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Abstract 

In this paper we describe the implementation of VISA, our 
Virtual Internet SCSI Adapter. VISA was built to evalu- 
ate the performance impact on the host operating system of 
using IP to communicate with peripherals, especially stor- 
age devices. We have built and benchmarked file systems 
on VISA-attached emulated disk drives using UDP/IP. By 
using IP, we expect to take advantage of its scaling charac- 
teristics and support for heterogeneous media to build large, 
long-lived systems. Detailed file system and network CPU 
utilization and performance data indicate that it is possible 
for UDP/IP to reach more than 80% of SCSI’s maximum 
throughput without the use of network coprocessors. We 
conclude that IP is a viable alternative to special-purpose 
storage network protocols, and presents numerous advan- 
tages. 

1 introduction 

Storage system architectures are increasingly network-oriented, 
exploiting the ubiquity of networks to replace the direct host 
channel. Peripherals attached directly to networks are called 
network-attached peripherals (NAPS), or more specifically, 
network-attached storage devices (NASDs). 

We have proposed that NAPS use the Internet protocol 
suite; in this paper we provide data on a sample implemen- 
tation which supports the claim that the Internet Protocol 
(IP) can perform acceptably for NAPS. 

In the experiments presented in this paper, we have used 
the User Datagram Protocol (UDP) as a transport proto- 
col to send and receive SCSI commands and data to emu- 
lated network-attached disk drives. We have achieved data 
rates of 70+ megabits per second (Mbps) for read and write 
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through the file system over Myrinet before becoming CPU 
limited, and known optimizations could be expected to raise 
that to approximately 95 for write and 110 for read. TCP 
is predicted to be lo-25% slower than UDP. Fast ethernet 
is only 10% slower than Myrinet, with the difference caused 
primarily by ethernet’s smaller MTU raising the amount 
of per-packet processing which must be done. Our analy- 
sis predicts that SCSI performance on the same hardware 
would become CPU-bound at 110 Mbps write, 133 Mbps 
read. Our conclusion is that more than 80% of maximum 
SCSI performance can be achieved using IP. 

By demonstrating comparable performance, we open the 
door to the adoption of the Internet protocol suite by oper- 
ating system vendors and disk drive manufacturers as an 
alternative to the numerous storage networks now being 
developed. This adoption would improve the sharability 
and scalability of storage systems with respect to numbers 
of network-attached devices and client systems, while sub- 
stantially reducing legacy problems as technology advances, 
shortening development time and leveraging networking tech- 
nology. In addition, TCP/IP enables such new wide-area 
uses as remote backup and mirroring of devices across the 
Internet. 

This work was done in the course of the Netstation project, 
which concentrates on operating systems, network proto- 
cols, hardware mechanisms, and security and sharing mod- 
els for network-attached peripherals. Some of the goals of 
the project are to demonstrate (1) that IP can provide ac- 
ceptable performance in a host operating system when used 
to access peripherals, (2) that IP can be implemented effi- 
ciently inside network-attached peripherals, and (3) that our 
derived virtual device model enables efficient, secure use of 
NAPS. This paper addresses only the first point; the other 
two are presented in separate papers [HVF98, VHFSG]. 

The paper begins with a brief description of Netsta- 
tion, the network-as-backplane system architecture of which 
VISA forms a part. Section 3 describes the principles of net- 
working as applied to network-attached peripherals, with 
special emphasis on the problems of scalability and host OS 
adaptation. We then describe related work, followed by the 
VISA architecture, performance, and possible performance 
improvements. Finally, we present our conclusions. 

2 Netstation 

Netstation is a heterogeneous distributed system composed 
of processor nodes and network-attached peripherals [FinSl, 
FM94]. The peripherals are attached to a shared 640 Mbps 
Myrinet network or to a 100 Mbps ethernet, as in Figure 1. 
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Figure 1: A Netstation network 

The display and camera NAPS have been built; the other 
NAPS are currently emulated. The CPU nodes are Spare 
20/71 workstations running SunOS 4.1.3; the ideal Netsta- 
tion CPU node would have only a CPU, memory and a 
network interface. 

Connecting peripherals directly to the network allows 
sharing of resources and improves system configuration flex- 
ibility. Network clients can access peripherals without the 
intervention of a server. 

Because the devices are attached to an open network 
with both trusted and untrusted nodes on the net, security 
at the NAPS is critical. We have developed a model we refer 
to as the derived virtual device, or DVD [VHF96]. DVDs 
provide a protected execution context at the device, allowing 
direct use of the devices by untrusted clients, such as user 
applications. The owner of a device defines the security 
policy, downloads a description to the NAP, and the NAP 
enforces the policy. This allows the owner to define a set 
of resources and operations allowed. Thus, a camera can 
be granted write access to only a specific region of a frame 
buffer, or a user application can be given read-only access to 
a DVD which represents a disk-based file or disk partition. 

The only network-attached peripheral used during the 
experiments described in this paper is IPdislc, our emulated 
network-attached disk drive. IPdisk will be described in 
more detail in section 5.1. 

VISA, our Virtual Internet SCSI Adapter, is the primary 
topic of this paper. It is the OS mechanism for supporting 
access to storage peripherals via the network. 

3 Networking for NAPS 

Netstation’s shift to network-attached peripherals has a pro- 
found impact on the overall system architecture. In this 
section, we explore the technological and architectural mo- 
tivations to make the change and its effect on host operating 
systems. We discuss the problems that must be solved to 
build large systems on heterogeneous networks, and show 
how choosing the TCP/IP suite solves these problems. Fi- 
nally, we briefly discuss the appropriate high-level interface 
NAPS should present. 

Developers of storage network technologies have started 
with different goals and assumptions about important is- 
sues such as number and type of devices and hosts to be 
interconnected, physical distance, cost and bandwidth. The 
result has been a proliferation of technologies developed pri- 
marily for NAPS, including 1394 (Firewire), Fibre Channel 
fabrics and Arbitrated Loop, HiPPI, and Serial Storage Ar- 
chitecture (SSA), as well as vendor-specific networks. Most 
of these have included development of complementary new 
physical, link, network and transport layers [Van96]. 

3.1 Motivation 

Netstation uses network-attached peripherals to better share 
peripherals and take advantage of the relative technological 
trends of buses, networks, and peripheral processors. 

The architectural reasons to shift from host adapter- 
attached devices to network-attached are better sharing of 
devices and reduction of the server’s workload [RG96]. By 
allowing clients to directly access the devices, the server is 
no longer in the data path, reducing latency and demands on 
its buses, memory and processors. Devices can also commu- 
nicate directly with each other without sending data across 
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a single shared system bus. 
Buses do not scale well. They do not scale in distance; 

shortening a bus can raise data rates, forcing a direct trade- 
off in design. They do not scale in the number of devices 
interconnected, generally having a firm upper bound below 
twenty. They do not scale in aggregate bandwidth with the 
number of devices, as bandwidth is shared among the con- 
nected devices, and, due to increased capacitance, available 
bandwidth may actually decrease as devices are added. 

Networks, especially serial optical networks, are improv- 
ing rapidly in speed, typically scale well to large numbers 
of nodes, and can stretch over significant distances. Such 
networks are pushing into the gigabit per second range, a 
speed comparable to popular low-end buses such as PCI. 
Multicomputers and clustered systems have interconnected 
processors via networks for many years; I/O systems are 
now adopting networks to receive the same benefits. 

3.2 Host I/O System and Networking interaction 

There are several characteristics which differentiate I/O for 
file systems from interactive application-level network I/O 
such as HTTP or telnet. Netstation uses some of these to im- 
prove the operating system efficiency, but further improve- 
ments are possible. 

File transfers are generally large, page-aligned multiples 
of the system’s page size (in our case, 4KB). On write, they 
are already pinned into memory and mapped into the kernel 
address space by the file system before they are handed to 
the bus or network subsystem. This may reduce the map- 
ping and copying operations typically used to move data 
from user buffers to kernel buffers. On read, pages have al- 
ready been selected, so the memory destination of incoming 
data is known in advance. 

The file system cares only about the completion of the 
entire I/O operation. Data buffers will not be released to the 
application or virtual memory (VM) system until the read 
or write is finished. Thus, it is unnecessary to send par- 
tial completion status up the protocol stack until the entire 
transfer has either completed or failed. Typically, modern 
SCSI host bus adapters post only one interrupt to the host 
on completion or error, with requests that may be megabytes 
long. The host OS maintains a simple timer for the com- 
pletion of the entire I/O. Sophisticated cards maintain one 
context per target device on the bus, and are capable of mul- 
tiplexing among them. Current Fibre Channel interfaces are 
approaching a similarly autonomous level of operation, im- 
plementing the FC transport layer in the network interface 
card. 

3.3 Scaling Problems Faced by I/O Networks 

Netstation adopted the TCP/IP suite to leverage off the In- 
ternet community’s experience with scale and heterogeneity. 
We believe that this experience makes the TCP/IP suite an 
increasingly appropriate choice and LAN-specific solutions 
increasingly inappropriate as more clients and servers are at- 
tached to more and larger heterogeneous storage networks. 

The I/O network technologies deployed to date appear 
to offer only limited scalability, due to weakness in one or 
more areas. Media bridging, heterogeneity along many axes, 
security, latency tolerance, and congestion and flow control 
are several important areas that must be addressed. 

Media bridging or routing becomes important as more 
hosts spread over more hops, and more legacy systems (both 

hosts and nets) must be accommodated. In many environ- 
ments, support for multiple networks and complex topolo- 
gies, of the same or different types, is likely to be critical. 
This brings up issues of formatting, addressing, and espe- 
cially underlying protocol interoperability. 

3.4 Networking Protocols 

In the Netstation project, we have chosen to work with 
UDP/IP and TCP/IP, reasoning that the more general ar- 
chitecture provides features that will be critical to network- 
attached peripherals in the long run. We expect that the 
performance shortcomings will be resolved by the network- 
ing research and development community. 

Media-specific development of network and transport lay- 
ers leaves systems with potential interoperability and legacy 
problems. While it is possible, for example, to route Fi- 
bre Channel frames across HiPPI networks, creating such 
exchange protocols for every possible pair of network tech- 
nologies results in O(iV’) protocols. If other networks can- 
not provide in-order delivery and support the flow control 
mechanisms Fibre Channel expects (either for class 2 or class 
3 service), interoperability will be difficult. Additions of 
new clients or devices to the network are limited to net- 
work technologies which interoperate, regardless of external 
forces such as economic constraints, availability of new net- 
work technologies, etc. 

Most developers and users of such networks (and de- 
vices for them) have discarded the possibility of adapting 
the TCP/IP protocol suite for communicating with NAPS ‘. 
Reasons cited include inappropriateness for the type of traf- 
fic, TCP’s wide-area tuning, the complexity of TCP, and 
especially performance of the entire TCP/IP suite in both 
bandwidth and latency [G+97]. We argue that these con- 
cerns are misplaced for several reasons. 

Complexity is inherent as systems become larger. TCP/IP’s 
complexity was not created arbitrarily, but developed in re- 
sponse to particular external stimuli, solving the problems 
presented above. Fibre Channel and other network trans- 
port protocols will have to face similar decisions as they 
attempt to address the same problems. 

Earlier analyses of TCP/IP performance may have been 
based on poorly tuned or now outdated TCP/IP implemen- 
tations. The Fibre Channel standardization effort, for ex- 
ample, was begun in 1988; much of the research on effi- 
cient networking implementations cited here has been con- 
ducted in the last decade. Older implementations often im- 
pose penalties such as extra data copies, separate checksum- 
ming passes, and inefficient demultiplexing of incoming data. 
Some of the improvements will be discussed in section 7. 

3.5 Device Command Model 

Once the architectural decision has been made to connect 
the peripheral to a network, the most important choice is 
the command request interface. Disk drives traditionally 
use a block-level interface, while network file servers use 
a file model appropriate to the needs of a particular set 
of clients. In the course of rearchitecting distributed stor- 
age systems, other choices are possible, such as an “object” 
model in which the disk is responsible for layout decisions 
but not file naming and security [G+96]. 

We have chosen a block interface, enhanced for security 
with derived virtual devices, rather than a file or file-like 

‘Most of these net technologies can carry IP traffic for host-to-host 
communication, however. 

73 



model. This allows the simplest reuse of existing file sys- 
tem and operating system technology (data layout, parti- 
tioning, mode manipulation, the sd SCSI disk driver, fsck 
and format, virtual memory interaction, etc.). This also 
allows the broadest range of uses of the device, providing 
clients with the choice to build a Fast File System (FFS) or 
log-structured file systems, non-Unix file systems, network 
RAID: and other uses of raw partitions such as swap space, 
hierarchical storage management cache and databases. 

4 Related Work 

The projects most similar to Netstation are MIT’s ViewSta- 
tion [HAI+ and Cambridge’s Desk Area Network (DAN) [BHMPSS]. 
Both use AT’M networks as their device interconnect, and 
establish a physical boundary to the system for security pur- 
poses, while Netstation uses protocol-based security. They 
have defined a useful taxonomy of dumb, supervised and 
smart devices. 

Netstation CPU Node (Sun) 

Network-attached storage is an area of much current re- 
search and development. Fibre Channel disk drives, new dis- 
tributed file server architectures, and custom development 
of storage networks all play a part. 

A TCP/IP RAID controller was developed at Lawrence 
Livermore National Labs; it is the first TCP disk device of 
which we are aware [WM95]. 

Mainframe channels have been extended to run over phone 
lines and even WANs for remote device mirroring; products 
from CNT, EMC and others perform such functions. How- 
ever, they typically use media-specific protocols. 

Fibre Channel-attached disk drives utilize a simple SCSI 
block interface with no security on a moderately complex 
network. As described above, this raises concerns about 
security, scalability, legacy systems and interoperability with 
other types of networks. 

The CMU Parallel Data Lab’s Network Attached Secure 
Disk (NASD) project divides NFS-like functionality between 
a file manager and the disk drives themselves, so that not 
only read and write commands but also attribute set and 
get are executed at the drive [Gf96, RG96, G+97]. The 
file manager is responsible primarily for verifying credentials 
and establishing access tokens. 

Soltis’ Global File System (GFS) uses Fibre Channel disk 
drives modified to support a lock primitive [SRO96, So197]. 
This provides simple, efficient distributed locking. The drive 
itself attaches no meaning to the locks; by convention among 
the clients, they are used to lock inodes and other data struc- 
tures. 

The Petal distributed disk system provides a virtual disk 
model on which the Frangipani distributed file system is 
built [LT96, TML97]. Due to the virtualization of storage 
space, their model moves the actual backing store allocation 
to the disk, though the interface between Petal and Frangi- 
pani is a block-level one. 

Various system vendors have developed their own net- 
works on which distributed device sharing takes place. VAX- 
clusters [KLS86] and ServerNet [HG97] are two examples 
which use message passing between devices and hosts; the 
new SGI Origin series uses custom hardware to implement a 
shared address space on a switched network which includes 
many processors and I/O nodes [LL97]. 

5 VISA Architecture 

VISA, Netstation’s Virtual Internet SCSI Adapter, is an op- 
erating syst,em module which makes Internet-attached pe- 

user 
applications ------- Lz ---- - 

kernel 

TCP UDP 

IP 

Myrinet API ethernet 

V V 

Myrinet ethernet SCSI bus Fibre 
Channel 

Figure 2: Netstation MPU node OS components. sd = SCSI 
disk device driver, esp = SCSI bus adapter driver, VISA = 
Virtual Internet SCSI Adapter, VM = virtual memory, FFS 
= Fast File System 
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ripherals appear as if they were attached to a local SCSI 
blIS. 

VISA implements an instantiation of the 
scsi-transport structure. SunOS uses a layered device 
driver model for SCSI devices. Device drivers which present 
the standard block or raw interfaces found in /dev are spe- 
cific to a type of peripheral, such as sd for SCSI disks and 
st for SCSI tapes. For SCSI devices, these drivers in turn 
depend on lower-level services to communicate with the spe- 
cific type of host adapter present. The scsi-transport 
structure consists primarily of pointers to nine high-level 
functions that implement a well-defined interface for send- 
ing commands to a SCSI device a.nd managing the memory 
for returned data. 

In figure 2, the sd SCSI disk driver is shown transmit- 
ting requests to VISA and to esp. Esp is the standard SCSI 
adapt,er type present on Sun SPARC workstations. Addi- 
tional implementations exist for third-party SCSI adapters. 
It is at this layer that support for networked SCSI, such 
as Fibre Channel, is installed. Because we are using stan- 
dard SCSI commands, no additional packaging or format- 
ting, such as XDR, is required. 

VISA transmits packets by calling UDP, which uses IP to 
send packets over any supported network medium. We have 
used both 1OObT ethernet and Myrinet in these experiments. 

We use UDP as the transport-layer protocol because we 
expected UDP to be faster than TCP as well as easier to 
work with inside the kernel. On top of UDP we found it 
necessary to build a simple reliability layer. While the net- 
work itself is highly reliable, SunOS provides only limited 
buffering in the sockets, and packets are discarded when 
the buffer is full. Our reliability layer works with a fixed- 
size window and assumes in-order delivery; on every 48KB 
transmitted, the sender pauses for an ACK. On receipt of 
out-of-order data, a NAK is sent and the sender rolls back. 
A timeout of one second is currently implemented only at 
the device (IPdisk). The host depends on either IPdisk to 
discover network glitches, or the higher-level I/O request to 
timeout and be restarted within the sd device driver. This is 
purely a convenience; a production-quality implementation 
would have timers at both ends. 

We use 8 kilobyte data payloads, plus a small header in- 
cluding sequence numbers, on top of the UDP packet. Over 
Myrinet , this is a single packet. Over ethernet, this forces IP 
fragmentation in order to work within the 1500 byte MTU. 

As is common with UDP, checksumming is turned off. 
The data integrity is still protected by the link layer check- 
sum. Both hardware and software mechanisms for doing 
the TCP/UDP checksum with zero CPU cost are known. It 
can be done during data copy, DMA or transmission [PP93, 
FHV96]. 

We use one kernel pseudo-process per device attached 
to the VISA virtual bus. Much like NFS biods, these arc 
responsible for the communication with the device, and are 
necessary because the SunOS kernel is not multithreaded. 

5.1 IPdisk 

IPdisk is our Netstation emulated disk drive. It runs as 
a user process on another Sun, emulating the SCSI block 
device command set running over UDP or TCP. It can be 
configured to use RAM to emulate disk storage, or to use 
a regular file, or access an actual raw SCSI disk. For the 
experiments described in this paper, IPdisk was used with 
a 32 MB RAM buffer, the fast& form of backing store, in 
order to stress the host operating system. In this mode, the 

physical characteristics (rotational and seek lat~ency, zone- 
variable transfer rates, etc.) of a disk are not emulated, so 
the host CPU becomes the bottleneck. 

IPdisk supports our derived virtual device model. This 
allows the owner of the device to download small programs 
which act as filters on the SCSI RPCs before those RPCs are 
actually executed. This feature is primarily expected to be 
used for sharing devices among multiple hosts and execut- 
ing third-party (direct device-to-device) copies. Because the 
purpose of these experiments is to saturate the host CPU, 
DVDs, which only affect execution time at the device, are 
not enabled for the experiments presented here. 

6 Performance 

We have run experiments to measure the performance of reg- 
ular Berkeley fast file systems built on top of VISA-attached 
disks. The read and write throughput for sequential ac- 
cesses are detailed in the following subsections, then in the 
next section we discuss potential improvements to this per- 
formance. 

We measured the CPU utilization for file systems on 
VISA-attached disks and on a directly-attached fast, nar- 
row (10 MB/set.) SCSI bus. This provides a very direct 
comparison of the actual impact of different data transport 
mechanisms in a complete file system environment. 

Our test configurations utilize a 75 MHz Spare 20/71 
with 64 MB of RAM and an 800 Mbps Sbus as the client. 
The CPU has 20KB/16KB I/D on-chip caches and 1MB of 
external cache. The STREAM benchmark reports memory 
copy bandwidth of 61.7 MB/s [McC98]. Identical 20/71s 
running IPdisk emulate the network-attached disk drives. 
Our absolute performance numbers are low by today’s stan- 
dards due to the age of the systems used, but the relative 
numbers and conclusions remain valid. 

The biggest performance problem we encountered is ex- 
cess calls to bcopy. On send, the Myrinet device driver 
copies the data from the mbuf chain to a special send buffer 
allocated and maintained by the device driver itself in main 
memory. From that buffer, the data is then DMAed to the 
buffer RAM on the network interface card, from where it is 
transmitted onto the network. The nominal reason for the 
copy is the expense and complexity of establishing DMA 
mappings for arbitrary memory addresses, as well as con- 
cerns about data alignment. However, when we are sending 
data from complete VM pages, as in VISA or NFS, the pages 
are already pinned in memory, properly aligned, and large 
enough to more than amortize the cost of creating the map- 
ping, making it the proper choice. 

The benchmark we are using is a modified version of 
Bonnie which reports additional CPU utilization and can 
loop on individual subtests to reduce the overhead of pro- 
cess creation. Bonnie, written by Tim Bray and available 
on the Internet, performs several tests to measure I/O oper- 
ation overhead and throughput; we have concentrated here 
on throughput. 25MB files were written or read repeatedly 
until the total amount of data was one gigabyte. 

6.1 Write Performance 

Table 1 lists the measured and predicted performance of file 
writes on VISA-attached disk drives. Our write through- 
put is CPU-limited at 72 Mbps when using Myrinet, with 
kernel profiling disabled. Table 2 lists the measured write 
throughputs of other configurations and subsystems for com- 
parison. Writing just to the file system buffer cache (tech- 
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VISA configuration 
Mvrinet UDP 

1 thru 
I 72 

Table 1: VISA Write Rates. Throughput in Mbps. 

nically, virtual memory pages, under SunOS) achieves ap- 
proximately 115 Mbps (direct measurement of this number 
is difficult). We measured the write throughput of a file 
system on a physical SCSI disk (a Seagate ST31200W) as 
only 22 Mbps, but extrapolation from the CPU consumption 
to CPU saturation suggests a throughput of 110 Mbps can 
be achieved (assuming the presence of adequately fast disks 
and SCSI buses). Our current VISA throughput, therefore, 
is only 65% of the estimated SCSI throughput. 

The CPU utilization figures in tables 3 and 4 were mea- 
sured using a kernel compiled with gprof profiling enabled. 
The kernel subsystem figures are calculated by assigning 
each kernel function profiled to one of several groups. The 
raw data and tables of which functions were assigned to 
which groups are available for verification. These numbers 
are used to estimate the potential performance gains for dif- 
ferent optimizations. 

It can be seen from these CPU utilization numbers that, 
except for bcopy, the networking CPU cost is only about 
half the file system CPU cost and comparable to the “mis- 
cellaneous” kernel functions. 

As described above, when using Myrinet under SunOS, 
write carries a penalty of an unnecessary data copy, and the 
1OObT ethernet driver appears to have a similar problem. 
We estimate the performance possible if this copy can be 
eliminated at approximately 89 Mbps on Myrinet, or ap- 
proximately 81% of the maximum estimated SCSI through- 
put, as follows: 147.5 - 16.4 = 131.1 CPU seconds for 
measured VISA UDP after removing the gprof overhead; 
131.1- 24.7 = 106.4 CPU seconds after removing the bcopy. 
Multiplying by the measured bandwidth, 72 * 131/106 = 89 
Mbps for our estimate of the bcopy-less CPU saturation 
point. The other numbers are estimated similarly. 

For reasons explained in section 7.1, we have also pre- 
dicted the performance using a UDP which consumes 40% 
fewer CPU cycles in conjunction with a bcopy-less write. 

Application benchmarks show that sending 1GB using 
TCP consumed approximately 30 seconds more CPU time 
on send than UDP. We added this 30 seconds to the 131 sec- 
onds (after removing gprof overhead) required to write 1GB 
on a file system built on a VISA-attached disk. From this 
we estimate the TCP throughput to be 58 Mbps. Approx- 
imately one-third of the increase in CPU time is in calcu- 
lating the TCP checksum, the rest is sequence management 
with acknowledgements and timer processing. The “faster 
TCP” estimate assumes elimination of checksum and bcopy, 
but no reduction in the other overhead. 

We recorded the distribution of command sizes on one 
experimental run of Bonnie writing one gigabyte. A total of 
9,409 write commands were sent to the device for a total of 
2,064,821 blocks (l.O08GB), counting format, newfs, mount, 
and 1GB of file write with metadata updates. 

Although the application always writes in chunks of 8KB, 

tuned NFS 
app. to FS buffer cache 

(VM pages) 
host memory to 

NIC memory via Sbus 
SCSI through FS Q19% CPU 
SCSI @lOO% CPU (est.) 
UDP blast 
TCP blast 

Table 2: Write Rate Comparison (Mbps) 

Module time % CPU 
(sets) 

user: 
benchmark application 31.7 21.2% 
kernel: 
file system code 37.9 25.4% 
Myricom driver bcopy 24.7 16.6% 
other networking code 18.6 12.5% 
gprof profiling code 16.4 11% 
miscellaneous kernel 18.2 12.2% 
total 147.5 

Table 3: CPU Utilization to Write 1GB on UDP VISA 

Module time % CPU 
(sets) 

user: 
benchmark application 
kernel: 

Table 4: CPU Utilization to Write 1GB on an esp SCSI Bus 
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VISA configuration thru 
Myrinet UDP 085% CPU 60 
Myrinet UDP @lOO%CPU (est.) 71 
1OObT UDP @82% CPU 53 
1OObT UDP @lOO% CPU (est.) 64 
without bcopy (est.) 99 
with faster UDP (est.) 109 
TCP (est.) 59 
faster TCP (est.) 82 

Table 5: VISA Read Rates. Throughput in Mbps. 

the operating system’s write-behind mechanism, called kluster, 
coalesces the smaller individual writes into larger ones when 
it can. As a result, more than 85% of the total data written 
is in commands larger than 1OOKB. This reduces the collec- 
tive I/O operation overhead and wastes fewer disk revolu- 
tions than smaller operations. 

6.2 Read Performance 

For the read tests, a 25MB file is read sequentially, the 
VM/file buffer cache is flushed using a SunOS ioctl, and 
it is reread. This process is repeated until 1GB of data 
has been read. The file system is clearly effectively detect- 
ing sequential activity and reading ahead of the process, 
with the result that almost all operations are 56KB long. 
This slightly exceeds our protocol window, creating some 
idle time and reducing our throughput. 

Table 5 lists the measured and estimated throughput for 
several VISA configurations, and table 6 lists the measured 
and estimated throughput for related subsystems. Our VISA 
read throughput is 60 Mbps at 85% CPU utilization, from 
which we infer the CPU will saturate at 71 Mbps, essentially 
the same as our write rate. This is a lower percentage, 53%, 
of the SCSI potential throughput than for write. 

Tables 7 and 8 show the measured CPU utilization of 
different kernel subsystems during read. The network over- 
head is higher, while the file system overhead is lower for 
read than for write. 

Again, however, the primary culprit is bcopy; if it can 
be eliminated VISA UDP throughput is estimated to reach 
74% of SCSI bus potential. Adopting the optimizations from 
section 7.1, we expect to reach 82% of SCSI bus potential, 
roughly equivalent to our predicted best write performance. 

For TCP, the estimates are derived by adding the mea- 
sured 24 second overhead for an application to receive 1GB 
over TCP instead of UDP. As with write, the checksum is the 
largest addition; we have estimated the performance possible 
by eliminating checksum, bcopy, and various select related 
functions which a kernel VISA TCP implementation would 
not use and listed this in table 5 as “faster TCP”. 

The per-packet costs are a significant concern, but we 
see only a 10% throughput drop from 8KB Myrinet packets 
to 1500 byte ethernet packets. 

7 Potential Performance Improvements 

Basic functionality at a reasonable data rate has been demon- 
strated. Nevertheless, it is clear from these performance 
numbers that host operating systems need substantial tun- 
ing to be efficient for the types of transfers common in 
file systems. Many of the necessary optimizations are un- 
derstood, if not yet widely deployed; one research project 

tuned NFS 
from FS buffer cache 

(VM pages, no device access) 
NIC memory to 

host memory via Sbus 
SCSI through FS @190/o CPU 
est. SCSI @lOO% CPU 
UDP blast 
TCP blast 

60 
200 

- 400 

25 
133 
150 
104 

Table 6: Read Rate Comparison (Mbps) 

kernel: 
file system code 
network bcopys 
other networking code 
gprof profiling code 
miscellaneous kernel 

34.4 27.5% 
37.6 30.0% 
20.6 14.6% 
16.1 11% 
21.2 17.0% 

I 

144.9 ( 1 total 

Table 7: CPU Utilization to Read 1GB on UDP VISA 

Module time % CPU 
(sets) 

user: 
benchmark application 26.6 33% 
kernel: 
file system code 26.1 32.3% 
esp SCSI adapter code 5.1 6.3% 
gprof profiling code 11.1 13.7% 
miscellaneous kernel 11.7 14.5% 
total 80.6 

Table 8: CPU Utilization to Read 1GB on an esp SCSI Bus 
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demonstrated more than twice our TCP performance on 
similar hardware with an experimental version of Solaris and 
hardware support for checksumming [Chu96]. 

7.1 Software 

VISA is implemented in SunOS 4.1.3 for Sun4m architec- 
tures. When the Netstation work was begun, Myrinet was 
the network of choice, and SunOS was the primary platform 
on which Myrinet was supported. Although SunOS is now 
considered an older operating system, it is well-studied and 
mature. It is representative of many more modern BSD- 
derived operating systems. However, many recent innova- 
tions in TCP/IP implementations are not present. 

Several research projects have implemented fast demulti- 
plexing packet filters which simplify the process of determin- 
ing the data destination address on packet reception [DWBf93, 
YBMM94, EK96, Kay95]. Adoption of such an approach 
should eliminate the associated bcopy and complement other 
per-packet processing improvements. 

Partridge demonstrated that the per-packet CPU cost 
for UDP processing can be reduced by 26-40% relative to the 
stock 4.3BSD/SunOS 4.1.1 implementation on a SPARC [PP93]. 
This should translate to lo-25% reduction in the total CPU 
use in file systems, giving corresponding throughput im- 
provements. Similar improvements have been adopted into 
the 4.4BSD code. 

7.2 Hardware 

In this paper, we have concentrated on evaluating the cost 
of doing IP in the host operating system software. It is also 
possible to move some or all of the network protocol stack 
into the network interface card itself. Based on our data, this 
has the potential to eliminate the 14% (UDP write) to 38% 
(TCP read) performance overhead of doing CPU-based net- 
work protocol processing. Adding hardware to achieve such 
modest performance gains may be the correct architectural 
approach only under certain conditions. 

Minimally, the NIC should support TCP checksumming 
on both transmit and receive and fast demultiplexing on re- 
ceive. This can significantly reduce the data touching work- 
load of the CPU for a modest increase in hardware complex- 
ity. 

A complete NIC-side transport implementation would 
accept for transmission an undifferentiated chunk of memory 
and perform all packetization as well as managing transmis- 
sion windows and processing and generating ACKs. This 
would leave the host as unaware of the details of TCP/IP as 
it currently is of the handshakes on a SCSI bus. Matters has 
shown that this is possible in an 120-compliant NIC [Mat98]. 

Myer and Sutherland recognized thirty years ago that the 
boundary between work done by the CPU and by peripheral 
processors moves in cycles over time; they referred to this as 
the “wheel of reincarnation” [MS68]. Over the last decade, 
numerous hardware experiments were conducted and sug- 
gestions were made for putting more functionality into the 
network adapter [Kan88, CSSZSO, Che87, Sid91, DWB+93, 
Dav91, TS91, BJM+96, SWR.91, BPP91, DPD91, TP96]. 
Most of the more radical features have not been accepted 
into mainstream adapters. Some of these approaches have 
not been adopted into the mainstream because they are spe- 
cific to Open Systems Interconnection (OSI) or other proto- 
cols. Others have failed simply because the improvement in 
general-purpose CPUs has outstripped the improvement in 
the processors on outboard NICs when the researchers have 
fallen behind the performance development curve. 

8 Conclusions 

Network-based storage architectures share peripherals among 
many clients and remove the server from the data path by at- 
taching the peripherals directly to the network. Peripherals 
can be accessed over some distance and can take advantage 
of the scaling properties of networks. 

We have conducted the most extensive analysis to date 
of the feasibility of using the TCP/IP protocol suite instead 
of media-specific protocols for accessing shared, networked 
storage devices. The experiments presented in this paper 
concentrate primarily on the host operating system mech- 
anisms necessary for such a change, examining the achiev- 
able throughput and the CPU performance required. Our 
data indicate that performance more than 80% of direct- 
attached SCSI device performance is achievable using UDP 
without the addition of network coprocessors. TCP perfor- 
mance would be somewhat lower, estimated at 60-75%. Our 
conclusion is that, while current performance is somewhat 
lacking, with appropriate hardware and software engineer- 
ing effort taking advantage of the unique characteristics of 
I/O for file systems, TCP/IP is a viable transport protocol 
alternative to Fibre Channel and other protocols. 

The architectural implications of the adoption of TCP/IP 
would be significant. Storage systems which easily span het- 
erogeneous local networks as well as wide area networks can 
be constructed. Legacy systems, both today and in the fu- 
ture, will be less problematic because TCP/IP runs over 
many types of network media. Systems which use TCP/IP 
are already known to scale to large numbers of hosts. Stor- 
age I/O will be able to easily share both hardware and 
software with host-to-host network traffic, reducing devel- 
opment effort and deployed hardware costs. 

Availability and Acknowledgments 

The source code for VISA itself can be made available only 
to those sites with SunOS 4.1.3 source code licenses. Code 
for the disk emulator and Bonnie and the measured perfor- 
mance data will be made available on the Netstation project 
web page and the author’s home page. 

This paper has been substantially improved by feedback 
from John Heidemann, Ted Faber, Bill Manning and .Joe 
Bannister of ISI, Paul Borrill and Daniel Stodolsky of Quan- 
tum, and the anonymous referees. 
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