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Abstract. To date, research on entangled quantum networks has primarily focused on an abstract model
consisting of a linear chain of repeaters, with a power of two number of hops of identical length and quality.
We are analyzing the behavior of more complex network topologies. In such configurations, path selection
affects both the performance of individual connections and global network load. We propose a definition
for link cost and a form of Dijkstra’s algorithm for ranking candidate paths to maximize the throughput of
end-to-end connections. Simulations confirm agreement between the calculated path cost and the expected
throughput.
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1 Introduction

Networks of quantum repeaters use purification and
entanglement swapping to create high-fidelity end-to-end
Bell pairs which are then used in distributed quantum
applications [1, 2]. In entanglement swapping, two dis-
tributed Bell pairs are spliced together where they meet,
creating one longer-distance pair from two shorter ones.
For homogeneous paths of 2n hops, quantum repeaters
operate well using a simple doubling of distance for each
entanglement swap. In real-world networks, candidate
paths will have differing numbers of hops of varying qual-
ity, as in Fig. 1. On such heterogeneous paths, we must
reconsider when and where entanglement swapping takes
place, and devise an algorithm for ranking paths. We
use the inverse of single-hop throughput as our link cost.
Path cost, as in Dijkstra’s algorithm [3], is the sum of the
link costs in the path. We have extended our quantum
network simulator to calculate the throughput of end-to-
end connections for heterogeneous links.

2 Background

2.1 Quantum Repeaters

Quantum repeaters use single-hop quantum links and a
series of classical messages to forge end-to-end entangled
Bell pairs. The responsibility for purification and swap-
ping can be divided into layers (shown in Appendix A),
communicating across different subsets of the repeaters
in the path. The throughput is known to decline polyno-
mially with distance, though the complexities of limited
systems make it difficult to create an analytic expression
for the throughput.

2.2 Networking

Path selection is important in all networks. In quan-
tum networks, a small difference in path quality can cause
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Figure 1: Real-world quantum networks will offer mul-
tiple heterogeneous paths between communication end
points, necessitating a mechanism for path selection.

a large difference in throughput. Dijkstra’s algorithm is
a powerful technique used extensively in the Internet for
solving the path selection problem. In this algorithm,
path cost is Σci, where ci is the cost assigned to link
i. The goal of Dijkstra is minimization of global work,
rather than maximization of throughput for any specific
communication session, but in practice there is a strong
correlation between those two goals.

2.3 Problem Definition

Naturally, lower path quality will reduce both the fi-
delity of end-to-end entanglement and the throughput of
a given path, but we do not know the exact relationship
between path quality and throughput. We wish to define
a cost for each path, allowing us to order a set of paths
so that low-cost paths better meet our goals for the over-
all system. Here, we choose maximizing throughput as
our goal, meaning that high-bandwidth paths (measured
in high-fidelity Bell pairs per second) should have a low
cost. To achieve this, we need both a way to establish



the cost for a single link, and a way to calculate path cost
from a set of link costs.

3 Quantum Dijkstra

Our proposed algorithm is a direct adaptation of Di-
jkstra’s algorithm to quantum networks. We have exam-
ined several possible candidates for link cost, including
link base entanglement fidelity and loss (either linear or
in dB). Our calculations suggest that defining link cost
based on throughput when used as a single hop repeater
works well. We normalize across the whole network, giv-
ing

Linkcost =
maximum single-hop throughput

single-hop purified throughput
(1)

As in classical Dijkstra, our quantum Dijkstra (which we
call qDijkstra) defines path cost as the sum of the link
costs.

4 Results

In our simulations, we used four different link quali-
ties with the qubus entanglement mechanism, which uses
bright pulses and weak non-linear effects [4]. Qubus is
highly sensitive to loss, so we simulate 20 km optical
fiber links assuming 0.17 dB/km loss, plus an additional
system loss factor.

4.1 Linkcost

To determine link cost, we simulated a single hop for
a variety of loss values. We selected four values to be
our link types, as shown in Table 1. For simplicity, as
described above, we have normalized the link costs rela-
tive to the highest-throughput link. Further details are
presented in Appendix B.

Table 1: Linkcost

path quality dBloss throughput linkcost(dB/20 km) (qubits/sec)
Excellent (2) 3.4 176.7 1

Good (◦) 3.5 137.9 1.28
Fair (4) 3.6 118.5 1.49
Poor (×) 3.7 95.6 1.84

4.2 Verification of algorithm

We tested sixteen types of 8-hop paths, with hetero-
geneous links in the first half of the path and homoge-
neous, excellent links in the second half, and compared
simulated throughput and qDijkstra’s cost. The results,
plotted in Fig. 2, confirm a strong relationship between
throughput and path score.
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Figure 2: Throughput and the inverse of path cost for
eight-hop paths. The symbols ©, 4 and × correspond
to the weakest link in the path, good, fair, and poor links,
respectively. Further details are presented in Appendix
C.

5 Discussion

Our simulations show that classical networking tech-
niques can be readily adapted to quantum repeater net-
works. As in classical networks, the throughput of a
single path will approach the throughput of the lowest-
quality link, as shown by the grouping of the symbols
in Fig. 2. Dijkstra’s algorithm, in both classical and
quantum networks, gives reasonable but not perfect or-
dering of candidate paths. Using qDijkstra, we can accu-
rately choose the best path without the prohibitive ex-
pense of enumerating and simulating all of the possible
paths through large networks. These results give us rea-
son for optimism about the difficulty of quantum network
design and a clear direction for achieving that goal.
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A Quantum Network

A conceptual diagram of the protocol layers necessary
for a quantum network is shown in Fig. 3 [5].

Figure 3: Protocol layers for quantum repeaters.

B Throughput of a Single Hop Path

Table 2 and Fig. 4 are the simulation environment
and results used to establish our link cost for a single
hop. The four link types chosen for more complex paths
are marked in the figure with the corresponding symbols.

Table 2: Measurement environment of Linkcost

Quantum Repeater
Number of qubits 25 qubitsper repeater link connection

Number of application qubits 200 qubitsteleported (length of simulation)
Optical Fiber

Length 20 km
Information losses 3.4∼4.4 dB/20 km
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Figure 4: Single-hop simulation, used to define linkcost.

C Throughput of 8-hop Paths

The details of our simulated 8-hop paths are shown in
Table 3. The string of symbols indicates the type and
order of links in the path.

Table 3: Details of measurement

Path combination Throughput Path cost
22222222 64.2278 8
2◦222222 61.5261 8.28
◦2222222 53.8885 8.28
24222222 48.1412 8.49
22◦◦2222 55.3664 8.56
2◦242222 50.6342 8.77
2◦◦◦2222 55.5797 8.84

2×222222 38.1576 8.84
◦2◦42222 47.3658 9.05
◦◦◦22222 52.5923 9.12

24×22222 38.9788 9.33
◦42×2222 43.0007 9.61
×2×22222 42.3994 9.68
44442222 47.163 9.96
4××22222 40.2496 10.17
××××2222 41.5825 11.36
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Luciano Aparicio1 ∗ Rodney Van Meter2 †

1 Graduate School of Information Science and Technology, The University of Tokyo
7-3-1, Hongo, Bunkyo-ku, Tokyo 113-8656, Japan.

2 Faculty of Environment and Information Studies, Keio University
5322, Endo, Fujisawa, Kanagawa, 252-0882 Japan

Abstract. Existing research has investigated quantum repeater networks only in abstract, ideal settings.
We are considering a more realistic approach and context, including complex technologies with multiple
connections competing for resources. For these scenarios, we are comparing several different classical
multiplexing schemes using simulation, measuring the aggregate throughput and fairness for each of them.
Preliminary results suggest that round-robin use of a congested link gives the highest aggregate throughput.
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1 Introduction

Applications that use distributed quantum properties,
such as QKD (Quantum Key Distribution), have the lim-
itation that the fidelity of quantum states and the prob-
ability of success decrease with distance, making the us-
age of these systems for long distances almost impos-
sible. Therefore, researchers have proposed the design
of quantum repeater networks [1] which would main-
tain distributed quantum states across greater distances.
Although some researchers are investigating approaches
that are substantially different from entanglement swap-
ping [2], here we focus on swapping.

In classical networks, stations are usually competing
for shared resources, the service is offered on a best ef-
fort basis, and the path selection is a difficult task han-
dled by many different routing algorithms. Quantum net-
works will not be an exception. Based on analogy with
the classical model, to solve the shared resources issues,
we propose quantum multiplexing and evaluate several
schemes which we are simulating.

2 Background

2.1 Quantum Networks

The process of designing quantum networks is similar
to designing classical networks, as they require detailed
protocol designs, including finite states machines to con-
trol physical resources (qubit entanglement, purification
and entanglement swapping in order to maintain ade-
quate fidelity and allow teleportation of qubits from one
station to another). Proposed protocols [3] are composed
of layers in analogy to the OSI model. We give a brief
description of each of them and the functions which are
simulated.

The physical layer represents the physical interaction
that creates Bell pairs between two different stations.
Our simulations model the qubus mechanism [4] in which
laser pulses of many photons generate low-fidelity Bell
pairs with high probability.
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Figure 1: Multiplexed use of a congested link in a dumb-
bell network raises aggregate throughput compared to
pure circuit switching.

The second layer, EC (Entanglement Control), is re-
sponsible for managing the single-hop physical entangle-
ment process, utilizing classical messages. Once the en-
tanglement is confirmed, this layer will transfer control
of the Bell pair to a higher protocol layer.

The third layer, PC (Purification Control), is responsi-
ble for the purification of the entangled pairs. For single
hops, after the PC layer confirms a good fidelity for the
Bell pairs, control is given to the application layer, which
will start the teleportation of the data qubit that we wish
to send.

For networks which have more than two stations, fur-
ther steps are required. ESC (Entanglement Swapping
Control) is the layer responsible for choosing two Bell
pairs from two different stations and performing the Bell
state measurement that splices the two short Bell pairs
into a longer one. After this is concluded, once again the
PC layer executes purification to improve the fidelity of
this new Bell pair. ESC and PC are repeated until we
have an end-to-end Bell pair of sufficient fidelity for our
application.



2.2 Multiplexing

For a quantum network of more than two end nodes we
may have to consider sharing a channel between different
stations. Therefore, a way to control the resource allo-
cation must be provided. In this work, we want to prove
that classical multiplexing strategies can also be applied
to quantum networks. Different multiplexing schemes,
such as statistical multiplexing (packet switching), cir-
cuit switching, TDM (Time Division Multiplexing) and
spatial multiplexing have been studied and compared.

Statistical multiplexing (packet switching) is used in
IP networks, as a best effort service.

Circuit switching, used in standard telephony service,
reserves a complete circuit for one connection and no
other traffic is allowed to use those resources at the same
time. When the connection is finished, the circuit is re-
leased, allowing other stations to transmit.

TDM will assign resources in a time slot round-robin
fashion for each station that requests a connection. Every
station will wait its turn to transmit, and if a station is
not ready to use the channel on its turn, the resources go
unused.

In spatial multiplexing, some resources (e.g., buffer
space) are assigned to one connection.

3 Quantum Repeater Multiplexing

Each of the multiplexing schemes can be used fairly
directly in repeater networks. The principal operational
difference between classical and quantum is that entan-
glement swapping is a truly distributed stochastic com-
putation, with state held at each station along the path.
The natural model would therefore be circuit switching,
but our analysis suggests that round-robin TDM on the
congested link brings benefits.

Figure 1 shows a sequence of entanglement, purifica-
tion and entanglement swapping steps, multiplexing use
of the central link in the dumbbell network. Straight lines
represent single-hop Bell pairs, and their thickness repre-
sents fidelity. In step 1, all the links have one low-fidelity
Bell pair. In step 2, entanglement swapping is done, and
A and B become entangled (spring line). Meanwhile, fi-
delity is improved for the links EC and FD using new
base pairs and purification. In step 3, new Bell pairs are
obtained for AE, EF and FB, while fidelity keeps increas-
ing for CE and FD as in step 2. In step 4, entanglement
swapping is done for C and D, but in this case with bet-
ter end-to-end fidelity than in step 2 due to the higher
fidelity on the uncongested links.

4 Simulations

For the case of the dumbbell network studied, one link
is shared. This link has many resources (qubits to be used
for creating Bell pairs), which allows us to implement
different types of multiplexing schemes. In this topology,
station A sends traffic to B, and at the same time station
C sends traffic to D.

For the simulations, we are using Omnet++ 4.0, a
C++-based network simulator. Each station is config-

ured to have 8 qubits for each link connecting to other
stations. Once single-hop Bell pairs are created, entan-
glement swapping is done in two places, in order to create
an end-to-end Bell pair, which will be immediately used
by the application.

We are simulating a restricted case of the qubus re-
peater. For 10km links with 0.17dB/km loss, simulations
show that the basic qubus mechanism should produce
base entangled pairs of F = 0.769 with probability 36%.
Three rounds of purification will then improve fidelity for
a single hop in the following manner: (0.769+0.769)⇒
0.872, (0.872 + 0.872) ⇒ 0.951, (0.951 + 0.951) ⇒ 0.982.

For each hop, three successful rounds of purification
requires eight base-fidelity Bell pairs. Once entanglement
swapping is done, fidelity drops to a value that is roughly
the product of the fidelity of each hop. For two hops it
would be around 0.964 and for three hops 0.947.

The parameters which are measured are the aggregate
throughput (minimum time to complete the workload)
and fairness (how much time one connection makes the
others wait).

5 Discussion

From this research, we can see that classical multiplex-
ing presents us with a possible approach to handle the
problem of shared resources in quantum networks. Mul-
tiplexing use of congested links while uncongested links
continue purification gives higher throughput than pure
circuits switching. Our simulations are being extended to
larger networks and more complex traffic patterns, which
we believe will demonstrate more distinct differences be-
tween the types of multiplexing. Future work will also
include quantum effects for the determination of the fi-
delity, instead of the classical aproximation of this work.
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Abstract. We propose a quantum adder on a two-dimensional qubit array architecture with nearest-
neighbor interaction. The depth of our new adder is O(

√
n) where n is the size of input, which is asymp-

totically optimal. The size is O(n). When the input size is larger than 58, our new adder can work faster
than the simple embedding of ripple-carry adders designed for one-dimensional systems.

Keywords: Quantum Architecture, Quantum Adder, Depth Lower Bound, Interaction Distance

1 Motivation

Theoretically, quantum information processing sys-
tems will show higher performance than classical ones
in some areas [1]. Although this property drives us to
design and implement a scalable quantum computer, the
current state of the art is far from achieving a practi-
cal quantum computer. Since any information process-
ing system is not a single device, it has to utilize many
components, from high-level software packages to device-
level libraries. In this study, we focus on one important
subsystem, the arithmetic circuit. To design quantum
arithmetic circuits, many researchers have exploited con-
ventional classical arithmetic circuits such as the ripple-
carry adder, the carry-lookahead adder, and the condi-
tional sum adder [2, 3, 4, 5]. The quantum Fourier trans-
form adder, in contrast, is genuinely based on quantum
effects [6].
Unfortunately, most of these adders are based on some

ideal model of a quantum computer which may not be
physically realizable, such as assuming no limitation on
interaction distance. Although studies with such opti-
mistic assumptions will give us more confidence about
the speedup of a quantum computer, they are still not
precise enough to tell us the exact performance gain, and
sometimes to difficult are match to a chosen architecture.
In this work, we focus on addition under more practical

assumptions, such as a two-dimensional layout of qubits
allowing nearest-neighbor interaction only, and support-
ing only two-qubit gates with concurrent execution, a
model we call 2D NTC. Specifically, the two-dimensional
layout of qubits can serve as a reasonable model for many
technologies with fabrication, wiring, and control con-
straints. Because the input size of quantum gates is lim-
ited to one or two qubits, Toffoli gates must be broken
down into smaller components. Surprisingly, for this ar-
chitecture model, no specific quantum adder has been
proposed. Van Meter and Oskin indicated that an adder
would be O(

√
n) in time complexity on the 2D architec-

ture, but no circuit was provided [7].
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2 Summary of Contribution

In this work, we propose a new quantum adder on the
2D NTC architecture. More specifically, we contribute
as follows:

• Propose a 2D NTC adder. We propose a 2D
NTC adder, based on a combination of a ripple-
carry adder and a carry-lookahead circuit, arranged
in three phases. In the first phase, the first col-
umn executes a simple ripple carry addition and
the other columns do carry lookahead operations
to generate inter-column carry lookahead informa-
tion. In the second phase, the carry output of the
first column is propagated to the other columns se-
quentially to generate incoming carry for the cor-
responding column. In the last step, the incoming
carry value for each column is propagated through
the rows to generate carry values, and hence finally
to generate summation values for each bit position.
Once the third phase completes, the sum is copied
out and the addition circuit is reversed to clean all
ancillae.

• Analyze storage requirements. The necessary
number of qubits for our adder is 5n −

√
n + 1,

inputs, ancillae, and copy out of results, as shown
in Table 1. To work as concurrently as possible,
our adder utilizes about twice the number of qubits
compared to 1D NTC adders.

• Analyze depth and compare with other
adders. The depth of other adders is recalculated
based on the same physical constraints. The chosen
adders for certain architectures and their depths are
shown in Table 2. Based on the coefficients of each
1D NTC adder, our adder works faster when the
input size is larger than 58.

• Compare KQ values. As discussed in Ref. [8],
an important measure of the required resources is
the product of the depth and size. Based on this
analysis, we find when the input size is larger than
446, our adder is better than 1D NTC adders.

For more details of our adder and its analysis, please
refer to the Appendix.



Table 1: Required Number of Qubits
Name Number of qubits Explanation

ai n Input A
bi → pi → si n Input B, Carry propagate for i-th position, and Summation S
|0⟩ → gi → G[i, j] → ci n Carry generation for i-th position, Carry generation between i and j, and carry

for i-th position
|0⟩ → P [i, j] n− 2

√
n+ 1 Carry propagation between i and j

Column carryk
√
n Inter column carry. The last Column carry is for the final carry output.

Sub Total (2n+ 1)+(2n−
√
n) Mandatory + Additional

For Copy of Sum n

Total 5n−
√
n+ 1

Table 2: Depth and KQ, in Comparison with Other Adders
Architecture Name of Adder (Depth, Number of Qubits) When is the present adder faster

than the corresponding adder?
KQ[8]

1D NTC

VBE[9] (76n− 30, 3n+ 1) n > 2 228n2 + α1

VBE-Improved[4] (20n− 15, 3n+ 1) n > 48 60n2 + α2

CDKM[3] (18n+ 14, 2n+ 2) n > 58 36n2 + α3

2D NTC Present Adder (152
√
n− 104, 5n−

√
n+ 1) 760n

√
n+ α4

AC

QFT-based[6] (3 logn, 2n+ 1) N/A 6n logn
CLA-based[5] (2 logn+ 2, 4n− logn) N/A 8n logn
RCA+CLA-based[10] (10 logn+ 6n/logn, n+ 4n/logn) N/A 10n logn

3 Future Work

Our new adder is the first design for a 2D NTC ar-
chitecture, to the best of our knowledge, but we believe
there is still room for improvement.
First, the number of gates added to the fundamen-

tal addition circuit is very large. Most of the gates are
used for local shuffling of qubits to neighboring positions
so that gates can be executed. This shuffling increases
with the distance between qubits which have information
dependency. Therefore, by arranging qubits in a better
way, it may be possible to reduce the necessary number
of operations.
Second, the phase for cleaning ancillae qubits doubles

the number of quantum operations. In our adder, the
ancillae qubits are re-initialized by applying the inverse
circuit. Perhaps there would be a way to reduce such
drawback by exploiting overlapping of the clearing phase
with the computation phase.
Third, the number of ancillae qubits is also very large.

Although our design uses additional ancillae in order to
exploit parallel execution, this increases the depth as a
negative effect and hence has to be minimized as well.
The tradeoff between the depth and qubits may yet yield
additional gains.
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Appendices

A Design

A.1 Layout of Qubits

The layout of qubits for our new adder on a 2D NTC
architecture is shown in Figure 1. Two input registers
A =

∑n
i=1 2

i−1ai and B =
∑n

i=1 2
i−1bi are interleaved in

the square lattice structure. To create a compact layout,
the size of rows and columns is

√
n (for simplicity, we

assume that
√
n is an integer). Although other qubits are

necessary for addition, which are used for intermediate
storage for information dependency, they are not shown
for simplicity. Since the overall depth heavily depends on
the location of input qubits, the nearest neighbor layout
of input qubits is best.

A.2 Three Phases

The adder consists of three phases: ripple carry addi-
tion and generation of carry lookahead information; gen-
eration of inter-column carry inputs; and generation of
carry value for each position and summation.
In the first phase, as shown in Figure 2, the first column

does ripple carry addition, and the other columns gen-
erate carry lookahead information for the corresponding
column. Therefore, in the first column, the summation si
for i = 1 . . .

√
n are generated, and the final carry output

Col carry1 = c√n is also generated, which will be used
for the second phase. Meanwhile, carry lookahead infor-
mation for the corresponding column can be extracted
by generating gi = ai · bi and pi = ai⊕ bi simultaneously,
and

G[⌊i/
√
n⌋

√
n+ 1, i] = gi ⊕ pi ·G[⌊i/

√
n⌋

√
n+ 1, i− 1],

P [⌊i/
√
n⌋

√
n+ 1, i] = pi · P [⌊i/

√
n⌋

√
n+ 1, i− 1]

sequentially, where i >
√
n. Briefly, gi indicates that

the i-th position inputs generates carry output regard-
less of incoming carry, since both inputs are set to
one. Likewise, pi indicates that the i-th position inputs
cannot generate carry output, but propagate incoming
carry into carry output, since only one of inputs sets
to one. G[⌊i/

√
n⌋

√
n + 1, i] indicates that the subset

of inputs from (⌊i/
√
n⌋

√
n + 1) to i-th position gener-

ates carry output regardless of the incoming carry for
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the (⌊i/
√
n⌋

√
n+ 1)-th position. P [⌊i/

√
n⌋

√
n+ 1, i] in-

dicates that inputs from (⌊i/
√
n⌋

√
n+1) to i-th position

cannot generate carry output, but propagate the incom-
ing carry for (⌊i/

√
n⌋

√
n+ 1)-th position. Note that for

the first row of each column, i.e., when i = k
√
n + 1 for

k = 1, . . . ,
√
n− 1, G and P are simply

G[⌊i/
√
n⌋

√
n+ 1, ⌊i/

√
n⌋

√
n+ 1] = gi,

P [⌊i/
√
n⌋

√
n+ 1, ⌊i/

√
n⌋

√
n+ 1] = pi.

It is worth emphasizing that G and P for the last row
for each column, G[⌊i/

√
n⌋

√
n+ 1, (⌊i/

√
n⌋+ 1)

√
n] and

P [⌊i/
√
n⌋

√
n + 1, (⌊i/

√
n⌋ + 1)

√
n], encompass all carry

lookahead information for the corresponding column be-
cause of ripples of G and P between rows. Therefore,
when the incoming carry value for the corresponding col-
umn is known, the corresponding column can decide the
final carry out, which is the incoming carry value for the
next column.
In the second phase, the final carry output of the first

column Col carry1 = c√n is propagated to the second
column to generate the carry output Col carry2. As
shown in Figure 3, the inter-column carry is evaluated
by the following equation:

Col carryj = G[(j − 1)
√
n+ 1, j

√
n]

⊕Col carryj−1 · P [(j − 1)
√
n+ 1, j

√
n].

After this phase, all columns have outgoing carry value
Col carryj = cj

√
n, where j = 1, . . . ,

√
n, which are used

for incoming carry for the (j+1)-th column, respectively.
In the third phase, the incoming carry value for the

corresponding column is propagated up each column, as
shown in Figure 4, to generate the incoming carry value
ci for each bit position

ci = G[⌊i/
√
n⌋

√
n+ 1, i]

⊕Col carry⌊i/
√
n⌋

√
n · P [⌊i/

√
n⌋

√
n+ 1, i],

where i = k
√
n+2, . . . , (k+1)

√
n. The final carry output

of the summation cn is set to Col carry√n. After this
ripple, each position generates the summation value, si =
ai ⊕ bi ⊕ ci.
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Figure 4: Third Phase

To clear the ancillae qubits, the circuit has to copy out
all of the summation values into other qubits, and then
apply the inverse of the addition circuit.

B Analysis

For fast computation, it is necessary to exploit par-
allelism as thoroughly as possible. Often, this requires
the use of additional spatial resources. The storage re-
quirements for our new adder are shown in Table 1. The
additional number of qubits is 2n −

√
n. For clearing

ancillae, we need to copy the summation output to the
additional qubits, adding n qubits. Therefore, the total
number of qubits is 5n−

√
n+ 1.

When only interactions between neighboring qubits are
allowed, the depth of an arithmetic circuit increases. For
the 2D case, the depth lower bound was proved to be
Ω(

√
n) [11]. Our adder exhibits O(

√
n) depth since each

phase needs O(
√
n) unit time steps. Therefore, our adder

is asymptotically optimal for the 2D NTC architecture.
However, it is necessary to compare to other adders de-
signed for the 1D NTC architecture, since they can be
implemented on the 2D NTC architecture without mod-

ification.
In the first phase of our adder, there are two flows, one

for the first column and the other for other columns. For
calculating the depth we assume only one-input and two
input gates with unit time delay. The depth of the first
column is the sum of the delay of one half adder and of√
n − 1 full adders, for a total of 26

√
n − 16. The other

columns need a constant delay for generating gi and pi
and O(

√
n − 1) for generating G[i, j] and P [i, j], for a

total of 36
√
n− 26. Since the “long pole” determines the

execution time, the depth for the first phase is 36
√
n−26.

In the second phase, we have to execute
√
n− 1 column

carry generation circuits, needing 18
√
n − 18 delay. In

the third phase,
√
n−1 carry generation circuits must be

executed sequentially, followed by the summation circuit.
The delay for this is 21

√
n− 8. Overall the depth of the

circuit body is 75
√
n−52. Next, our adder has to copy the

results, using another
√
n swap operations, adding 3

√
n

delay. Finally, it must undo the overall computation.
Hence, the whole depth is 152

√
n− 104.

The overall analysis and the comparison between the
adders are shown in Table 2. The first column lists the ar-
chitecture for adders, and the second column some adders
for each architecture. For the 1D NTC architecture, we
chose three typical adders. Vedral et al. proposed a plain
adder based on the ripple carry [9], named VBE in the
table. To improve the performance of VBE, Van Me-
ter and Itoh proposed another version, VBE-Improved
[4]. Cuccaro et al. proposed a ripple carry adder with
only one ancillae qubit [3], named CDKM. For the 2D
NTC architecture, our adder is shown. For the archi-
tecture with arbitrary distance interaction and concur-
rent execution (AC), several adders have been proposed.
Draper proposed a quantum Fourier transform adder [6],
named QFT-based. By exploiting the classical fast ad-
dition algorithm, Draper et al. also proposed a carry
lookahead adder [5], named CLA-based. Kawata et al.
also proposed an adder based on the combination of rip-
ple carry adder and carry lookahead adder [10], named
RCA+CLA-based.
For comparison, the depth and the size of each adder

is shown in the third column. In this work, the depth
is measured in units of one- and two-qubit gates for the
1D and 2D NTC architectures. The depth for AC archi-
tecture is based on one-, two-, and CCNOT gates. Note
that numbers for AC architecture are not directly com-
parable because a Toffoli gate is assumed to cost only a
single time step, and long-distance gates are allowed. In
the fourth column, the input size is shown for which our
adder works faster than the corresponding adder.
In the fifth column, we list the depth-storage prod-

uct KQ, where K and Q are the numbers of computa-
tional steps and logical qubits, respectively [8]. KQ is
a measure of the resources required for a particular cir-
cuit, and is especially useful for estimating the required
strength of error correction. Successful execution of a
circuit requires residual logical gate and memory error
rate of pe << (KQ)−1. Note that the number of qubits
includes input, output, and ancillae.
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Abstract. We present methods for optimizing algorithm design in topological cluster state models of
quantum computing. This is a crucial element in the design of large, scalable quantum architectures. We
detail the resources required for defects to be propagated through the cluster to implement specific gates
and subroutines, and give methods by which different types of resources (spatial and temporal) may be
interchanged. We outline constructive methods for generating optimal defect patterns from a given circuit,
significantly reducing the quantum resources required to implement key routines for quantum computing.

The development of a large-scale quantum computer
is a highly sought-after goal for many groups world-
wide. Recent theoretical developments have allowed for
detailed research into an overall architectural structure
for such a computer. The most comprehensive quantum
computing designs are built fundamentally from the ideas
of topological cluster states and surface codes [1,2,3].

These models for quantum computing are remarkably
useful. Not only do they exhibit one of the largest fault-
tolerance thresholds of any model (both for traditional
qubit errors and also more pathological channels such
as loss), but they are also flexible enough to incorporate
into a large-scale architectural design. Such designs allow
scaling to arbitrary size in a conceptually simple manner.

As these topological coding schemes are based on the
concept of measurement-based quantum computation, the
programming of such a device to perform quantum al-
gorithms is a question of classical software control. The
quantum hardware of such a computer is only responsible
for the creation of a large, entangled cluster state. How
this state is utilized to perform quantum algorithms and
error correction protocols is dictated by measurements
on the cluster. The classical control and optimization of
such a computer is therefore an important question. This
talk will briefly summarize the basic principles of imple-
menting and optimizing the classical programming of a
topological computer, in order to reduce the overall quan-
tum resources for various subroutines and algorithms.

The concept of algorithm optimization for the topologi-
cal cluster model can be easily defined. Figure 1a) shows
the standard braiding pattern to perform a CNOT op-
eration between logically encoded defect qubits defined
within a 3D cluster. Figure 1b) illustrates a sequence
of CNOT gates, performed during a large-scale quan-
tum algorithm. When implementing a standard quantum
subroutine (such as arithmetic gates, quantum Fourier
transforms, oracle queries, etc.) circuit decompositions

∗clare.horsman@bristol.ac.uk

are converted into a sequence of braiding operations.
In addition, each basic quantum gate must be decom-
posed in terms of the primitive operations which are
valid within the topological model. These primitive oper-
ations include specific state initialization, measurement
and CNOT operations. More complicated gates require
the introduction of singular states, magic state distilla-
tion protocols, and teleported gates; these operations also
require decomposition into a basic braiding pattern.

In order to optimize the braiding sequence for quan-
tum subroutines, we wish to compact a braiding pattern
into the smallest possible cluster volume (given the error
correction requirements of the quantum code). The error
correction strength can be defined by the distance of the
underlying quantum code, d, and is determined by both
the fundamental physical error rates in the computer and
the size of the specific algorithm. Once this distance is
specified, defects are defined in the lattice which have a
circumference of d and are separated from each other also
by d. Figure 1a) shows an optimized CNOT gate for a
distance d = 8 topological code. For this braiding opera-
tion, the total volume of the cluster is such that all defect
regions are separated from each other by the minimum
possible amount (in this case, 8 cluster cells).

When constructing a quantum subroutine, we naively
decompose the circuit into its primitive components
(CNOT, Toffoli, Hadamard etc.) and then define a braid
and defect pattern to be implemented in the computer.
As gates such as the Toffoli cannot be implemented di-
rectly on the lattice and instead require the preparation
of distilled ancilla states and teleportation protocols, di-
rectly constructing a braiding sequence for a large sub-
routine will not in general lead to an optimized pattern.

The purpose of this project is to construct a braid-
ing sequence for a large quantum subroutine (such as a
quantum adder or quantum Fourier transform), and then
develop general techniques to minimize the total cluster
volume needed to implement the braid pattern. The ul-



timate goal is to achieve a optimal braiding sequence in
a minimal volume, where all defect separations in the
cluster are d, and the cluster prepared by the quantum
hardware contains no wasted space.

When considering the possible patterns of defects and
braids for a gate sequence, we must first take into ac-
count the constraints that the code distance puts on how
defects can move. These layout restrictions can be com-
pletely characterised for single qubit/braid defects and
also for the interaction between two or more defect pairs
when they intersect. The characterisation includes the
resources required to complete a particular layout move;
for some layouts spatial and temporal resources may be
interchanged to a certain extent, but for others a mini-
mum amount of each may be required. One example is
when a single defect pair is propagated vertically within
a 2-dimensional timeslice (figure 2). In order to preserve
the code distance, the operation requires either an ad-
ditional parallel row of cells in the cluster state (figure
2a), or else a second timeslice surface (figure 2b). So a
choice may be made between spatial or temporal costs in
that case. By contrast, when two defects intersect (fig-
ure 3) there is an irreducible temporal cost: one must
propagate over the top of the other temporally, requir-
ing an extra ‘timeslice’ (2-dimensional spatial surface) to
complete the movement.

One particularly important operation is swapping the
position of two qubits – that is, interchanging two defect
pairs. With careful manipulation of the four defects, it
is possible to perform this operation with only one addi-
tional cluster cell, although this then requires six different
timeslice surfaces to complete (figure 4). This then en-
ables us to give resource requirements for all algorithms
in the extreme cases where either temporal or spatial re-
sources are required to be minimal, but the other resource
type is unbounded. With no restrictions on temporal re-
sources, the minimum spatial resource for any algorithm
is one additional cell. For an unbounded amount of spa-
tial resource, any sequence of gates with a computational
depth of 1 may be performed with only one additional
timeslice.

When performing two-qubit gates, in general we have
two options. Either we can propagate long-distance
braids between the qubits, or we can move the qubits and
then perform shorter-range braiding. If we consider the
motion of the braids and the defects together, we obtain
the concept of a path between qubit defects. This path
can be realised by a combination of qubit defect move-
ment and/or braiding. An algorithm is then defined by
a series of paths through the cluster, and optimisation
concerns minimising the cluster volume they require.

If a gate sequence can be laid out on a 2-dimensional
timeslice such that there exist paths that neither intersect
nor overlap, then the sequence can be performed in a sin-
gle timestep. However, if no such set of paths exist, then
additional timeslices are needed. For two paths to cross,
at least one extra time surface is required. More surfaces
may be needed depending on whether the path is instan-
tiated as qubit or braid defect movement. If at least one

of the paths is a qubit movement, then the requirement
that qubits must persist through time may mean that
more than one extra surface is needed at an intersection.
However, if two braid defects cross then they always re-
quire only a single extra surface. This is furthermore also
the case when any number of paths cross: an intersection
of n paths requires at least n different time surfaces to
perform.

We now have a simple way of finding the minimum
time for an algorithm given a certain amount of space.
Laying the qubit defects out on a 2-dimensional surface,
we find the paths between them corresponding to the
required gates such that the maximum number of inter-
secting paths is minimised. That is then the minimum
time required. Moreover, these paths give the construc-
tion of the minimum-time algorithm itself: leaving the
qubits static, they are the paths along which long-range
braids are to be propagated. It is then easy to give prov-
ably minimum-time constructions by hand of simple al-
gorithms such as a mesh circuit. Once paths have been
found between the qubits, the next step is to operate on
the path collection to “squeeze” it so that each path then
becomes contiguous with its neighbours, and there is no
space on the cluster between paths. It is currently on-
going work to prove the conjecture that this squeezing
operation preserves the topology of the defect structure,
and that all defect configurations in the same homotopy
class perform the same unitary evolution.

This work has many implications for topological
measurement-based computing. By reducing to a min-
imum the quantum resources required to implement cer-
tain subroutines, it helps decrease the technological bar-
riers to quantum computing. Giving detailed methods
for implementing these optimal routines enables the cre-
ation of efficient automated compilers for the topologi-
cal model, translating logical gate sequences into physi-
cal operations on the system. Furthermore, these results
lay the groundwork for large-scale algorithm design that
works natively in the topological model, allowing the ef-
ficient programming of a large-scale multi-task quantum
computer.
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Figure 1

Braiding patterns for a) a single CNOT gate and b)
multiple CNOT gates. The dots represent physical
qubits, and the different coloured regions represent
different types of defect, for example the blue regions
are computational qubits. Braiding operations can
only take place between defects of different types. The
introduction of an ancilla (purple) qubit allows us to
braid two qubits of the same (blue) type.



Figure 2

Propagating a defect pair vertically, using a) extra
spatial resources and b) extra temporal resources.
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Abstract. Designing a quantum computer capable of executing large-scale programs such as Shor’s al-
gorithm is a challenging engineering problem. We develop a complete framework for a quantum computer
based on optical control of quantum dots in a layered architecture, showing how a variety of technologies
must operate synchronously in such a system. Furthermore, we investigate the performance and manufac-
turability of this system. We find that Shor’s factoring algorithm for a 2048-bit number can be executed in
approximately 14.4 days. Moreover, this architecture can leverage many existing technologies from mature
industries, making the development of a functioning quantum computer a feasible endeavor in the near
future.

1 Introduction

We are designing a quantum computer, with the prin-
cipal imperative to take advantage of the strong capa-
bilities of device integration afforded by semiconductor
fabrication. Our qubit is defined by the electron spin
states of a charged quantum dot controlled by ultrafast
optical pulses [1, 2]. Optical control makes this system
very fast, scalable to large problem sizes, and extensible
to quantum communication [3, 4] or distributed archi-
tectures [5]. The design of this quantum computer cen-
ters on error correction in the form of a topological sur-
face code, which requires only local and nearest-neighbor
gates. The framework of this architecture is flexible, per-
mitting analysis and comparison of other quantum com-
puter designs.

2 Layered Framework

The present architecture is a control stack consisting
of four layers, where each layer has a prescribed set of
duties to accomplish. As shown in Figure 1, the inter-
face between two layers is defined by the services a lower
layer provides to the one above it. To execute an opera-
tion, a layer must issue commands to the layer below and
process the results. The various functions in a quantum
computer are organized in a manner which aids under-
standing for the designer and translates directly into an
effective control structure for the device itself. This ap-
proach facilitates isolation of design problems in individ-
ual layers, wholesale replacement of an entire layer with a
different technology, and independent evolution of layers
over time.

At the top of the control stack is the logical layer,
where a quantum algorithm is implemented and results
are provided to the user. The bottom hosts the raw phys-
ical processes underpinning the quantum computer. The
layers between (virtualization and surface code) are es-
sential for shaping the imperfect quantum processes into
a system of high-accuracy quantum gates at the logical
layer.

2.1 Layer 1: Physical

The lowest layer houses the specific hardware and
physical processes. In simplest terms, this is the stor-
age and manipulation of unprotected quantum informa-
tion. The physical layer provides the essential physical
processes to satisfy the virtualization layer. The system
we propose uses charged quantum dots to store quantum
information in the electron spin state [6, 7, 8, 9, 10, 11].
The quantum dots are embedded in a planar distributed
Bragg reflector (DBR) microcavity [12], and a transverse
magnetic field separates the spin levels [13]. Broadband
optical pulses rotate the spin vector [1, 2]; these optical
pulses are controlled by arrays of MEMS micromirrors
[14, 15]. Dispersive readout provides measurement of the
spin state [16, 17].

2.2 Layer 2: Virtualization

The virtualization layer is where quantum systems are
organized into information units and operations. Deco-
herence processes such as environmental noise and con-
trol errors mandate that an intermediary processing step
transforms the raw subsystems in the physical layer into
“virtual qubits” and “virtual gates” for the surface code
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Figure 1: Layered control stack which forms the frame-
work of a quantum computer architecture. Arrows indi-
cate services provided to a higher layer.

layer. The virtualization layer is distinct from the sur-
face code layer in that Layer 2 contains only open-loop
control; no readout or active feedback is implemented.

A Virtual Qubit is a quantum two-level system
whose state is protected by dynamical decoupling (DD),
decoherence-free subspaces (DFS) [18], or some other
manner of open-loop control. In this particular system,
static decoupling sequences protect the virtual qubit from
dephasing by the nuclear environment [19].

A virtual gate is an operation on a virtual qubit to
change its state, typically with reduced error from the
raw processes in the physical layer. This may include
composite physical gate sequences with net suppressed
error. This architecture embeds the BB1 compensation
sequence [20] within the static decoupling sequence so
that the ensemble corrects both dephasing and pulse-
induced errors.

2.3 Layer 3: Surface Code

The surface code layer provides the ability to correct
arbitrary errors with quantum error correction [21, 22].
In contrast to Layer 2, the surface code is a closed-loop
system used to periodically measure an error syndrome
and correcting errors. The probability of an undetected
error decreases exponentially as a function of the “dis-
tance” of the code, so that logical qubits and gates with
arbitrarily low error can be produced with a sufficiently
large code. However, the virtual qubits and gates must
have error rates below the threshold of the surface code
(0.75%), so that often Layer 2 techniques are necessary
for Layer 3 to function. The surface code layer uses
closed-loop error correction to provide fault-tolerant log-
ical qubits, logical gates, and logical measurement to
Layer 4. The primary control loop of this architecture
appears in Figure 2.

In addition to a relatively high threshold, the surface
code also tolerates delayed feedback from measurement
of the error syndrome [23, 24]. Logical operation speed
(and hence algorithm runtime) may suffer, but the code

strength is preserved. This feature permits Layer 3 to be
robust against the unpredictable error correction stage
— the error syndrome must be translated into a most-
probable logical error, a process which can be computa-
tionally intensive for a large surface code.

2.4 Layer 4: Logical

The logical layer hosts the quantum algorithm that
a classical user wishes to execute. Operations are per-
formed on the logical qubits provided by the surface code,
and the end result is communicated to the classical user.
The system designed here executes Shor’s algorithm [25]
to factor a 2048-bit number. As indicated in Figure 3,
the speed of logical operations depends on many perfor-
mance aspects of Layers 1, 2, and 3, such as optical pulse
repetition rate and bandwidth, fidelity of virtual gates af-
ter dynamical decoupling sequences, and the size of the
surface code needed for the chosen algorithm.

3 Prospects

In this investigation we seek to design a quantum
computer architecture using optically-controlled quan-
tum dots which can be scaled to problems believed to
be intractable for classical computation, such as Shor’s
algorithm. We estimate this can factor a 2048-bit number
in 14.4 days by taking advantage of ultrafast optical con-
trol. Additionally, this particular architecture attempts
to take advantage of mature technologies from other fields
wherever possible, such as the MEMS mirror arrays. We
implement the surface code for quantum error correction;
this has a strong influence on the physical design of this
system (such as nearest-neighbor gates for a 2D array of
quantum dots), but in principle other methodologies like
CSS codes [26] are compatible with this framework.

What hardware performance is necessary to build a
functional quantum computer? Common figures of merit
are fidelity, operation time, and qubit coherence time.
Here we go further to show how connectivity and classical
control performance are also crucial. To design a quan-
tum computer requires viewing the system as a whole,
such that tradeoffs and compatibility between component
choices may be addressed. We explore how to approach
the complete challenge of designing a quantum computer.
Furthermore, our results present a template for develop-
ing quantum architectures based on other technologies, so
that differing approaches to quantum information, such
as ion traps or optical lattices, can be contrasted in a
meaningful context. In the future we intend to explore
more rigorously the specific hardware requirements of
this system, such as developing the integrated circuit re-
quired for error syndrome processing in Layer 3, or the
optical projection system for laser pulses in Layer 1.
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1 Introduction

Surface code quantum computation[1] is a feasible ar-
chitecture for fault-tolerant quantum computation, but
it has several problems to be solved. One such prob-
lem is how to deal with physical defects. If the number
of defects is large, we need a large lattice, losing effi-
ciency of the use of physical resources. Stace, Barrett
and Doherty[2] addressed the loss problem in an ideal-
ized environment. They assumed the ability to measure
“superplaquette” operators perfectly, an assumption that
raises the threshold by an order of magnitude. They do
not consider hole movement, which is critical. Operations
in the surface code are done by moving two holes in the
lattice. Physical error chains which connect holes result
in logical errors, so the distance between holes determines
the tolerance property. Hole movements will change this
distance. Our in-progress simulations describe the toler-
ance properties of a defective lattice. Our goal is to de-
termine the minimum lattice hole size and spacing, given
the yield and physical gate error rate, for non-idealized
conditions.

2 Surface code quantum computing

In surface code quantum computing, a lattice con-
sisting of physical qubits represents one or more logical
qubits. The correlation between a pair of lattice bound-
aries represents a logical qubit. We concentrate here on
surface code quantum computing based on solid state
physics, for example quantum dots with unpaired elec-
tron spins as the qubits, and cavity QED for control.

We use the term “hole” where Raussendorf et al.[3]
and Fowler et al. use “defect”. A hole is a region of the
lattice that is not used. The boundary of a hole gives
a degree of freedom that can be used as a logical qubit.
We use the term “defect” to refer to physical qubit errors
such as non-functional quantum dots. Note that a defect
may act as an immobile hole, which may either disturb
the computation or be used in computation.

The yield is the ratio of quantum dots of sufficient
quality to the total number of dots produced. Yield is

∗kurosagi@sfc.wide.ad.jp
†rdv@sfc.wide.ad.jp

affected by spectral inhomogeneity, poor cavity quality,
and other factors, depending on quantum dot type. The
lower the yield, the bigger the lattice size should be to
achieve the same error correction strength.

The physical error rate (Pphy) is the probability that a
physical gate or other physical error occurs. Physical er-
rors are detected with stabilizer measurements. We call a
set of qubits which consist of a syndrome qubit and 4 data
qubits a “plaquette”. Measurements on this unit give the
stabilizer measurements of the plaquette. A “superpla-
quette” is a over-sized plaquette, formed around one or
more defects. A defect connects two plaquettes around
it into a superplaquette. Two defects may connect three
plaquettes. We need different sequences of measurements
to measure the stabilizers of different superplaquettes.
The adjusted error rate (Padj) is the probability of an er-
ror chain crossing a plaquette or superplaquette, adjusted
for the probable errors on measuring the stabilizer. The
logical error rate depends on the distance between two
holes or between a boundary of the lattice and a hole.
The shortest distance determines the logical error rate
Plog = (Padj)distance.

3 Superplaquettes

As noted above, there may be various types of super-
plaquettes, consisting of various numbers of single pla-
quettes, chained in various shapes. Each type of super-
plaquette has a specific equation to calculate its Padj ,
see Table 1 and Figure 1, based on the number of gates
needed to implement the superplaquette operator. The
relationship between Padj and the number of gates is
Padj = 1 − (1 − Pphy)#gates. Optimizing the stabilizer
circuit for arbitrary superplaquettes is an open problem
that we think can be solved using graph theory, see Ap-
pendix A.2.

4 The influence of yield on logical error
rate

Figure 2 shows the effect of low yield on the surface
code. The presence of defects treated as superplaque-
ttes shortens error chains between holes. The blue error
chain requires fifteen lattice qubit bit flips, while the red



Figure 1: Plaquettes and superplaquettes. “×” de-
notes a defect. (a) Defect-free plaquette. (b) A 2-
superplaquette formed by a single defect. (c)-(e) Some
3- to 5-superplaquettes formed by multiple defects.

case #gates Padj

(a) 5 Padj:(a) = 1 − (1 − Pphy)5

(b) 12 Padj:(b) = 1 − (1 − Pphy)12

(c) 15 Padj:(c) = 1 − (1 − Pphy)15

(d) 15 Padj:(d) = 1 − (1 − Pphy)15

(e) 19 Padj:(e) = 1 − (1 − Pphy)19

Table 1: The number of physical gates needed to imple-
ment the stabilizer operation of each superplaquette in
Figure 1, and the corresponding Padj .

Figure 2: Examples of error chains. This blue line repre-
sents the ideal situation. No defects, or superplaquettes
reduces the tolerance property. However, the situation
around the red line is more realistic with superplaquettes
and error chains that can run over them. Superplaque-
ttes reduce the tolerance property, so the logical error
rate will increase.

chain requires only eleven. The logical error rate of the
blue error chain is Plog = (Padj:(a))14. This equation de-
scribes only the probability of a logical error occuring,
not the probability of measuring the -1 eigenstate either
correctly or incorrectly. In this situation there are de-
fects in the lattice, so the shortest error chain will be the
red line. It passes across only eleven qubits, so the error
equation will be Plog = (Padj:(a))7×(Padj:(b))3×(Padj:(c)).
Superplaquettes act like a “bypass” around two or more
plaquettes, reducing the tolerance property directly.

The logical error rate depends mainly on the shortest
path of the error chains. We are developing computer
simulations to reveal the relationship between yield and
the shortest path in the channel between two holes. Di-

jkstra’s algorithm is used to find the shortest path.

5 Summary

We have shown that the presence of defects signifi-
cantly reduces the error correction capability of the sur-
face code. Not only are defects in themselves computa-
tionally useless, but they also reduce other qubits’ effi-
ciency. We suggest the following as open problems:

1. Superplaquette overhead Superplaquettes need
stabilizer circuits specific to their individual shape.
The memory error rate of non-defective qubits may
increase if they have to wait longer for superplaque-
tte operations to complete.

2. Full path simulation Our initial simulations do
not enumerate all patterns of paths. While the log-
ical error rate increases exponentially with the path
length, errors on non-shortest paths may affect the
overall logical error rate. If there are many paths
whose error rate is not small enough to be ignored,
the result of our simulation may be unduly opti-
mistic.

3. Defective syndrome qubit We did not assume
that syndrome qubits can be defects. Defective syn-
drome qubits will affect the stabilizer operation sig-
nificantly.

Once we have Padj for every plaquette and superpla-
quette, we can build a weighted graph. Using the loga-
rithm of every Padj as the edge weight then allows us to
apply Dijkstra’s algorithm to determine the single most
probable error path. For high defect rates, we expect this
path to dominate the overall error probability. For nearly
homogeneous lattices with few defects, large numbers of
paths with similar probabilities will exist, requiring more
careful counting and/or simulation to determine Plog.
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A Appendix

A.1 Lattice design

Figure 3 shows the design of a lattice. Each hole is
made to be (d × d), so it has 4d circumference. The dis-
tances between holes and between each hole and bound-
aries of the lattice are at least 4d. Thus, when the yield
is 1, which is the ideal situation, we can take the power
“distance” as 4d.

Plog = (Padj)4d (1)

d = f(yield, Padj) (2)

A.2 Graph problem in superplaquette operation

Superplaquette operations are shaped as chains of
CNOT gates. Figure 4 shows an example of a 3-
superplaquette in a straight chain. Data/syndrome
qubits are nodes, and edges are between adjacent qubits
in the graph determining the number of gates. We find
that the diameter of the graph determines the number of
gates.

Figure 3: Lattice model.

Figure 4: Circuit of an operation for a 3-superplaquette.
This operation needs 22 gates and 1 measurement, 12
time steps.
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Abstract. The problem of communication will dominate both architectural choices and application performance
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1 Introduction

Few of the many proposals for quantum computer architec-
tures take an explicitly heterogeneous approach to designing
systems, but the limitations of device size, classical control
hardware, and quantum interconnects make perfectly uniform,
large-scale systems impossible. As quantum architecturesma-
ture, they will adopt multi-level interconnect systems. The
most visible distinction is between coupling within one chip
or device, and coupling between chips, though intra-chip con-
nections may also come in different flavors. Connectivity re-
quirements strongly depend on the means chosen for quantum
error correction.

Surface code quantum computation has one of the highest
error thresholds for systems with constrained interconnects,
at around 0.75% for gate and memory errors [4]. The logi-
cal error rate improves rapidly as the distance of the code is
increased, and the resources required can be scaled incremen-
tally. Moreover, movement of logical qubits or execution of
gates between distant logical qubits can be done in nearly con-
stant time, at the expense of space, allowing time performance
of some algorithms (such as arithmetic) to be asymptotically
optimal.

The surface code requires qubits arranged in a two-
dimensional lattice. With the prospect of a low yield of
qubits that meet our quality criteria, and a system architec-
ture that does not support direct physical coupling to neigh-
bors in all four cardinal directions, our proposed system cou-
ples qubits through heterogeneous communication channels
that pass through different numbers, types and sizes of opti-
cal components. This requires the use of purification [1, 2] as
well as different physical gate mechanisms.

In this paper, we present a nanophotonic architecture using
the surface code. First, we describe the core components with
a focus on the heterogeneity of the interconnect, followed by
a discussion of the expected performance of very large-scale

Figure 1: Scanning electron micrograph of a non-functional
GaAs demonstration device with (unshown) InAs quantum
dot layer, created to explore fabrication issues.

systems, some of the lessons learned, and the resulting de-
mands on the evolution of the underlying technology.

2 Architecture

We are developing an architecture that utilizes unpaired
electron spins held in quantum dots in optical cavities [5].
Coupling is performed using different physical gates, depen-
dent on the loss between the qubits to be entangled, using laser
pulses routed in-plane through waveguides that thread among
the cavities. Individual qubits can be coupled to the wave-
guides via optically-controlled tuning of resonant frequencies,
accomplished using MEMS micromirror arrays and out-of-
plane lasers.

Figure 1 shows our basic layout. The smallest circular cavi-
ties include the quantum dots used for qubits, and are assigned
three low-level roles in the system: lattice qubits (wedgedbe-
tween larger circular waveguides), ancillae for teleported gate
circuits (between large circles and racetrack-shaped wave-
guides), and transceivers (between racetrack-shaped wave-
guides and linear waveguides). The large, circular waveguides
are used for high-fidelity gates between ancillae and lattice



qubits, requiring no additional purification.
The linear waveguides are arranged in alternating columns

for logic gates and long-distance communication via tele-
portation and purification. The teleportation waveguides,
flanked by many transceiver qubits, initially create low-
fidelity Bell pairs over large vertical distances, between neigh-
boring columns, or between chips, depending on the setting
of optical switches (not shown in the figure; see the complete
architecture in Ref. [5]). Assuming 0.1dB optical loss for in-
column connections and 0.4dB between neighboring columns,
our calculations show that the respective connections require
approximately 100 and 1,000 pulses in the teleporation wave-
guides, including purification.

The master architecture is a quantum multicomputer, con-
sisting of thousands of chips arranged in anH × 1 array with
each chip coupled to left and right neighbors through switched
extensions of the teleportation waveguides. Previous studies
have shown that this wide, shallow multicomputer arrange-
ment works well for systems using CSS codes [6]; in this
architecture, sections of lattice are stitched together ina dis-
tributed fashion across device boundaries, likewise avoiding
the need for topologically complex inter-node switching fab-
rics [3].

3 Discussion

The architecture presented here has numerous strengths,
including the explicit planning for heterogeneous communi-
cation and low yield. The lattice maintenance process is
resource-efficient and highly flexible, minimizing the num-
ber of ancillae required for plaquette syndrome measurement.
The rich interconnect supports software-defined lattice ar-
rangements, allowing defective qubits to be mapped out of
the system easily.

Our architecture has two principal weaknesses. First, de-
spite the high-speed repetition rate of signals (specified as
10GHz) in the logic and teleportation waveguides, the large
number of pulses required in each vertical column still re-
sults in a complete lattice refresh time of∼50µsec. This in
turn demands∼50msec memory coherence time and results
in Toffoli gate times that are also∼50msec, slow but toler-
able for our purposes. Second, although the basic structures
of cavities and waveguides are large by modern VLSI stan-
dards, the spacing between cavities and waveguides and the
surface roughness of optical components require very exact-
ing fabrication. Adequate fabrication is currently achievable
only with e-beam lithography, which is fast enough for small
test devices but too slow (hence, expensive) for the production
levels required for large-scale systems.

Our investigations produced a clear imperative that was un-
expected, but logical in hindsight: pursue quality of compo-
nents at the expense of yield. Within our system, a yield of
only a few percent of qubits declared “functional” will allow
lattice-building experiments, and a yield of 40% will allow
the construction of supercomputer-scale systems capable of
using Shor’s algorithm to factor kilobit or larger numbers in a
timescale of months, many times faster than classical systems.
We believe that this minimum yield is the lowest yet reported.

Finally, this work has helped to establish targets for various
experimental values: the 50msec memory lifetime mentioned

above, a teleported gate error rate of 0.2%, and the demanding
nature of optical communication. With our architecture and
choice of gate mechanism, changes in switch loss of less than
half a decibel result in an order of magnitude increase in the
number of required pulses and corresponding negative effects
on performance.

Our overall architecture bears out the intuitive idea that
richer interconnectivity among components will improve the
robustness of the system. By using a multi-level strategy
incorporating purification and appropriate choices of physi-
cal gate sequences, heterogeneity and physical defects canbe
managed in an integrated fashion.
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