related lookups and
networking related functionality. (n.b.: A comment in the B+tree source
notes that Linux radix trees “don’t have anything in common with textbook
radix trees.”)

• Priority heap, which is literally, a textbook implementation, used in the
control group system.

• Hash functions, with a reference to Knuth and to a paper.
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• Some parts of the code, such as the Lustre LOV pool, implement their own
hash functions.

• Hash tables used to implement inodes, file system integrity checks, etc.

• Bit arrays, which are used for dealing with flags, interrupts, etc. and are
featured in Knuth Vol. 4.

• Semaphores and spin locks.

• Binary search is used for interrupt handling, register cache lookup, etc.

• Binary search with B-trees.

• Depth first search and variant used in directory configuration.

• Breadth first search is used to check correctness of locking at runtime.

• Merge sort on linked lists is used for garbage collection, file system man-
agement, etc.

• Bubble sort is amazingly implemented too, in a driver library.

• Knuth-Morris-Pratt string matching.

• Boyer-Moore pattern matching with references and recommendations for
when to prefer the alternative.

http://cstheory.stackexchange.com/questions/19759/core-algorithms-deployed
http://luisbg.blogalia.com/historias/74062

If you have an understanding of most of these structures, you are well on your
way to being a strong programmer.
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