
VISA: Netstation’s Virtual Internet SCSI Adapter *

Rodney Van Meter! Gregory G. Finn and Steve Hotz
Information Sciences Institute

University of Southern California
Marina de1 Rey, CA 90292

{rdv,finn,hotz}@ISI.Edu

Abstract

In this paper we describe the implementation of VISA, our
Virtual Internet SCSI Adapter. VISA was built to evalu-
ate the performance impact on the host operating system of
using IP to communicate with peripherals, especially stor-
age devices. We have built and benchmarked file systems
on VISA-attached emulated disk drives using UDP/IP. By
using IP, we expect to take advantage of its scaling charac-
teristics and support for heterogeneous media to build large,
long-lived systems. Detailed file system and network CPU
utilization and performance data indicate that it is possible
for UDP/IP to reach more than 80% of SCSI’s maximum
throughput without the use of network coprocessors. We
conclude that IP is a viable alternative to special-purpose
storage network protocols, and presents numerous advan-
tages.

1 introduction

Storage system architectures are increasingly network-oriented,
exploiting the ubiquity of networks to replace the direct host
channel. Peripherals attached directly to networks are called
network-attached peripherals (NAPS), or more specifically,
network-attached storage devices (NASDs).

We have proposed that NAPS use the Internet protocol
suite; in this paper we provide data on a sample implemen-
tation which supports the claim that the Internet Protocol
(IP) can perform acceptably for NAPS.

In the experiments presented in this paper, we have used
the User Datagram Protocol (UDP) as a transport proto-
col to send and receive SCSI commands and data to emu-
lated network-attached disk drives. We have achieved data
rates of 70+ megabits per second (Mbps) for read and write

*This research was sponsored by the Defense Advanced Research
Projects Agency under Contract No. DABT63-93-C-0062. Views and
conclusions contained in this report arc the authors’ and should not
be interpreted as representing the official opinion or policies, either
expressed or implied, of ARPA, the 1J.S. Government, or any person
or agency connected with them.

“Author’s current address: Quantum Corp., Milpitas, CA,
Rodney.VanMeterQqntrn.corn.

Permiwon to make dlgital or hard copes of all or part of this work for
personal or classroom use 4s granted wthout fee prowded that
copes are not made or dwributed for proflt or commercial advan~
tage and that copses bear this ncace and the full citatmn on the frst page
To copy otherww, to republish. to post on servers or to
redtstribute to IIsts. reqwes pnor specific permission and/or a fee.
ASPLOS VIII lo/98 CA,USA
0 1998 ACM 1.58113107.0/98/0010...$5.00

through the file system over Myrinet before becoming CPU
limited, and known optimizations could be expected to raise
that to approximately 95 for write and 110 for read. TCP
is predicted to be lo-25% slower than UDP. Fast ethernet
is only 10% slower than Myrinet, with the difference caused
primarily by ethernet’s smaller MTU raising the amount
of per-packet processing which must be done. Our analy-
sis predicts that SCSI performance on the same hardware
would become CPU-bound at 110 Mbps write, 133 Mbps
read. Our conclusion is that more than 80% of maximum
SCSI performance can be achieved using IP.

By demonstrating comparable performance, we open the
door to the adoption of the Internet protocol suite by oper-
ating system vendors and disk drive manufacturers as an
alternative to the numerous storage networks now being
developed. This adoption would improve the sharability
and scalability of storage systems with respect to numbers
of network-attached devices and client systems, while sub-
stantially reducing legacy problems as technology advances,
shortening development time and leveraging networking tech-
nology. In addition, TCP/IP enables such new wide-area
uses as remote backup and mirroring of devices across the
Internet.

This work was done in the course of the Netstation project,
which concentrates on operating systems, network proto-
cols, hardware mechanisms, and security and sharing mod-
els for network-attached peripherals. Some of the goals of
the project are to demonstrate (1) that IP can provide ac-
ceptable performance in a host operating system when used
to access peripherals, (2) that IP can be implemented effi-
ciently inside network-attached peripherals, and (3) that our
derived virtual device model enables efficient, secure use of
NAPS. This paper addresses only the first point; the other
two are presented in separate papers [HVF98, VHFSG].

The paper begins with a brief description of Netsta-
tion, the network-as-backplane system architecture of which
VISA forms a part. Section 3 describes the principles of net-
working as applied to network-attached peripherals, with
special emphasis on the problems of scalability and host OS
adaptation. We then describe related work, followed by the
VISA architecture, performance, and possible performance
improvements. Finally, we present our conclusions.

2 Netstation

Netstation is a heterogeneous distributed system composed
of processor nodes and network-attached peripherals [FinSl,
FM94]. The peripherals are attached to a shared 640 Mbps
Myrinet network or to a 100 Mbps ethernet, as in Figure 1.

71

Hi-Def

magnetic
disk

- / -/I /-
,cl II’

camera

1
Local Arca Network

Display

RAM Disk disk

Figure 1: A Netstation network

The display and camera NAPS have been built; the other
NAPS are currently emulated. The CPU nodes are Spare
20/71 workstations running SunOS 4.1.3; the ideal Netsta-
tion CPU node would have only a CPU, memory and a
network interface.

Connecting peripherals directly to the network allows
sharing of resources and improves system configuration flex-
ibility. Network clients can access peripherals without the
intervention of a server.

Because the devices are attached to an open network
with both trusted and untrusted nodes on the net, security
at the NAPS is critical. We have developed a model we refer
to as the derived virtual device, or DVD [VHF96]. DVDs
provide a protected execution context at the device, allowing
direct use of the devices by untrusted clients, such as user
applications. The owner of a device defines the security
policy, downloads a description to the NAP, and the NAP
enforces the policy. This allows the owner to define a set
of resources and operations allowed. Thus, a camera can
be granted write access to only a specific region of a frame
buffer, or a user application can be given read-only access to
a DVD which represents a disk-based file or disk partition.

The only network-attached peripheral used during the
experiments described in this paper is IPdislc, our emulated
network-attached disk drive. IPdisk will be described in
more detail in section 5.1.

VISA, our Virtual Internet SCSI Adapter, is the primary
topic of this paper. It is the OS mechanism for supporting
access to storage peripherals via the network.

3 Networking for NAPS

Netstation’s shift to network-attached peripherals has a pro-
found impact on the overall system architecture. In this
section, we explore the technological and architectural mo-
tivations to make the change and its effect on host operating
systems. We discuss the problems that must be solved to
build large systems on heterogeneous networks, and show
how choosing the TCP/IP suite solves these problems. Fi-
nally, we briefly discuss the appropriate high-level interface
NAPS should present.

Developers of storage network technologies have started
with different goals and assumptions about important is-
sues such as number and type of devices and hosts to be
interconnected, physical distance, cost and bandwidth. The
result has been a proliferation of technologies developed pri-
marily for NAPS, including 1394 (Firewire), Fibre Channel
fabrics and Arbitrated Loop, HiPPI, and Serial Storage Ar-
chitecture (SSA), as well as vendor-specific networks. Most
of these have included development of complementary new
physical, link, network and transport layers [Van96].

3.1 Motivation

Netstation uses network-attached peripherals to better share
peripherals and take advantage of the relative technological
trends of buses, networks, and peripheral processors.

The architectural reasons to shift from host adapter-
attached devices to network-attached are better sharing of
devices and reduction of the server’s workload [RG96]. By
allowing clients to directly access the devices, the server is
no longer in the data path, reducing latency and demands on
its buses, memory and processors. Devices can also commu-
nicate directly with each other without sending data across

72

a single shared system bus.
Buses do not scale well. They do not scale in distance;

shortening a bus can raise data rates, forcing a direct trade-
off in design. They do not scale in the number of devices
interconnected, generally having a firm upper bound below
twenty. They do not scale in aggregate bandwidth with the
number of devices, as bandwidth is shared among the con-
nected devices, and, due to increased capacitance, available
bandwidth may actually decrease as devices are added.

Networks, especially serial optical networks, are improv-
ing rapidly in speed, typically scale well to large numbers
of nodes, and can stretch over significant distances. Such
networks are pushing into the gigabit per second range, a
speed comparable to popular low-end buses such as PCI.
Multicomputers and clustered systems have interconnected
processors via networks for many years; I/O systems are
now adopting networks to receive the same benefits.

3.2 Host I/O System and Networking interaction

There are several characteristics which differentiate I/O for
file systems from interactive application-level network I/O
such as HTTP or telnet. Netstation uses some of these to im-
prove the operating system efficiency, but further improve-
ments are possible.

File transfers are generally large, page-aligned multiples
of the system’s page size (in our case, 4KB). On write, they
are already pinned into memory and mapped into the kernel
address space by the file system before they are handed to
the bus or network subsystem. This may reduce the map-
ping and copying operations typically used to move data
from user buffers to kernel buffers. On read, pages have al-
ready been selected, so the memory destination of incoming
data is known in advance.

The file system cares only about the completion of the
entire I/O operation. Data buffers will not be released to the
application or virtual memory (VM) system until the read
or write is finished. Thus, it is unnecessary to send par-
tial completion status up the protocol stack until the entire
transfer has either completed or failed. Typically, modern
SCSI host bus adapters post only one interrupt to the host
on completion or error, with requests that may be megabytes
long. The host OS maintains a simple timer for the com-
pletion of the entire I/O. Sophisticated cards maintain one
context per target device on the bus, and are capable of mul-
tiplexing among them. Current Fibre Channel interfaces are
approaching a similarly autonomous level of operation, im-
plementing the FC transport layer in the network interface
card.

3.3 Scaling Problems Faced by I/O Networks

Netstation adopted the TCP/IP suite to leverage off the In-
ternet community’s experience with scale and heterogeneity.
We believe that this experience makes the TCP/IP suite an
increasingly appropriate choice and LAN-specific solutions
increasingly inappropriate as more clients and servers are at-
tached to more and larger heterogeneous storage networks.

The I/O network technologies deployed to date appear
to offer only limited scalability, due to weakness in one or
more areas. Media bridging, heterogeneity along many axes,
security, latency tolerance, and congestion and flow control
are several important areas that must be addressed.

Media bridging or routing becomes important as more
hosts spread over more hops, and more legacy systems (both

hosts and nets) must be accommodated. In many environ-
ments, support for multiple networks and complex topolo-
gies, of the same or different types, is likely to be critical.
This brings up issues of formatting, addressing, and espe-
cially underlying protocol interoperability.

3.4 Networking Protocols

In the Netstation project, we have chosen to work with
UDP/IP and TCP/IP, reasoning that the more general ar-
chitecture provides features that will be critical to network-
attached peripherals in the long run. We expect that the
performance shortcomings will be resolved by the network-
ing research and development community.

Media-specific development of network and transport lay-
ers leaves systems with potential interoperability and legacy
problems. While it is possible, for example, to route Fi-
bre Channel frames across HiPPI networks, creating such
exchange protocols for every possible pair of network tech-
nologies results in O(iV’) protocols. If other networks can-
not provide in-order delivery and support the flow control
mechanisms Fibre Channel expects (either for class 2 or class
3 service), interoperability will be difficult. Additions of
new clients or devices to the network are limited to net-
work technologies which interoperate, regardless of external
forces such as economic constraints, availability of new net-
work technologies, etc.

Most developers and users of such networks (and de-
vices for them) have discarded the possibility of adapting
the TCP/IP protocol suite for communicating with NAPS ‘.
Reasons cited include inappropriateness for the type of traf-
fic, TCP’s wide-area tuning, the complexity of TCP, and
especially performance of the entire TCP/IP suite in both
bandwidth and latency [G+97]. We argue that these con-
cerns are misplaced for several reasons.

Complexity is inherent as systems become larger. TCP/IP’s
complexity was not created arbitrarily, but developed in re-
sponse to particular external stimuli, solving the problems
presented above. Fibre Channel and other network trans-
port protocols will have to face similar decisions as they
attempt to address the same problems.

Earlier analyses of TCP/IP performance may have been
based on poorly tuned or now outdated TCP/IP implemen-
tations. The Fibre Channel standardization effort, for ex-
ample, was begun in 1988; much of the research on effi-
cient networking implementations cited here has been con-
ducted in the last decade. Older implementations often im-
pose penalties such as extra data copies, separate checksum-
ming passes, and inefficient demultiplexing of incoming data.
Some of the improvements will be discussed in section 7.

3.5 Device Command Model

Once the architectural decision has been made to connect
the peripheral to a network, the most important choice is
the command request interface. Disk drives traditionally
use a block-level interface, while network file servers use
a file model appropriate to the needs of a particular set
of clients. In the course of rearchitecting distributed stor-
age systems, other choices are possible, such as an “object”
model in which the disk is responsible for layout decisions
but not file naming and security [G+96].

We have chosen a block interface, enhanced for security
with derived virtual devices, rather than a file or file-like

‘Most of these net technologies can carry IP traffic for host-to-host
communication, however.

73

model. This allows the simplest reuse of existing file sys-
tem and operating system technology (data layout, parti-
tioning, mode manipulation, the sd SCSI disk driver, fsck
and format, virtual memory interaction, etc.). This also
allows the broadest range of uses of the device, providing
clients with the choice to build a Fast File System (FFS) or
log-structured file systems, non-Unix file systems, network
RAID: and other uses of raw partitions such as swap space,
hierarchical storage management cache and databases.

4 Related Work

The projects most similar to Netstation are MIT’s ViewSta-
tion [HAI+ and Cambridge’s Desk Area Network (DAN) [BHMPSS].
Both use AT’M networks as their device interconnect, and
establish a physical boundary to the system for security pur-
poses, while Netstation uses protocol-based security. They
have defined a useful taxonomy of dumb, supervised and
smart devices.

Netstation CPU Node (Sun)

Network-attached storage is an area of much current re-
search and development. Fibre Channel disk drives, new dis-
tributed file server architectures, and custom development
of storage networks all play a part.

A TCP/IP RAID controller was developed at Lawrence
Livermore National Labs; it is the first TCP disk device of
which we are aware [WM95].

Mainframe channels have been extended to run over phone
lines and even WANs for remote device mirroring; products
from CNT, EMC and others perform such functions. How-
ever, they typically use media-specific protocols.

Fibre Channel-attached disk drives utilize a simple SCSI
block interface with no security on a moderately complex
network. As described above, this raises concerns about
security, scalability, legacy systems and interoperability with
other types of networks.

The CMU Parallel Data Lab’s Network Attached Secure
Disk (NASD) project divides NFS-like functionality between
a file manager and the disk drives themselves, so that not
only read and write commands but also attribute set and
get are executed at the drive [Gf96, RG96, G+97]. The
file manager is responsible primarily for verifying credentials
and establishing access tokens.

Soltis’ Global File System (GFS) uses Fibre Channel disk
drives modified to support a lock primitive [SRO96, So197].
This provides simple, efficient distributed locking. The drive
itself attaches no meaning to the locks; by convention among
the clients, they are used to lock inodes and other data struc-
tures.

The Petal distributed disk system provides a virtual disk
model on which the Frangipani distributed file system is
built [LT96, TML97]. Due to the virtualization of storage
space, their model moves the actual backing store allocation
to the disk, though the interface between Petal and Frangi-
pani is a block-level one.

Various system vendors have developed their own net-
works on which distributed device sharing takes place. VAX-
clusters [KLS86] and ServerNet [HG97] are two examples
which use message passing between devices and hosts; the
new SGI Origin series uses custom hardware to implement a
shared address space on a switched network which includes
many processors and I/O nodes [LL97].

5 VISA Architecture

VISA, Netstation’s Virtual Internet SCSI Adapter, is an op-
erating syst,em module which makes Internet-attached pe-

user
applications ------- Lz ---- -

kernel

TCP UDP

IP

Myrinet API ethernet

V V

Myrinet ethernet SCSI bus Fibre
Channel

Figure 2: Netstation MPU node OS components. sd = SCSI
disk device driver, esp = SCSI bus adapter driver, VISA =
Virtual Internet SCSI Adapter, VM = virtual memory, FFS
= Fast File System

74

ripherals appear as if they were attached to a local SCSI
blIS.

VISA implements an instantiation of the
scsi-transport structure. SunOS uses a layered device
driver model for SCSI devices. Device drivers which present
the standard block or raw interfaces found in /dev are spe-
cific to a type of peripheral, such as sd for SCSI disks and
st for SCSI tapes. For SCSI devices, these drivers in turn
depend on lower-level services to communicate with the spe-
cific type of host adapter present. The scsi-transport
structure consists primarily of pointers to nine high-level
functions that implement a well-defined interface for send-
ing commands to a SCSI device a.nd managing the memory
for returned data.

In figure 2, the sd SCSI disk driver is shown transmit-
ting requests to VISA and to esp. Esp is the standard SCSI
adapt,er type present on Sun SPARC workstations. Addi-
tional implementations exist for third-party SCSI adapters.
It is at this layer that support for networked SCSI, such
as Fibre Channel, is installed. Because we are using stan-
dard SCSI commands, no additional packaging or format-
ting, such as XDR, is required.

VISA transmits packets by calling UDP, which uses IP to
send packets over any supported network medium. We have
used both 1OObT ethernet and Myrinet in these experiments.

We use UDP as the transport-layer protocol because we
expected UDP to be faster than TCP as well as easier to
work with inside the kernel. On top of UDP we found it
necessary to build a simple reliability layer. While the net-
work itself is highly reliable, SunOS provides only limited
buffering in the sockets, and packets are discarded when
the buffer is full. Our reliability layer works with a fixed-
size window and assumes in-order delivery; on every 48KB
transmitted, the sender pauses for an ACK. On receipt of
out-of-order data, a NAK is sent and the sender rolls back.
A timeout of one second is currently implemented only at
the device (IPdisk). The host depends on either IPdisk to
discover network glitches, or the higher-level I/O request to
timeout and be restarted within the sd device driver. This is
purely a convenience; a production-quality implementation
would have timers at both ends.

We use 8 kilobyte data payloads, plus a small header in-
cluding sequence numbers, on top of the UDP packet. Over
Myrinet , this is a single packet. Over ethernet, this forces IP
fragmentation in order to work within the 1500 byte MTU.

As is common with UDP, checksumming is turned off.
The data integrity is still protected by the link layer check-
sum. Both hardware and software mechanisms for doing
the TCP/UDP checksum with zero CPU cost are known. It
can be done during data copy, DMA or transmission [PP93,
FHV96].

We use one kernel pseudo-process per device attached
to the VISA virtual bus. Much like NFS biods, these arc
responsible for the communication with the device, and are
necessary because the SunOS kernel is not multithreaded.

5.1 IPdisk

IPdisk is our Netstation emulated disk drive. It runs as
a user process on another Sun, emulating the SCSI block
device command set running over UDP or TCP. It can be
configured to use RAM to emulate disk storage, or to use
a regular file, or access an actual raw SCSI disk. For the
experiments described in this paper, IPdisk was used with
a 32 MB RAM buffer, the fast& form of backing store, in
order to stress the host operating system. In this mode, the

physical characteristics (rotational and seek lat~ency, zone-
variable transfer rates, etc.) of a disk are not emulated, so
the host CPU becomes the bottleneck.

IPdisk supports our derived virtual device model. This
allows the owner of the device to download small programs
which act as filters on the SCSI RPCs before those RPCs are
actually executed. This feature is primarily expected to be
used for sharing devices among multiple hosts and execut-
ing third-party (direct device-to-device) copies. Because the
purpose of these experiments is to saturate the host CPU,
DVDs, which only affect execution time at the device, are
not enabled for the experiments presented here.

6 Performance

We have run experiments to measure the performance of reg-
ular Berkeley fast file systems built on top of VISA-attached
disks. The read and write throughput for sequential ac-
cesses are detailed in the following subsections, then in the
next section we discuss potential improvements to this per-
formance.

We measured the CPU utilization for file systems on
VISA-attached disks and on a directly-attached fast, nar-
row (10 MB/set.) SCSI bus. This provides a very direct
comparison of the actual impact of different data transport
mechanisms in a complete file system environment.

Our test configurations utilize a 75 MHz Spare 20/71
with 64 MB of RAM and an 800 Mbps Sbus as the client.
The CPU has 20KB/16KB I/D on-chip caches and 1MB of
external cache. The STREAM benchmark reports memory
copy bandwidth of 61.7 MB/s [McC98]. Identical 20/71s
running IPdisk emulate the network-attached disk drives.
Our absolute performance numbers are low by today’s stan-
dards due to the age of the systems used, but the relative
numbers and conclusions remain valid.

The biggest performance problem we encountered is ex-
cess calls to bcopy. On send, the Myrinet device driver
copies the data from the mbuf chain to a special send buffer
allocated and maintained by the device driver itself in main
memory. From that buffer, the data is then DMAed to the
buffer RAM on the network interface card, from where it is
transmitted onto the network. The nominal reason for the
copy is the expense and complexity of establishing DMA
mappings for arbitrary memory addresses, as well as con-
cerns about data alignment. However, when we are sending
data from complete VM pages, as in VISA or NFS, the pages
are already pinned in memory, properly aligned, and large
enough to more than amortize the cost of creating the map-
ping, making it the proper choice.

The benchmark we are using is a modified version of
Bonnie which reports additional CPU utilization and can
loop on individual subtests to reduce the overhead of pro-
cess creation. Bonnie, written by Tim Bray and available
on the Internet, performs several tests to measure I/O oper-
ation overhead and throughput; we have concentrated here
on throughput. 25MB files were written or read repeatedly
until the total amount of data was one gigabyte.

6.1 Write Performance

Table 1 lists the measured and predicted performance of file
writes on VISA-attached disk drives. Our write through-
put is CPU-limited at 72 Mbps when using Myrinet, with
kernel profiling disabled. Table 2 lists the measured write
throughputs of other configurations and subsystems for com-
parison. Writing just to the file system buffer cache (tech-

75

VISA configuration
Mvrinet UDP

1 thru
I 72

Table 1: VISA Write Rates. Throughput in Mbps.

nically, virtual memory pages, under SunOS) achieves ap-
proximately 115 Mbps (direct measurement of this number
is difficult). We measured the write throughput of a file
system on a physical SCSI disk (a Seagate ST31200W) as
only 22 Mbps, but extrapolation from the CPU consumption
to CPU saturation suggests a throughput of 110 Mbps can
be achieved (assuming the presence of adequately fast disks
and SCSI buses). Our current VISA throughput, therefore,
is only 65% of the estimated SCSI throughput.

The CPU utilization figures in tables 3 and 4 were mea-
sured using a kernel compiled with gprof profiling enabled.
The kernel subsystem figures are calculated by assigning
each kernel function profiled to one of several groups. The
raw data and tables of which functions were assigned to
which groups are available for verification. These numbers
are used to estimate the potential performance gains for dif-
ferent optimizations.

It can be seen from these CPU utilization numbers that,
except for bcopy, the networking CPU cost is only about
half the file system CPU cost and comparable to the “mis-
cellaneous” kernel functions.

As described above, when using Myrinet under SunOS,
write carries a penalty of an unnecessary data copy, and the
1OObT ethernet driver appears to have a similar problem.
We estimate the performance possible if this copy can be
eliminated at approximately 89 Mbps on Myrinet, or ap-
proximately 81% of the maximum estimated SCSI through-
put, as follows: 147.5 - 16.4 = 131.1 CPU seconds for
measured VISA UDP after removing the gprof overhead;
131.1- 24.7 = 106.4 CPU seconds after removing the bcopy.
Multiplying by the measured bandwidth, 72 * 131/106 = 89
Mbps for our estimate of the bcopy-less CPU saturation
point. The other numbers are estimated similarly.

For reasons explained in section 7.1, we have also pre-
dicted the performance using a UDP which consumes 40%
fewer CPU cycles in conjunction with a bcopy-less write.

Application benchmarks show that sending 1GB using
TCP consumed approximately 30 seconds more CPU time
on send than UDP. We added this 30 seconds to the 131 sec-
onds (after removing gprof overhead) required to write 1GB
on a file system built on a VISA-attached disk. From this
we estimate the TCP throughput to be 58 Mbps. Approx-
imately one-third of the increase in CPU time is in calcu-
lating the TCP checksum, the rest is sequence management
with acknowledgements and timer processing. The “faster
TCP” estimate assumes elimination of checksum and bcopy,
but no reduction in the other overhead.

We recorded the distribution of command sizes on one
experimental run of Bonnie writing one gigabyte. A total of
9,409 write commands were sent to the device for a total of
2,064,821 blocks (l.O08GB), counting format, newfs, mount,
and 1GB of file write with metadata updates.

Although the application always writes in chunks of 8KB,

tuned NFS
app. to FS buffer cache

(VM pages)
host memory to

NIC memory via Sbus
SCSI through FS Q19% CPU
SCSI @lOO% CPU (est.)
UDP blast
TCP blast

Table 2: Write Rate Comparison (Mbps)

Module time % CPU
(sets)

user:
benchmark application 31.7 21.2%
kernel:
file system code 37.9 25.4%
Myricom driver bcopy 24.7 16.6%
other networking code 18.6 12.5%
gprof profiling code 16.4 11%
miscellaneous kernel 18.2 12.2%
total 147.5

Table 3: CPU Utilization to Write 1GB on UDP VISA

Module time % CPU
(sets)

user:
benchmark application
kernel:

Table 4: CPU Utilization to Write 1GB on an esp SCSI Bus

76

VISA configuration thru
Myrinet UDP 085% CPU 60
Myrinet UDP @lOO%CPU (est.) 71
1OObT UDP @82% CPU 53
1OObT UDP @lOO% CPU (est.) 64
without bcopy (est.) 99
with faster UDP (est.) 109
TCP (est.) 59
faster TCP (est.) 82

Table 5: VISA Read Rates. Throughput in Mbps.

the operating system’s write-behind mechanism, called kluster,
coalesces the smaller individual writes into larger ones when
it can. As a result, more than 85% of the total data written
is in commands larger than 1OOKB. This reduces the collec-
tive I/O operation overhead and wastes fewer disk revolu-
tions than smaller operations.

6.2 Read Performance

For the read tests, a 25MB file is read sequentially, the
VM/file buffer cache is flushed using a SunOS ioctl, and
it is reread. This process is repeated until 1GB of data
has been read. The file system is clearly effectively detect-
ing sequential activity and reading ahead of the process,
with the result that almost all operations are 56KB long.
This slightly exceeds our protocol window, creating some
idle time and reducing our throughput.

Table 5 lists the measured and estimated throughput for
several VISA configurations, and table 6 lists the measured
and estimated throughput for related subsystems. Our VISA
read throughput is 60 Mbps at 85% CPU utilization, from
which we infer the CPU will saturate at 71 Mbps, essentially
the same as our write rate. This is a lower percentage, 53%,
of the SCSI potential throughput than for write.

Tables 7 and 8 show the measured CPU utilization of
different kernel subsystems during read. The network over-
head is higher, while the file system overhead is lower for
read than for write.

Again, however, the primary culprit is bcopy; if it can
be eliminated VISA UDP throughput is estimated to reach
74% of SCSI bus potential. Adopting the optimizations from
section 7.1, we expect to reach 82% of SCSI bus potential,
roughly equivalent to our predicted best write performance.

For TCP, the estimates are derived by adding the mea-
sured 24 second overhead for an application to receive 1GB
over TCP instead of UDP. As with write, the checksum is the
largest addition; we have estimated the performance possible
by eliminating checksum, bcopy, and various select related
functions which a kernel VISA TCP implementation would
not use and listed this in table 5 as “faster TCP”.

The per-packet costs are a significant concern, but we
see only a 10% throughput drop from 8KB Myrinet packets
to 1500 byte ethernet packets.

7 Potential Performance Improvements

Basic functionality at a reasonable data rate has been demon-
strated. Nevertheless, it is clear from these performance
numbers that host operating systems need substantial tun-
ing to be efficient for the types of transfers common in
file systems. Many of the necessary optimizations are un-
derstood, if not yet widely deployed; one research project

tuned NFS
from FS buffer cache

(VM pages, no device access)
NIC memory to

host memory via Sbus
SCSI through FS @190/o CPU
est. SCSI @lOO% CPU
UDP blast
TCP blast

60
200

- 400

25
133
150
104

Table 6: Read Rate Comparison (Mbps)

kernel:
file system code
network bcopys
other networking code
gprof profiling code
miscellaneous kernel

34.4 27.5%
37.6 30.0%
20.6 14.6%
16.1 11%
21.2 17.0%

I

144.9 (1 total

Table 7: CPU Utilization to Read 1GB on UDP VISA

Module time % CPU
(sets)

user:
benchmark application 26.6 33%
kernel:
file system code 26.1 32.3%
esp SCSI adapter code 5.1 6.3%
gprof profiling code 11.1 13.7%
miscellaneous kernel 11.7 14.5%
total 80.6

Table 8: CPU Utilization to Read 1GB on an esp SCSI Bus

77

demonstrated more than twice our TCP performance on
similar hardware with an experimental version of Solaris and
hardware support for checksumming [Chu96].

7.1 Software

VISA is implemented in SunOS 4.1.3 for Sun4m architec-
tures. When the Netstation work was begun, Myrinet was
the network of choice, and SunOS was the primary platform
on which Myrinet was supported. Although SunOS is now
considered an older operating system, it is well-studied and
mature. It is representative of many more modern BSD-
derived operating systems. However, many recent innova-
tions in TCP/IP implementations are not present.

Several research projects have implemented fast demulti-
plexing packet filters which simplify the process of determin-
ing the data destination address on packet reception [DWBf93,
YBMM94, EK96, Kay95]. Adoption of such an approach
should eliminate the associated bcopy and complement other
per-packet processing improvements.

Partridge demonstrated that the per-packet CPU cost
for UDP processing can be reduced by 26-40% relative to the
stock 4.3BSD/SunOS 4.1.1 implementation on a SPARC [PP93].
This should translate to lo-25% reduction in the total CPU
use in file systems, giving corresponding throughput im-
provements. Similar improvements have been adopted into
the 4.4BSD code.

7.2 Hardware

In this paper, we have concentrated on evaluating the cost
of doing IP in the host operating system software. It is also
possible to move some or all of the network protocol stack
into the network interface card itself. Based on our data, this
has the potential to eliminate the 14% (UDP write) to 38%
(TCP read) performance overhead of doing CPU-based net-
work protocol processing. Adding hardware to achieve such
modest performance gains may be the correct architectural
approach only under certain conditions.

Minimally, the NIC should support TCP checksumming
on both transmit and receive and fast demultiplexing on re-
ceive. This can significantly reduce the data touching work-
load of the CPU for a modest increase in hardware complex-
ity.

A complete NIC-side transport implementation would
accept for transmission an undifferentiated chunk of memory
and perform all packetization as well as managing transmis-
sion windows and processing and generating ACKs. This
would leave the host as unaware of the details of TCP/IP as
it currently is of the handshakes on a SCSI bus. Matters has
shown that this is possible in an 120-compliant NIC [Mat98].

Myer and Sutherland recognized thirty years ago that the
boundary between work done by the CPU and by peripheral
processors moves in cycles over time; they referred to this as
the “wheel of reincarnation” [MS68]. Over the last decade,
numerous hardware experiments were conducted and sug-
gestions were made for putting more functionality into the
network adapter [Kan88, CSSZSO, Che87, Sid91, DWB+93,
Dav91, TS91, BJM+96, SWR.91, BPP91, DPD91, TP96].
Most of the more radical features have not been accepted
into mainstream adapters. Some of these approaches have
not been adopted into the mainstream because they are spe-
cific to Open Systems Interconnection (OSI) or other proto-
cols. Others have failed simply because the improvement in
general-purpose CPUs has outstripped the improvement in
the processors on outboard NICs when the researchers have
fallen behind the performance development curve.

8 Conclusions

Network-based storage architectures share peripherals among
many clients and remove the server from the data path by at-
taching the peripherals directly to the network. Peripherals
can be accessed over some distance and can take advantage
of the scaling properties of networks.

We have conducted the most extensive analysis to date
of the feasibility of using the TCP/IP protocol suite instead
of media-specific protocols for accessing shared, networked
storage devices. The experiments presented in this paper
concentrate primarily on the host operating system mech-
anisms necessary for such a change, examining the achiev-
able throughput and the CPU performance required. Our
data indicate that performance more than 80% of direct-
attached SCSI device performance is achievable using UDP
without the addition of network coprocessors. TCP perfor-
mance would be somewhat lower, estimated at 60-75%. Our
conclusion is that, while current performance is somewhat
lacking, with appropriate hardware and software engineer-
ing effort taking advantage of the unique characteristics of
I/O for file systems, TCP/IP is a viable transport protocol
alternative to Fibre Channel and other protocols.

The architectural implications of the adoption of TCP/IP
would be significant. Storage systems which easily span het-
erogeneous local networks as well as wide area networks can
be constructed. Legacy systems, both today and in the fu-
ture, will be less problematic because TCP/IP runs over
many types of network media. Systems which use TCP/IP
are already known to scale to large numbers of hosts. Stor-
age I/O will be able to easily share both hardware and
software with host-to-host network traffic, reducing devel-
opment effort and deployed hardware costs.

Availability and Acknowledgments

The source code for VISA itself can be made available only
to those sites with SunOS 4.1.3 source code licenses. Code
for the disk emulator and Bonnie and the measured perfor-
mance data will be made available on the Netstation project
web page and the author’s home page.

This paper has been substantially improved by feedback
from John Heidemann, Ted Faber, Bill Manning and .Joe
Bannister of ISI, Paul Borrill and Daniel Stodolsky of Quan-
tum, and the anonymous referees.

References

[ACM911

[BHMP95]

[BJM+96]

[BPPSl]

ACM. Proc. SIGCOMM ‘91. ACM, September
1991.

P. Barham, M. Hayter, D. McAuley, and
I. Pratt. Devices on the desk area network. J.
Selected Areas in Communications, 13(4):722--
732, May 1995.

Greg Buzzard, David Jacobson, Milon Mackey,
Scott Marovich, and John Wilkes. An imple-
mentation of the Hamlyn sender-managed in-
terface architecture. In PTOC. Second USENIX
Symp. on Operating Systems Design and Imple-
mentation. USENIX, October 1996.

Mary L. Bailey, Michael A. Pagels, and Larry L.
Peterson. The z-chip: An experiment in hard-
ware demultiplexing. In Proceedings of the

78

IEEE Workshop on High Performance Commu-
nrcations Subsystems, February 1991.

[Che87] Greg Chesson. Protocol engine design. In Proc.
1987 Summer IJSENIX Conference, pages 209-
215. USENIX, 1987.

[Chu96] Hsiao-keng Jerry Chu. Zero-copy TCP in SO-
laris. In Proc. 1996 USENIX Technical Confer-
ence, pages 253 264. USENIX, January 1996.

[CSSZSO] Eric C. C oo p er, Peter A. Steenkiste, Robert D.
Sansom, and Brian D. Zill. Protocol implemen-
tation on the Nectar communication processor.
In Proc. SIGCOMM ‘90, pages 188199. ACM,
1990.

[DavSl] Bruce S. Davie. A host-network interface ar-
chitecturc for ATM. In Proc. SIGCOMM ‘91
[ACMSl], pages 307-315.

[DPDSl] Peter Druschel, Larry L. Peterson, and Bruce S.
Davie. Experience with a high-speed network
adaptor: A software perspective. In Proc. SIG-
COMM ‘94. ACM, ACM, 1991.

[DWB+93] Chris Dalton, Greg Watson, David Banks,
Costas Calamvokis, Aled Edwards, and John
Lumley. Afterburner. IEEE Network, 7(4):35-
43, July 1993.

[EK96] Dawson R. Engler and M. Frans Kaashoek.
DPF: Fast, flexible message demultiplexing us-
ing dynamic code generation. In Proc. SIG-
COMM ‘96, pages 53~-59. ACM, ACM, October
1996.

[FHV96] Gregory Finn, Steve Hotz, and Rodney Van Me-
ter. The impact of a zero-scan internet check-
summing mechanism. ACM Computer Commu-
nication Review, 26(5):27-39, October 1996.

[Fin911 Greg Finn. An integration of network
communication with workstation architec-
ture. ACM Computer Communication Re-
view, October 1991. Available online at
http://www.isi.edu/netstation/.

[FM941 Gregory G. Finn and Paul Mockapetris. Net-
station architecture: Multi-gigabit workstation
network fabric. In Proc. Net World+fnterOp
Engineer Conference, 1994.

[G+96] Garth Gibson et al. A case for network-attached
secure disks. Technical Report CMU-CS-96-
142, CMU, June 1996.

[G+97] Garth A. Gibson et al. File server scaling with
network-attached secure disks. In Proc. ACM
International Conference on Measurement and
Modeling of Computer Systems. ACM, June
1997.

[HAI+95] Henry H. Houh, Joel F. Adam, Michael Ismert,
Christopher J. Lindblad, and David L. Ten-
nenhouse. The VuNet desk area network: Ar-
chitecture, implementation and experience. J.
Selected Areas in Communications, 13:710-721,
May 1995.

[HG97]

[HVF98]

[Kan88]

[Kay951

[KLS86]

[Kob96]

[LL97]

[LT96]

[Mat981

[McC98]

[MS681

[PP93]

[RG96]

[SiclSl]

Robert W. Horst and David Garcia. ServerNet
SAN I/O architecture. In Randy R.ettberg and
William Dally, editors, Hot Interconnects Sym-
posium V. IEEE Computer Society, 1997.

Steve Hotz, Rodney Van Meter, and Greg Finn.
Internet protocols for network-attached periph-
erals. In Ben Kobler, editor, Proc. Sixth NASA
Goddard Conference on Mass Storage Systems
and Technologies in Cooperation with Fifteenth
IEEE Symposium on Mass Storage Systems,
March 1998.

Hemant Kanakia. The VMP network adapter
board (NAB): High-performance network com-
munication for multiprocessors. In Proc. SIG-
COMM ‘88, pages 175-187. ACM, 1988.

Jonathan Simon Kay. Path IDS: A Mechanism
for Reducing Network Software Latency. PhD
thesis, UCSD, 1995.

Nancy P. Kronenberg, Henry M. Levy, and
William D. Strecker. Vaxclusters: A closely-
coupled distributed system. ACM Transactions
on Computer Systems, 4(2):130-146, May 1986.

Ben Kobler, editor. Fifth NASA Goddard Con-
ference on Mass Storage Systems and Technolo-
gies, September 1996.

James Laudon and Daniel Lenoski. The SGI
Origin: A ccNUMA highly scalable server. In
Computer Architecture News, Proc. 24th An-
nual International Symposium on Computer
Architecture, pages 241-251. ACM, June 1997.

Edward K.
Lee and Chandramohan A. Thekkath. Petal:
Distributed virtual disks. In Proc. ACM Sev-
enth International Conference on Architectural
Support for Programming Languages and Oper-
ating Systems. ACM, October 1996.

Todd Matters. Offloading TCP/IP to intelligent
adapters. In Server I/O ‘98. Strategic Research
Corp., January 1998. Slides from a presentation.

John D. McCalpin. STREAM: Measuring
sustainable memory bandwidth in high per-
formance computers. web page, July 1998.
http://www.cs.virginia.edu/stream/.

T. H. Myer and I. E. Sutherland. OIL the design
of display processors. Communications of the
ACM, 17(6):410-414, June 1968.

Craig Partridge and Stephen Pink. A faster
UDP. IEEE/ACM Trans. on Networking,
1(4):4299440, August 1993.

Erik Riedel and Garth Gibson. Understanding
customer dissatisfaction with underutilized dis-
tributed file servers. In Kobler [Kob96], pages
371-388. also known as CMU-CS-96-158.

Michael A. Sidenius. Hardware support for im-
plementation of transport layer protocols. Pro-
tocols for High Speed Networks, pages 251-267,
1991.

79

[So1971

[SR096]

[SWRSl]

[TML97]

[TP96]

[TS91]

[Van961

[VHF961

[WM95]

Steven R. Soltis. The Design and Implementa-
tion of a Distributed File System base on Shared
Network Storage. PhD thesis, U. Minnesota,
1997.

Steven R. Soltis, Thomas M. Ruwart, and
Matthew T. O’Keefe. The global file system.
In Kobler [Kob96], pages 319-342.

Martin Siegel, Mark Williams, and Georg
Rosler. Overcoming bottlenecks in high-speed
transport systems. In Proc. 16th IEEE Confer-
ence on Local Computer Networks, pages 399-
407. IEEE, 1991.

Chandramohan A. Thekkath, Timothy Mann,
and Edward K. Lee. Frangipani: A scalable dis-
tributed file system. In Proc. 16th ACM Sym-
posium on Operating Systems Principles, pages
224-237. ACM, October 1997.

J. Touch and B. Parham. Implementing the in-
ternet checksum in hardware. Technical Report
Internet RFC 1936, ISI, April 1996.

C. Brendan Traw and Jonathan M. Smith. A
high-performance host interface for ATM net,-
works. In Proc. SIGCOMM ‘91 [ACMSl], pages
317-325.

Rodney Van Meter. A brief survey of
current work on network attached periph-
erals (extended abstract). ACM Operat-
ing Systems Review, pages 63-70, January
1996. Full version available on the web at,
http://www.isi.edu/-rdv/nap-research/.

Rodney Van Meter, Steven Hotz, and Gre-
gory Finn. Derived virtual devices: A secure
distributed file system mechanism. In Kobler
[Kob96].

Dave Wiltzius and Kim Minuzzo. Network-
attached peripherals (NAP) for HPSS/SIOF.
web page, October 1995.
http://www.llnl.gov/liv-comp/siof/siof-nap.html.

[YBMM94] Masanobu Yuhara, Brian N. Bershad, Chris
Maeda, and J. Eliot B. Moss. Efficient packet,
demultiplexing for multiple endpoints and large
messages. In Proc. USENIX Winter 1994 Tech-
nical Conference, January 1994.

80

