

Qubit Representations

- Electron: number, spin, energy level
- Nucleus: spin
- Photon: number, polarization, time, angular momentum, momentum (energy)
- Flux (current)
- Anything that can be quantized and follows Schrodinger's equation

Technologies Reviewed

- Liquid NMR
- Solid-state NMR
- Quantum dots
- Superconducting Josephson junctions
- Ion trap
- Optical lattice
- All-optical

Liquid Solution $\ensuremath{\mathsf{N\!M\!R}}$

Billions of molecules are used, each one a separate quantum computer. Most advanced experimental demonstrations to date, but poor scalability as molecule design gets difficult and SNR falls. Qubits are stored in nuclear spin of flourine atoms and controlled by different frequencies of magnetic pulses. Used to factor 15 experimentally.

Vandersypen, 2000

Keio Choice of System and Material

Two incompatible conditions to realize quantum computers:

- 2. Isolation of qubits from the environment
- 3. Control of qubits through interactions with the environment

System: NMR

- 1. Weak ensemble measurement
- 2. Established rf pulse techniques for manipulation

Material: silicon

- 1. Longest possible decoherence time
- 2. Established crystal growth, processing and isotope engineering technologies

Compar ison

- MMR (Keio, Kane): excellent coherence times, slow gates
 - nuclear spin well isolated from environment
 - Kane complicated by matching VLSI pitch to necessary P atom spacing, and alignment
- Superconducting: fast gates, but fast decoherence
- Quantum dots: ditto
 - electrons in solid state easily influenced by environment

Comparison (2)

- Ion trap: medium-fast gates, good coherence time (one of the best candidates if scalability can be addressed)
- Optical lattice (atoms): medium-fast gates, good coherence time; gates and addressability of individual atoms need work
- All-Optical (photons): well-understood technology for individual photons, but hard to get photons to interact, hard to store

By the Numbers

Technology	Decoherence Time	Gate Time	Gates
All-Si NMR	25 seconds	high millisecs	10000?
Kane NMR	seconds	high millisecs	1000?
Ion Trap	seconds	low millisecs	1000?
Optical Lattice	seconds	low millisecs	?
Quantum Dot	low microsecs	nanosecs	100?
Josephson Junction	microseconds	nanosecs	10-10000?
All-Optical	N/A	N/A	N/A

Apples-to-apples comparison is difficult, and coherence times are rising experimentally.

Quantum Error Correction and the Threshold Theorem

Our entire discussion so far has been on "perfect" quantum gates, but of course they are not perfect.

Various "threshold theorems" have suggested that we need 10^4 to 10^6 gates in less than the decoherence time in order to apply *quantum error correction* (QEC). QEC is a big enough topic to warrant several lectures on its own.

Wrap-Up

• Qubits can be physically stored on electrons (spin, count), nuclear spin, photons (polarization, position, time), or phenomena such as current (flux); anything that is quantized and subject to Schrodinger's wave equation.

Wrap-Up (2)

- Many technologies depend on VLSI
- Most are one or two qubits
- Have not yet started our own Moore's Law doubling schedule
- Several years yet to true, controllable, multi-qubit demonstrations
- 10-20 years to a useful system?

Tomorrow

- Quantum computer architecture
 - how do you scale up? how do you build a computer out of this? what matters?
- Quantum networking
 - Quantum key distribution
 - Teleportation
- Wrap-Up and Review